PEDaLS: Persisting Versioned Data Structures

Nazmus SaquibChandra Krintz,Rich Wolski Department of Computer Science University of California, Santa Barbara {nazmus,ckrintz,rich}@cs.ucsb.edu

Abstract—In this paper, we investigate how to automatically persist versioned data structures in distributed settings cloud + edge) using append-only storage. By doing so, we facilitate resiliency by enabling program state to survive program activations and termination, and program-level data structures and their version information to be accessed programmatically by multiple clients (for replay, provenance tracking, debugging, and coordination avoidance, and more). These features are useful in distributed, failure-prone contexts such as those for heterogeneous and pervasive Internet of Things (IoT) deployments. We prototype our approach within an open-source, distributed operating system for IoT. Our results show that it is possible to achieve algorithmic complexities similar to those of in-memory versioning but in a distributed setting.

Index Terms—partially persistent data structures, IoT, portability, append-only storage, distributed programming systems

I. INTRODUCTION

The Internet of Things (IoT), Big Data, and artificial intelligence are coalescing to transform the world around us, making it possible to collect, mine, analyze, and actuate using information from physicalobjects across geographical locations. To do so, IoT applications amalgamate clouds, edgestributed environmentThe use of append-only logs as the devices, and sensors as ensemble deployments implementing backing store introduces new challenges, any modification automation, decision support, and control for objects, devicesof a node in a data structure must be recorded using an and systems in the environment. As a result, IoT deployment append rather than in-place modification EDaLS addresses are geo-distributed and compose a vadtversity of devices, architectures resource constraints and communication systems with highly variable performance, failure, and availabilitystorage persistence. characteristics.

Many popular and important cloud-based services for durable data management data-driven computation (e.g. AWS S3 [1], HDFS [2], CORFU [3], Kafka [4], AWS Lambda [5], etc.) appearat first to provide the scale and fault-resiliency required for IoT. However, in practice, these they assume "resource-rich" (e.gmachines with large memories and high clock speeds)loud-basedand comparatively homogeneous infrastructure connected via high quality and large-capacity networks.

In this paper, we consider how to evolve and extend data services for IoT applications that target tiered edge-and-cloud IoT deployments. Our goal is to tame the heterogeneity of such deployments via new programming abstractions in the form of sophisticated program data structures that simplify antibr the contributions we describe in the sections that blow. expedite software development for event-triggered and failure specifically, we overview mutable in-memory versioned data prone settingsOur approachcalled PEDaLScombines storage persistence and data structure version Figst, we trans-

parently store program data structures in non-volatile storage so that they survive unexpected program termination stem. failure, and power outage. Second, we use an append-only log as the underlying storage abstraction to facilitate failure recovery as well as data structure versioning and immutability. Doing so enables integration with several existing distributed logging systems [1][6]–[10].

In this work, we focus on persisting versions of linked program data structures (e.glinked lists and trees). To do so efficiently, we base our design on algorithmically efficient in-memory, mutable algorithm implementations from Driscoll, Sarnak, Sleator, and Tarjan [11], which embed versions (i.e. nodes and edges) within the original data structulNeate that while the above work proposes a versioning scheme for singlemachine, in-memory data structures our work formulates a versioning scheme for storage in persistent data structures which can span multiple machines in a distributed setting. We use append-only logs for storage as phrovides immutability, which in turn provides robustness [12] and helps in debugging systems [13]both of which are highly desirable features in a these challenges while maintaining the same time and space complexity of the original work and facilitating distributed

In addition to this new distributed formulation of persistent versioning, we describe a working "real world" implementation of PEDaLS for cloud and IoT settings. We prototype our approach using an open-sourceistributed runtime system [6] that supports distributed logs as a first-class storage abstraction.We use this prototype to evaluate empirically the services turn out to be ill-suited for IoT deployments because various overheads associated with versioning and persistence for operation workloads on linked lists and binary search trees, and investigate the effect of failures on the logging process.Our results show that PEDaLS maintains the algorithmic complexities of in-memory versioningand enhances the robustness of distributed data structures with low overhead.

II. RELATED WORK

We first provide background, related work, and context structures (referred to as partially persistentiata structures (PDSs) in the literature)non-volatile program object storage, and append-only storage advances that enhance the robustnessestigated (i) tools and language support automate the of distributed systems.

A. Partially Persistent Data Structures (PDSs)

PDSs track version histories for in-memoryprogram data structures such that versions can be accessed programmatically [11]. Data structures for which all versions can be accessed but only the latest/newestcan be modified, are called partially persistent. Those for which all versions can be accessed and modified are called fully persistent. Data structures without versioning supportare called ephemeral. We focus on partially persistentiata structures in this work are append-only - properties that are desirable in highly concurrent and failure-pronedistributed settingsWe refer to partially persistent data structures simply as PDSs throughout. Append-Only Storage Systems this paper.

time) by (i) embedding the versions within the originaldata structure and sharing unmodified sections of the data structure atabases and file systems [2], [31], [42]-[44], log-based among versions(ii) by implementing this embedding using mutable, pointer-based memory structures behind the scenes streaming services [9][10], [47]. and (iii) by optimizing accesses and updates to versions [11]. Immutability facilitates robustness and coordination avoid-[14]-[18]. PDSs enable a wide range of programming supportance [12], [48] as well as high availability (through eventual including debugging [19], history programming [20], [21], undo and replay [22], [23], lock avoidance [24], referential transparency and functional programming [25]-[28]. Althoughln particular, versioning in distributed systems allows applimost works on PDSs are related to the field of theoretical concations to make progress from the last available consistent puter science PDSs have applications in distributed systems state [51]. While our evaluation implementation uses the determine at what point we started receiving erroneous valuebers) as its backing store for program-level, versioned data and perform further analysis (e.g. what trend in data it resultestructures. how it affected the other components of the system that depend on this data,etc.). Systems that experience a high volume of temporal gueries, such as the location of items of interest (e.g. Driscoll et. al. introduced a node-copy method to version delivery tracking livestock tracking etc.) throughout the day

PEDaLS brings PDS supporto programs in a new way. using efficient algorithms that are backed by append-only disk storage exported via logs. For IoT, these efficiencies are necessary to enable battery-poweredesource-restricted platforms (e.g. IoT devices) to use as little power as possible constant value and 1+ edges (i.pointer fields). The method Often, power consumption is proportional to computation are also attractive in this context to mitigate component failures, particularly in the form of communication network partitions.

B. Object Storage

can also benefit from PDSs.

The term persistence is also used in computercience to describe the long-term, non-volatile storage of data (e.g. in files or databases on disk)i.e. enabling data to exceed the lifetime of any particular program activation. Related work hasway, the method avoids walking through chains of copies of

process of persisting program (in-memory) data structures and objects to disk (and more recently to non-volatile memory), and (ii) ways of unifying the treatment of transient and persistent objects in programs to simplify programming [29]-[40]. These advances are referred to as persistent storage, persistentobject storage, persistentobject systems, orthogonal persistenceand persistent programming in the literature. PEDaLS pursues both automation and unification of persistent object storagebut is unique in that it persists versioned data structures (i.e. PDSs) to local or remote append-only disk storage. Doing so enables both program data structures and because version histories are immutable and data structures their versions to survive program termination and be accessed by distributed clients.

