2021 |IEEE International Conference on Cloud Engineering (IC2E) | 978-1-6654-4970-0/21/$31.00 ©2021 IEEE | DOI: 10.1109/IC2E52221.2021.00033

*&&&*OUFSOBUJPOBM$POGFSFODFPO$SMPVE&OHJOFFSJOH “$&

PEDaLS: Persisting Versioned Data Structures

Nazmus SaquibChandra Krintz,Rich Wolski
Department of Computer Science
University of California,Santa Barbara
{nazmus,ckrintz, rich}@cs.ucsb.edu

Abstract—In this paper, we investigate how to automatically
persist versioned data structures in distributed settings (e.g.
cloud + edge) using append-only storage. By doing so, we
facilitate resiliency by enabling program state to survive program
activations and termination, and program-level data structures
and their version information to be accessed programmatically
by multiple clients (for replay, provenance tracking, debugging,
and coordination avoidance, and more). These features are useful
in distributed, failure-prone contexts such as those for hetero-
geneous and pervasive Internet of Things (loT) deployments.
We prototype our approach within an open-source, distributed
operating system for loT. Our results show that it is possible to
achieve algorithmic complexities similar to those of in-memory
versioning but in a distributed setting.

Index Terms—partially persistent data structures, loT, porta-
bility, append-only storage, distributed programming systems

I. INTRODUCTION

The Internetof Things (loT), Big Data, and artificial in-
telligence are coalescing to transform the world around us,
making it possible to collect, mine, analyze, and actuate
using information from physicalobjects across geographical

parently store program data structures in non-volatile storage
so thatthey survive unexpected program terminatigystem
failure, and power outage.Second,we use an append-only
log as the underlying storage abstraction to facilitate failure
recovery as well as data structure versioning and immutability.
Doing so enables integration with several existing distributed
logging systems [1][6]-[10].

In this work, we focus on persisting versionsof linked
program data structures (e.glinked lists and trees). To do
so efficiently,we base our design on algorithmically efficient
in-memory, mutable algorithm implementations from Driscoll,
Sarnak,Sleator,and Tarjan [11],which embed versions (i.e.
nodes and edges) within the original data structuxate that
while the above work proposes a versioning scheme for single-
machine,in-memory data structurespur work formulates a
versioning scheme for storage in persistentdata structures
which can span multiple machines in a distributed setting. We
use append-only logs for storage asprovides immutability,
which in turn provides robustness [12] and helps in debugging
systems [13]poth of which are highly desirable features in a

locations. To do so, loT applications amalgamate clouds, edggistributed environmenfThe use of append-only logs as the
devices,and sensors as ensemble deployments implementingacking store introduces new challengas, any modification
automation, decision support, and control for objects, devicespf a node in a data structure must be recorded using an
and systems in the environment. As a result, loT deploymentaippend rather than in-place modificatioPEDaLS addresses

are geo-distributed and compose a vadiversity of devices,
architecturesresource constraintsand communication sys-

these challenges while maintaining the same time and space
complexity of the original work and facilitating distributed

tems with highly variable performance, failure, and availabilitystorage persistence.

characteristics.

Many popular and important cloud-basedservices for
durable data managemerand data-driven computation (e.g.
AWS S3 [1], HDFS [2], CORFU [3], Kafka [4], AWS
Lambda [5], etc.) appearat first to provide the scale and
fault-resiliency required for loT.However,in practice, these

In addition to this new distributed formulation of persistent
versioning, we describe a working “real world” implemen-
tation of PEDaLS for cloud and loT settings. We prototype
our approach using an open-sourcéjstributed runtime sys-
tem [6] that supports distributed logs as a first-class storage
abstractionWe use this prototype to evaluate empirically the

services turn out to be ill-suited for loT deployments becausevarious overheads associated with versioning and persistence

they assume “resource-rich” (e.gnachines with large mem-
ories and high clock speedsgloud-basedand comparatively
homogeneous infrastructure connected via high quality and
large-capacity networks.

In this paper, we consider how to evolve and extend data

for operation workloadson linked lists and binary search
trees, and investigate the effectof failures on the logging
process.Our results show thatPEDaLS maintains the algo-
rithmic complexities of in-memory versioningand enhances

the robustness of distributed data structures with low overhead.

services for loT applications that target tiered edge-and-cloud

lIoT deployments.Our goal is to tame the heterogeneity of

such deployments via new programming abstractions in the

Il. RELATED WORK
We first provide background,related work, and context

form of sophisticated program data structures that simplify anfbr the contributions we describe in the sections thébllow.
expedite software development for event-triggered and failureSpecifically,we overview mutablein-memory versioned data

prone settingsOur approachgalled PEDaLSgcombines stor-
age persistence and data structure versionfigst, we trans-

¥*&8&&
%0**$&

structures (referred to as partially persistentiata structures
(PDSs) in the literature)non-volatile program object storage,

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on June 21,2022 at 20:52:07 UTC from |IEEE Xplore. Restrictions apply.

and append-only storage advances that enhance the robustnessestigated (i) tools and language suppdHat automate the
of distributed systems. process of persisting program (in-memory) data structures and
.) objects to disk (and more recently to non-volatile memory),
A. Partially Persistent Data Structures (PDSs) and (i) ways of unifying the treatmentof transientand
PDSs track version histories for in-memorprogram data persistent objects in programs to simplify programming [29]-
structuressuch that versionscan be accessed programmat- [40]. These advancesre referred to as persistentstorage,
ically [11]. Data structuresfor which all versionscan be persistentobject storage,persistentobject systems orthogo-
accessedput only the latest/newestcan be modified, are nal persistenceand persistenprogramming in the literature.
called partially persistent.Those for which all versions can PEDaLS pursues both automation and unification of persistent
be accessed and modified are called fully persistent.Data object storagebut is unique in that it persists versioned data
structures withoutversioning supportare called ephemeral. structures(i.e. PDSs)to local or remote append-only disk
We focus on partially persistentiata structures in this work storage.Doing so enables both program data structures and
because version histories are immutable and data structures their versions to survive program termination and be accessed
are append-only — properties that are desirablein highly by distributed clients.
concurrent and failure-prondlistributed settingsWe refer to
partially persistent data structures simply as PDSs throughouf*- APPend-Only Storage Systems
this paper. Append-only storage is employed in distributed and cloud
PDS update operations result in a new version of the struc-computing systems to facilitate immutabilitypbustnessand
ture. PDSs achieve algorithmic efficiency (in both space and scalability,as storage costs have plummeted [12} is used
time) by (i) embedding the versions within the originatata by cloud object stores [7], [8], event systems [41], distributed
structure and sharing unmodified sections of the data structuatabasesand file systems[2], [31], [42]-[44], log-based
among versions(ii) by implementing this embedding using transaction systems [3], [45], [46], and popular messaging and
mutable,pointer-based memory structures behind the scenesstreaming services [9]10], [47].
and (iii) by optimizing accesses and updates to versions [11], Immutability facilitates robustness and coordination avoid-
[14]-[18]. PDSs enable a wide range of programming supportance [12],[48] as well as high availability (through eventual
including debugging [19], history programming [20], [21], consistency) for cloud storaggpssip protocolsgollaborative
undo and replay [22], [23], lock avoidance [24],referential editing, and revision control, among others [1], [49], [50].
transparency and functional programming [25]-[28]. AlthoughlIn particular, versioning in distributed systems allows appli-
most works on PDSs are related to the field of theoretical consations to make progress from the lastavailable consistent
puter sciencePDSs have applications in distributed systems state [51]. While our evaluation implementation usesthe
as well. For example, sensors in an loT environment can oftemersioning features of a storage system specifically designed
malfunction and generate erroneous values. If we have a PD%or loT [6], PEDaLS can use any append-only storage system
deployed in the system, we can query the past versions of it tthat exports ordered, version information (e.g. sequence num-
determine at what point we started receiving erroneous valuebers) as its backing store for program-level,versioned data
and perform further analysis (e.g. what trend in data it resultediructures.
how it affected the other components of the system that depend
on this data,etc.). Systems thakxperience a high volume of
temporal queries, such as the location of items of interest (e.g. Driscoll et. al. introduced a node-copy method to version
delivery tracking,livestock trackingetc.) throughouthe day linked data structures (with constant in-degree) by embedding
can also benefit from PDSs. versions efficiently within the structure itself[11]. PEDaLS
PEDaLS brings PDS supporto programs in a new way, extends this method using append-only logs. We first overview
using efficient algorithms that are backed by append-only the original approach and then describe our advances.
disk storage exported via logs. For |oT, these efficiencies Using the node-copy method, a versioned linked data struc-
are necessary to enable battery-poweredesource-restricted ture consists ofnodes and edgesand each node contains a
platforms (e.g. loT devices) to use as little power as possible.constant value and 1+ edges (i.pointer fields).The method
Often, power consumption is proportional to computation = adds a fixed number of extra pointer fields beyond those
duration and storage access frequency. Append-only semantiesjuired by the original structure. For example, in the case of
are also attractive in this context to mitigate component a binary search tree (BST), a node contains fields for its value
failures, particularly in the form of communication network and left and right pointer. Additional pointer fields represent
partitions. versions — i.e.updates to the left or right pointer of the node.
. Once all of the extra fields have been used to accommodate
B. Object Storage update operations, the method makes a copy of the node with
The term persistence is also used in computescience to only the most recent pointer fields — creating a new set of
describe the long-termnon-volatile storage ofdata (e.g.in extra pointerfields for use in future updates Moreover,the
files or databases on disk)i.e. enabling data to exceed the predecessor of the node stores a pointer to this new copy. This
lifetime of any particular program activation. Related work hasvay, the method avoids walking through chains of copies of

