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Abstract. Ising machines have been attracting attention due to their
ability to use mixed discrete/continuous mechanisms to solve difficult
combinatorial optimization problems. We present BLIM, a novel Ising
machine scheme that uses latches (bistable elements) with controllable
gains as Ising spins. We show that networks of coupled latches have a
Lyapunov or “energy” function that matches the Ising Hamiltonian in
discrete operation, enabling them to function as Ising machines. This
result is established in a general coupled-element Ising machine frame-
work that is not limited to BLIM. Operating the latches periodically
in analog/continuous mode, during which bistability is removed, helps
the system traverse to better minima. CMOS realizations of BLIM have
desirable practical features; implementation in other physical domains is
an intriguing possibility.

1 Introduction

Over the last decade, hardware Ising machines have emerged as a promising
means to solve classically difficult (e.g., NP-complete) computational problems.
The premise of Ising machines is that specialized hardware implementing the
Ising computational model (see Sect. 2) can solve difficult combinatorial prob-
lems more effectively than classical algorithms (such as semidefinite program-
ming and simulated annealing [7,10]) run on digital computers. Ising machines
first came into prominence with the D-Wave quantum annealer [2,8] and the
Coherent Ising Machine (CIM) [14,18,19]. A D-Wave quantum annealer with
5000 spins is available commercially; CIM with 2000 spins has been success-
fully demonstrated at NTT Research Labs, with larger systems under active
development. Although they have established the field of Ising machines and
inspired follow-on technologies, D-Wave’s quantum annealer and CIM are phys-
ically large, expensive, and difficult to miniaturize or scale to larger problems.
A few years ago, we showed that networks of coupled oscillators can be designed
to function as Ising machines [3,15–17]. Such oscillator Ising machines (OIMs)
changed the technology landscape for Ising machines by bringing them within the
realm of miniaturizable CMOS electronics, with all the size, cost, speed, energy
efficiency, scalability and mass production benefits that accrue as a result.

We now present the Bistable Latch Ising Machine (BLIM), a new way to build
Ising machines that employs simple bistable elements, i.e., latches, a familiar
c© Springer Nature Switzerland AG 2021
I. Kostitsyna and P. Orponen (Eds.): UCNC 2021, LNCS 12984, pp. 131–148, 2021.
https://doi.org/10.1007/978-3-030-87993-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87993-8_9&domain=pdf
https://doi.org/10.1007/978-3-030-87993-8_9


132 J. Roychowdhury

and ubiquitous element in electronics.1 BLIM is enabled by a result (Sect. 3)
that establishes that networks of coupled latches have an “energy2 function”
that is naturally minimized, leading to good solutions of the Ising problem.
That latches can be used as substrates represents a broadening, both theoretical
and practical, of the Ising machine landscape, while enhancing the advantages
of miniaturizability/scalability, low cost, and mass production introduced by
OIM. Latches are simpler elements than oscillators, with basic versions requiring
only 4 CMOS transistors. Importantly, the formulation in which we prove our
main result is a general one, not limited to latches—it encompasses OIM and,
potentially, other types of Ising machines. Using this formulation to explore and
compare the operational mechanisms of BLIM and OIM may lead to progress
on a central question: how exactly do Ising machines work?

The remainder of the paper is organized as follows. In Sect. 2, we provide
background on Ising models, oscillator Ising machines and latches. In Sect. 3,
we set up a suitable system of equations for coupled latches, abstract them to
a generalized form, and prove our main result: that the system has a Lyapunov
function that matches a corresponding Ising Hamiltonian for high values of latch
gain. Illustrative examples are provided in Sect. 4.

2 Background
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Fig. 1. Back to back inverters implement a bistable latch.

2.1 The Ising Model

The Ising model is simply a weighted graph, i.e., a collection of nodes/vertices
and branches/edges between some pairs of nodes, with each branch having a
real-number weight. Each node (termed a “spin” in this context) is allowed to

1 BLIM is not limited to electronic latches; it can use latches from any domain, e.g.,
biochemical latches [5,6].

2 This “energy” is not obviously related to any concept of physical energy, which
latches, like all practical electronic elements, consume and dissipate as heat.
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take two values, either 1 or −1. Associated with this graph is an expression, the
Ising Hamiltonian, which multiplies the weight of each branch by the values
of the two spins it connects to, and sums over all branches, i.e.,

H = −1
2

N∑

i,j=1

Jij sisj , where Jij = Jji, Jii = 0, and si ∈ {−1, +1} (1)

are the N spins. Jij are the branch weights, also called coupling coefficients.
Owing to the Ising problem’s origins for modelling and explaining ferromag-
netism [4], Ising Hamiltonians are sometimes interpreted as an “energy” associ-
ated with a given configuration of the spins, although in recent computational
applications they usually have no connection with energy in physics. The “Ising
problem” is to find spin configurations with the minimum possible energy.