PDS update operations result in a new version of the struc-computing systems to facilitate immutabilityobustnessand ture. PDSs achieve algorithmic efficiency (in both space and scalability, as storage costs have plummeted [12]t. is used by cloud object stores [7], [8], event systems [41], distributed transaction systems [3], [45], [46], and popular messaging and consistency) for cloud storaggossip protocolscollaborative editing, and revision control, among others [1], [49], [50]. as well. For example, sensors in an IoT environment can oftenersioning features of a storage system specifically designed malfunction and generate erroneous values. If we have a PD\$or IoT [6], PEDaLS can use any append-only storage system deployed in the system, we can query the past versions of it that exports ordered, version information (e.g. sequence num-

Append-only storage is employed in distributed and cloud

III. PDS Node-Copy Method

linked data structures (with constant in-degree) by embedding versions efficiently within the structure itself[11]. PEDaLS extends this method using append-only logs. We first overview the original approach and then describe our advances.

Using the node-copy method, a versioned linked data structure consists of nodes and edges and each node contains a adds a fixed number of extra pointer fields beyond those duration and storage access frequency. Append-only semantic quired by the original structure. For example, in the case of a binary search tree (BST), a node contains fields for its value and left and right pointer. Additional pointer fields represent versions – i.e.updates to the left or right pointer of the node.

> Once all of the extra fields have been used to accommodate update operations, the method makes a copy of the node with only the most recent pointer fields - creating a new set of extra pointerfields for use in future updates. Moreover, the predecessor of the node stores a pointer to this new copy. This

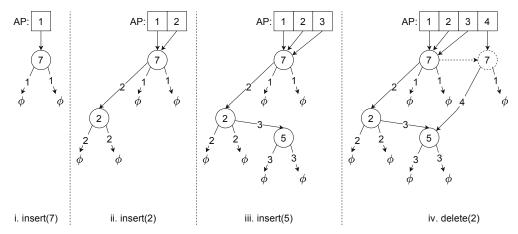


Fig. 1: Partially persisten binary search tree using the node-copy method with one extra point@ircles denote node with information field within. Arrows with labels denote pointers with version stamp&ashed arrows/circles denote thatnode has been copiedAP is the access pointer listop denotes the null node.

the same node to locate a particular version to that if the new copy of a nodethe predecessor is copied as well the worst case, this copying operation and chaining continue to The AP facilitates constantime lookup of the root node for any version.

The number of extra pointers used by the method is a time to scan them is short but the number of copies generate than or equal to vs at each node. Instead of specifying only may increase resulting in a higher time and space overhead. If the number of extra pointers is large, it takes more time to scan all the pointers butfewer copies will be neededWe explore this time-space tradeoff for PEDaLS in Section V.

To illustrate how the node-copy method works for linked data structures consider the binary search tree as shown in Figure 1. We assume that the number of extra pointers is one. We start with the empty tree and insert 7. Both the left and right pointer of the node containing 7 points to increase thereafterwe stamp these pointers with version 1. We also update the AP list (assuming indexing starts at 1) to the larger one. This leads us to the node containing 2e., 2 point to this newly created node.

we install a new left pointer in the BST using the extra pointernode, indicating that 2 is not present in version stamp 4. in the node containing 7 and stamp it with the current version (2). The type of the extra pointer (i.e.left or right – in this case, left) is recorded (not shown in the figure for brevity). As the root node does notchange, index 2 of AP list points to the same node as AP index 1.

Next, we insert 5 which follows similar insertion steps. Finally, we delete 2. To do this, the node containing 7 must point to the node containing 5 (using a leftpointer) and the null node (using a right pointer). However, the node containing 7 has run out of extra pointers and thus must be copied the

original left pointer of this new copy is set to point to the node predecessor runs out of extra pointer fields while pointing to aontaining 5 and is stamped with version 4. The original right pointer need notbe updated and thus stillpoints to the null node. The extra pointer of this new copy remains unused and the root node. The method also maintains a list of root nodes is available for future updates. Note that as the node originally indexed by version stamps called the access pointer (AP) list_{containing} 7 has been copied, index 4 (i.e. the current version stamp) of the AP list points to the copied node rather than to the original node.

Access operations (i.find/search) for a particular version tunable parameter. If the number of extra pointers is small, the traverse pointers with the greatest version stamp less a value (f ind(val)), a PDS find operation can also include a version stamp (find(val, vs)). As an example, consider the operation f ind(2, 3) – find 2 in version stamp 3, after the execution of all the operations in Figure 1. That is, the current BST is represented by the last column of Figure 1.

The access operation starts from index 3 in the AP list, which points to the node containing 7. As 2 is less than 7, we find the left pointer with the largest version stamp that is less than or equalto 3. In this case, there are two leftpointers null. Assuming version stamps start at one and monotonically one with a version stamp 1 and the other with a version stamp 2. As both are less than the target version stamp 3, we follow is present in version stamp 3 Note that if we search for 2 in Next, we insert 2 in the same way. Because 2 is less than 7/ersion stamp 4 instead/we eventually end up with the null

> The amortized time complexity for insertand delete using the node-copy method is constanter operation step, where an operation step is defined as the traversal from one node to another [11]. The worst-case time complexity for access using this method is also constant per operation step. Moreover, the worst-case space complexity foinsert and delete using the node-copy method is constant per operation step.

IV. PEDALS

PEDaLS is a set of language and runtime extensions that

- Transparently store immutable and versioned linked data structures in distributed on-volatile, log-based storage;
- · Expose data structure versions to developers for use in dependency tracking and program analysis[52]-[54], history-aware programming [20],[55], and repair and replay [13], [56]-[59] in distributed settings; and
- Enables portability across heterogeneous deployments t requiring only a limited "generic" functionality for generating and accessing storage-persistlenging systems (e.g.[1], [4], [7], [8], [60]) in a distributed setting.

As a result, PEDaLS data structures are able to support versioning and immutability end-to-end as distributed application and systems properties which are desirable in highly concurrent and failure-prone settings [126,1].

To enable this, we develop a methodology for realizing PDSs using generic, distributed log structures to facilitate integration with existing system& PEDaLS log must

- support append-only updates with ordered entries.
- be network addressable so that they can be co-located or remote relative to the process accessing themed
- have some mechanism forcontrolling log length (e.g., size or log entry/elementifetime for automatic garbage collection).