Ill. PDS Nobe-CorPY METHOD

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on June 21,2022 at 20:52:07 UTC from |IEEE Xplore. Restrictions apply.

i. insert(7) ii. insert(2) iii. insert(5) iv. delete(2)

Fig. 1: Partially persistenbinary search tree using the node-copy method with one extra point&ircles denote node with
information field within. Arrows with labels denote pointers with version stamp®&ashed arrows/circles denote thatnode
has been copiedAP is the access pointer listp denotes the null node.

the same node to locate a particular versioNote thatifthe original left pointer of this new copy is set to point to the node
predecessor runs out of extra pointer fields while pointing to &ontaining 5 and is stamped with version 4. The original right
new copy of a nodethe predecessor is copied as wel.the pointer need notbe updated and thus stilboints to the null
worst case,this copying operation and chaining continue to node.The extra pointer of this new copy remains unused and
the root node.The method also maintains a list of root nodes s available for future updates. Note that as the node originally
indexed by version stamps called the access pointer (AP) listcontaining 7 has been copied, index 4 (i.e. the current version
The AP facilitates constantime lookup of the root node for stamp) of the AP list points to the copied node rather than to
any version. the original node.

The number of extra pointers used by the method is a Access operations (i.dind/search) for a particular version
tunable parameter. If the number of extra pointers is small, thetamp vs traverse pointers with the greatest version stamp less
time to scan them is short but the number of copies generatethan or equalto vs at each nodelnstead of specifying only
may increaseresulting in a higher time and space overhead. a value (f ind(val)), a PDS find operation can also include a
If the numberof extra pointers is large,it takes more time version stamp (f ind(val, vs)). As an example,considerthe
to scan allthe pointers butfewer copies will be neededWe operation find(2, 3) - find 2 in version stamp 3 , after the
explore this time-space tradeoff for PEDaLS in Section V. execution of all the operations in Figure 1. That is, the current

To illustrate how the node-copy method works for linked BST is represented by the last column of Figure 1.
data structuresconsiderthe binary search tree as shown in The access operation starts from index 3 in the AP list,
Figure 1. We assume thatthe number of extra pointersis which points to the node containing 7. As 2 is less than 7, we
one. We start with the empty tree and insert 7. Both the find the left pointer with the largest version stamp that is less
left and right pointer of the node containing 7 points to than or equalto 3. In this case,there are two leftpointers —
null. Assuming version stamps start at one and monotonicallyone with a version stamp 1 and the other with a version stamp
increase thereaftenwe stamp these pointers with version 1. 2. As both are less than the target version stamp 3, we follow
We also update the AP list (assuming indexing starts at 1) to the larger one This leads us to the node containing 2¢., 2
point to this newly created node. is present in version stamp Note that if we search for 2 in

Next, we insert 2 in the same way. Because 2 is less than ¥ersion stamp 4 insteadwe eventually end up with the null
we install a new left pointer in the BST using the extra pointemode,indicating that 2 is not present in version stamp 4.
in the node containing 7 and stamp it with the current version The amortized time complexity for inserand delete using
(2). The type of the extra pointer (i.e.left or right — in this the node-copy method is constaner operation stepwhere
case,left) is recorded (not shown in the figure for brevity). an operation step is defined as the traversal from one node to
As the root node does notthange,ndex 2 of AP list points another [11]. The worst-case time complexity for access using
to the same node as AP index 1. this method is also constant per operation step. Moreover, the

Next, we insert 5 which follows similar insertion steps. ~ Worst-case space complexity fomsert and delete using the
Finally, we delete 2.To do this, the node containing 7 must Nnode-copy method is constant per operation step.
point to the node containing 5 (using a leftpointer) and the
null node (using a right pointer). However, the node containing IV. PEDALS
7 has run out of extra pointers and thus must be copidiche PEDaLS is a set of language and runtime extensions that

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on June 21,2022 at 20:52:07 UTC from |IEEE Xplore. Restrictions apply.

- Transparently store immutable and versioned linked date | Versioned orig. fields

structures in distributedaon-volatile,log-based storage; _) Linked List —a——a
- Expose data structure versions to developers for use in minr= Ln!(de;('cre?te(URl) Node: 7
A . first_version = livar.insert(7) d
dependency tracking and program analysis[52]-[54], latest_version = llvar.insert(2) extra field
history-aware programming [20],[55], and repair and livar.print(first_version) Legend: each nodeffield has
replay [13], [56]-[59] in distributed settings; and ‘ a version stamp (VS)
- Enables portability across heterogeneous deployments t VS1 VS1 VS2 VS2
requiring only a limited “generic” functionality for gen- null null
erating and accessing storage-persistegging systems A 7 V53| 2 unused
(e.g.[1], [4], [7], [8], [60]) in a distributed setting.
As a result, PEDaLS data structuresare able to support .he
versioning and immutability end-to-end as distributed appli- @P' i == fELAE _]
cation and systems propertiesvhich are desirable in highly

concurrent and failure-prone settings [126,1].

