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Abstract: Two classical Ising machine schemes, the Oscillator Ising Machine (OIM) and the Bistable

Latch Ising Machine (BLIM), have been shown to feature global Lyapunov functions, i.e., continuous

“energy-like” functions whose local minima are naturally found by the physics of these schemes. We

show that the Coherent Ising Machine (CIM), an optical scheme that predated OIM and BLIM, also has

a global Lyapunov function that approximates the Ising Hamiltonian at stable equilibrium points. Our

result sharpens understanding of CIM operation, revealing that its mechanism for breaking out of local

minima is a purely probabilistic classical one, similar to Gibbs sampling.
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1. Introduction
Hardware Ising machines have emerged as a promising means to solve classically difficult (e.g., NP-complete) 
computational problems. The premise of Ising machines is that specialized hardware implementing the Ising 
computational model [1] can solve difficult combinatorial problems more effectively than classical algorithms 
(such as semidefinite programming and simulated annealing) run on digital computers. Ising machines first 
came into prominence with D-Wave’s adiabatic quantum annealer [2, 3] and the Coherent Ising Machine (CIM)

[4–6]. While both have been portrayed as “genuinely quantum” Ising machines, only D-Wave’s machine has 
so far been shown to feature quantum advantage [7, 8].

Following D-Wave and CIM, two other types of Ising Machines based on purely classical mechanisms were 
developed in the author’s group, namely Oscillator Ising Machines (OIMs [9–11]) and Bistable Latch Ising 
Machines (BLIMs [12]). Both these schemes work on nonlinear dynamical principles. In particular, they 
have been shown to feature global Lyapunov functions, the presence of which helps explain their operation 
as Ising machines. Specifically, in both these schemes, the Lyapunov function has been shown to closely 
approximate the Ising Hamiltonian (which defines the problem being solved) at stable equilibrium points, if 
operating parameters are set appropriately. The very fact that a global Lyapunov function exists automatically 
implies its local minimization by natural dynamics; this central property of these Ising machines constitutes a 
rigorous underpinning for explaining their ability to find near-global minima.

In this work, we show that the Coherent Ising Machine also has a global Lyapunov function and present 
an analytical expression for it. We also show that, like for OIM and BLIM, the Lyapunov function has a 
finite lower bound, and that it approximates the Ising Hamiltonian at stable equilibrium points. Based on these 
results, we argue that CIM’s global minimization mechanism is a purely probabilistic one, similar to Gibbs
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sampling used in simulated annealing. This supports arguments that in spite of low-level quantum principles

that may be involved in the optical underpinnings of CIM, its operation as an Ising machine is governed by

purely classical mechanisms. Our results put CIM in the same class of Ising machines that OIM and BLIM

belong to, in spite of very different underlying physics and engineering implementations. We propose the

term Lyapunov Ising Machine (LIM) for such Ising schemes with global Lyapunov functions. This common

basis will, we hope, lead to a more holistic understanding of Ising machine schemes and their similarities and

differences.

2. A global Lyapunov function that approximates the Ising Hamiltonian

2.1 The c-number equations for CIM

We start with the c-number equations for CIM [5, Equations 22–25], referring the reader to [5] for a discussion

of the steps involved in obtaining these stochastic differential equations:

dci =

[

(−1+ p− c2
i − s2

i )ci +∑
j

Ji j c̃ j

]

dt +
1

As

√

c2
i + s2

i +
1

2
dW1i,

dsi = (−1− p− c2
i − s2

i )si dt +
1

As

√

c2
i + s2

i +
1

2
dW2i.

(1)

In the above, i, j range from 1 to n, the total number of spins. As and p = 2 are parameters, while W1i and

W2i represent independent white Gaussian noise processes. ci and si represent the in-phase and quadrature

components of each DOPO1 pulse (i.e., spin). The term ∑ j Ji j c̃ j in the first equation represents coupling

between spins, where Ji j is the coupling weight between spins i and j.2 c̃i is a constant-shifted version of ci,

given by

c̃i ≜ ci −

√

1−T

T

fi

As

, (2)

where T and fi are constants.

To devise our (deterministic) Lyapunov result, we set the noise terms to zero, resulting in the following

deterministic version of the c-number equations:

dci

dt
= ∆i +(−1+ p− c2

i − s2
i )ci +∑

j

Ji j c j,

dsi

dt
= (−1− p− c2

i − s2
i )si.