2.2 Latches
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Fig. 2. tanh() + output resistance/capacitance inverter model and corresponding latch
butterfly curves.
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Fig. 3. Coupling between
latches i and j.

A fundamental element in electronics, the latch is
perhaps most easily understood as two back-to-back
inverters, as shown in Fig. 1(a), with each inverter
consisting of the 2-transistor circuit shown at the
right. Latches are ubiquitous in digital systems, in
which they are the basis for, e.g., registers and SRAM
(static random access memory); as such, they are
among the most compact and power-efficient ele-
ments in CMOS electronics.3 That they are bistable
becomes apparent when the I/O curves of both invert-
ers are depicted on the same axes to produce so-called
butterfly curves, shown in Fig. 1(b) (generated using
the Shichman-Hodges model [13] for the MOSFETs).

3 When not switching, CMOS consumes no power beyond leakage losses.
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The three intersections are the DC solutions (i.e., equilibria) of the circuit. The
intersection in the middle can be shown to be dynamically unstable,4 leaving
two stable solutions. The nature of the curves in Fig. 1(b), and the intersections
that lead to bistability, are the essential feature of any latch, be it electronic or
from any other domain (e.g., biological [5,6]).

For concreteness and ease of exposition, we abstract each inverter using a
tanh(·) voltage transfer characteristic5 followed by an output resistance and
load capacitor, as shown in Fig. 2(a). The voltage I/O characteristic is voi =
tanh(−kvi), where the parameter k > 0 controls the gain, or sharpness, of the
inverter characteristic. No current is drawn at the input; in the absence of loading
at the output, the output voltage vo = voi (at DC). The corresponding butterfly
curves, for k = 20, are shown in Fig. 2(b)—note their similarity to the ones in
Fig. 1(b) for CMOS inverters.

The capacitor in Fig. 2(a) introduces dynamics, resulting in the following
differential equation for a single inverter in the absence of additional load at vo:

C
dvo(t)

dt
=

tanh(−kvi(t)) − vo(t)
Ro

= − tanh(kvi(t)) + vo(t)
Ro

. (2)

To model a latch, i.e., two back-to-back inverters are connected as in Fig. 1(a).
(2) is repeated for the output of each inverter, resulting in

C
dvi1(t)

dt
= − tanh(kvi2(t)) + vi1(t)

Ro
, C

dvi2(t)
dt

= − tanh(kvi1(t)) + vi2(t)
Ro

, (3)

where the fact that the output of each inverter is the input of the other has been
used. If we simplify the latch’s dynamical representation by ignoring one of the
inverter capacitors (e.g., the one at the output of the first inverter vo1 = vi2; this
does not sacrifice any essential aspect of the latch’s operation), (3) simplifies to
the single differential equation

C
dv(t)
dt

= − tanh
( − k tanh(kv(t))

)
+ v(t)

Ro
=

tanh
(
k tanh(kv(t))

) − v(t)
Ro

, (4)

where v(t) � vi1(t). (4) is the starting point for establishing the key result
in Sect. 3, i.e., that interconnected systems of latches can function as Ising
machines.

3 Latch Ising Machines: A General Lyapunov
Formulation

We now set up a network of coupled latches. Each coupling is realized using a
resistor, as shown in Fig. 3. The coupling from the jth latch appears as an extra
term in (4) for the ith latch, whose equation becomes
4 i.e., any small perturbation (e.g., due to noise) from this solution will make the latch

settle to one of the other two solutions, at the top left and bottom right.
5 tanh() is merely a convenient analytical choice; any other smoothed step-like function

can be used instead.
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C
dvi(t)

dt
=

tanh
(
k tanh(kvi(t))

) − vi(t)
Ro

− vi − vj

Rij

= G tanh
(
k tanh(kvi(t))

) − Gvi(t) − Jij(vi − vj),
(5)

where G � 1
Ro

and Jij � 1
Rij

. For N latches, this becomes a system of N

differential equations:

dvi(t)
dt

=
1
C

⎡

⎣G tanh
(
k tanh(kvi(t))

) − Gvi(t) −
N∑

j=1

Jij(vi − vj)

⎤

⎦ ,

i = 1, · · · , N.