In addition, log elements can be of any type and must be accessible via a comparable index (eagsequence number). to support (or compose to support) are:

- createLog(log_name): create a log with the name log_name. Upon completion,this call returns a value that indicates whetheror not the log was successfully created.
- put(log_name,elem): append the element elem to the log named log_name, assigning it the next available version stamps thatrack the version atwhich original field caller (or an error value if the operation fails).
- get(log_name.seg_no): return the element quence number seq no in the log (or an error value if the operation fails or seg no does not exist).
- getLatestSeqNo(log_name): return the latest sevalue if the operation fails or the log is empty).

Example systems that upport these persistent to rage functionalities directly include Kafka [4], Facebook LogDevice [60], and CSPOT [6] among othersMost cloud object stores also support versioning (e.g. Amazon S3 [7] and Google To map node-copy to logs,we must preserve the original Cloud Storage [8]) and can be integrated into PEDaLS with time and space complexity of the originalin-memory, algosome additional bookkeeping (e.g. combining version IDs withithm. Although the AP list of the node-copy method (cf. their timestamp to maintain order). To map PDSs to these challenges that we describe in the subsection that follows.

Figure 2 provides a high-leveloverview of our approach, which models the PDS node-copy method described previously, using persistentogs. Each node and originafield has a version stamp (vs) that denotes the version atwhich the node was created. Each node also has a constant number of extra fields (1 is used/shown in the figure), which hold

Linked List Ilvar = LnkdList.create(URI) null Node: first version = Ilvar.insert(7) latest version = Ilvar.insert(2) extra field Ilvar.print(first version) Legend: each node/field has a version stamp (VS) VS1 VS1 VS2 VS2 null null 2 unused AP: 10 20 **PEDaLS** Log API (create, get, put, ... Log local remote

Versioned orig. fields

Fig. 2: High-level architecture of PEDaLS that uses nodecopy to version linked data structures. The top left shows user code using PEDaLS library operations. Each node in this list (e.g. top right) has an integer value and nextointer as original (developer-defined fields. PEDaLS embeds versions/modifications within a single data structure using "extra" The API functions that PEDaLS expects the storage systemields in each node Also, each node and field has a version stamp representing their creation "time". The PEDaLS AP represents the access pointer and indexes the root node of each version for fastaccessPEDaLS persists the structure and its versions using 1+ non-volatile, append-only, distributed logs.

sequence number, and return the sequence number to the dates occur each node. As in the original method, we assume thatinformation (value) fields are constantand that pointer fields (e.g. the next pointer of a linked list) can change across versions. End-usersinteract with the data structure using library calls as shown in the top left corner of Figure 2. Any modification to a data structure node is translated to lowquence number of the log named log_name (or an error level API functions of the underlying log storage,possibly affecting multiple geographically distributed logs. PEDaLS hides this translation from the end-user.

A. Challenges Using Logs to Implement Node-Copy

Section III) can be modeled as a separate log for efficiency, distributed storage systems, PEDaLS must overcome multipleoing so imposes undue complexities. First, it is not clear how to represent both the information field and pointer fields of a node using logs. Moreover, logs are append-only - pointer manipulations musbe expressed as appends (evge cannot have an entry representing a pointer to a number and later update that entry to point to a different node).

> This leads to a challenge that is even more intricate – if we representan updated node link by appending to a single log

TABLE I: Logs used by PEDaLS.

Log	Field	Description
DataLog	VS	version stamp during node creation
	val	information field of the node
	link	name of link log for the node
LinkLog	VS	version stamp during pointer creation
	dseq	DataLog seqno. where the information field of the
		node being pointed to is stored
	Iseq	LinkLog seq. no. of the node being pointed to
		where the first pointer among the contiguous
		pointers of the required copy is stored
	rem	number of extra pointers remaining after the
		insertion of the current pointer
	type	type of pointer,e.g., left/right for binary search tree
APLog	VS	version stamp of the data structure
	dseq	DataLog seqno. where the root node's information
		field is stored
	Iseq	LinkLog seq. no. of the root node where the first
		pointer of the required copy is stored

repeatedly,we potentially require a full log scan to find an arbitrary link - defeating our goal of maintaining the original time complexity of node-copyTo avoid this,we use multiple logs to represent nodes and their connections, however, leads to a new challenge – although an append to a single log is y. atomic, appends to multiple logs are not Moreover, logs can be distributed across a networkso a network failure could potentially leave an underlying data structure semantically inconsistent.

To summarize there are four primary challenges in implementing versioning via node-copy using logs:

- C1: Logs are append-only and thus we cannoterform any updates in place (as we do for in-memory structures as described above – specifically creating links on the
- C2: A scan of a log with an arbitrary number of entries will violate the amortized and the worstase time complexity of the operations guaranteed by the node-copy method.
- must also guarantee that multi-log updates are also atomic where a copy ends within an entry of the LinkLog. if used to manage versioning.
- C4: Because the persistenbacking store can be local to the function or on a host across a network, we must consider the impact of failures in our algorithms and analyses.

We next describe a design that allows us to efficiently imple-

B. Implementing Node-Copy Method using Logs

Our log mapping designwhich avoids log scans (addressing C2), derives from two primary observations First, data structure updatesmodify node pointers and these updates can be interleaved. We thus use a separate log per node to avoid scanning entries from unrelated updates. Second, when we copy a node (when it runs out of extra pointers), the information (e.g. value) does not change. We thus use a shared log (across nodes) o hold node information. This combination allows versioned data structure updates to occurAPLog denotes the successful completion of a version.

independentlywhile maintaining the efficiency of find/search operations avoiding copy overheadind conserving space.

Specifically, PEDaLS represents a node in a linked data structure by a pair of log sequence numbersone for the shared information log – the DataLog, and anotherfor the node-specific pointerlog – a LinkLog. When a pointer is added to a node, we append an entry to the LinkLog of the node (addressing C1)The second sequence number is used to distinguish node copies.

The efficiency of the in-memory node-copy method lies in the fact that every predecessonode points to the required copy of the successomode. To traverse a copy of a node we need only scan a fixed number of pointers. That is, we scan (p = o + e) pointers, where o is the number of original pointers and e is the number of extra pointers. herefore, to achieve similar time complexity, we must restrict (i.e. fix) the number of entries in the LinkLog that we need to scan in order to traverse a nodeThis is relatively straightforward to do: because copies of a node are not interleaved (i.e. a node is copied only when the previous copy becomes full), we can use contiguous log entries of a LinkLog to represent particular

Initially, it appears that we can use contiguous p LinkLog entries to store a copy of a node and denote a copy using the first sequence number among these entries That is, for the n-th copy of a node (considering the originahode to be the "first" copy), the p entries starting from the sequence number ((n-1) * p + 1) store that copy. This is indeed the case – in absence of network failures.

