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Abstract: Two classical Ising machine schemes, the Oscillator Ising Machine (OIM) and the Bistable
Latch Ising Machine (BLIM), have been shown to feature global Lyapunov functions, i.e., continuous
“energy-like” functions whose local minima are naturally found by the physics of these schemes. We
show that the Coherent Ising Machine (CIM), an optical scheme that predated OIM and BLIM, also has
a global Lyapunov function that approximates the Ising Hamiltonian at stable equilibrium points. Our
result sharpens understanding of CIM operation, revealing that its mechanism for breaking out of local
minima is a purely probabilistic classical one, similar to Gibbs sampling.

Key Words: global Lyapunov function, coherent Ising machine, oscillator Ising machine, bistable latch
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1. Introduction

Hardware Ising machines have emerged as a promising means to solve classically difficult (e.g., NP-complete)
computational problems. The premise of Ising machines is that specialized hardware implementing the Ising
computational model [1] can solve difficult combinatorial problems more effectively than classical algorithms
(such as semidefinite programming and simulated annealing) run on digital computers. Ising machines first
came into prominence with D-Wave’s adiabatic quantum annealer [2, 3] and the Coherent Ising Machine (CIM)
[4-6]. While both have been portrayed as “genuinely quantum” Ising machines, only D-Wave’s machine has
so far been shown to feature quantum advantage [7, 8].

Following D-Wave and CIM, two other types of Ising Machines based on purely classical mechanisms were
developed in the author’s group, namely Oscillator Ising Machines (OIMs [9-11]) and Bistable Latch Ising
Machines (BLIMs [12]). Both these schemes work on nonlinear dynamical principles. In particular, they
have been shown to feature global Lyapunov functions, the presence of which helps explain their operation
as Ising machines. Specifically, in both these schemes, the Lyapunov function has been shown to closely
approximate the Ising Hamiltonian (which defines the problem being solved) at stable equilibrium points, if
operating parameters are set appropriately. The very fact that a global Lyapunov function exists automatically

implies its local minimization by natural dynamics; this central property of these Ising machines constitutes a
rigorous underpinning for explaining their ability to find near-global minima.

In this work, we show that the Coherent Ising Machine also has a global Lyapunov function and present
an analytical expression for it. We also show that, like for OIM and BLIM, the Lyapunov function has a
finite lower bound, and that it approximates the Ising Hamiltonian at stable equilibrium points. Based on these
results, we argue that CIM’s global minimization mechanism is a purely probabilistic one, similar to Gibbs
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sampling used in simulated annealing. This supports arguments that in spite of low-level quantum principles
that may be involved in the optical underpinnings of CIM, its operation as an Ising machine is governed by
purely classical mechanisms. Our results put CIM in the same class of Ising machines that OIM and BLIM
belong to, in spite of very different underlying physics and engineering implementations. We propose the
term Lyapunov Ising Machine (LIM) for such Ising schemes with global Lyapunov functions. This common
basis will, we hope, lead to a more holistic understanding of Ising machine schemes and their similarities and
differences.

2. A global Lyapunov function that approximates the Ising Hamiltonian

2.1 The c-number equations for CIM
We start with the c-number equations for CIM [5, Equations 22-25], referring the reader to [5] for a discussion
of the steps involved in obtaining these stochastic differential equations:
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In the above, i, j range from 1 to n, the total number of spins. Ay and p = 2 are parameters, while Wy; and
W,; represent independent white Gaussian noise processes. c¢; and s; represent the in-phase and quadrature
components of each DOPO! pulse (i.e., spin). The term ¥, ;jJij€; in the first equation represents coupling

dc; = (—1 +p—ciz —S,Z)Ci+ZJi.j5j
J
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between spins, where J;; is the coupling weight between spins i and j.2 & is a constant-shifted version of c;,
given by
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where T and f; are constants.
To devise our (deterministic) Lyapunov result, we set the noise terms to zero, resulting in the following
deterministic version of the c-number equations:

dc;
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A; in (3) is given by
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For convenience in derivations below, we rewrite (3) as
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2.2 A global Lyapunov function for the deterministic c-number equations

Given a set of deterministic differential equations like (5), a global Lyapunov function is a scalar function of
the unknowns that is provably non-increasing for every solution of the differential equations. We now show
that the scalar function

'Degenerate Optical Parametric Oscillator. ;
2Note that J; j =Jji, and J;; = 0, in all Ising models. [5] uses the notation Ci . for the coupling coefficients.
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is a global Lyapunov function for (5).
To prove that dL <0, we start with

i JL dck JL dsk (8)
=1 8ck dt 8sk dt
Differentiating (7) with respect to ¢y results in
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where &y is the Kronecker delta function. The summation in the last term of (9) can be simplified as follows:
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Using (10) in (9) yields
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Similarly, differentiating (7) with respect to sy results in
JL dsi
a5 [(—1=p)si—sp—cisi] == [(=1—p) — s —ci] sk = — (12)

Putting (12) and (11) in (8) results in

dL dey dsi\*

—_— = — <0 13

dt Zl(dr>+(dt) - (13
proving that L(---) in (7) is a global Lyapunov function for (5).