(6)

(6) can be written in a more general form, as

dvi(t)
dt

= f(vi; k) −
N∑

j=1

Jij g(vi, vj ; k), i = 1, · · · , N ; (7)

choosing

f(vi; k) =
G

C

(
tanh

(
k tanh(kvi)

) − vi

)
and g(vi, vj ; k) =

vi − vj

C
(8)

turns it into (6). The utility of (7) over (6) is its generality: coupled networks of
any kind of latch can be represented by appropriate choice of f(·; ·) and g(·, ·; ·).
Indeed, (7) is not limited to latch networks; e.g., OIM using the the Kuromoto
model with SHIL [15], for coupled oscillator systems, is also captured, by setting

f(Δφi;As) =
As

ω0
sin

(
2Δφi

)
and g(Δφi,Δφj ;As) = −Ac

ω0
sin

(
Δφi −Δφj

)
. (9)

The development in the remainder of this section does not use the specific form of
the tanh(·) latch model (6); instead, it uses the more general form of (7), thereby
being applicable to different latch models, as well as OIM and potentially other
manifestations of Ising machines. We prove two key results: 1) that there is
a Lyapunov function (11) for (7),6 and 2) that for high values of k, at which
latches exhibit bistability, the Lyapunov function matches the Ising Hamiltonian
(Theorem 2). In other words, the same underlying properties that enable coupled
oscillator systems to serve as Ising machines hold for coupled latch systems.

3.1 Lyapunov Function

As already noted, the coupling is assumed to be symmetric, with no “self cou-
pling”,7 i.e.,
6 The Lyapunov function is defined in terms of abstract functions z(·; ·) and h(·, ·; ·)

that are related to the functions f(·; ·) and g(·, ·; ·) in the generalized model (7).
The relations, captured abstractly as assumptions in Assumption 2, are illustrated
concretely for the tanh(·) latch model in Sect. 4.

7 This assumption is intrinsic to the Ising model, as already noted in (1).
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Assumption 1 (Coupling properties)

Jij = Jji, Jii = 0, i, j = 1, · · · , N. (10)

We now define a scalar function of the {vi} that we will show satisfies the
properties of a Lyapunov function. The functions z(·; ·) and h(·, ·; ·) used in
the definition are left abstract at this point; specific choices for BLIM will be
made in (39) and (41), later.

Definition 1 (Lyapunov function L(· · · )). Define

L(v1, · · · , vN ; k) � −
N∑

i=1

⎛

⎝z(vi; k) −
N∑

j=1

Jij h(vi, vj ; k)

⎞

⎠ . (11)

Denoting �v � [v1, · · · , vN ]T , we will also write this as L(�v; k). z(v; k) and
h(v1, v2; k) are continuous and differentiable functions with properties to be stated
later. Hence L(�v; k) is continuous and differentiable.

We now assume that z(·; ·) and h(·, ·; ·) in (11) satisfy the following properties
and relations to f(·; ·) and g(·, ·; ·). The first assumption (12) is essentially a
definition of z(·; ·), used in the Lyapunov function, in terms of the abstraction
f(·; ·) of the tanh(·) latch model, used in (7). The second assumption captures
the essential relation between the abstracted coupling function g(·, ·; ·) in (7),
and the corresponding function h(·, ·; ·) in the Lyapunov expression in (11). This
relation is required in order to show (in Theorem 1, below) that (11) is indeed
a Lyapunov function for (7).

Assumption 2 (Properties of z(·; ·) and h(·, ·; ·))
1. f(·) in (8) is the derivative of z(·) in (11):

f(vm; k) =
dz(vm; k)

dvm
, m = 1, · · · , N. (12)

2. h(·, ·) in (11) and g(·, ·) in (8) are related as:

g(vm, vj ; k) =
∂h(vm, vj ; k)

∂vm
+

∂h(vj , vm; k)
∂vm

. (13)

Theorem 1 ((11) is a Lyapunov Function). If (12) and (13) hold and if
the coupling is symmetric (10), then the function L(· · · ) defined in (11) is a
Lyapunov function for the system (7).

