
Sparta: A Heat-Budget-based Scheduling
Framework on IoT Edge Systems

Michael Zhang1, Chandra Krintz 1, and Rich Wolski1

Department of Computer Science
University of California, Santa Barbara, CA 93106, USA

{lebo, ckrintz, rich}@cs.ucsb.edu

Abstract. Co-location of processing infrastructure and IoT devices at
the edge is used to reduce response latency and long-haul network use
for IoT applications. As a result, edge clouds for many applications (e.g.
agriculture, ecology, and smart city deployments) must operate in re-
mote, unattended, and environmentally harsh settings, introducing new
challenges.One key challenge is heat exposure, which can degrade the
performance, reliability, and longevity of electronics. For edge clouds,
these problems are exacerbated because they increasingly perform com-
plex workloads, such as machine learning, to a↵ect data-driven actuation
and control of devices and systems in the environment.

The goal of our work is to protect edge clouds from overheating. To
enable this, we develop a heat-budget-based scheduling system, called
Sparta, which leverages dynamic voltage and frequency scaling (DVFS)
to adaptively control CPU temperature. Sparta takes machine learning
applications, datasets, and a temperature threshold as input. It sets the
initial frequency of the CPU based on historical data and then dynam-
ically updates it, according to the applications’ execution profile and
ambient temperature, to safeguard edge devices. We find that for a suite
of machine learning applications and deployment temperatures, Sparta
is able to maintain CPU temperature below the threshold 94% of the
time while facilitating improvements in execution time by 1.04x - 1.32x
over competitive approaches.

Keywords: Edge Computing, Heat Budget, Scheduling System, IoT

1 Introduction

The Internet of Things (IoT) is a rapidly emerging set of technologies in which
ordinary objects are equipped with digital intelligence – the ability to sense,
analyze, and control their environment automatically. By linking the physical
and digital worlds, IoT has the potential to enhance situational awareness and
e↵ective decision-making by humans,to detect, diagnose,and remediate prob-
lems without human intervention, to assist with personal and homeland security,
to optimize manufacturing and business processes, and to automate operations
throughout the economy.

2 Zhang, Krintz, Wolski

To realize this impact, IoT must be embedded in the world around us –
within buildings, cars, roads, homes, industrial machinery, and waterways, and
distributed across farms, wild open spaces, cities, and oceans. Moreover, they
increasingly leverage recent advances in data analytics, machine learning (ML),
and automation in-situ – at the edge of the network – “near” (in terms of net-
work latency) the locus of sensing and/or actuation. This move to the edge is
the result of an increase in the velocity and volume of data and high response
latencies imposed by the long-haul, intermittently available networks that con-
nect the edge and cloud. Further, unlike in the context of e-commerce and other
cloud application domains, IoT applications often benefit from spatial locality
in terms of performance, robustness,and security. That is, co-location of pro-
cessing infrastructure and IoT devices significantly reduces the latency between
data acquisition and device actuation, enables the extension of device capability
via local o✏oading, and alleviates the cost, power consumption, and congestion
of network use versus the centralized, cloud-direct model [1].

Edge processing,however, introduces new challenges for IoT deployments.
Unlike the devices themselves,edge computing elements are often designed for
environments in which the ambient environmental conditions are controlled and
kept within a narrow operational range. The operational settings in which these
edge systems (in our work we deploy miniaturized “edge clouds” using clusters
of commodity small-board computers to support IoT analytics) are deployed
can be harsh, hard or costly to access, and exposed to harmful environmental
elements (heat, moisture, dust, animals, other objects, humans, weather, etc.).
For example, we currently support an IoT deployment for image processing and
deep learning for the automatic, real-time identification of animals using camera
traps deployed across UCSB Sedgwick Reserve, an ecology and wildlife edu-
cational and research reserve in California [2]. The reserve is 6,000 acres that
comprise critical wildlife habitats, two watersheds at the foot of Figueroa Moun-
tain in Santa Ynez, California, and a 300-acre farm easement. Our edge clouds
fuse and analyze images from within out-buildings on the property. Sedgwick
yearly outdoor temperatures range between 30 and 116 Fahrenheit (-1.1 to
46.7 Celsius); within enclosures (e.g. shelters for electrical pumping equipment
where grid electricity is available) our cloud systems are subjected to much higher
ambient operating temperatures.