However, failures alter the situation. We consider two types of failures. (i) Type 1: an append to a log fails. (ii) Type 2: an append to a log succeeds ut the acknowledgment (which returns the sequence number where the entry was appended) is lost. In both cases PEDaLS retries-lowever, note that Type 2 failures violate the boundary conditions discussed above. Copies of a node do not strictly end at multiples of p anymore. C3: Updates to a single log are atomic, however, PEDaL his implies that we must embed the information regarding

> To account for failures, we record the number of extra pointers left after the insertion of that entry in a dedicated field in the LinkLog. This way, once this field reads 0 while scanning entries of a copy in the LinkLogye know we have reached the end of the current copy.

In general, we embed sufficient formation in an entry of ment node-copy using logs while addressing these challenges log so that append to that log becomes idempoten (this addresses C4). Note that in presence of failures the number of entries we need to scan is bounded by the number of failures f(p = o + e + f).

> Next, the node-copy method usesan AP list for constant time access to the root node of a particular version of the data structure. Similarly, PEDaLS maintains an APLog to store version root nodes for the data structure. PEDaLS writes the APLog last (the order of write is DataLog>LinkLog(s)>APLog). Therefore, an append to the

That is, APLog acts as a checkpoint denoting the complete versions currently present in the data structure. This design choice addressesC3: if there are rogue entries in LinkLogs/DataLog with version stampsvs that are greater than the latest version stamp recorded in the APLog (this can be identified after a system crash or network failura/e know that the last operation did not complete and can either trim these entries or retry the operation (we log requested operations before we start execution for the latter).

Table I summarizes the different types of logs used by PEDaLS along with a description of the fields stored in each of insert(5) follows similar steps. of their entries. Note that type field in LinkLog is used for the sake of generalization; data structures that have only one typeo more extra pointers are leftin the node containing 7 but of entry (e.g. singly linked list) ignore this field.

Most log storage systems have some form of built-in retention policy which prevents logs from growing without bounds. For example, Kafka [4] provides retention policies based both on time (messages oldethan a configured time are deleted)and on space (once a log reaches a configured space limit messages are deleted from the end(SPOT [6] of entries, newer entries start overwriting the older ones. their entirety, an end-user has to specify the number of versions node connectivity. We present the AddN ode routine for K he/she wants to retainPEDaLS then allocates enough log BST in Algorithm 1 (the routine for linked list is similar space for each type of log based on the value of K. Currently and simpler as there is only one originallink and hence no PEDaLS refuses update operations once it reaches K version must be copied during node copy). The routine adds This sort of policy where service is refused based on the unavailability of space is not uncommon (e.g.Redis [62]). after it reaches K versions.

C. Node-Copy using Logs: Step by Step Example

Figure 3 shows the contents of the different logs used by PEDaLS across multiple operations on a PEDaLS binary search tree (BST). As in Figure 1, we start with the empty BST and assume the number of extra pointers is 1F.or the simplicity of exposition, we name the LinkLog of a node as link val, where val is the node value (information).

To insert(7), we append the entry (1,7,link_7) to the DataLog which returns the sequence number 1. This sequences not allow concurrent updates. append two entries in link 7, one for the BST left pointer and copy. As an example we consider the operation f ind(2, 3) – rem field is 1,denoting the number of extra pointers after the (i.e. BST has the representation shown in the bottom right insertion. As both of these pointers point to the null node, we corner of Figure 3). We start by first locating the root node use an invalid sequence number (0) for dseq and Iseq. The fifet version 3 from the APLog.In this case,the root node for in the APLog.

Operation insert(2) follows a similar approach with two added steps. First, we find the current version of the data structure. To do this, we read the tail of the APLog. This reveals that the latest version is 1 (this is the first field of the Scanning the top three entries is enough to fully traverse the last entry in the APLog in the top left corner of Figure 3), so the current working version is 2. Second, we add a pointerdenoting the end of the currentcopy). This reveals two left

from the node containing 7 to the node containing 2As the data for the node containing 2 was inserted at sequence number 2 of the DataLog and the first pointer of the node was inserted at sequence number 1 of its LinkLog, dseq and Iseq values of this pointer are 2 and 1 respectively.

After recording this pointer, we decrement the number of extra pointers (recorded as 0 in the rem field). The value to be decremented comes from the tail of link, which is 1 at this point. Note that the APLog entry for version 2 is identical to that of version 1, as the root node does not change. Execution

Execution of delete(2) involves some additionasteps, as we need to add 5 to the left of 7Therefore, we make a copy of the node containing 7. Since the right pointer does not change,we copy over only the latest right pointer. This is done in sequence numbe# of link _7 (bottom right corner of Figure 3). Next, we install the new left pointer with dseq and Iseq values seto 3 (5 was inserted in sequence number 3 of DataLog) and 1 (node containing 2 pointed to 5 using provides rollover where once a log reaches a specified number value of 1), respectively. As the root node is copied in this case, we record the node in the APLog by appending (4, 1, 4). Therefore, to ensure all the required versions are preserved in Note that for update operations, the crux of the algorithm is a child node (cN ode) to the desired parentnode (pN ode). As successive predecessors may run on ftextra pointers to Note that PEDaLS continues to service read operations even accommodate this addition (cf. Section III), the full path from the root of the tree to the desired parent node is supplied to the routine. We assume the node representation in the algorithm is a structure containing dseqlseq, and the link fields (cf. Table I). The lastentry in a log L is represented by tail(L), the entry at sequence number i in log L is represented by L[i], and a field f in an entry e of a log is e.f. Note that the versions of a data structure are strictly ordered and a new version is obtained by modifying the previous version. Therefore, we need to know the previous version in its entirety before we can generate the nextension of a data structureThus, PEDaLS

number will be used later to record the root in the APLog. We Access operations follow a similar pattern to that of nodeone for the right pointer. Note that for both of these entries, thind 2 in version stamp 3, after executing the above operations append to LinkLog returns the sequence number 1. Thereforeversion 3 is recorded in the entry at sequence number 3 in the we conclude the insertion of 7 by recording the tuple (1,1,1) APLog. From this entry, we know that the root node's data is stored in sequence number 1 (dseq) of the DataLog.

The entry at sequence number of DataLog provides us with the name of the LinkLog. As Iseq = 1 in the APLog entry, we start scanning link_7 from sequence number 1. current copy of the node (as the third entry has rem = 0,

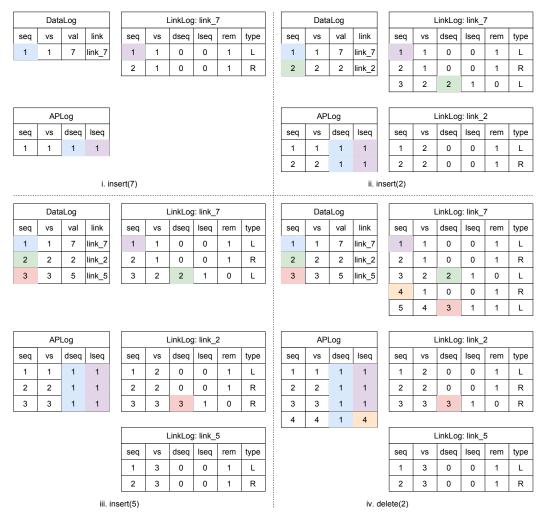


Fig. 3: A versioned binary search tree (BST) using node-copy with one extra pointer implemented on logs (this mirrors the in-memory tree in Figure 1). 0 is assumed to be an invalid sequence number and hence is used to denote null nodes. DataLog sequence numbers are color-coded to represent the links. LinkLog sequence numbers are color-coded only if the entry denotes the start of a root node.

pointers, one with version stamp 1 and the other with version A. Experimental Methodology stamp 2.As 1 < 2, we follow the latter one, i.e., the link at sequence number 3 of link 7. This leads to the node whose DataLog.Reading this entry reveals the value stored here is insert for linked lists at the end of the list. We present indeed 2, completing the access operation.