Proof. First, note that
dL

dt
=

N∑

m=1

∂L

∂vm

dvm

dt
. (14)
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Expand

∂L

∂vm
= −

[
dz(vm; k)

dvm
− ∂

∂vm

(
N∑

i,j=1

Jij h(vi, vj ; k)

)]

= −
[

dz(vm; k)

dvm
−

N∑
i,j=1

Jij

(
∂h(vi, vj ; k)

∂vi
δim +

∂h(vi, vj ; k)

∂vj
δjm

)]

= −
[

dz(vm; k)

dvm
−

N∑
i,j=1

Jij
∂h(vi, vj ; k)

∂vi
δim −

N∑
i,j=1

Jij
∂h(vi, vj ; k)

∂vj
δjm

]

= −
[

dz(vm; k)

dvm
−

N∑
j=1

Jmj
∂h(vm, vj ; k)

∂vm
−

N∑
i=1

Jim
∂h(vi, vm; k)

∂vm
)

]

= −
[

dz(vm; k)

dvm
−

N∑
j=1

Jmj
∂h(vm, vj ; k)

∂vm
−

N∑
j=1

Jjm
∂h(vj , vm; k)

∂vm

]

= −
[

dz(vm; k)

dvm
−

N∑
j=1

Jmj
∂h(vm, vj ; k)

∂vm
−

N∑
j=1

Jmj
∂h(vj , vm; k)

∂vm

]
(using (10))

= −
[

dz(vm; k)

dvm
−

N∑
j=1

Jmj

(
∂h(vm, vj ; k)

∂vm
+

∂h(vj , vm; k)

∂vm

)]
(15)

= −
[
f(vm; k) −

N∑
j=1

Jmj g(vm, vj ; k)

]
(using (12) and (13))

= −dvm
dt

(using (7)). (16)

Using (16), (14) becomes

dL

dt
= −

N∑

m=1

(
dvm

dt

)2

≤ 0, (17)

proving that L(· · · ) is non-increasing in t, hence constitutes a Lyapunov function
for (7). �

Lemma 1 (Stable equilibria and Lyapunov local minima are identical).
Any stable equilibrium of the generalized system (7) is a local minimum of the
generalized Lyapunov function (11); and vice versa.

Proof. Using (16), we can write (7) as

dvi

dt
= − ∂L

∂vi
, i = 1, · · · , N. (18)

Given any equilibrium point �v∗ � [v∗
1 , · · · , v∗

N ]T , i.e., dvi

dt = 0, ∀i. By (18), the
partial derivatives ∂L(�v∗)

∂vi
= 0, ∀i, i.e., the equilibrium point is a local extremum

(maximum/minimum/saddle/etc.. point) of L(· · · ).
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Suppose �v∗ is a stable equilibrium. This means that there exists some ball
B around �v∗, with radius greater than zero, such that if the system is perturbed
to any point �v∗ + δ�v ∈ B, the system’s dynamics will return it to �v∗. More
precisely, the projection of the derivative d(�v∗+δ�v(t))

dt onto the perturbation δ�v
should be negative, i.e.,

δ�vT d

dt
(�v∗ + δ�v) < 0, ∀ δ�v such that �v∗ + δ�v ∈ B. (19)

Using (18), (19) becomes

∂L

∂�v

∣∣∣∣
�v∗+δ�v︸ ︷︷ ︸

Jacobian of L w.r.t �v (row vector)

δ�v > 0, ∀ δ�v such that �v∗ + δ�v ∈ B. (20)

Since L(�v; k) is differentiable (Definition 1), we have

L(�v∗) � L(�v∗ + δ�v) − ∂L

∂�v

∣∣∣∣
�v∗+δ�v

δ�v ⇔ L(�v∗ + δ�v) − L(�v∗) � ∂L

∂�v

∣∣∣∣
�v∗+δ�v

δ�v, (21)

with equality as δ�v → �0. Using (20) in (21), we have L(�v∗ + δ�v) − L(�v∗) > 0
for all δ�v such that �v∗ + δ�v is in some ball B2 ⊂ B, proving that v∗ is a local
minimum of L(�v; k).

Moreover, every step of the above argument can be reversed, proving that any
local minimum of L(�v; k) is a stable equilibrium point of (7). �

3.2 Bistability Properties of the Generalized System;
Lyapunov–Ising-Hamiltonian Relation

First, we recall the (discrete) Ising Hamiltonian and establish a basic property.

Definition 2 (Discrete Ising Hamiltonian). Given N “spins” (binary vari-
ables with values ±1) {si} and a set of coupling weights Jij obeying (10), the
(discrete) Ising Hamiltonian of the system is

H(s1, · · · , sN ) � −1
2

N∑

i,j=1

Jij sisj . (22)

Denoting �s = [s1, · · · , sN ]T , this can also be written as H(�s).