Excessive heat can degrade the performance and reliability of devices and
negatively impact their longevity (requiring more human intervention and fre-
quent replacement). Commodity computers are particularly sensitive to high
temperatures and extended exposure can cause these machines to break down,
degrade in functionality, and fail prematurely – even they are protected using
operational safeguards such as throttling and automatic shutdown [3]. For this
reason, most manufacturers include an on-board thermal CPU temperature sen-
sor and the ability to set a “shut-down” temperature if the CPU exceeds the
manufacturer’s maximum supported temperature. Figure1 shows a time series
of CPU temperature in degrees Fahrenheit gathered from one of our edge clouds
deployed at Sedgwick between February 2018 and June 2020.The cut-o↵ tem-

Sparta 3

perature was set to 200 F (93.3 C) and the temperature drop early in the trace
records the system’s automatic shutdown.

Fig. 1: The time series of CPU temperature in the edge cloud deployed at Sedg-
wick Natural Reserve from Feb. 28th, 2018 to Jun. 3rd, 2020. The x-axis is the
epoch time and the y-axis is the CPU temperature in Fahrenheit.

In this paper, we investigate the use of dynamic voltage and frequency scal-
ing (DVFS) [4,5] to control system temperature when the ambient temperature
might cause it to exceed the acceptable operational range. DVFS is a technique
that has been widely studied in the context of “power capping” – the implemen-
tation of a maximum power draw by the system. Our system – called Sparta
– automatically exploits the relationship between system power consumption
and generated heat. It does so by adjusting processor frequency dynamically so
that CPU temperatures do not exceed a specified threshold as ambient temper-
ature changes.Subject to the threshold, the system attempts to minimize the
application “slow down” (relative to maximum CPU frequency) that frequency
adjustments might introduce. We use Sparta to study the relationships between
CPU frequency, temperature, power dissipation, and execution behavior. More-
over, we consider IoT workloads that employ a wide range of machine learning
algorithms, including image recognition, natural language processing,decision
forest, and time series prediction.

We consider three modes for the Sparta frequency scheduler: Annealing,
AIMD, and Hybrid. Annealing employs an epsilon-greedy strategy to extrap-
olate an appropriate CPU frequency in real time. AIMD uses the linear growth of
CPU frequency when temperature is under threshold and exponential reduction
when it detects temperature anomalies to determine its CPU frequency. With
Hybrid, we combine the best features of the two modes to overcome their draw-
backs. Our results show that Sparta in Hybrid mode speeds up the execution
of our applications by 1.16x and 1.14x on average in three thermal environ-
ments compared to Annealing and AIMD. Moreover, Sparta in Hybrid mode
maintains CPU temperature below threshold 94.4% of the time (as measured
via temperature sampling), on average across all benchmarks.

In summary, with this paper, we make the following contributions:

– We investigate the relationship between CPU frequency and sampling tem-
perature to precisely model and manage processor power dissipation during
execution;

4 Zhang, Krintz, Wolski

– We design and implement a heat-budget-based scheduling framework that
protects edge systems from overheating and potential damage;

– We empirically evaluate the efficacy of using Sparta to control CPU temper-
ature and accelerate machine learning applications on six real-world bench-
marks in three thermal deployment environments.

In the following sections, we present the design and implementation of Sparta
(Section 2). We then describe our experimental methodology and empirical eval-
uation of the system using multiple machine learning applications in di↵erent
thermal environments (Section 3). In Section 4, we discuss related work. Finally,
we present our conclusions and future work plans.

2 Sparta

Fig. 2: The Architecture of Sparta

2.1 Architecture

To address the processor overheating challenge and accelerate the execution of
applications under a CPU temperature threshold, we develop Sparta, a heat-
budget-based scheduling framework for edge devices and machine learning ap-
plications. The architecture of Sparta is shown in Figure 2. The scheduler con-
sists of three components: a control plane, a data plane, and a decision plane.
Sparta takes a machine learning application, datasets, and a CPU tempera-
ture threshold as input. During the execution, the scheduler utilizes a feedback
control mechanism that controls the CPU temperature by dynamically adjusting
CPU frequency via system-level dynamic voltage and frequency scaling (DVFS).

Sparta 5

Sparta returns the trained model and inference results at the end of the execu-
tion.

The data plane monitors, samples, and records the CPU real-time tempera-
ture via the lm-sensors interface [6] and selects the maximum temperature within
a sliding time window. Both the sampling rate and window size are configurable.
(1/second and 5 seconds by default) To signify the authentic temperature of
multi-core processors, data plane records the temperature samples of the entire
CPU package instead of any specific ones. Being accessible by decision plane, all
structured temperature data helps determine the proper CPU frequency in real
time to keep the CPU temperature under threshold.