(3)

∆i in (3) is given by

∆i ≜−∑
j

Ji j

√

1−T

T

fi

As

. (4)

For convenience in derivations below, we rewrite (3) as

dci

dt
= ∆i +(−1+ p+ γi − c2

i − s2
i )ci −∑

j

Ji j(ci − c j),

dsi

dt
= (−1− p− c2

i − s2
i )si,

(5)

where

γi ≜ ∑
j

Ji j. (6)

2.2 A global Lyapunov function for the deterministic c-number equations

Given a set of deterministic differential equations like (5), a global Lyapunov function is a scalar function of

the unknowns that is provably non-increasing for every solution of the differential equations. We now show

that the scalar function

1Degenerate Optical Parametric Oscillator.
2Note that Ji j = J ji, and Jii = 0, in all Ising models. [5] uses the notation ζ̃ i j for the coupling coefficients.
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L(c1, · · · ,cn,s1, · · · ,sn)≜−
n

∑
i=1

[

∆ici +
−1+ p+ γi

2
c2

i +
−1− p

2
s2

i −
c4

i + s4
i

4
−

c2
i s2

i

2
−

1

4

n

∑
j=1

Ji j(ci − c j)
2

]

(7)

is a global Lyapunov function for (5).

To prove that dL
dt

≤ 0, we start with

dL

dt
=

n

∑
k=1

[
∂L

∂ck

dck

dt
+

∂L

∂ sk

dsk

dt

]

. (8)

Differentiating (7) with respect to ck results in

∂L

∂ck

=−

[

∆k +(−1+ p+ γk)ck − c3
k − cks2

k −
1

2

n

∑
i=1

n

∑
j=1

Ji j(ci − c j)
(
δik −δ jk

)

]

, (9)

where δik is the Kronecker delta function. The summation in the last term of (9) can be simplified as follows:

n

∑
i=1

n

∑
j=1

Ji j(ci − c j)
(
δik −δ jk

)
=

n

∑
i=1

n

∑
j=1

Ji j(ci − c j)δik −
n

∑
i=1

n

∑
j=1

Ji j(ci − c j)δ jk

=
n

∑
j=1

n

∑
i=1

Ji j(ci − c j)δik −
n

∑
i=1

n

∑
j=1

Ji j(ci − c j)δ jk

=
n

∑
j=1

Jk j(ck − c j)−
n

∑
i=1

Jik(ci − ck) =
n

∑
j=1

Jk j(ck − c j)+
n

∑
i=1

Jki(ck − ci)

=
n

∑
j=1

Jk j(ck − c j)+
n

∑
j=1

Jk j(ck − c j) = 2
n

∑
j=1

Jk j(ck − c j).

(10)

Using (10) in (9) yields

∂L

∂ck

=−

[

∆k +(−1+ p+ γk)ck − c3
k − cks2

k −
n

∑
j=1

Jk j(ck − c j)

]

=−

[

∆k +
(
−1+ p+ γk − c2

k − s2
k

)
ck −

n

∑
j=1

Jk j(ck − c j)

]

=−
dck

dt
(using (5)).

(11)

Similarly, differentiating (7) with respect to sk results in

∂L

∂ sk

=−
[
(−1− p)sk − s3

k − c2
ksk

]
=−

[
(−1− p)− s2

k − c2
k

]
sk =−

dsk

dt
. (12)

Putting (12) and (11) in (8) results in

dL

dt
=−

n

∑
k=1

[(
dck

dt

)2

+

(
dsk

dt

)2
]

≤ 0, (13)

proving that L(· · ·) in (7) is a global Lyapunov function for (5).

2.3 The Lyapunov function (7) is bounded from below

Observe that the expression for L(·) in (7) is a multivariate polynomial, with the highest-degree terms (i.e.,
c4

i +s4
i

4
+

c2
i s2

i
2

) being quartic and positive. Since these terms dominate all lower-degree terms as ci and si grow

large, L(·) has a finite lower bound. Together with (13), this property implies that the c-number equations (5)

will settle to equilibrium points that are finite local minima of the Lyapunov function.
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2.4 Equilibrium points and stability of uncoupled DOPO equations

To establish a connection between the Lyapunov function and Ising problems, it is useful to first examine each

uncoupled DOPO for equilibrium points and stability. Uncoupled DOPOs are described by (5) with Ji j set to

0, i.e.,

dci

dt
= (−1+ p− c2

i − s2
i )ci,

dsi

dt
= (−1− p− c2

i − s2
i )si.

(14)

Equations for the equilibrium points, obtained by making ci and si constant w.r.t. time, are given by

(−1+ p− c2
i − s2

i )ci = 0,

(−1− p− c2
i − s2

i )si = 0.
(15)

Only three real-valued solutions of the above equilibrium equations are possible; they are

ci = 0, si = 0; (16)

ci =+1, si = 0; and (17)

ci =−1, si = 0. (18)

Stability can be assessed by linearizing (14) around each equilibrium point; the linearized equations are

d

dt

[
δci

δ si

]

=

[
−1+ p−3c2

i − s2
i −2cisi

−2cisi −1− p− c2
i −3s2

i

]

︸ ︷︷ ︸

A

[
δci

δ si

]

, (19)

where [ci,si]
T is an equilibrium point and [δci,δ si]

T is a small deviation from it. The eigenvalues of the matrix

A determine the stability of the equilibrium point. For the three equilibria in (16) to (18), this matrix has the

values3
[

1 0

0 −3

]

,

[
−2 0

0 −4

]

, and

[
−2 0

0 −4

]

, (20)

respectively. The first matrix has a positive eigenvalue, while the second and third have only negative eigen-

values; thus, the equilibria si = 0,ci =±1 ((17) and (18)) are stable, while (16), i.e., ci = si = 0, is unstable. In

other words, each DOPO is bistable in the in-phase component ci.