To enable this, we develop a methodology for realizing
PDSs using generic, distributed log structures to facilitate
integration with existing system# PEDaLS log must

- support append-only updates with ordered entries,

- be network addressable so that they can be co-located or

remote relative to the process accessing themq Fig. 2: High-level architecture of PEDaLS that usesnode-
- have some mechanism forcontrolling log length (e.g., copy to version linked data structures. The top left shows
size or log entry/elementifetime for automatic garbage ~ user code using PEDaLS library operations.Each node in
collection). this list (e.g.top right) has an integer value and nextointer

In addition, log elements can be of any type and mustbe @S original (developer-definediields. PEDaLS embeds ver-
accessible via a comparable index (eagsequence number). sions/modifications within a single data structure using “extra”

The API functions that PEDaLS expects the storage systenfi€lds in each node Also, each node and field has a version
to support (or compose to support) are: stamp representing theircreation “time”. The PEDaLS AP

createLog(log_name): create a log with the name represents the access pointer and indexes the root node of each
log_name. Upon completion,this call returns a value version for fastaccessPEDaLS persists the structure and its
that indicates whetheror not the log was successfully ~ versions using 1+ non-volatile, append-only, distributed logs.
created.

- put(log_name,elem): append the element elem to
the log named log_name, assigning it the next available version stamps thatrack the version atwhich original field
sequence number, and return the sequence number to thédates occurin each node. As in the original method, we

caller (or an error value if the operation fails). assume thatinformation (value)fields are constantand that

. get(log_name,seq_no): return the element atse- pointer fields (e.g. the next pointer of a linked list) can change
quence number seq_no in the log (or an error value if ~ acrossversions. End-usersinteract with the data structure
the operation fails or seq_no does not exist). using library calls as shown in the top left corner of Figure 2.

- getLatestSeqNo(log_name): return the latest se- Any modification to a data structure node is translated to low-
quence number of the log named log_name (or an error l€vel API functions of the underlying log storage, possibly
value if the operation fails or the log is empty). affecting multiple geographically distributed logs.PEDaLS

Example systems thasupportthese persistenstorage func- hides this translation from the end-user.

tionalities directly include Kafka [4], Facebook LogDe-)

vice [60], and CSPOT [6] among othersMost cloud object A Challenges Using Logs to Implement Node-Copy

stores also support versioning (e.g. Amazon S3 [7] and Google To map node-copy to logswe must preserve the original

Cloud Storage [8]) and can be integrated into PEDaLS with time and space complexity of the originalin-memory,algo-

some additional bookkeeping (e.g. combining version IDs witkithm. Although the AP list of the node-copy method (cf.

their timestamp to maintain order). To map PDSs to these Section) can be modeled as a separate log for efficiency,

distributed storage systems, PEDaLS must overcome multipleloing so imposes undue complexities. First, it is not clear how

challenges that we describe in the subsection that follows. to represent both the information field and pointer fields of a
Figure 2 provides a high-leveloverview of our approach, node using logs. Moreover,logs are append-only — pointer

which models the PDS node-copy method described previ- manipulations musbe expressed as appends (evge cannot

ously,using persistentogs. Each node and originafield has have an entry representing a pointer to a nuliode and later

a version stamp (vs) that denotes the version atwhich the update that entry to point to a different node).

node was created.Each node also has a constant number This leads to a challenge that is even more intricate — if we

of extra fields (1 is used/shown in the figure), which hold representan updated node link by appending to a single log

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on June 21,2022 at 20:52:07 UTC from |IEEE Xplore. Restrictions apply.

TABLE I: Logs used by PEDaLS .

Log Field | Description

Vs
val
link

version stamp during node creation
information field of the node
name of link Tog for the node

Datalog

Vs version stamp during pointer creation

DatalLog seqno. where the information field of the
node being pointed to is stored

LinkLog seq.no. of the node being pointed to
where the first pointer among the contiguous
pointers of the required copy is stored

number of extra pointers remaining after the
insertion of the current pointer

type of pointer,e.g.,left/right for binary search free

LinkLog | 95€d

Iseq

rem
type

Vs version stamp of the data structure

DatalLog seqno. where the root node’s information
field is stored

LinkLog seq.no. of the root node where the first

pointer of the required copy is stored

APLog dseq

Iseq

repeatedlywe potentially require a full log scan to find an
arbitrary link — defeating our goal of maintaining the original
time complexity of node-copyl'o avoid this,we use multiple
logs to represent nodes and their connectioifkis, however,

independentlywhile maintaining the efficiency of find/search
operationsavoiding copy overheadind conserving space.

Specifically, PEDaLS represents a node in a linked data
structure by a pair of log sequence numbersone for the
shared information log — the DatalLog, and anotherfor the
node-specific pointerlog — a LinkLog. When a pointer is
added to a node,we append an entry to the LinkLog of the
node (addressing C1)The second sequence number is used
to distinguish node copies.

The efficiency of the in-memory node-copy method lies in
the fact that every predecessonode points to the required
copy of the successomode. To traverse a copy of a node
we need only scan a fixed numberof pointers.That is, we
scan (p = o + e) pointers,where o is the number of original
pointers and e is the number of extra pointer§herefore,to
achieve similar time complexity, we must restrict (i.e. fix) the
numberof entries in the LinkLog that we need to scan in
order to traverse a noderThis is relatively straightforward to
do: because copies of a node are not interleaved (i.e. a node is
copied only when the previous copy becomes full), we can use
contiguous log entries of a LinkLog to represera particular

leads to a new challenge — although an append to a single Iog&,y_

atomic,appends to multiple logs are noMoreover,logs can
be distributed across a networkso a network failure could
potentially leave an underlying data structure semantically
inconsistent.

To summarizethere are four primary challenges in imple-
menting versioning via node-copy using logs:

. C1: Logs are append-only and thus we canngierform

Initially, it appears thatve can use contiguous p LinkLog
entries to store a copy of a node and denote a copy using the
first sequence numbeamong these entriesThat is, for the
n-th copy of a node (considering the originahode to be the
“first” copy), the p entries starting from the sequence number
((n=1) = p + 1) store that copy.This is indeed the case - in
absence of network failures.

any updates in place (as we do for in-memory structures .\ ever failures alter the situation. We consider two types

as described above - specificallygreating links on the
fly).

. C2: A scan of a log with an arbitrary number of entries
will violate the amortized and the worstase time com-
plexity of the operations guaranteed by the node-copy
method.

of failures. (i) Type 1: an append to a log fails. (ii) Type 2:

an append to a log succeeds,t the acknowledgment (which
returns the sequence number where the entry was appended) is
lost. In both cases PEDaLS retrieddowever,note thatType

2 failures violate the boundary conditions discussed above.
Copies of a node do not strictly end at multiples of p anymore.

+ C3: Updates to a single log are atomic, however, PEDal$ys implies that we must embed the information regarding
must also guarantee that multi-log updates are also atomjg,qre 5 copy ends within an entry of the LinkLog.

if used to manage versioning.

. C4: Because the persistenbacking store can be local
to the function or on a hostacross a networkwe must
considerthe impact of failures in our algorithms and
analyses.

We next describe a design that allows us to efficiently imple-

ment node-copy using logs while addressing these challengeg.I

B. Implementing Node-Copy Method using Logs

Our log mapping designwhich avoids log scans (address-
ing C2), derives from two primary observationsFirst, data
structure updatesmodify node pointers and these updates
can be interleaved. We thus use a separate log per node
to avoid scanning entries from unrelated updates.Second,
when we copy a node (when it runs out of extra pointers),
the information (e.g. value) does not change.We thus use
a shared log (across nodesjo hold node information. This

To account for failures, we record the number of extra
pointers left after the insertion of that entry in a dedicated
field in the LinkLog. This way, once this field reads 0 while
scanning entries of a copy in the LinkLogye know we have
reached the end of the current copy.

In general,we embed sufficientnformation in an entry of

og so that append to thatlog becomes idempoten{this
addresses C4). Note that in presence of failures the number of
entries we need to scan is bounded by the number of failures
f(p=o+e+f).