The control plane manages the CPU power and temperature. In the design
phase,we consider two methods: Sleep injection and DVFS. The first method
injects sleep time in the iteration loop that lowers the CPU usage, whereas
the second method adjusts the CPU frequency by tuning the CPU voltage. We
experiment with these two methods on a multi-threaded matrix multiplication
benchmark and monitor the CPU temperature. Figure 3 shows the CPU tem-
perature time series using these two methods. We observe the latter method
generates a controllable and stable temperature curve, and thus choose DVFS
as the control plane interface. Upon the execution of scheduler, control plane re-
ceives the determined CPU frequency and sets the max clock speed of all cores
in the CPU package on-the-fly. This way the control plane e↵ectively manages
the power consumption and heat generation of the processor.

Fig. 3: The CPU temperature time series by sleep injection (left) vs DVFS
(right). The x-axis is the time frame and the y-axis is the CPU temperature
ranging from 48 C to 100 C.

The decision plane determines the CPU frequency based on historical and
real-time temperature data throughout the execution. To provide the historical
dataset, on which decision plane decides the initial CPU frequency, we collect
CPU temperature and frequency data from a multi-threaded matrix multipli-
cation (MATMUL) benchmark that simulates the underlying operations in ma-
chine learning applications.

6 Zhang, Krintz, Wolski

We gather the data in the ambient temperature ranging from 2.6 C to 43.8
C to cover di↵erent thermal environments. In the experiment, we found the se-

quence of CPU frequency and maximum temperature in a time window demon-
strate a better linear relationship than the sequence of all temperature, because
of its inherent oscillating feature. To verify the correlation between MATMUL
and machine learning applications, we collect the same data from an image recog-
nition application written in Tensorflow [7]. As depicted in Figure 4, we found
the correlated linear relationship between the CPU frequency and logarithmic
delta temperature defined as log(Tmax Ti), where Tmax is the maximum tem-
perature sample in the time window and T i is the starting CPU temperature in
idle state.

Depending on this correlation, decision plane extrapolates the appropriate
CPU frequency by linear regression from the MATMUL dataset and assigns
initial CPU frequency before the execution starts. During the process, decision
plane starts to extrapolate CPU frequency from real-time data that accurately
reflects the ambient temperature and the execution pattern of ML applications.
The extrapolation frequency is 12/minute by default and configurable by users.

Fig. 4: The linear relationship between CPU frequency and logarithmic delta
temperature of two benchmarks. The blue curve represents MATMUL and the
orange curve represents the image recognition application.The plateaus at the
right side of curves are caused by CPU hardware temperature throttling.

2.2 Operating Modes

In the testing phase of Sparta, we identified two major problems in the deci-
sion plane. First, the extrapolation from linear regression oftentimes gets stuck
at a local minimum. Thus, the determined CPU frequency is frequently lower
than the ideal one, which leaves computational resources idle during execution.
Second,the response time to correct the CPU from overheating is longer than

Sparta 7

expected when CPU temperature surpasses the threshold. To solve these two
problems, we construct three operating modes for Sparta: Annealing, AIMD,
and Hybrid.

Annealing is a probabilistic algorithm that leverages the epsilon-greedy strat-
egy that balances exploration and exploitation by choosing randomly. In this
mode, Sparta scheduler picks a value(P) in the range [0, 1] uniformly at random
and compares it with /K✏ , where ✏ is a probability of taking random actions
(0.5 by default) and K is the number of extrapolation decision plane has made.
The scheduler assigns a random CPU frequency when P is greater, whereas it
keeps the extrapolated frequency when P is less than /K✏ . With a decreasing
probability of /K✏ as the application proceeds, scheduler stabilizes and chooses
to exploit what it has learned so far. When the ambient temperature or the
execution pattern shifts dramatically, the scheduler resets the /K✏ that allows
more random exploration. This mode e↵ectively addresses the problem of CPU
frequency stuck at a local minimum and expedites the execution of machine
learning applications under temperature threshold.

AIMD is a feedback control mechanism that responds to CPU temperature
anomaly faster. The scheduler configures the CPU frequency according to the
historical data extrapolation at the start of execution. During the execution, it
decreases the CPU frequency by a multiplicative factor (0.5 by default) when
CPU temperature surpasses the threshold. Subsequently, it increases the fre-
quency by a fixed amount (0.07 GHz by default) every iteration until the CPU
temperature stabilizes right below the threshold. The decision plane turns into
hibernation at this point to prevent redundant tuning on CPU frequency that
leads to inefficient execution. Meanwhile, the data plane keeps monitoring the
CPU temperature and wakes up decision plane if any anomalies caused by ambi-
ent temperature or execution pattern are detected. AIMD reduces the response
time to temperature deviation and keeps most samples under the threshold.