2.3 The Lyapunov function (7) is bounded from below

Observe that the expression for L(-) in (7) is a multivariate polynomial, with the highest-degree terms (i.e.,

¢} Syt c?s?
-4+ -5%) being quartic and positive. Since these terms dominate all lower-degree terms as ¢; and s; grow

large, L(- ) has a finite lower bound. Together with (13), this property implies that the c-number equations (5)
will settle to equilibrium points that are finite local minima of the Lyapunov function.
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2.4 Equilibrium points and stability of uncoupled DOPO equations

To establish a connection between the Lyapunov function and Ising problems, it is useful to first examine each
uncoupled DOPO for equilibrium points and stability. Uncoupled DOPOs are described by (5) with J;; set to
0,ie.,

de:
e (14 p- =D,
a (14)
d—t’ = (—1—p—c}—s)s.
Equations for the equilibrium points, obtained by making c¢; and s; constant w.rxt. time, are given by
—1+p—c? =) =0,
( p 12 12 )ci (15)
(—1—p—c;—s7)s;=0.
Only three real-valued solutions of the above equilibrium equations are possible; they are
¢i=0,5=0; (16)
¢;=+1,s;=0; and (17
ci=—1,5=0. (18)
Stability can be assessed by linearizing (14) around each equilibrium point; the linearized equations are
i oci| —l—i—p—3cl<2—si2 —2c¢;8; oc; (19)
dt |8si| —2c;s; —1—p—c?—3s?| |8si]’

A

where [c;,s;]7 is an equilibrium point and [Sc;, 8s;]7 is a small deviation from it. The eigenvalues of the matrix
A determine the stability of the equilibrium point. For the three equilibria in (16) to (18), this matrix has the

values?
1 O -2 0 -2 0
o SHo om0 2 2

respectively. The first matrix has a positive eigenvalue, while the second and third have only negative eigen-
values; thus, the equilibria s; = 0,¢; = =1 ((17) and (18)) are stable, while (16), i.e., ¢; = s; = 0, is unstable. In
other words, each DOPO is bistable in the in-phase component c;.

2.5 Equilibrium points only perturbed under weak coupling

That each of the two bistable equilibria (i.e., (17) and (18)) is in fact stable immediately implies that if the
coupling terms J;; in (5) are nonzero but sufficiently small (thus constituting only a small perturbation to (14)),
then a) the equilibria are perturbed only slightly (from (17) and (18)), and b) the perturbed equilibria retain
the stability properties of the unperturbed ones. In other words, the equilibria and stability properties of the
uncoupled DOPOs do not alter significantly in the presence of small amounts of coupling.

2.6 The Lyapunov function approximates the Ising Hamiltonian at stable equilibria
Recall that the (discrete) Ising Hamiltonian is given by [11]
1 n
H:—EZZJ,']‘S,'S]', (21)

i=1j=1

where {s;} are binary spins taking values in +1.*
At bistable equilibrium points (i.e., small perturbations from (17) and (18)), the Lyapunov function (7)
simplifies to

3recalling that p = 2.
4So-called “external magnetic field” terms of the form Y; B;s; can easily be incorporated in (21) [13, Equations 2 and 1].
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Observe that if ¢; ~ 1 is identified with spin value s; = +1, and ¢; ~ —1 with s; = —1, the last term of (22)

approximates the Ising Hamiltonian (21). If A; = 0, the Lyapunov function (22) approximates a constant-
shifted version of the Ising Hamiltonian, with the constant shift being —%. Constant shifts to the Hamiltonian
do not alter the structure of Ising problems at all—e.g., the locations and relative values of not only ground
states, but also local minima and other features, remain the same. Given that the Lyapunov function is naturally
minimized (locally), this close correspondence between the Lyapunov function and the Hamiltonian is a step
towards understanding CIM’s overall Hamiltonian reduction properties based on the c-number equations alone.

When A; # 0 (see (4)), the linear term — ¥'; A;¢; in (22) modifies this Lyapunov-Hamiltonian correspondence.
Mathematically, this term is analogous to the one arising from frequency variations in OIM’s oscillators [14,
Section 3.4, Equation 19]. If the values of A; are small, key features of the Lyapunov function, such as
the locations of local minima, do not change much and the Lyapunov-Hamiltonian correspondence is largely
retained. Large values of A; will upset this correspondence, likely affecting CIM’s ability to find good Ising
solutions.

3. Significance of the Result

The stability of the bistable solutions (17) and (18) perturbed by weak coupling (as established in Sec. 2.5)
immediately implies that every one of the 2" possible states in a weakly coupled CIM is a stable equilibrium

point, i.e., a local minimum of the Lyapunov function (7). The only mechanism for breaking out of a local
minimum is disturbances from the uncorrelated noise terms in (1), i.e., W;; and Wj,. Through their random
influence, the system can probabilistically break out of the basin of attraction of a local minimum and find its
way into that of another. This mechanism, a purely probabilistic one, is similar to Gibbs sampling, i.e., the core
technique used in simulated annealing for updating spins [15]. This argument also implies that at the level of
the c-number equations, CIM is not a “genuinely quantum” scheme, but is more akin to classical annealing.

Although CIM preceded OIM and BLIM by several years, our result shows that its core operating mechanism
is governed by similar principles, i.e., local minimization of a global Lyapunov function. Indeed, the fact
that Lyapunov functions have emerged as a common thread in these three Ising machine schemes suggests
that other schemes may fall in this class, too—we may term these Lyapunov Ising Machines (LIM). This
common mathematical framework will, we hope, lead to a more unified view of Ising machine schemes, and a
more precise understanding of their similarities and differences.
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