Next, the node-copy method usesan AP list for con-
stant time accessto the root node of a particular ver-
sion of the data structure. Similarly, PEDaLS maintains
an APLog to store version root nodesfor the data struc-
ture. PEDaLS writes the APLog last (the order of write is
DataLog>LinkLog(s)>APLog). Therefore,an append to the

combination allows versioned data structure updates to occuf*PL0Og denotes the successful completion of a version.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on June 21,2022 at 20:52:07 UTC from |IEEE Xplore. Restrictions apply.

That is, APLog acts as a checkpointdenoting the com- from the node containing 7 to the node containing As the
plete versions currently presentin the data structure. This data for the node containing 2 was inserted at sequence number
design choice addresse<C3: if there are rogue entries in 2 of the Datalog and the first pointer of the node was inserted
LinkLogs/DatalLog with version stampsvs that are greater at sequence number 1 of its LinkLog, dseq and Iseq values of
than the latest version stamp recorded in the APLog (this this pointer are 2 and 1 respectively.
can be identified after a system crash or network failure)g After recording this pointer,we decrementhe number of
know thatthe lastoperation did notcomplete and can either extra pointers (recorded as 0 in the rem field). The value to be
trim these entries or retry the operation (we log requested decremented comes from the tail of link, which is 1 at this
operations before we start execution for the latter). point. Note that the APLog entry for version 2 is identical to

Table | summarizesthe different types of logs used by that of version 1, as the root node does not change. Execution
PEDaLS along with a description of the fields stored in each of insert(5) follows similar steps.
of their entries. Note that type field in LinkLog is used for the = Execution of delete(2) involves some additionasteps,as
sake of generalization; data structures that have only one typeo more extra pointers are lefin the node containing 7 but
of entry (e.g.singly linked list) ignore this field. we need to add 5 to the left of 7Therefore we make a copy

Most log storage systemshave some form of built-in of the node containing 7. Since the right pointer does not
retention policy which prevents logs from growing without ~ change,we copy over only the latest right pointer. This is
bounds.For example,Kafka [4] provides retention policies done in sequence numbe# of link _7 (bottom right corner
based both on time (messages oldghan a configured time of Figure 3). Next, we install the new left pointer with dseq
are deleted)and on space (once a log reaches a configured and Iseq values seto 3 (5 was inserted in sequence number
space limit messages are deleted from the endESPOT [6] 3 of DatalLog) and 1 (node containing 2 pointed to 5 using
provides rollover where once a log reaches a specified numbéeq value of 1), respectively. As the root node is copied in this
of entries, newer entries start overwriting the older ones. case, we record the node in the APLog by appending (4, 1, 4).
Therefore, to ensure all the required versions are preserved in Note that for update operations, the crux of the algorithm is
their entirety, an end-user has to specify the number of versidnsnode connectivity. We presentthe AddN ode routine for
K he/she wants to retainPEDaLS then allocates enough log BST in Algorithm 1 (the routine for linked list is similar
space for each type of log based on the value of K. Currentlyand simpler as there is only one originalink and hence no
PEDaLS refuses update operations once it reaches K versiordik must be copied during node copy). The routine adds
This sort of policy where service is refused based on the a child node (cN ode) to the desired parentnode (pN ode).
unavailability of space is not uncommon (e.g.Redis [62]). As successive predecessors may run aftextra pointers to
Note that PEDaLS continues to service read operations evenaccommodate this addition (cf. Section Ill), the full path from
after it reaches K versions. the root of the tree to the desired parent node is supplied to the

. routine. We assume the node representation in the algorithm
C. Node-Copy using Logs: Step by Step Example is a structure containing dseqlseq, and the link fields (cf.

Figure 3 shows the contents of the different logs used Table I). The lastentry in a log L is represented by tail(L),
by PEDaLS across multiple operations on a PEDaLS binary the entry at sequence number i in log L is represented by L[i],
search tree (BST)As in Figure 1, we start with the empty and a field f in an entry e of a log is e.f . Note that the versions
BST and assume the number of extra pointers is 1For the of a data structure are strictly ordered and a new version is
simplicity of exposition,we name the LinkLog of a node as obtained by modifying the previous version.Therefore,we
link _val, where val is the node value (information). need to know the previous version in its entirety before we can

Toinsert(7), we append the entry (1,7,link 7) to the generate the nexversion of a data structureThus, PEDaLS
DatalLog which returns the sequence number 1. This sequena@®es not allow concurrent updates.
number will be used later to record the root in the APLog. We Access operations follow a similar pattern to that of node-
append two entries in link 7, one for the BST left pointer and copy.As an examplewe consider the operation f ind(2, 3) -
one for the right pointer. Note that for both of these entries, thiéind 2 in version stamp 3, after executing the above operations
rem field is 1,denoting the number of extra pointers after the (i.e. BST has the representation shown in the bottom right
insertion. As both of these pointers point to the null node, we corner of Figure 3). We startby first locating the root node
use an invalid sequence number (0) for dseq and Iseq. The fifst version 3 from the APLog.In this case,the root node for
append to LinkLog returns the sequence number 1. Thereforejersion 3 is recorded in the entry at sequence number 3 in the
we conclude the insertion of 7 by recording the tuple (1,1,1) APLog. From this entry, we know that the root node’s data is
in the APLog. stored in sequence number 1 (dseq 3 df the Datalog.

Operation insert(2) follows a similar approach with two The entry at sequence numbet of Datal.og provides us
added steps First, we find the current version of the data with the name of the LinkLog. As Iseq = 1 in the APLog
structure.To do this, we read the tail of the APLog. This entry, we start scanning link_7 from sequence number 1.
reveals that the latest version is 1 (this is the first field of the Scanning the top three entries is enough to fully traverse the
last entry in the APLog in the top left corner of Figure 3), current copy of the node (as the third entry has rem = 0,
so the current working version is 2. Second, we add a pointerdenoting the end of the currentcopy). This reveals two left

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on June 21,2022 at 20:52:07 UTC from |IEEE Xplore. Restrictions apply.

Datalog LinkLog: link_7 Datalog LinkLog: link_7
seq | vs | val | link seq ‘ vs |dseq | Iseq | rem | type seq | vs | val | link seq | vs |dseq| Iseq | rem | type
1 1 7 |link_7 1 1 0 0 1 L 1 1 7 |link_7 1 1 0 0 1 L
2 ‘ 1 0 0 1 R 2 2 2 |link_2 2 1 0 0 1 R
3 2 2 1 0 L
APLog APLog LinkLog: link_2
seq | vs ‘dseq‘ Iseq seq | vs |dseq| Iseq seq | vs |dseq| Iseq | rem | type
1 1 1 1 1 1 1 1 1 2 0 0 1 L
2 2 1 1 2 2 0 0 1 R
i. insert(7) ii. insert(2)
Datalog LinkLog: link_7 Datalog LinkLog: link_7
seq ‘ Vs val | link seq | vs |dseq| Iseq | rem | type seq | vs val | link seq | vs |dseq| Iseq | rem | type
1 1 7 |link_7 1 1 0 0 1 L 1 1 7 |link_7 1 1 0 0 1 L
2 2 2 |link_2 2 1 0 0 1 R 2 2 2 |link_2 2 1 0 0 1 R
3 ‘ 3 5 [link_5 3 2 2 1 0 L 3 3 5 |link_5 3 2 2 1 0 L
4 1 ‘ 0 ‘ 0 1 R
‘ 5 4 3 1 1 L
APLog LinkLog: link_2 APLog LinkLog: link_2
seq | vs ‘dseq‘ Iseq seq | vs |dseq| Iseq | rem | type seq | vs dseq‘ Iseq seq | vs |dseq| Iseq | rem | type
1 1 1 1 1 2 0 0 1 L 1 1 1 1 1 2 0 0 1 L
2 2 1 1 2 2 0 0 1 R 2 2 1 1 2 2 0 0 1 R
3 3 1 1 3 3 3 1 0 R 3 3 1 1 3 3] 1 0 R
4 4 1 4
LinkLog: link_5 LinkLog: link_5
seq | vs |dseq| Iseq | rem | type seq | vs |dseq| Iseq | rem | type
1 3 0 0 1 L 1 3 0 0 1 L
2 3 0 0 1 R 2 3 0 0 1 R
iii. insert(5) iv. delete(2)