Lemma 2 (Scaled/shifted Ising Hamiltonians preserve total order).
For any k1 > 0 and any k2, define a scaled/shifted version of the Ising Hamilto-
nian to be

H̃(�s) � k1H(�s) + k2. (23)

Then, for any �s1, �s2 such that H(�s1) ≤ H(�s2), H̃(�s1) ≤ H̃(�s2); and vice-versa.
This also implies that any local minimum of H(·) is a local minimum of H̃(·),
and vice versa.
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Proof. H̃(·) is strictly monotonic and invertible with respect to H(·), establishing
both directions of the first claim. The second claim follows from the first by
contradiction.

Next, we make an assumption about the bistability of f(·; k) when the gain k is
high.

Assumption 3 (Bistability of each latch). f(v; k) is bistable if k = K, for
some sufficiently large gain K > 0; i.e., for some v+, v−, with v+ > v−,

f(v+;K) = f(v−;K) = 0. (24)

Moreover,
df(v;K)

dv

∣∣∣∣
v=v+

< 0 and
df(v;K)

dv

∣∣∣∣
v=v−

< 0. (25)

These conditions ensure stable equilibria of dv
dt = f(v; K) (i.e., each equation of

the generalized system (7), in the absence of coupling) at v+ and v−. Moreover,
we assume that for each latch, v+ and v− are the only stable equilibria. This
implies that vi ∈ {v+, v−}, i = 1, ..., N represent all the stable equilibria of (7)
in the absence of coupling.

We now make assumptions on the values of the functions z(·; ·) and h(·, ·; ·)
at the bistable values v+ and v− when the gain is high. These assumptions are
abstracted from properties of the tanh(·) model (8).

Assumption 4 (Values for z({v+, v−}; K) and h({v+, v−}, {v+, v−}; K))

z(v+; K) = z(v−; K) = c3 (26)
h(v+, v+; K) = h(v−, v−; K) = c1, (27)
h(v+, v−; K) = h(v−, v+; K) = c2. (28)

for some values c1, c2 > c1 and c3.

We can now establish a relation between the generalized Lyapunov function
L(· · · ) in (7) and the Ising Hamiltonian (22).

Theorem 2 (The Lyapunov function equals a scaled/shifted Ising
Hamiltonian at nominal bistable values). For i = 1, · · · , N , if vi ∈
{v+, v−}, define a corresponding “spin” si to be

si =

{
1 if vi = v+,

−1 if vi = v−.
(29)

Denote �s � [s1, · · · , sN ]T and �vB � [v1, · · · , vN ]T . Then the generalized Lya-
punov function L(�vB ; K) equals a scaled/shifted version of the discrete Ising
Hamiltonian H(�s).
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Proof. We have (using (26))

L(�vB ; K) = −
N∑

i=1

⎛

⎝z(vi; K) −
N∑

j=1

Jij h(vi, vj ; K)

⎞

⎠

= −Nc3 +
N∑

i,j=1

Jij h(vi, vj ; K).

(30)

Defining

h̃(vi, vj) � 2h(vi, vj ; K) − (c1 + c2)
c2 − c1

⇔ h(vi, vj ; K) =
(c2 − c1)h̃(vi, vj) + (c1 + c2)

2
,

(31)

(30) becomes

L(�vB ; K) = −Nc3 +
1
2

N∑

i,j=1

Jij

[
(c2 − c1) h̃(vi, vj) + (c1 + c2)

]

= −Nc3 +
c1 + c2

2

⎛

⎝
N∑

i,j=1

Jij

⎞

⎠ +
c2 − c1

2

N∑

i,j=1

Jij h̃(vi, vj).

(32)

From definition (31), note that

h̃(v+, v+) = h̃(v−, v−) = −1, h̃(v+, v−) = h̃(v−, v+) = +1. (33)

Hence, since vi ∈ [v+, v−], we have

h̃(vi, vj) = −sisj . (34)

Using (34) in (32), we have

L(�vB ; K) = −Nc3 +
c1 + c2

2

⎛

⎝
N∑

i,j=1

Jij

⎞

⎠ − c2 − c1
2

N∑

i,j=1

Jij sisj

= −Nc3 +
c1 + c2

2

⎛

⎝
N∑

i,j=1

Jij

⎞

⎠

︸ ︷︷ ︸
k2

+ (c2 − c1)︸ ︷︷ ︸
k1>0

H(�s).
(35)

This is a scaled/shifted version of the Ising Hamiltonian (23). �
This immediately implies

Corollary 1 (Total order correspondence between Hamiltonian and
Lyapunov functions). For i = 1, · · · , N , let

�vA � [vA,1, · · · , vA,N ]T , �vB � [vB,1, · · · , vB,N ]T ,

with vA,i ∈ {v+, v−}, vB,i ∈ {v+, v−}.
(36)
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Let �sA and �sB be the spin vectors (defined using (29)) corresponding to �vA and
�vB, respectively. If L(�vA; K) ≤ L(�vB ; K), then H(�sA) ≤ H(�sB); and vice versa.