V. EVALUATION

In this section,we empirically evaluate the performance of PEDaLS.We implementPEDaLS over CSPOT [6]an opensource, distributed runtime system thatuns on edge, cloud, and sensorsystems, and uses memory-mapped files for its log abstraction. We evaluate linked lists and binary search trees (BST) as representative linked data structures since botheletion, the generatorrandomly chooses an integealready are used by developers as building blocks for more complex presentin the data structure with uniform distribution. This structures (e.gstacks,queues,ordered collectionsetc.).

To evaluate PEDaLS, we have devised a set of update information is stored in the entry at sequence number 2 of the insert/delete) workloads for linked lists and BSTs. We execute average workload time, which includes scan/find time (for both linked list and BST). We construct100 different workloads (combinations of insert and delete operations), each with 1000 operations.

> Our workload generatoruses a uniform probability distribution to select operations. For insertion, the generator randomly chooses an integer between 1 to 100 with uniform distribution. If the integer is already present, it selects the next integer not already presentin the data structure. For way the generatorguarantees alloperations will execute to

Algorithm 1 Node Copy: AddNode (BST)

Require: childNode cN ode; stack of nodes leading from root of BST to parent of cN ode, S; number of links per node linksP erN ode; working version stamp vs

Ensure: cN ode is added to its parent 1: while S ⊨ φ do pNode ← S.pop() 2. 3: lastLink ← tail(pN ode.link) newLink \leftarrow {} 4: 5. newLink.vs ← vs $newLink.dseq \leftarrow cN ode.dseq$ 6: newLink.lseq ← cN ode.lseq 7. 8: childT ype ← getT ype(pN ode.dseq, cN ode.dseq) getType returns type of link i.eleft or right 9: if lastLink.rem > 0 then " node not full newLink.rem ← lastLink.rem − 1 10: 11: pN ode.link.append(newLink) 12: break else 13: 14: lef tLink ← {} 15. rightLink ← {} i = pN ode.leg16: iteratorLink ← pN ode.link[i] 17: 18: while iteratorLink != φ & iteratorLink.rem ≥ 0 do if iteratorLink.type = L then " iterator is a left 19 pointer 20. lef tl ink ← iteratorl ink 21: else rightLink ← iteratorLink 22: 23. end if 24: i ← i + 1 iteratorLink ← pN ode.link[i] 25. 26: end while " copy right child 27: if childT ype = L then 28: linkLogSeg ← pN ode.link.append(rightLink) 29: 30. linkLogSeq ← pN ode.link.append(lef tLink) 31. newLink.rem ← linksP erNode - 2 32: 33: pN ode.link.append(newLink) 34: end if 35: cN ode.dseq ← pN ode.dseq cN ode.lseq ← linkLogSeq 36: $cN\ ode.link \leftarrow pN\ ode.link$ 37 38: end while

completion. Unless otherwise specified ur results present the average across 100 workloads.

In addition to microbenchmarks, we evaluate the performance of PEDaLS for an end-to-end distributed application. The application (presented in Section V-E) implements a simple clone of Amazon Simple Storage Service (S3) for storing and serving images using PEDaLS.

To the best of our knowledge, no other system provides data structures. Moreover, we want to explore the cost of providing versioning and storage suppotb systems relying on in-memory ephemeral data structures. Thus, we com-

pare PEDaLS data structures against-memory ephemeral and in-memory persistendata structures (denoted as simply ephemeraland persistentin the results). We use memorymapped files as a backing store for the in-memory data structures.

To evaluate the trade-off in space and time using extra pointers, we consider 1, 5, and 10 extra pointers for PDSs (both in-memory and PEDaLS)We refer to the PEDaLS implementation using n number of extra pointers as PEDaLS-n. Similarly, we refer to the in-memory persistent implementation using n number of extra pointers as persistent-n.

We perform our experiments using virtual machine instances in a private cloud running Eucalyptus [63]. Each instance has two 2GHz CPUs and 2GB of memoryUnless otherwise specified,we co-locate the logs and workload for this study.

B. Space Analysis

We first evaluate PEDaLS space usagegures 4a and 4b show the average space in bytes used by linked list and BST respectively to execute 1 to 1000 operations. The results show that PEDaLS space requirements are linear with respect to the number of operations for versioned data structures (persistentn and PEDaLS-n). The space requirements for ephemeral data structures are linearin the number of nodes present any instant of time (due to scaling it appears to be constant) Figure 4).

We expect that when the number of extra pointers is small, the node-copy method will copy more nodes (and consume more space)This is evident in the resultsThe average slope of the lines for PEDaLS-1 BST, PEDaLS-5 BST, and PEDaLS-10 BST are respectively 352300, and 296 (Figure 4b). This implies that, on average, each update operation in PEDaLS-1 BST requires 352 byteswhereas each update operation in PEDaLS-10 BST requires 296 bytes.

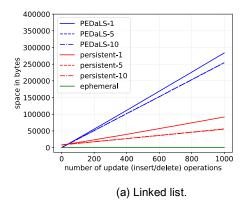
Note that although the difference in average slope between PEDaLS-10 BST and PEDaLS-1 BST is more than 50this difference reduces to 4 when considering PEDaLS-5 BST and PEDaLS-10 BSTThat is, we only reduce space consumption via extra pointers up to a point. For linked list PEDaLS-10 saves roughly one byte of space per operation as compared to PEDaLS-5. When compared to persistent-n BSTs, PEDaLS-n BSTs require 1.50x, 1.75x, and 1.80x more space forn = 1, 5, and 10 respectivelyThat is, the space overhead to map the in-memory node-copy method to logs is guite low.

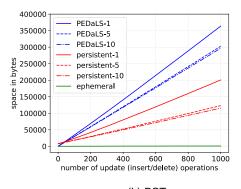
Similar observations for linked listfrom Figure 4a reveal space overhead is as low as 2.00 phemeral data structures can free the corresponding memory once a node is deleted. Moreover, they do not have to perform bookkeeping related to maintaining versioning information. Therefore, we expect their general-purpose versioning and storage persistence of programace requirement to be lower. Unsurprisingly, the space overhead to maintain PEDaLS-10 BST as opposed to ephemeral BST is 178x. The same overhead is 202x for linked list.