Fig. 3: A versioned binary search tree (BST) using node-copy with one extra pointer implemented on logs (this mirrors the
in-memory tree in Figure 1). 0 is assumed to be an invalid sequence number and hence is used to denote null nodes. Datal.og
sequence numbers are color-coded to represent the links. LinkLog sequence numbers are color-coded only if the entry denotes
the start of a root node.

pointers,one with version stamp 1 and the other with version A. Experimental Methodology

stamp 2.As 1 < 2, we follow the latter one,i.e., the link at)

sequence number 3 of link7. This leads to the node whose 10 evaluate PEDaLS, we have devised a set of update
information is stored in the entry at sequence number 2 of thdinsert/delete) workloads for linked lists and BSTs. We execute
Datalog.Reading this entry reveals the value stored here is insert for linked lists at the end of the list. We present
indeed 2,completing the access operation. average workload time, which includes scan/find time (for both
linked list and BST). We construct100 different workloads
(combinations of insert and delete operations), each with 1000
operations.

In this section,we empirically evaluate the performance of Our workload generatoruses a uniform probability dis-
PEDaLS.We implementPEDaLS over CSPOT [6]an open- tribution to select operations.For insertion, the generator
source,distributed runtime system thatuns on edge,cloud, randomly chooses an integer between 1 to 100 with uniform
and sensorsystems,and uses memory-mapped files folits distribution. If the integer is already present,it selects the
log abstraction. We evaluate linked lists and binary search next integer not already presentin the data structure. For
trees (BST) as representative linked data structures since botkeletion, the generatorandomly chooses an integealready
are used by developers as building blocks for more complex presentin the data structure with uniform distribution. This
structures (e.gstacks,queuesprdered collectionsetc.). way the generatorguarantees alloperations will execute to

V. EVALUATION

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on June 21,2022 at 20:52:07 UTC from |IEEE Xplore. Restrictions apply.

Algorithm 1 Node Copy: AddNode (BST)

Require: childNode cN ode; stack of nodes leading from root
of BST to parent of cN ode, S; number of links per node
linksP erN ode; working version stamp vs

Ensure: cN ode is added to its parent

1: while S E ¢ do
2: pNode < S.pop()

lastLink « tail(pN ode.link)

newLink « {}

newLink.vs «< vs

newlLink.dseq < cN ode.dseq

newlLink.Iseq < cN ode.lseq

: childT ype < getT ype(pN ode.dseq, cN ode.dseq)

getType returns type of link i.eleft or right

NSO AW

9: if lastLink.rem > 0 then " node not full
10: newLink.rem « lastLink.rem - 1

11: pN ode.link.append(newLink)

12 break

13: else

14: lef tLink < {}

15: rightLink < {}

16: i = pN ode.leq

17: iteratorLink < pN ode.link][i]

18: while iteratorLink != ¢ & iteratorLink.rem = 0

do
19: if iteratorLink.type = L then " iterator is a left
pointer

20: lef tLink « iteratorLink
21: else
22: rightLink « iteratorLink
23: end if
24: i<it+1
25: iteratorLink < pN ode.link][i]
26: end while
27: if childT ype = L then " copy right child
28: linkLogSeq « pN ode.link.append(rightLink)
29: else
30: linkLogSeq « pN ode.link.append(lef tLink)
31: end if
32: newLink.rem « linksP erNode - 2
33: pN ode.link.append(newLink)
34: end if

35: cN ode.dseq < pN ode.dseq
36: cN ode.lseq « linkLogSeq
37 cN ode.link < pN ode.link
38: end while

completion.! Unless otherwise specifiedyur results present
the average across 100 workloads.

In addition to microbenchmarks,we evaluate the perfor-
mance of PEDaLS for an end-to-end distributed application.
The application (presented in Section V-E) implementsa
simple clone of Amazon Simple Storage Service (S3)for
storing and serving images using PEDaLS.

To the best of our knowledge,no other system provides

pare PEDaLS data structures againsh-memory ephemeral
and in-memory persistentlata structures (denoted as simply
ephemeraland persistentin the results). We use memory-
mapped files as a backing store for the in-memory data
structures.

To evaluate the trade-off in space and time using extra
pointers,we consider1, 5, and 10 extra pointers for PDSs
(both in-memory and PEDaLS)Ve refer to the PEDaLS im-
plementation using n number of extra pointers as PEDaLS-n.
Similarly, we refer to the in-memory persistent implementation
using n number of extra pointers as persistent-n.

We perform our experiments using virtual machine instances
in a private cloud running Eucalyptus [63]. Each instance
has two 2GHz CPUs and 2GB of memoryJnless otherwise
specified,we co-locate the logs and workload for this study.

B. Space Analysis

We first evaluate PEDaLS space usadégures 4a and 4b
show the average space in bytes used by linked list and BST
respectively to execute 1 to 1000 operations. The results show
that PEDaLS space requirements are linear with respect to the
number of operations for versioned data structures (persistent-
n and PEDaLS-n). The space requirements for ephemeral data
structures are linearin the number of nodes presentt any
instantof time (due to scaling it appears to be constanin
Figure 4).

We expect that when the number of extra pointers is small,
the node-copy method willcopy more nodes (and consume
more space)This is evident in the resultsThe average slope
of the lines for PEDaLS-1 BST, PEDalLS-5 BST, and PEDaLS-
10 BST are respectively 352300, and 296 (Figure 4b).This
implies that, on average each update operation in PEDaLS-

1 BST requires 352 byteswhereas each update operation in
PEDaLS-10 BST requires 296 bytes.

Note that although the difference in average slope between
PEDaLS-10 BST and PEDaLS-1 BST is more than 5Cthis
difference reduces to 4 when considering PEDaLS-5 BST and
PEDaLS-10 BSTThat is, we only reduce space consumption
via extra pointers up to a point. For linked list PEDaLS-10
saves roughly one byte of space per operation as compared to
PEDaLS-5. When compared to persistent-n BSTs, PEDaLS-n
BSTs require 1.50x,1.75x, and 1.80x more space forn =
1, 5,and 10 respectivelyThat is, the space overhead to map
the in-memory node-copy method to logs is quite low.

Similar observations for linked listfrom Figure 4a reveal
space overhead is as low as 2.0&phemeral data structures
can free the corresponding memory once a node is deleted.
Moreover, they do not have to perform bookkeeping related to
maintaining versioning information. Therefore, we expect their

general-purpose versioning and storage persistence of prograépace requirement to be lower. Unsurprisingly, the space over-

data structures.Moreover, we want to explore the cost of
providing versioning and storage suppotb systems relying
on in-memory ephemeral data structures.Thus, we com-

'Our workloads are available (for reproducibility purposes)as part
of our open-sourcereleaseof PEDaLS at https://github.com/MAYHEM-
Lab/PEDaLS.

head to maintain PEDaLS-10 BST as opposed to ephemeral
BST is 178x. The same overhead is 202x for linked list.
C. Time Analysis

We next consider the additional time needed for versioning
and disk persistence. Figure 5 shows the average time taken by

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on June 21,2022 at 20:52:07 UTC from |IEEE Xplore. Restrictions apply.