Proof. Follows from Lemma 2 and Theorem 2.

As a result, any global minimum of one is also one of the other:

Corollary 2 (Hamiltonian and Lyapunov global minima correspond
under bistability). If �vA (36) is a global minimum of L(�v; K) over all �v with
components taking bistable values v+ or v−, then the corresponding spin vector
sA (29) is a global minimum of H(�s); and vice versa.

Proof. Follows from Corollary 1.

Even with coupling present in (7), we assume that each latch remains bistable,
with only small deviations from v+ and v−:

Assumption 5 (Bistability persists in the presence of coupling). In
the presence of coupling, the exact values v+ and v− (Assumption 3) no longer
represent stable equilibria for each latch, due to the perturbations introduced by
the coupling. If the coupling is small enough, each latch will still have stable
equilibria at some values vi+ and vi− which are small perturbations of v+ and
v−, respectively. This follows from the stability of the unperturbed equilibria.
We assume, more generally, that this is true whether or not the coupling is
small. More precisely, we assume that if k = K, then vi ∈ {vi+, vi−}, with
vi+ ∈ [v+ − ε, v+ + ε] and vi− ∈ [v− − ε, v− + ε], for some ε 	 v+ − v−,
∀i = 1, · · · , N capture all stable equilibrium points of (7).

Assumption 5 enables us to benefit from Theorem 2 at the actual equilibrium
points of (7):

Corollary 3 (Lyapunov function approximates a scaled/shifted Ising
Hamiltonian at bistable values). The Lyapunov function evaluated at
bistable equilibrium points in the presence of coupling (as given in Assumption 5)
approximates the scaled/shifted Ising Hamiltonian (35) at corresponding spin
values.

Proof. Follows from continuity of the Lyapunov function (11) in its arguments
v1, · · · , vN , and the fact that the bistable equilibrium points under coupling are
small perturbations (Assumption 5) of the nominal bistable equilibria of Theo-
rem 2.

Finally, note that the discrete Ising Hamiltonian (Definition 2) remains
unchanged when all spins are flipped, since each term sisj does not change. Cor-
respondingly, the Lyapunov function (11) remains unchanged if vi is “flipped”
from v+ to v−, and vice-versa (because of properties (26) to (28)). This implies
that the search space of all Boolean combinations can be reduced by half; one
spin can simply be set to either +1 or −1, and all combinations of the other
spins explored. Correspondingly, for one chosen i ∈ {1, · · · , N}, vi can be set to
either v+ or v−. We concretize this as
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Corollary 4. Let k = K and vi ∈ {v+, v−} for i ∈ 1, · · · , N . Then vN can be
fixed at v+ without loss of generality, i.e., every value of the Lyapunov function
(11) L(v1, · · · , vN ; K) that can be achieved without this restriction can also be
achieved with this restriction.

4 Illustrative Examples

We now specialize the above results for our simple latch model of Sect. 2.2 and
illustrate BLIM on fully-connected 3-spin graphs, as well as on G22, a 2000-spin,
sparsely connected, MAX-CUT benchmark.
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Fig. 4. Plots of f(), g(), z() and h() for C = G = 1.

First, we return to our tanh(·) latch model of (6) and devise a specific Lya-
punov function ((11)) for it. Recall that f(·; k) and g(·, ·; k) for this model are
given in (8). Choosing the high value of gain (at which each latch features two
stable states, see Assumption 3) to be

K � 5, (37)

we solve f(v; K) = 0 numerically to obtain8

v+ � 0.999909 � +1, v− � −0.999909 = −v+ � −1,

df

dv
(v+) = −0.999999 < 0,

df

dv
(v−) = −0.999999 < 0.