Hybrid combines Annealing and AIMD modes to address each other’s disad-
vantage: if the probabilistic actions in Annealing drive CPU temperature above
threshold, AIMD brings the anomaly back to normal fast; when AIMD settles at
a local minimum of CPU frequency and leaves resources idle, Annealing boosts
the execution by assigning a random CPU frequency. This way, Hybrid mode
provides a complement to accelerate the machine learning execution while keep-
ing the CPU temperature under threshold.

3 Evaluation

Based on the fact that most resource-demanding programs on edge cloud in our
Sedgwick Natural Reserve settings are machine learning applications, in this sec-
tion, we empirically evaluate Sparta’s performance in a series of experiments on

8 Zhang, Krintz, Wolski

six benchmarks, ranging from image recognition, natural language processing to
random forest and time series prediction, which are implemented based on Ten-
sorflow and executed through Sparta’s actuator interface. We first overview the
machine learning benchmarks that we consider and our experimental methodol-
ogy. We then present our results.

3.1 Machine Learning Benchmarks

To comprehensively evaluate the efficacy and efficiency of Sparta, we imple-
mented 6 machine learning benchmarks, which consist of four categories: image
recognition, natural language processing, ensemble learning and time series anal-
ysis. We aim to test Sparta on a variety of machine learning applications that
represent di↵erent execution patterns.

WTB Train is an image recognition application that we use as a benchmark
to train a convolutional neural network (CNN) [8] based on ResNet50 [9].The
training dataset contains animal images from a wildlife monitoring system called
”Where’s The Bear” (WTB) [10]. ”Where’s The Bear” is an end-to-end dis-
tributed data acquisition and analytical system that automatically analyzes
camera trap images collected by cameras sited at the Sedgwick Natural Re-
serve [2] in Santa Barbara County, California. In total, there are five classes that
we consider: Bear, Coyote, Deer, Bird, and Empty, by which we label images
for training tasks. We also up-sampled minority classes using the Keras Image
Data Generator [11], since the class size is unbalanced due to the frequency of
animal occurrences. Doing so ensures that the classification model is not biased.
We resized every image in the dataset to 1920 ⇥ 1080,and for each class, the
dataset contains 60 images used to train the CNN model. Once the training is
complete, the application stores this model in hdf5 format in object storage.

The WTB Train application has a cold start at the beginning of the execution
since it loads a pre-trained neural network model and training datasets. Once
it completes loading, the entire training process has relatively consistent CPU
usage and temperature.

WTB Inf inferences the type of wildlife in camera trap pictures based on the
model trained by WTB Train. It loads the trained hdf5 model at the beginning
and, for each picture, it assigns probabilities to five classes we consider in the
training dataset by Softmax function. In each experiment, we assign 20 pictures
for WTB Inf to inference. In terms of the execution pattern, WTB Inf runs in
short bursts as opposed to WTB Train. Therefore, the CPU usage and temper-
ature fluctuate dramatically throughout the execution of this benchmark.

MNIST is a dataset containing grayscale pictures of handwritten digits, in
which it has 60,000 examples as the training set and 10,000 examples as the
testing set. Based on the dataset, we train a 2-layer convolutional neural net-
work [12] and test its accuracy in the third application. In contrast to WTB

Sparta 9

benchmarks, the size of pictures is smaller (28 ⇥ 28) and the model is simplified
in MNIST.

BiLSTM is a sentiment analysis application based on a dataset of the Internet
Movie Database (IMDB) movie reviews. It consists of 25,000 sequences each for
training and testing. The model is constructed as a bidirectional LSTM with
a classification layer using the sigmoid activation function. We train the model
by the the training dataset and validate its performance in classifying sentiment
by the testing dataset. Since it has a large dataset and a complex model, the
execution pattern is long-running and consistent in CPU usage and temperature.

Decision Forest is an implementation of deep neural decision forests [13] that
classifies high-earning individuals from the pool. The benchmark leverages the
United States Census Income Dataset [14] that has 48,843 instances with 14
features, including age, education, occupation, etc. The dataset is split up that
the training part has 32,561 instances and the testing part has 16,282 instances.
The application has three phases: it firstly processes the dataset by encoding
input features. Then, it trains a deep neural decision tree model. Based on that,
the application trains a neural decision forest model consists of a set of neural
decision trees. Therefore, the usage and temperature of CPU increasingly grow
throughout the process.

Time Series is a time series prediction application built on the climate data
recorded by the Max Planck Institute for Biogeochemistry [15]. The dataset
has 14 features such as temperature,pressure,humidity, etc. and the sampling
frequency is 10 minutes. The time frame of the dataset ranges from Jan. 10th,
2009 to Dec. 31st, 2016. The application uses 300,693 rows to train a single-layer
LSTM model, by which we can predict outdoor temperature in next 72 times-
tamps (12 hours) given the samples in the past 720 timestamps (120 hours).
By this benchmark, we intend to evaluate Sparta on an application with a
lightweight model and a large dataset.