C. Time Analysis

We next consider the additional time needed for versioning and disk persistence. Figure 5 shows the average time taken by

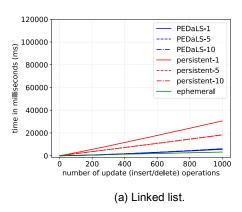
¹Our workloads are available (for reproducibility purposes) as part of our open-sourcerelease of PEDaLS at https://github.com/MAYHEM-Lab/PEDaLS.





(b) BST.

Fig. 4: Average space usage.



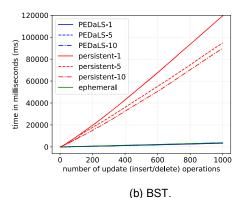


Fig. 5: Average execution time.

the different data structures to execute a number of operation ersioned persistence he underlying memory allocator that ranging from 1 to 1000. The time requirements (shown on the y-axis) are linear with respect to the number of operations implemented) uses is trivial: it simply appends to a fixed-(shown on the x-axis).

an update operation is 3.30 milliseconds. This value is 4.11 milliseconds, 4.47 milliseconds, and 4.51 milliseconds for PEDaLS-1 linked list.PEDaLS-5 linked listand PEDaLS-10 linked list respectively. That is, even the slowest PEDaLSn linked list implementation introduces only 1.35x overhead. The persistent-n implementations are the slowestequiring 28.85 milliseconds,18.28 milliseconds,and 18.18 milliseconds for n = 1, 5, and 10 respectively.

These results are surprising. We expect the performance order would be ephemeral>persistent-n>PEDaLS-hlowever, in the case of linked list the experiments show PEDaLS-n hagion to the backing store (i.æ Linux file) to prevent corrupa better performance than persistent-rMoreover, the small overhead in PEDaLS-n when compared to ephemesthows that it is possible to use a log-based approach to implement call to write back modified mapped memory. For CentOS 7, storage-persister PDS linked list without a significant performance penalty relative to the standard mutable, and unversioned pointer-based implementations.

These experiments indicate that the performance of the memory allocator plays a key role in the performance of

CSPOT (runtime system over which PEDaLS is currently size, pre-allocated, circular log buffer that is mapped to For ephemeral linked list, the average time taken to execute Linux file. Further, there is no deallocation - the log "wraps" to automatically garbage colled bg entries [6]. For the ephemeraland persistentimplementations the memory allocator uses a first-fit dynamic allocation algorithm with eager coalescing of adjacent free blocks on deallocation. Thus, the implementations that is a dynamic allocator cause ito "chase" an internal free list of blocks from time to time during allocation and coalescing.

> Additionally, both allocators flush a modified memory retion in case of a system crash. The dynamic allocator versions (ephemeraland persistent)use the Linux msync() system this call causes either one or two (due to alignment) 8 kilobyte pagesto be flushed to the backing file. Moreover, it must flush the modified memory to the backing store (i.ea Linux file) each time the data changes in an allocated buffer in the internal memory allocated data structures.

A cursory examination of the CSPOT source codehows that it unmaps each storage log after each append operation, server. For the first implementation, we use an Amazon S3 causing dirty pages to be flushed back. Thus it is likely that ephemeralperformance is dominated by backing-store synchronization traffic As a result, the additional computational overhead associated with versioning using the nodecopy method is negligible.

Figure 5b shows the average time taken by the different implementations of BST to perform the workload The time requirements are again linear with respect to the number of operations. Ephemera IBST requires 3.82 milliseconds to execute an operationPEDaLS-n BSTs require slightly lower - 2.88 milliseconds, 3.04 milliseconds, and 3.24 millisecondsoutperform the S3 image serverather explore the utility of for n = 1, 5, and 10 respectively.

The additional complexities inherentn a PDS implemennamic memory allocator. This is reflected in the per-operation the server. Surprisingly, PEDaLS based server outperforms times for persistent-n, which are 106.71 milliseconds 88.48 milliseconds, and 81.26 milliseconds for n = 1, 5, and 10 respectively. That is, persistent-n can have an overhead of as image for the two servers. The average upload time is 153 much as 28x when compared to ephemeral.

D. Search Performance

of existing nodes (e.gto find leaf node to which a new node is inserted). We next break out the time to perform access (find/search) operations alone, i.e. data structure traversal. We (i) finding the last node in linked list (Figure 6a) and (ii) finding the maximum value in BST (Figure 6b). Figure 6 shows traversal time as a function of the number of nodes.

nodes in linked list, We do not show the complete results for the sake of visual comparability (e.g. no workload resulted in a this paper, we investigate how to combine the two so depth of > 10 BST nodes). Because we search from the latest hat high-level, linked program data structure operations with version, we simply follow the last link (i.e. at most 2 links for versioning support, automatically and transparently map to BST) of each nodeWe find that varying the number of extra pointers for this experiment has no significant performance difference.

liseconds and PEDaLS BST requires 0.29 milliseconds th magnitude faster than PEDaLS for accessth no significant difference between each other. This again emphasizes the importance of the performance of the memory allocator or updates PEDaLS is faster than persiste for both linked list and BST and is on par with ephemeral.

E. End-to-End Application: Image Server

Finally, we evaluate the use of PEDaLS for an end-toend distributed application commonly found in IoT settings, e.g. [64]. The program implements an image serverwhich sensors and/or users can use to upload and download images for analysis.

²https://github.com/MAYHEM-Lab/cspot

We compare two differentimplementations ofthis image bucket located in the us-west-2 region as the server. The client process is located in a private cloud in UCSB and interacts with the bucketusing the boto3 library (the instance has the same specifications as the ones used so far 2GHz CPU, 2GB RAM). For the second implementation, we use a t3.small (2GHz CPU, 2GB RAM) EC2 instance, also located in the uswest-2 region. We employ a PEDaLS -1 BST in this instance that acts as an image indexer. The average RTT between the client instance and the EC2 instance that e observe is approximately 30 millisecondsNote that our goal is not to PEDaLS in an IoT setting.

For this experiment, we first upload 500 images (256 KB tation of BST put additional performance pressure on the dy-each) to the server, followed by the retrieval of the images from s3 based server in both upload time and download time. Figure 7 shows the average upload and download times per milliseconds for the S3 based server, whereas this value is 144 milliseconds for PEDaLS. That is, the latter is 1.1x faster. The average download time is 146 milliseconds for S3 based Note that update operations (insert/delete) require traversalserver, whereasthis value is 83 milliseconds for PEDaLS based server this case.PEDaLS is 1.8x faster.