400000

400000
—— PEDaLS-1
3500007 ---. pgpals-5
3000004 —— PEDaLS-10 >
" —— persistent-1 4
9_,;250000’ ---- persistent-5
) - i -
2 5000001 persistent-10
o —— ephemeral
% 150000 A
(X
) ==
1000007 7 =TT
50000 =
01

0 200 400 600 800 1000
number of update (insert/delete) operations

(b) BST.

Fig. 4: Average space usage.

—— PEDaLS-1
3500007 ---- pEDaLS-5
300000 | —— PEDaLS-10
" —— persistent-1
ﬂiZSOOOO ---- persistent-5
o —_— i -
< 200000 persistent-10
° —— ephemeral
® 150000
Q
"
100000
s0000{ S~
o _—
0 200 400 600 800 1000
number of update (insert/delete) operations
(a) Linked list.
120000
—— PEDaLS-1
1000001 ---- PEDaLS-5
g —-— PEDalLS-10
~ —— persistent-1
¥ 80000
e ---- persistent-5
g —-— persistent-10
2 60000+ —— ephemeral
€
£ 400001
[
£
+ 20000+
N - - - -
0 200 400 600 800 1000

number of update (insert/delete) operations

(a) Linked list.

120000
—— PEDaLS-1
100000 -=-- PEDaLS-5
g —-— PEDalLS-10 e
£ - Lo
» 800004 —— persistent-1 /',/_/
2 ---- persistent-5 te
o 1l . = ,r(/‘
g 60000 persistent-10 -
2 —— ephemeral e
2 L
< 40000 -
()
£ 20000
0]

0 200 400 600 800 1000
number of update (insert/delete) operations

(b) BST.

Fig. 5: Average execution time.

the different data structures to execute a number of operationéersioned persistencd@he underlying memory allocator that

ranging from 1 to 1000. The time requirements (shown on

CSPOT (runtime system over which PEDaLS is currently

the y-axis) are linear with respect to the number of operationdmplemented)uses is trivial: it simply appends to a fixed-

(shown on the x-axis).

size, pre-allocated,circular log buffer that is mapped to

For ephemeral linked list, the average time taken to executd Linux file. Further, there is no deallocation —the log

an update operation is 3.30 millisecondghis value is 4.11
milliseconds, 4.47 milliseconds, and 4.51 milliseconds for
PEDaLS-1 linked listPEDaLS-5 linked listand PEDaLS-10
linked list respectively.That is, even the slowestPEDaLS-

n linked list implementation introduces only 1.35x overhead.
The persistent-n implementations are the slowestequiring
28.85 milliseconds,18.28 milliseconds,and 18.18 millisec-
onds for n =1, 5, and 10 respectively.

“‘wraps” to automatically garbage colledbg entries [6]. For

the ephemeraland persistentimplementationsthe memory
allocator uses a first-fit dynamic allocation algorithm with
eager coalescing of adjacent free blocks on deallocation. Thus,
the implementations thatise a dynamic allocator cause b
“chase” an internal free list of blocks from time to time during
allocation and coalescing.

These results are surprising. We expect the performance or-

der would be ephemeral>persistent-n>PEDalL S-klowever,

Additionally, both allocators flush a modified memory re-

in the case of linked list the experiments show PEDaLS-n haglion to the backing store (i.ea Linux file) to prevent corrup-

a better performance than persistent-riMloreover,the small
overhead in PEDaLS-n when compared to ephemesdlpws

tion in case of a system crash. The dynamic allocator versions
(ephemeraland persistentjuse the Linux msync() system

that it is possible to use a log-based approach to implement call to write back modified mapped memoryFor CentOS 7,

storage-persisterf’DS linked list without a significant per-
formance penaltyrelative to the standardmutable,and un-
versioned pointer-based implementations.

These experimentsindicate that the performance of the
memory allocator plays a key role in the performance of

this call causes either one or two (due to alignment) 8 kilobyte
pagedo be flushed to the backing file. Moreover, it must flush
the modified memory to the backing store (i.ea Linux file)
each time the data changes in an allocated buffeor in the
internal memory allocated data structures.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on June 21,2022 at 20:52:07 UTC from |IEEE Xplore. Restrictions apply.

A cursory examination of the CSPOT source cofishows We compare two differentimplementations ofthis image
thatit unmaps each storage log after each append operationserver.For the first implementationwe use an Amazon S3
causing dirty pages to be flushed back. Thus it is likely bucket located in the us-west-2 region as the server. The client
that ephemeralperformance is dominated by backing-store ~ process is located in a private cloud in UCSB and interacts
synchronization trafficAs a result, the additional computa- ~ With the bucketusing the boto3 library (the instance has the
tional overhead associated with versioning using the node- same specifications as the ones used so far 2GHz CPU,
copy method is negligible. 2GB RAM). For the second implementation, we use a t3.small

Figure 5b shows the average time taken by the different (2GHz CPU, 2GB RAM) EC2 instance, also located in the us-
implementations of BST to perform the workloadShe time ~ west-2 regionWe employ a PEDaLS -1 BST in this instance
requirementsare again linear with respect to the number that acts as an image indexer. The average RTT between
of operations.EphemeraBST requires 3.82 milliseconds to the client instance and the EC2 instance thawve observe is
execute an operatio®PEDalLS-n BSTs require slightly lower approximately 30 millisecondsNote that our goal is not to
- 2.88 milliseconds, 3.04 milliseconds, and 3.24 millisecondsoutperform the S3 image serverather explore the utility of
forn =1, 5, and 10 respectively. PEDaLS in an IoT setting.

The additionalcomplexities inherentn a PDS implemen- For this experimentwe first upload 500 images (256 KB
tation of BST put additional performance pressure on the dy-€ach) to the server, followed by the retrieval of the images from
namic memory allocator. This is reflected in the per-operatiorthe server. Surprisingly, PEDaLS based servenutperforms
times for persistent-nwhich are 106.71 milliseconds88.48 s3 based serverin both upload time and download time.
milliseconds,and 81.26 milliseconds forn=1,5, and 10 Figure 7 shows the average upload and download times per
respectivelyThat is, persistent-n can have an overhead of as image for the two servers.The average upload time is 153
much as 28x when compared to ephemeral. milliseconds for the S3 based serverwhereas this value is

144 milliseconds for PEDaLS. That is, the latter is 1.1x faster.
D. Search Performance The average download time is 146 milliseconds for S3 based
Note that update operations (insert/delete) require traversalserver, whereasthis value is 83 milliseconds for PEDaLS

of existing nodes (e.gto find leaf node to which a new node pased servein this case,PEDaLS is 1.8x faster.
is inserted). We next break out the time to perform access

(find/search) operations alone, i.e. data structure traversal. We VI. CONGLUSION
consider different access operations for the two data structuresBoth partially persistent data structures (PDSs) and append-
(i) finding the last node in linked list (Figure 6a) and (i) ©only storage systems provide immutability and history-based
finding the maximum value in BST (Figure 6b). Figure 6 programming — albeit at different “levels” (program versus
shows traversal time as a function of the number of nodes. SystemS). These features are useful at both levels in distributed,

Note that although many workloads resulted in having > 10large-scale, and failure-prone contexts such as those for hetero-
nodes in linked list,We do not show the complete results for geneous and pervasive Interneft Things (loT) deployments.
the sake of visual comparability (e.g. no workload resulted in i this paper, we investigate how to combine the two so
depth of > 10 BST nodes). Because we search from the latesthat high-levellinked program data structure operations with
version, we simply follow the last link (i.e. at most 2 links for versioning support,automatically and transparently map to
BST) of each nodeWe find that varying the number of extra append-only persisterdtorage — enablingfor the first time,
pointers for this experimenthas no significant performance ~ survivability and programmatic access by distributed clients to
difference. both the data structures and their version histories.