2.5 Equilibrium points only perturbed under weak coupling

That each of the two bistable equilibria (i.e., (17) and (18)) is in fact stable immediately implies that if the

coupling terms Ji j in (5) are nonzero but sufficiently small (thus constituting only a small perturbation to (14)),

then a) the equilibria are perturbed only slightly (from (17) and (18)), and b) the perturbed equilibria retain

the stability properties of the unperturbed ones. In other words, the equilibria and stability properties of the

uncoupled DOPOs do not alter significantly in the presence of small amounts of coupling.

2.6 The Lyapunov function approximates the Ising Hamiltonian at stable equilibria

Recall that the (discrete) Ising Hamiltonian is given by [11]

H =−
1

2

n

∑
i=1

n

∑
j=1

Ji j sis j, (21)

where {si} are binary spins taking values in ±1.4

At bistable equilibrium points (i.e., small perturbations from (17) and (18)), the Lyapunov function (7)

simplifies to

3recalling that p = 2.
4So-called “external magnetic field” terms of the form ∑i Bisi can easily be incorporated in (21) [13, Equations 2 and 1].
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L(c1, · · · ,cn,s1, · · · ,sn)≃−
n

∑
i=1

[

∆ici +
−1+ p+ γi

2
+−

1

4
−

1

4

n

∑
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Ji j(ci − c j)
2

]

=−
n

∑
i=1

[

∆ici +
−1+ p+ γi

2
+−

1

4
−

1

4

n

∑
j=1

Ji j(1+1−2cic j)

]

=−
n

∑
i=1

[

∆ici +
−1+ p

2
+−

1

4
+

1

2

n

∑
j=1

Ji j cic j

]

.

(22)

Observe that if ci ≃ 1 is identified with spin value si = +1, and ci ≃ −1 with si = −1, the last term of (22)

approximates the Ising Hamiltonian (21). If ∆i = 0, the Lyapunov function (22) approximates a constant-

shifted version of the Ising Hamiltonian, with the constant shift being − 1
4
. Constant shifts to the Hamiltonian

do not alter the structure of Ising problems at all e.g., the locations and relative values of not only ground

states, but also local minima and other features, remain the same. Given that the Lyapunov function is naturally

minimized (locally), this close correspondence between the Lyapunov function and the Hamiltonian is a step

towards understanding CIM’s overall Hamiltonian reduction properties based on the c-number equations alone.

When ∆i ̸= 0 (see (4)), the linear term −∑i ∆ici in (22) modifies this Lyapunov-Hamiltonian correspondence.

Mathematically, this term is analogous to the one arising from frequency variations in OIM’s oscillators [14,

Section 3.4, Equation 19]. If the values of ∆i are small, key features of the Lyapunov function, such as

the locations of local minima, do not change much and the Lyapunov-Hamiltonian correspondence is largely

retained. Large values of ∆i will upset this correspondence, likely affecting CIM’s ability to find good Ising

solutions.

3. Significance of the Result

The stability of the bistable solutions (17) and (18) perturbed by weak coupling (as established in Sec. 2.5)

immediately implies that every one of the 2n possible states in a weakly coupled CIM is a stable equilibrium

point, i.e., a local minimum of the Lyapunov function (7). The only mechanism for breaking out of a local

minimum is disturbances from the uncorrelated noise terms in (1), i.e., Wi1 and Wi2. Through their random

influence, the system can probabilistically break out of the basin of attraction of a local minimum and find its

way into that of another. This mechanism, a purely probabilistic one, is similar to Gibbs sampling, i.e., the core

technique used in simulated annealing for updating spins [15]. This argument also implies that at the level of

the c-number equations, CIM is not a “genuinely quantum” scheme, but is more akin to classical annealing.

Although CIM preceded OIM and BLIM by several years, our result shows that its core operating mechanism

is governed by similar principles, i.e., local minimization of a global Lyapunov function. Indeed, the fact

that Lyapunov functions have emerged as a common thread in these three Ising machine schemes suggests

that other schemes may fall in this class, too we may term these Lyapunov Ising Machines (LIM). This

common mathematical framework will, we hope, lead to a more unified view of Ising machine schemes, and a

more precise understanding of their similarities and differences.
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