3.2 Experimental Setup

Each edge cloud node used in the experiments is an Intel NUC [16] (6i7KYK)
with two Intel Core i7-6770HQ 4-core processors (6M Cache, 2.60 GHz) and
32GB of DDR4-2133+ RAM connected via two channels. We use dynamic volt-
age and frequency scaling (DVFS) to control the frequency of CPU from 0.8GHz
to 3.5GHz.

To simulate the natural temperature in Sedgwick natural reserve, we create
three thermal environments in an isolated cooler that represent cold, neutral,
and hot ambient temperature. In the cold scenario, the ambient temperature
is 2.6 C and the CPU of NUC runs under 40 C in idle status. In the neutral
scenario, the CPU of NUC starts at 51 C under the ambient temperature of

10 Zhang, Krintz, Wolski

23.9 C. The hot scenario increases the ambient and CPU temperature to 43.8 C
and 68 C respectively.

Fig. 5: Three thermal environments in the experiment

There are two goals of the Sparta scheduler: the first is to limit the CPU
temperature under the threshold; the second is to accelerate tasks without over-
heating the edge cloud. To evaluate these two objectives, we execute 6 machine
learning benchmarks under 3 modes of Sparta scheduler. In each experiment,
Sparta takes inputs of task program, corresponding workload dataset and a
threshold temperature. To keep the comparison consistent across 3 thermal en-
vironments, we use 75 C as the threshold temperature for all experiments.

In 3 modes of Sparta, we execute each machine learning benchmark repeat-
edly 100 times under 3 thermal environments (totally 3 ⇥ 3 ⇥ 6 ⇥ 100 = 5400
executions) and report relevant metrics, both mean and standard deviation, to
compare the efficacy and efficiency among Annealing, AIMD, and Hybrid modes.

3.3 Application Efficacy

We first measure the stabilization time for six benchmarks. We define stabiliza-
tion time as the elapsed time from the start to the point all CPU temperatures
in the sampling time window are within [T s Td , Ts], where Ts is the threshold
and Td is a slack variable (3 C by default). During each of the 10 consecutive
executions (1 epoch) of benchmarks, we record the duration when the Sparta
scheduler stabilizes the CPU temperature according to the threshold. As shown
in the first part of Table 1, we report the mean and stdev of stabilization time
for each benchmark in 3 modes. Hybrid mode uses less time to stabilize CPU
temperature than Annealing and AIMD in all six benchmarks. It performs even
better in WTB Inf benchmark that has a short burst execution pattern and
volatile CPU temperature.

As the second part of Table 1 presents the result in the thermal dimension,
Hybrid mode also uses less time to stabilize CPU temperature across all 3 ther-
mal environments, comparing to Annealing and AIMD. Averagely, Hybrid mode
uses 43.61 seconds in the stabilization phase, in contrast to 61.16 seconds in

Sparta 11

Table 1: The mean and stdev ofstabilization time in seconds for 6 machine
learning benchmarks in 3 Sparta modes. Compared to Annealing and AIMD,
Hybrid mode uses less time to stabilize CPU temperature across all benchmarks
and all thermal scenarios.

WTB Train WTB Inf MNIST BiLSTM Decision
Forest Time Series

Annealing 53.79 (30.1) 50.7 (21.1) 62.02 (32.2) 69.02 (33.8) 59.13 (31.9) 72.31 (28.8)
AIMD 61.73 (24.9) 63.26 (25.0) 58.91 (14.0) 59.9 (11.2) 78.17 (30.7) 73.41 (28.9)
Hybrid 38.59 (26.11) 23.24 (17.33) 38.66 (22.17) 52.83 (20.6) 55.46 (25.5) 52.91 (29.8)

Neutral Cold Hot Average
Annealing 68.15 67.27 48.07 61.16

AIMD 63.10 77.40 57.20 65.90
Hybrid 43.03 52.43 35.39 43.61

Annealing and 65.9 seconds in AIMD. Hybrid mode’s performance is even bet-
ter in the hot scenario, which is the key use case for edge devices to prevent
overheating in Sedgwick natural reserve.

We next empirically evaluate the execution time of six benchmarks by the
Sparta scheduler. In the first part of Table 2, we report the mean and stdev of
execution time for each benchmark under 3 modes. On average, the Hybrid mode
completes the task of each benchmark faster than Annealing and AIMD. Given
the stdev and degree of freedom, we also run student t-test among 3 modes for
each benchmark and confirm that the execution time by Hybrid is smaller than
Annealing and AIMD with a statistical significance level of 5%. Table 2 also
indicates the speedup of Hybrid over Annealing and AIMD, ranging from 1.04x
to 1.32x.