Figure 6 shows that the access time is linear in the number To enable this,we presenta new approach for efficiently
of nodes for PEDaLS. On average, PEDaLS requires 0.23 migupporting versionedlinked data structures in programs by
liseconds and PEDaLS BST requires 0.29 milliseconBsth leveraging algorithmic advances from partially persistent data
the persistent and ephemeral data structures are three orderstfictures.\We use these methods to design a mapping and
magnitude faster than PEDaLS for accesdth no significant library implementation of version-aware data structure opera-
difference between each other.This again emphasizeshe tions thatare backed by append-only storagéle implement
importance of the performance of the memory allocatdfor ~ this approach using an append-only storage abstraction from a

updates PEDaLS is faster than persistefdr both linked list ~ portable, open-source event system for [oT. We use this system
and BST and is on par with ephemeral. to evaluate the algorithmic complexities and performance over-

head for operation workloads for linked list and binary search
tree (BST) structures as well as end-to-end using a multi-tier

Finally, we evaluate the use of PEDaLS for an end-to- image processing applicatiorOur results show thatwe are
end distributed application commonly found in loT settings, able to achieve the algorithmic complexities otthe original
e.g. [64]. The program implements an image servewhich PDSs and low overhead for storage-persistent versioning.
sensors and/or users can use to upload and download images
for analysis.

E. End-to-End Application: Image Server

REFERENCES

[1] “Amazon S3,” 2021 ,https://aws.amazon.com/g8nline; accessed 11-
2https://github.com/MAYHEM-Lab/cspot Apr-2021].

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on June 21,2022 at 20:52:07 UTC from |IEEE Xplore. Restrictions apply.

—— PEDaLS
—— persistent
—— ephemeral

4 6 8
number of nodes traversed

10

(b) BST.

Fig. 6: Access (node traversal) time vs number of nodes traversed.

2.54 — PEDalLS 2.5
—— persistent
w201 — ephemeral 2.0
° °
< c
o [=}
o o
8159 $15
E E
£1.0 £1.0
[[
£ E
“os “os
0.01 0.0
2 3 4 5 6 7 8 9 10
number of nodes traversed
(a) Linked list.
. s3
200 PEDaLS [13]
w
2
§ 150 [14]
(o
o
E [15]
c 1004 |
Q
E [16]
=1
501
[17]
(18]
04
upload download
operation

[19]

Fig. 7: Average upload and download time per image for the

Amazon S3 and PEDaLS image servers. [20]
[21]
[2] K. Shvachko,H. Kuang, S. Radia, and R. Chansler,“The Hadoop [22]

(3]

4]

[5]
6

-

[7

—

8

—

[9

—

[10]

(1]

[12]

Distributed File System,” in IEEE Symposium on Mass Storage Systems
and Technologies2010.

M. BalakrishnanD. Malkhi, V. Prabhakaran]. Wobbler,M. Wei, and [23]
J. Davis, “Corfu: A shared log design for flash clusters,” in USENIX
Symposium on Networked Systems Design and Implement&t.

J. Kreps, N. Narkhede,J. Rao etal., “Kafka: A distributed messaging
system for log processing,” in Proceedings of the NetDB, vol. 11, 2011,
pp. 1-7.

[24]

“AWS Lambda,” https://aws.amazon.com/lambd&021, [Online; ac- Eg}
cessed 11-Apr-2021].

R. Wolski, C. Krintz, F. Bakir, G. George,and W.-T. Lin, “CSPOT:
Portable,Multi-scale Functions-as-a-Service for 1oT,” in ACM Sympo- [27]
sium on Edge Computind2019.

Amazon, “S3 Object Versioning,” 2019,
https://docs.aws.amazon.com/AmazonS3/latest/dev/Versioning.html (28]
[Online; accessed 28-Sep-2019].

“Google Cloud: Versioned Object Storage,” 2018,
https://cloud.google.com/storage/docs/object-versioning [Online;
accessed 12-Sep-2018]. [29]

“Apache Kafka,” 2019, http://kafka.apache.org [Onlineggccessed Sep.
2019].

“Amazon kinesis streams service,” 2020,
https://docs.aws.amazon.com/kinesis/index.htriiccessed 15-Apr-

2020.

J. Driscoll, N. Sarnak, D. Sleator, and R. Tarjan, “Making data structurds Ol
persistent,” JComput.Syst.Sci., vol. 38, no. 1, 1989.

P. Helland, “Immutability changes everything,” in Con-
ference on Innovative Data Systems Research, 2015,

http://cidrdb.org/cidr2015/Papers/CIDR Faper16.pdf Accessed
15-Sep-2019.

P. Alvaro, S. Galwani, and P. Bailis, “Research for practice: Tracing and
debugging distributed systemgrogramming by examples,” in CACM,
Jan.2017.

P. F. Dietz and R. Raman, “Persistence, amortization and randomization,”
in ACM-SIAM Symposium on Discrete Algorithm991.

G. S. Brodal, “Partially persistent data structures of bounded degree with
constant update time,” Nordl. Comput.,vol. 3, no. 3, 1996.

A. Fiat and H.Kaplan, “Making data structures confluently persistent,”

in Symposium on Discrete Algorithm2001.

H. Kaplan, “Persistent Data Structures,” 2004.

F. Pluguet, S. Langerman, A. Marot, and R. Wuyts, “Implementing par-
tial persistence in object-oriented languages,” in Meeting on Algorithm
Engineering & Expermiments2008.

L. Ceze,C. von Praun,C. CascavalP. Montesinos,and J. Torrellas,
“Programming and Debugging Shared Memory Programs with the Data
Coloring,” in Workshop on Compilers for Parallel Computing009.

E. D. Demaine,J. lacono,and S.Langerman, Retroactive data struc-
tures,” ACM TransAlgorithms,vol. 3, no. 2, May 2007.

——, “Retroactive data structures,” in ACM-SIAM Symposium on Dis-
crete Algorithms 2004.

H. Mannila and E. Ukkonen, “The set union problem with backtracking,
International Colloquium on Automatal.anguages and Programming,
vol. 226, 1986.

J. Westbrook and R.E. Tarjan, “Amortized analysis of algorithms for
set union with backtracking,” SIAM JComput.,vol. 18, 1989.

Y. Zhan and D. E. Porter, “Versioned programming: A simple technique
for implementing efficient,lock-free, and composable data structures,”

in ACM International on Systems and Storage Confereri2@]6.

“Haskell,” 2019, https://www.haskell.org” Accessed 17-Sep-2019.
“Immutable.js,” 2019, ’https://immutable-js.github.io/immutable-js/’
Accessed 20-Sep-2019.

John McClean, “Java Persistent Collections,” 2019,
"https://medium.com/@johnmcclean/the-rise-and-rise-of-java-
functional-data-structures-63782436f93b” Accessed 20-Sep-2019.

C. Okasaki, “Purely Functional Data Structures,” Carnegie
Mellon University, Tech. Rep. CMU-CS-96-177, 2019,
https://www.cs.cmu.edu/rwh/theses/okasaki.pdfAccessed 20-Sep-
2019.