(38)

Hence Assumption 3 is satisfied.9 Assumption 5 can always be satisfied by mak-
ing the couplings small enough. Define

z(v; k) �
∫ v

0

f(x; k) dx. (39)

This obviously satisfies the requirement (12). Since f(v; k) is odd in v (i.e.,
f(−v; k) = −f(v; k), as is easily verified), it is easily shown that z(v; k) in (39)
is even, i.e.,

z(−v; k) = z(v; k). (40)
8 It is easy to show graphically that v+, v− and 0 are the only solutions of f(v, K) = 0.
9 The third solution, v = 0, is unstable: df

dv
(0) = 24 > 0.
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Hence the requirement (26) is satisfied. Now define

h(vi, vj ; k) � 1
2C

[
(vi − vj)2

2
− 1

]
. (41)

It is easily verified that h(vi, vj ; k) satisfies the requirement (13). The additional
requirements (27) and (28) are also satisfied, with

c1 = − 1
2C

, c2 =
1

2C
(2v2

+ − 1) � −c1 =
1

2C
> c1. (42)

Hence, using the definitions in (37) to (39) and (41) for K, v+, v−, z(v; k) and
h(vi, vj ; k), the coupled latch system (6) satisfies all the conditions needed for
Theorem 1, Theorem 2, and their implications Lemma 1, Corollary 1, Corollary 2
and Corollary 3 to be valid. To summarize:

1. the behaviour of a system of coupled latches (6), for any latch gain k, is
governed by a Lyapunov function which it minimizes locally to reach stable
equilibria;

2. when the gain is high enough to make each latch bistable (k = K), a
scaled/shifted version of the Lyapunov function closely approximates the sys-
tem’s discrete Ising Hamiltonian (Definition 2). This implies that if H(�sA) ≤
H(�sB) for any two spin states, the corresponding voltage states �vA and vB

obey L(�vA; K) ≤ L(�vA; K); and vice versa.10 Moreover, global minima of the
Ising Hamiltonian correspond to global minima of the Lyapunov function.

Plots of f(v; k), g(v1, v2; k), z(v; k) and h(v1, v2; k)—equations (8), (39)
evaluated numerically, and (41)—are shown in Fig. 4, for different values of the
latch gain k.

4.1 Fully-Connected 3-Spin Graphs with Weights of Equal
Magnitude

For insight, we explore BLIM on all fully-connected 3-spin graphs with weights
of equal magnitude. We choose 3-spin graphs because their Lyapunov functions
can be visualized completely in three dimensions.

A three-spin graph is a triangle, i.e., with three vertices and three edges with
weights J12, J23 and J13. The Ising Hamiltonian (Definition 2) is

H3(s1, s2, s3) � −1
2

(J12 s1s2 + J13 s2s3 + J23s1s3) , (43)

and the Lyapunov function becomes

L3(v1, v2, v3; k) � −z(v1; k) − z(v2; k) − z(v3; k) + 2
[
J12 h(v1, v2; k)

+ J23 h(v2, v3; k) + J13 h(v1, v3; k)
]
,

(44)

10 Recall that H(�·) is the Ising Hamiltonian and L(�· ; ·) the Lyapunov function.
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Fig. 5. L3(v1, v2, 1) for fully-connected 3-node graphs.

where f(·; k) and h(·, ·; k) are given by (39) and (41), and we have used the even
symmetry of h(·, ·; k). Also, applying Corollary 4, we set v3 = v+, which turns
(44) into

L3(v1, v2, v+; k) � −z(v1; k) − z(v2; k) − z(v+; k) + 2
[
J12 h(v1, v2; k)

+ J23 h(v2, v+; k) + J13 h(v1, v+; k)
]
,

(45)

Consider fully-connected graphs with edge weights ±Ac, where Ac is a coupling
strength parameter. There are only 4 unique fully-connected 3-node graphs of
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(e) Graph A, ICs +,+. (f) Graph B, ICs +,+. (g) Graph C, ICs +,+. (h) Graph D, ICs +,+

(i) Graph A, ICs +,-. (j) Graph B, ICs +,-. (k) Graph C, ICs +,-. (l) Graph D, ICs +,-.

(m) Graph A, ICs -,+. (n) Graph B, ICs -,+. (o) Graph C, ICs -,+. (p) Graph D, ICs -,+.

(q) Graph A, ICs -,-. (r) Graph B, ICs -,-. (s) Graph C, ICs -,-. (t) Graph D, ICs -,-.