The second part of Table 2 demonstrates the average execution time in 3
thermal scenarios.On average,Hybrid mode completes the task in 126.61 sec-
onds, in comparison with 146.09 seconds by Annealing and 147.46 seconds by
AIMD. Hybrid mode provides 1.16x and 1.14x speedup respectively over An-
nealing and AIMD. These results show that Sparta in Hybrid mode efficiently
executes more workloads than Annealing and AIMD mode under the same tem-
perature threshold.

To investigate the error from the sampling temperature and threshold, we
next evaluate the Root Mean Square Error (RMSE) of all temperature samples in
the executions. We define RMSE =

q
1
n

P n
i=1 (Ti T̂)2, where Ti is a sample

of CPU temperature, T̂ is the temperature threshold and n is the number of
temperature samples. In Table 3, we display the mean and stdev of RMSE of
all CPU temperature samples. The RMSE of Hybrid mode is the least across all
six benchmarks among the other two modes. Hybrid mode also has the lowest
RMSE in all three thermal scenarios. On average, Hybrid has 6.34 as RMSE for
all temperature samples from the threshold.

12 Zhang, Krintz, Wolski

Table 2: The mean and stdev of execution time in seconds for 6 machine
learning benchmarks in 3 modes of Sparta. Compared to Annealing and AIMD,
Hybrid mode uses less time to complete tasks across all benchmarks and all
thermal scenarios.

WTB Train WTB Inf MNIST BiLSTM Decision
Forest Time Series

Annealing 374.67 (9.8) 60.94 (3.9) 39.85 (2.9) 222.34 (3.5) 48.21 (3.6) 130.65 (7.6)
Speedup 1.17x 1.10x 1.21x 1.04x 1.15x 1.32x
AIMD 393.55 (5.8) 64.32 (3.9) 36.51 (4.3) 234.92 (5.2) 45.38 (2.2) 110.06 (6.2)

Speedup 1.22x 1.16x 1.13x 1.10x 1.09x 1.11x
Hybrid 318.55 (4.2) 55.31 (3.2) 32.53 (2.3) 212.91 (2.6) 41.56 (4.4) 98.78 (7.2)

Neutral Cold Hot Average
Annealing 145.72 116.14 176.42 146.09
Speedup 1.17x 1.06x 1.26x 1.16x
AIMD 134.67 122.28 185.42 147.46

Speedup 1.07x 1.15x 1.18x 1.14x
Hybrid 124.86 107.68 147.28 126.61

Lastly, we report the percentage of samples below threshold temperature
in six benchmarks. The first part of Table 4 manifests the mean and stdev
of PTBT (Percentage of Temperature Below Threshold) for six benchmarks.
Because Annealing mode uses a probabilistic algorithm, it results in the lowest
PTBT metric among three modes. Since AIMD mode multiplicatively decreases
the CPU frequency whenever a temperature over the threshold is detected, it
has the highest PTBT metrics in all six benchmarks. Combined with Annealing
and AIMD, the PTBT of Hybrid mode is between the other two modes. This
relationship holds for all three thermal scenarios, as depicted in the second part
of Table 4. Hybrid mode maintains 94.4% of all temperature samples below the
threshold. Thus, we consider the above results strong proofs of Sparta’s efficacy
in preventing overheating of edge devices and executing a variety of tasks as
efficiently as possible.

4 Related Work

As related work, we consider recent advances in edge cloud’s energy consumption
and power management. [17] proposes computational sprinting which is a class
of mechanisms that supplies additional power on processors for short duration
to improve performance. It also introduces phase change materials onto proces-
sors to absorb additional heat primarily concerning the performance. Thrifty-
Edge [18] presents a resource-efficient edge computing paradigm that consists of
an o✏oading mechanism based on delay-aware task graph partition and a virtual
machine selection method. To augment existing resources,[19] manifests a dy-
namic fog computing framework that schedules computing tasks to Citizen Fog
(CF) with the highest computational ability. Di↵erent from the above systems,

Sparta 13

Table 3: The mean and stdev of RMSE of all temperature samples for 6
benchmarks in 3 modes of Sparta. Compared to Annealing and AIMD, Hybrid
mode has less RSME to threshold temperature across all benchmarks and all
thermal scenarios.