A. Chien,P.Balaji, P.Beckman,N. Dun, A. Fang,H. Fujita, K. Iskra,

Z. Rubenstein, Z. Zheng, R. Schreiber, J. Hammond, J. Dinan, I. Laguna,
D. Richards,A. Dubey, B. van Straalen,M. Hoemmen,M. Heroux,

K. Teranishiand A. Siegel,“Versioned distributed arrays for resilience

in scientific applications,” Procedia CompuSci., vol. 51, no. C, Sep.
2015.

S. VenkataramanN. Tolia, P. Ranganathanand R. H. Campbell,
“Consistent and durable data structures for non-volatile byte-addressable
memory,” in USENIX Conference on File and Stroage Technologies,
2011.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on June 21,2022 at 20:52:07 UTC from |IEEE Xplore. Restrictions apply.

[31]

[32]
(33]

[34]

[39]

(36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[49]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

[59]

[56]

[57]

A. Twigg, A. Byde, G. Milos, T. Moreton, J. Wilkes, and T. Wilkie,
“Stratified b-trees and versioned dictionaries,” in USENIX Conference
on Hot Topics in Storage and File Systenssr.HotStorage’112011.

1995, [59]
Oracle, “Java Persistence APL,” 2019,
"https://docs.oracle.com/cd/E19798-01/821- [60]
1841/6nmqg2cpag/index.html” Accessed 18-Sep-2019.

Oracle, “JDBC,” 2021, https://docs.0racle.com/en/database/oracle/orac[@J]

database/19/jjdbc/toc.htm Accessed 2-Apr-2021.

R. Agarwal, “The c++ interface in objectivity,” SIGPLAN Notvpl. 29,

no. 12, Dec. 1994.

T. Kelly, “Persistent Memory Programming on Conventional Hardware,”
ACMQUEUE,vol. 17, no. 4, 2019.

V. Gogte, S. Diestelhorst, W. Wang, S. Narayanasamy, P. M. Chen, and
T. F. Wenisch,“Persistency for synchronization-free regions,” in ACM

Conference on Programming Language Design and Implementation, seL‘E.M]

PLDI 2018,2018.

M. Atkinson, P.Bailey, K. Chisholm,W. Cockshott,and R. Morrison,

“An Approach to Persistent Programming,” Computer Journad). 26,

no. 4, 1983.

M. Atkinson, L. Daynes,M. Jordan,T. Printezis,and S. Spence,’An
orthogonally persistent Java,” in SIGMOD996.

S. Balzer,“Contracted Persister®bject Programming,” in PhD Work-
shop,ECOOP,2005.

B. Stopford, Designing EventDriven Systems: Concepts and Patterns
for Streaming Services with Apache Kafka. O’Reilly Media, 2018,
https://drive.google.com/file/d/1NGst29pUjZwtn8pXTKvISSuau2-
to5dD/view Accessed 15-Sep-2019.

R. Kotla, L. Alvisi, and M. Dahlin, “Safestore: A durable and practical
storage system,” in USENIX AnnuallechnicalConference 2007, pp.
129-142.

S. Alsubaiee, A. Behm, V. Borkar, Z. Heilbron, Y.-S. Kim, M. J. Carey,
M. Dreseler,and C. Li, “Storage managemenin asterixdb,” VLDB,

vol. 7, no. 10, Jun.2014.

C. Gong, S. He, Y. Gong,and Y. Lei, “On integration of appends and
merges in log-structured merge trees,” in Internation&onference on
Parallel Processing2019.

F. Nawab, V. Arora, D. Agrawal, and A. El Abbadi, “Chariots: A
scalable shared log for data managementin multi-datacenter cloud
environments.” in EDBT2015, pp. 13-24.

H. Vo, S. Wang, D. Agrawal, G. Chen, and B. Ooi, “Logbase: a scalable
log-structured database system in the cloud,” Proceedings of the VLDB
Endowmentyol. 5, no. 10, pp. 1004-1015,2012.

“Apache Samza,” 201%ttp://samza.apache.org [Online; accessed Sep.
2019].

P. Bailis and A. Ghodsi, “Eventual consistency today:Limitations,
extensionsand beyond,” ACM Queuejol. 11, no. 3, Mar. 2013.

S. Burckhardt, “Principles of eventualconsistency,” Foundations and
Trends in Programming Languagesol. 1, no. 1-2, 2014.

M. Balakrishnan,D. Malkhi, T. Wobber, M. Wu, V. Prabhakaran,

M. Wei, J. Davis, S. Rao, T. Zou, and A. Zuck, “Tango: Distributed
Data Structures over a Shared Log,” in Symposium on Operating System
Principles,Nov. 2013.

P. Helland, “Data on the outside versus data on the inside,”

in Conference on Innovative Data Systems Research, 2015,
http://cidrdb.org/cidr2005/papers/P12.pdf Accessed 15-Sep-2019.

W. Lin, C. Krintz, R. Wolski, M. Zhang, X. Cai, T. Li, W. Xu, and

R. Zhou, “Tracking Causal Order in AWS Lambda Applications,” in
IEEE International Conference on Cloud Engineerindin.2018.

W.-T. Lin, C. Krintz, and R. Wolski, “Tracing Function Dependencies
Across Clouds,” in IEEE Cloud2018.

J. Mace, R. Roelke, and R. Fonseca,Pivot tracing: Dynamic causal
monitoring for distributed systems,” ACM Trans. Comput. Syst., vol. 35,
no. 4, Dec.2018.

D. Meissner, B. Erb, F. Kargl, and M. Tichy, “Retro-lambda: An event-
sourced platform for serverless applications with retroactive computing
support, in Intl. Conf.on Distributed and Event-based Syster26,18.
W.-T. Lin, F.Bakir, C. Krintz, R. Wolski, and M. Mock, “Data repair

for Distributed, Event-based IoT Applications,” in ACM International
Conference on Distributed and Event-Based Syste20i49.

I. Beschastnikh, P. Wang, Y. Brun, and M. Ernst, “Debugging distributed
systems,” in CACM,Jun.2016.

[62]
[63]

[58] I. Beschastnikh)Y. Brun, M. D. Ernst, A. Krishnamurthy,and T. E.

Anderson, “Mining temporal invariantsfrom partially ordered logs,”
SIGOPS OperSyst.Rev.,vol. 45, no. 3, Jan.2012.

D. Geels,G. Altekar, P. Maniatis, T. Roscoe,and |. Stoica, “Friday:
Global comprehension for distributed replay,” in NS2007.

Facebook, “LogDevice,” 2020, https://engineering.fb.com/core-
data/logdevice-a-distributed-data-store-for-logs/ Accessed 29-Feb-2020.
D. Bailis, “Coordination avoidance in distributed databases,”
2015, ph.D. Dissertation, University of California, Berkeley,
http://www.bailis.org/papers/bailis-thesis.pdf Accessed 15-Sep-2019.
“Redis,” "http://redis.io”.

D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Yous-
eff, and D. Zagorodnov; The eucalyptus open-source cloud-computing
system,” in Cluster Computing and the Grid,2009. CCGRID’09. 9th
IEEE/ACM International Symposium on.IEEE, 2009, pp. 124-131.

A. R. Elias, N. Golubovic, C. Krintz, and R. Wolski, “Where’s The Bear?
— Automating Wildlife Image Processing Using loT and Edge Cloud
Systems,” Computer Science Department at the University of California,
Santa BarbaraTech.Rep. UCSB-CS-2016-07Dctober 2016.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on June 21,2022 at 20:52:07 UTC from |IEEE Xplore. Restrictions apply.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12