Fig. 6. Simulations of (7) and (4) with different initial conditions for fully-connected
3-node graphs.

this type, as shown in the top row11 of Fig. 5—other fully-connected graph possi-
bilities are congruent to one of these. Figure 5 depicts the Lyapunov functions for
all four fully-connected graphs—each column shows the Lyapunov functions for
various values of k for a particular graph. The points corresponding to discrete
Ising spins, i.e., v1, v2 = ±1, are marked with vertical lines and the Lyapunov
values at these points are noted in the legend. As expected, high values of k
feature multiple local minima, which coalesce as k is lowered below 1. For the
case of weights (− 1

40 ,− 1
40 ,− 1

40 ), where several points reach the global minimum,
the Lyapunov landscape for low k becomes more of a saddle region than a single
well-defined global minimum.

11 Each node represents an Ising spin; the weight of the edge between two nodes i and
j is Jij .
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The Lyapunov result above (Theorem 1) only guarantees settling to local
minima, for any fixed (unchanging with time) value of the gain k. However, we
have observed empirically that changing k from a high value to a low value and
back again (over time) enables the system to break out of higher local minima
and settle to lower ones. This is analogous to changing the amplitude of SYNC
periodically in OIM and achieves the same end, i.e., moving the system between
discrete (binarized) and continuous (analog) modes of operation. In OIM, sev-
eral such “ramps” of SYNC typically lead to excellent progress towards the
global minimum, and we have observed a similar phenomenon with BLIM when
k is ramped several times. Indeed, examining how the Hamiltonian changes as
ramping progresses reveals that improvements to the Hamiltonian occur predom-
inantly when the system is not binarized, but is operating in continuous/analog
mode, or is in transition between discrete and continuous modes.

Figure 6 shows results from simulating (7) and (8) for all fully-connected 3-
node graphs, with k changed from 5 to 0.1 and back to 5 over the simulation. v3
is fixed at +1; initial conditions for v1 and v2 are chosen to be different combina-
tions of positive and negative values (randomly generated) for each simulation.
Note that in every case, k ramping takes the system to a global minimum at
k = 5. The reason for this is apparent upon examining the region t ∼ [60, 120]μs,
when k = 0.1 and the system has a unique global Lyapunov minimum to which
it settles. Note that the values of v1 and v2 “lean towards” a k = 5 global min-
imum here, in every case. As a result, the system evolves quasi-statically to a
k = 5 global minimum as k is ramped back to 5.

4.2 G22 MAX-CUT Benchmark Problem

Fig. 7. BLIM on the 2000-spin Ising
benchmark problem G22 [1,12]: the Hamil-
tonian improves when k is low, i.e., the sys-
tem is in “analog mode”.

We also illustrate BLIM with sev-
eral cycles of k-ramping on the G22
Ising benchmark problem [1,12]. The
problem has N = 2000 nodes/spins,
sparsely interconnected (with ran-
domly generated ±1 weights) with
19,990 connections. Figure 7 shows the
progress of the Ising Hamiltonian as
BLIM runs on this problem, with k
ramped from 0.5 to 2 in a square wave
fashion about 6 times over the sim-
ulation. As can be seen, subsequent
cycles of k-ramping reduce the Hamil-
tonian; moreover, the reduction hap-
pens largely when k is low, i.e., the system is not binarized, but in analog
mode. As with OIM and other Ising machine schemes, the underlying mecha-
nism behind this is not well understood at this point but it is this feature, that
some deep analog mechanism is solving the originally discrete Ising problem,
that fundamentally separates Ising machines from hardware or software imple-
mentations of essentially discrete minimization methods [9,11].
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5 Conclusion

We have presented BLIM, an Ising machine scheme based on latches (bistable
elements) with controllable gains. Using a simple dynamical model that distills
the essence of a back-to-back inverter-based latch, we have set up equations
for coupled latch systems and shown that they can be generalized to a form
that also captures coupled oscillator networks when two functions are defined
appropriately. We have proved that under appropriate conditions, this general-
ized form has a Lyapunov function which becomes essentially identical to the
Ising Hamiltonian when the system is driven to binarized states, e.g., by making
latch gains high. This result implies that the system will settle naturally to local
minima of the Lyapunov function. Furthermore, varying the gains periodically is
seen to lead the system to lower minima. Our general formulation enables side-
by-side comparison of OIM, BLIM, and possibly other Ising machine schemes,
which may lead to progress in unravelling the mechanisms that underlie Ising
machines’ intriguing global minimization tendencies. BLIM retains an important
practical feature of OIM, i.e., that it can be implemented using miniaturisable
CMOS electronics; however, implementations in other physical domains, such as
(synthetic) biology, may also be of interest.
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