WTB Train WTB Inf MNIST BiLSTM Decision
Forest Time Series

Annealing 5.04 (1.0) 7.88 (1.7) 9.22 (0.8) 5.07 (1.3) 9.91 (1.5) 9.63 (2.4)
AIMD 4.39 (0.6) 6.24 (0.9) 8.35 (1.0) 5.81 (2.1) 9.95 (1.6) 8.67 (3.1)
Hybrid 4.32 (0.6) 5.79 (1.2) 6.11 (1.8) 4.90 (1.2) 9.48 (2.4) 7.25 (3.0)

Neutral Cold Hot Average
Annealing 7.12 9.59 6.67 7.79

AIMD 5.69 9.39 5.79 6.96
Hybrid 4.92 9.10 4.99 6.34

Table 4: The mean and stdev of PTBT (Percentage of Temperature Below
Threshold) for 6 benchmarks in 3 modes of Sparta. Due to their inherent algo-
rithm, Annealing has the lowest PTBT value and AIMD has the highest, whereas
the Hybrid mode has the PTBT value in-between across all benchmarks and all
thermal scenarios.

WTB Train WTB Inf MNIST BiLSTM Decision
Forest Time Series

Annealing 71.8% (0.05) 83.0% (0.14) 83.4% (0.09) 72.6% (0.10) 84.3% (0.07) 91.0% (0.13)
AIMD 97.2% (0.07) 99.7% (0.01) 98.0% (0.08) 99.6% (0.09) 98.7% (0.04) 99.5% (0.25)
Hybrid 93.0% (0.11) 95.2% (0.14) 92.7% (0.07) 97.2% (0.23) 91.1% (0.10) 96.9% (0.17)

Neutral Cold Hot Average
Annealing 88.3% 79.7% 75.1% 81.1%

AIMD 99.7% 98.6% 98.2% 98.8%
Hybrid 98.1% 92.29% 92.7% 94.4%

Sparta focuses on preventing CPU overheating caused by ambient temperature
and program execution patterns on edge cloud deployed in natural conditions.

By o↵ering distributed, reliable, and low-latency machine learning services,
edge-based ML as a fast-growing area has a great appealboth for AI and sys-
tem research community. Thus, we also consider the cutting-edge development
in machine learning based on edge cloud. [20] explores the building blocks and
principles of wireless intelligence at edge networks concerning latency reduction,
reliability guarantees, scalability enhancement, and privacy constraints. [21] pro-
vides a comprehensive survey of techniques in the scope of machine learning sys-
tem at the network edge, including distributed training and inference, real-time
video analytics and speech recognition, autonomous vehicles and smart cities,
etc. [22] presents an approach to estimate the performance of ML application
on edge cloud and to load appropriate computing resources for an edge-based

14 Zhang, Krintz, Wolski

application. The above work provide guiding principles and examples for Sparta
and serve as one of the key motivations for our work.

5 Conclusion

In this paper, we propose a heat budget-based scheduling framework, called
Sparta, aiming to prevent edge cloud CPU overheating in executing machine
learning applications. Sparta’s scheduler integrates three components – data
plane, decision plane, and control plane: Decision plane extrapolates the initial
CPU frequency from historical benchmark data and dynamically adjusts it based
on real-time data monitored by data plane, while control plane modified the CPU
frequency via DVFS throughout the execution. Sparta strives to accelerate the
execution of applications without sacrificing the CPU overheating protection.

We present the design principles and implementation details of Sparta’s com-
ponents and operating modes that address the drawback we encounter in the
testing phase. Our empirical evaluation demonstrates Sparta e↵ectively protects
CPU from overheating, putting 94.4% temperature samples under the thresh-
old in Hybrid mode. In the meantime, it speeds six benchmarks’ execution up
to 1.04x - 1.32x in all three thermal environments compared to Annealing and
AIMD.

As part of future work, we plan to investigate using non-uniform distributions
in generating random values for exploration in Annealing mode that potentially
improves the PTBT metrics. We also plan to extend the deployment of Sparta at
edge cloud clusters and investigate its performance in the distributed execution
of training and inference process.

AcknowledgmentsThis work has been supported in part by NSF (CNS-
2107101, CNS-1703560, CCF-1539586, ACI-1541215), ONR NEEC (N00174-16-
C-0020), and the AWS Cloud Credits for Research program. This work was per-
formed in part at the University of California Natural Reserve System Sedgwick
Reserve DOI: 10.21973 / N3C08R.

References

1. N. Hassan, S. Gillani, E. Ahmed, I. Yaqoob and M. Imran, ”The Role of Edge
Computing in Internet of Things,” in IEEE Communications Magazine, vol. 56, no.
11, pp. 110-115, November 2018, doi: 10.1109/MCOM.2018.1700906.