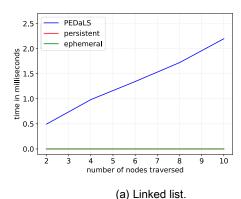
VI. CONCLUSION

consider different access operations for the two data structures. Both partially persistent data structures (PDSs) and appendonly storage systems provide immutability and history-based programming - albeit at different "levels" (program versus systems). These features are useful at both levels in distributed, Note that although many workloads resulted in having > 10large-scale, and failure-prone contexts such as those for heterogeneous and pervasive Internet Things (IoT) deployments. append-only persistent to rage – enabling for the first time, survivability and programmatic access by distributed clients to both the data structures and their version histories.

Figure 6 shows that the access time is linear in the number To enable this, we present a new approach for efficiently of nodes for PEDaLS. On average, PEDaLS requires 0.23 misupporting versionedlinked data structures in programs by leveraging algorithmic advances from partially persistent data the persistent and ephemeral data structures are three orders tructures. We use these methods to design a mapping and library implementation of version-aware data structure operations that are backed by append-only storage/e/e implement this approach using an append-only storage abstraction from a portable, open-source event system for IoT. We use this system to evaluate the algorithmic complexities and performance overhead for operation workloads for linked list and binary search tree (BST) structures as well as end-to-end using a multi-tier image processing applicationOur results show thatwe are able to achieve the algorithmic complexities of the original PDSs and low overhead for storage-persistent versioning.

REFERENCES

[1] "Amazon S3," 2021,https://aws.amazon.com/s@nline; accessed 11-Apr-2021].



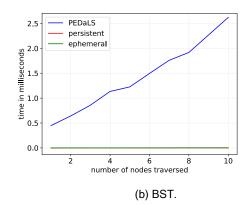


Fig. 6: Access (node traversal) time vs number of nodes traversed.

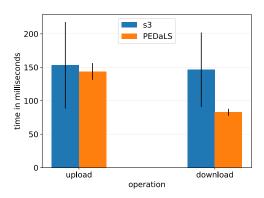


Fig. 7: Average upload and download time per image for the Amazon S3 and PEDaLS image servers.

- [2] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, "The Hadoop Distributed File System," in IEEE Symposium on Mass Storage Systems and Technologie 2010.
- [3] M. Balakrishnan, D. Malkhi, V. Prabhakaran, Wobbler, M. Wei, and J. Davis, "Corfu: A shared log design for flash clusters," in USENIX Symposium on Networked Systems Design and Implementa@1012.
- [4] J. Kreps, N. Narkhede, J. Rao et al., "Kafka: A distributed messaging system for log processing," in Proceedings of the NetDB, vol. 11, 2011, pp. 1–7.
- [5] "AWS Lambda," https://aws.amazon.com/lambd2021, [Online; accessed 11-Apr-2021].
- [6] R. Wolski, C. Krintz, F. Bakir, G. George, and W.-T. Lin, "CSPOT: Portable, Multi-scale Functions-as-a-Service for IoT," in ACM Symposium on Edge Computing 2019.
- [7] Amazon, "S3 Object Versioning," 2019, https://docs.aws.amazon.com/AmazonS3/latest/dev/Versioning.html [Online; accessed 28-Sep-2019].
- [8] "Google Cloud: Versioned Object Storage," 2018, https://cloud.google.com/storage/docs/object-versioning [Online; accessed 12-Sep-2018].
- [9] "Apache Kafka," 2019, http://kafka.apache.org [Onlinegccessed Sep. 2019].
- [10] "Amazon kinesis streams service," 2020, https://docs.aws.amazon.com/kinesis/index.htm/Accessed 15-Apr-2020.
- [11] J. Driscoll, N. Sarnak, D. Sleator, and R. Tarjan, "Making data structure persistent," JComput.Syst.Sci., vol. 38, no. 1, 1989.
- [12] P. Helland, "Immutability changes everything," in Conference on Innovative Data Systems Research, 2015

- http://cidrdb.org/cidr2015/Papers/CIDR_Paper16.pdf Accessed 15-Sep-2019.
- [13] P. Alvaro, S. Galwani, and P. Bailis, "Research for practice: Tracing and debugging distributed systems programming by examples," in CACM, Jan.2017.
- [14] P. F. Dietz and R. Raman, "Persistence, amortization and randomization," in ACM-SIAM Symposium on Discrete Algorithms 91.
- [15] G. S. Brodal, "Partially persistent data structures of bounded degree with constant update time," Nordl. Comput., vol. 3, no. 3, 1996.
- [16] A. Fiat and H. Kaplan, "Making data structures confluently persistent," in Symposium on Discrete Algorithm 201.
- [17] H. Kaplan, "Persistent Data Structures," 2004.
- [18] F. Pluquet, S. Langerman, A. Marot, and R. Wuyts, "Implementing partial persistence in object-oriented languages," in Meeting on Algorithm Engineering & Expermiments 2008.
- [19] L. Ceze, C. von Praun, C. Cascaval, P. Montesinos, and J. Torrellas, "Programming and Debugging Shared Memory Programs with the Data Coloring," in Workshop on Compilers for Parallel Computing 009.
- [20] E. D. Demaine, J. Iacono, and S. Langerman, "Retroactive data structures," ACM TransAlgorithms, vol. 3, no. 2, May 2007.
- [21] —, "Retroactive data structures," in ACM-SIAM Symposium on Discrete Algorithms 2004.
- [22] H. Mannila and E. Ukkonen, "The set union problem with backtracking," International Colloquium on Automata Languages and Programming, vol. 226, 1986.
- [23] J. Westbrook and R.E. Tarjan, "Amortized analysis of algorithms for set union with backtracking," SIAM Comput., vol. 18, 1989.
- [24] Y. Zhan and D. E. Porter, "Versioned programming: A simple technique for implementing efficient,lock-free, and composable data structures," in ACM International on Systems and Storage Conference (2016) 6.
- [25] "Haskell," 2019, "https://www.haskell.org" Accessed 17-Sep-2019.
- [26] "Immutable.js," 2019, "https://immutable-js.github.io/immutable-js/" Accessed 20-Sep-2019.
- [27] John McClean, "Java Persistent Collections," 2019, "https://medium.com/@johnmcclean/the-rise-and-rise-of-javafunctional-data-structures-63782436f93b" Accessed 20-Sep-2019.
- [28] C. Okasaki, "Purely Functional Data Structures," Carnegie Mellon University, Tech. Rep. CMU-CS-96-177, 2019, https://www.cs.cmu.edu/rwh/theses/okasaki.pdfAccessed 20-Sep-2019.
 - [9] A. Chien, P. Balaji, P. Beckman, N. Dun, A. Fang, H. Fujita, K. Iskra, Z. Rubenstein, Z. Zheng, R. Schreiber, J. Hammond, J. Dinan, I. Laguna, D. Richards, A. Dubey, B. van Straalen, M. Hoemmen, M. Heroux, K. Teranishi, and A. Siegel, "Versioned distributed arrays for resilience in scientific applications," Procedia CompuSci., vol. 51, no. C, Sep. 2015.
 - S. Venkataraman, N. Tolia, P. Ranganathan, and R. H. Campbell, "Consistent and durable data structures for non-volatile byte-addressable memory," in USENIX Conference on File and Stroage Technologies, 2011.