2. Sedgwick Natural Reserve Homepage https://sedgwick.nrs.ucsb.edu Last ac-
cessed 30 Apr 2021

3. https://www.intel.com/content/www/us/en/support/articles/000005597/
processors.html Last accessed 30 Apr 2021

4. Liu, Yongpan, Huazhong Yang, Robert P. Dick, Hui Wang, and Li Shang. ”Thermal
vs energy optimization for dvfs-enabled processors in embedded systems.” In 8th
International Symposium on Quality Electronic Design (ISQED’07), pp. 204-209.
IEEE, 2007.

Sparta 15

5. Wang, Lizhe, Gregor Von Laszewski, Jay Dayal, and Fugang Wang. ”Towards energy
aware scheduling for precedence constrained parallel tasks in a cluster with DVFS.”
In 2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid
Computing, pp. 368-377. IEEE, 2010.

6. https://github.com/lm-sensors/lm-sensors Last accessed 30 Apr 2021
7. https://www.tensorflow.org/ Last accessed 30 Apr 2021
8. Yann LeCun and Yoshua Bengio. Convolutional networks for images, speech,and

time series. The handbook of brain theory and neural networks. MIT Press, Cam-
bridge, MA, USA, pp. 255–258, 1998.

9. He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. ”Deep residual learning
for image recognition.” In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 770-778. 2016.

10. A. R. Elias, N. Golubovic, C. Krintz and R. Wolski, ”Where’s the Bear? - Au-
tomating Wildlife Image Processing Using IoT and Edge Cloud Systems,” 2017
IEEE/ACM Second International Conference on Internet-of-Things Design and Im-
plementation (IoTDI), pp. 247-258, 2017.

11. Keras Image Data Generator https://keras.io/preprocessing/image/
#imagedatagenerator-class Last accessed 30 Apr 2021

12. Y. LeCun, L. Bottou, Y. Bengio and P. Ha↵ner: Gradient-Based Learning Applied
to Document Recognition, Proceedings of the IEEE, 86(11):2278-2324,November
1998

13. P. Kontschieder, M. Fiterau, A. Criminisi and S. R. Bul` o, ”Deep Neural Decision
Forests,” 2015 IEEE International Conference on Computer Vision (ICCV), 2015,
pp. 1467-1475, doi: 10.1109/ICCV.2015.172.

14. https://archive.ics.uci.edu/ml/datasets/census+income Last accessed 30
Apr 2021

15. https://www.bgc-jena.mpg.de/wetter/ Last accessed 30 Apr 2021
16. https://www.intel.com/content/www/us/en/products/boards-kits/nuc.html

Last accessed 30 Apr 2021
17. Seyed Majid Zahedi, Songchun Fan, Matthew Faw, Elijah Cole, and Benjamin

C. Lee. 2017. Computational Sprinting: Architecture, Dynamics, and Strate-
gies. ACM Trans. Comput. Syst. 34, 4, Article 12 (January 2017), 26 pages.
DOI:https://doi.org/10.1145/3014428

18. X. Chen, Q. Shi, L. Yang and J. Xu, ”ThriftyEdge: Resource-Efficient Edge Com-
puting for Intelligent IoT Applications,” in IEEE Network, vol. 32, no. 1, pp. 61-65,
Jan.-Feb. 2018, doi: 10.1109/MNET.2018.1700145.

19. Md Razon Hossain, Md Whaiduzzaman, Alistair Barros, Shelia Rahman Tuly, Md.
Julkar Nayeen Mahi, Shanto Roy, Colin Fidge, Rajkumar Buyya, A scheduling-
based dynamic fog computing framework for augmenting resource utilization, Sim-
ulation Modelling Practice and Theory, Volume 111, 2021, 102336, ISSN 1569-190X,
https://doi.org/10.1016/j.simpat.2021.102336.

20. Park, Jihong & Samarakoon, Sumudu & Bennis, Mehdi & Debbah, m´erouane.
(2019). Wireless Network Intelligence at the Edge. Proceedings of the IEEE. 107.
10.1109/JPROC.2019.2941458.

21. Murshed, M. G. Sarwar & Murphy, Christopher & Hou, Daqing & Khan, Nazar
& Ananthanarayanan, Ganesh & Hussain, Faraz. (2019). Machine Learning at the
Network Edge: A Survey.

22. B. D. Cruz, A. K. Paul, Z. Song and E. Tilevich, ”Stargazer: A Deep Learning
Approach for Estimating the Performance of Edge- Based Clustering Applications,”
2020 IEEE International Conference on Smart Data Services (SMDS), 2020, pp. 9-
17, doi: 10.1109/SMDS49396.2020.00009.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15