- [31] A. Twigg, A. Byde, G. Milos, T. Moreton, J. Wilkes, and T. Wilkie, "Stratified b-trees and versioned dictionaries," in USENIX Conference on Hot Topics in Storage and File Systemser. HotStorage'112011.
- [32] 1995.
- [33] Oracle, "Java Persistence API," 2019, "https://docs.oracle.com/cd/E19798-01/821-1841/6nmq2cpag/index.html" Accessed 18-Sep-2019.
- [34] Oracle, "JDBC," 2021, https://docs.oracle.com/en/database/oracle/oracle/oracle/10/jjdbc/toc.htm Accessed 2-Apr-2021.
- [35] R. Agarwal, "The c++ interface in objectivity," SIGPLAN Notvol. 29, no. 12, Dec. 1994.
- [36] T. Kelly, "Persistent Memory Programming on Conventional Hardware," [63] ACMQUEUE, vol. 17, no. 4, 2019.
- [37] V. Gogte, S. Diestelhorst, W. Wang, S. Narayanasamy, P. M. Chen, and T. F. Wenisch, "Persistency for synchronization-free regions," in ACM Conference on Programming Language Design and Implementation, ser. PLDI 2018.2018.
- [38] M. Atkinson, P. Bailey, K. Chisholm, W. Cockshott, and R. Morrison, "An Approach to Persistent Programming," Computer Journal, 26, no. 4, 1983.
- [39] M. Atkinson, L. Daynes, M. Jordan, T. Printezis, and S. Spence, "An orthogonally persistent Java," in SIGMOD996.
- [40] S. Balzer, "Contracted Persister "Dbject Programming," in PhD Workshop, ECOOP, 2005.
- [41] B. Stopford, Designing EventDriven Systems: Concepts and Patterns for Streaming Services with Apache Kafka. O'Reilly Media, 2018, https://drive.google.com/file/d/1NGst29pUjZwtn8pXTKvlSSuau2to5dD/view Accessed 15-Sep-2019.
- [42] R. Kotla, L. Alvisi, and M. Dahlin, "Safestore: A durable and practical storage system," in USENIX Annual Technical Conference 2007, pp. 129–142.
- [43] S. Alsubaiee, A. Behm, V. Borkar, Z. Heilbron, Y.-S. Kim, M. J. Carey, M. Dreseler, and C. Li, "Storage management asterixdb," VLDB, vol. 7, no. 10, Jun. 2014.
- [44] C. Gong, S. He, Y. Gong, and Y. Lei, "On integration of appends and merges in log-structured merge trees," in Internation nonference on Parallel Processing 2019.
- [45] F. Nawab, V. Arora, D. Agrawal, and A. El Abbadi, "Chariots: A scalable shared log for data managementin multi-datacenter cloud environments." in EDBT2015, pp. 13–24.
- [46] H. Vo, S. Wang, D. Agrawal, G. Chen, and B. Ooi, "Logbase: a scalable log-structured database system in the cloud," Proceedings of the VLDB Endowmentvol. 5, no. 10, pp. 1004–10152012.
- [47] "Apache Samza," 2019http://samza.apache.org [Online; accessed Sep. 2019].
- [48] P. Bailis and A. Ghodsi, "Eventual consistency today:Limitations, extensions and beyond," ACM Queue, ol. 11, no. 3, Mar. 2013.
- [49] S. Burckhardt, "Principles of eventual consistency," Foundations and Trends in Programming Languagesol. 1, no. 1-2, 2014.
- [50] M. Balakrishnan, D. Malkhi, T. Wobber, M. Wu, V. Prabhakaran, M. Wei, J. Davis, S. Rao, T. Zou, and A. Zuck, "Tango: Distributed Data Structures over a Shared Log," in Symposium on Operating System Principles, Nov. 2013.
- [51] P. Helland, "Data on the outside versus data on the inside," in Conference on Innovative Data Systems Research, 2015, http://cidrdb.org/cidr2005/papers/P12.pdf Accessed 15-Sep-2019.
- [52] W. Lin, C. Krintz, R. Wolski, M. Zhang, X. Cai, T. Li, W. Xu, and R. Zhou, "Tracking Causal Order in AWS Lambda Applications," in IEEE International Conference on Cloud Engineeringun. 2018.
- [53] W.-T. Lin, C. Krintz, and R. Wolski, "Tracing Function Dependencies Across Clouds," in IEEE Cloud2018.
- [54] J. Mace, R. Roelke, and R. Fonseca, "Pivot tracing: Dynamic causal monitoring for distributed systems," ACM Trans. Comput. Syst., vol. 35, no. 4. Dec. 2018.
- [55] D. Meissner, B. Erb, F. Kargl, and M. Tichy, "Retro-lambda: An event-sourced platform for serverless applications with retroactive computing support," in Intl. Conf. on Distributed and Event-based System 18.
- [56] W.-T. Lin, F. Bakir, C. Krintz, R. Wolski, and M. Mock, "Data repair for Distributed, Event-based IoT Applications," in ACM International Conference on Distributed and Event-Based Syste2019.
- [57] I. Beschastnikh, P. Wang, Y. Brun, and M. Ernst, "Debugging distributed systems," in CACMJun. 2016.

- [58] I. Beschastnikh,Y. Brun, M. D. Ernst, A. Krishnamurthy, and T. E. Anderson, "Mining temporal invariants from partially ordered logs," SIGOPS OperSyst.Rev., vol. 45, no. 3, Jan. 2012.
- [59] D. Geels, G. Altekar, P. Maniatis, T. Roscoe, and I. Stoica, "Friday: Global comprehension for distributed replay," in NSI2007.
- [60] Facebook, "LogDevice," 2020, https://engineering.fb.com/coredata/logdevice-a-distributed-data-store-for-logs/ Accessed 29-Feb-2020.
 [61] D. Bailis, "Coordination avoidance in distributed databases," 2015, ph.D. Dissertation, University of California, Berkeley, http://www.bailis.org/papers/bailis-thesis.pdf Accessed 15-Sep-2019.
 [62] "Redis," "http://redis.io".
 - D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, and D. Zagorodnov, The eucalyptus open-source cloud-computing system," in Cluster Computing and the Grid, 2009. CCGRID'09. 9th IEEE/ACM International Symposium on IEEE, 2009, pp. 124–131.

 A. R. Elias, N. Golubovic, C. Krintz, and R. Wolski, "Where's The Bear? Automating Wildlife Image Processing Using IoT and Edge Cloud Systems," Computer Science Department at the University of California, Santa Barbara Tech. Rep. UCSB-CS-2016-07 October 2016.