
Transient Adjoint DAE Sensitivities: a Complete,
Rigorous, and Numerically Accurate Formulation

Naomi Sagan and Jaijeet Roychowdhury

Department of Electrical Engineering and Computer Sciences, University of California, Berkeley

{naomi.sagan,jr}@berkeley.edu

Abstract—Almost all practical systems rely heavily on physical
parameters. As a result, parameter sensitivity, or the extent to
which perturbations in parameter values affect the state of a
system, is intrinsically connected to system design and optimiza-
tion. We present TADsens, a method for computing the parameter
sensitivities of an output of a differential algebraic equation (DAE)
system. Specifically, we provide rigorous, insightful theory for
adjoint sensitivity computation of DAEs, along with an efficient
and numerically well-posed algorithm implemented in Berkeley
MAPP. Our theory and implementation advances resolve long-
standing issues that have impeded adoption of adjoint transient
sensitivities in circuit simulators for over 5 decades. We present
results and comparisons on two nonlinear analog circuits. TADsens
is numerically well posed and accurate, and faster by a factor
of 300 over direct sensitivity computation on a circuit with over
150 unknowns and 600 parameters.

I. Introduction
The operation of every circuit depends strongly on parameters
such as resistance and capacitance values, transistor dimensions,
MOSFET threshold voltages, doping concentrations, etc. In
modern ICs, where transistor dimensions are on the order of
atoms, parameter variations and their effects on performance are of
serious concern during design and fabrication. Transient parameter
sensitivities, i.e., the effect of parameter fluctuations on a system’s
waveforms, identify which parameters have the greatest impact
on system outputs. This information is essential for designing
systems that are robust to parameter variations.

Implicitly or explicitly, simulators pose circuits mathematically
as Differential Algebraic Equations (DAEs) [1, 2]. In contrast to
Ordinary Differential Equations (ODEs), which involve differential
components in each equation, DAEs include purely algebraic
equations, i.e., equations lacking differential terms. Indeed,
equations that appear superficially to be ODEs may really be
DAEs; in most circuit applications, it is difficult if not impossible
to separate algebraic components from “genuinely differential”
equations. Transient sensitivity techniques for ODEs, which are
simpler than those for DAEs in both concept and implementation,
do not work correctly for DAEs.

A straightforward way to compute transient sensitivities is to derive
a linear time-varying DAE directly in sensitivity unknowns and
to solve it via transient analysis. This method, known as “direct
sensitivity computation”, becomes highly inefficient for systems
with many parameters.1 It involves performing transient analysis on
a DAE in a large, dense, matrix unknown.2 Since real-life circuits
typically have very many parameters, direct transient sensitivity
calculation is often too memory- and computation-intensive to be
practical.

It is possible, however, to circumvent this expensive computation
if the sensitivities of only a few system outputs, instead of those
of the entire state vector of the DAE, are needed. In almost all
practical applications, this is sufficient—only a few outputs are of
interest for sensitivities. Parameter sensitivities of a single scalar
output can be efficiently computed using a different approach,
called “adjoint sensitivity computation”. The essential idea is to

1This is illustrated in Sec. III for a 51-stage ring oscillator circuit.
2The unknown is the sensitivity matrix, with rows corresponding to DAE

unknowns and columns to parameters.

use adjoints of linear operators [3], which fundamentally conserve
inner products, to isolate the parametric sensitivities of a single
output at any time of interest. The key to the efficiency of adjoint
methods is that a quantity necessary for this inner product, the
adjoint sensitivity function (ASF), can be found by solving a
time-varying differential equation (the adjoint DAE) in a vector
unknown, avoiding the large, dense matrix unknown of the direct
method.

Work on adjoint sensitivity computation has spanned 5 decades.
[4] provided “adjoint networks” for a few circuit element types,
but applying this concept in circuit simulators soon revealed tricky
theoretical and numerical issues; as a result, transient adjoint
sensitivities were avoided in most simulators. For example, adjoint
computations require impulsive (δ -function) inputs, which being
infinite-valued are not well suited for numerical computation.
This was one of the reasons why [5] chose to implement
direct sensitivities in TISPICE, noting it to be “much more
straightforward” than adjoint. [6] implemented adjoint sensitivities
in SPECS, a specialized IBM simulator using piecewise-constant
circuit elements and event-driven time stepping; but the adjoint
techniques used were similarly specialized and do not port to
standard circuit simulators. [7], noting that “explicitly constructing”
the adjoint DAE system is “quite nontrivial”, transformed the
direct method into a large chained matrix product. This was
achieved by discretizing the direct DAE in time and unrolling
transient time stepping; matrix adjoints (i.e., transposes) were
then applied for computational efficiency. More recently, [8]
followed a similar approach, with the unrolled matrix products
represented as a directed acyclic graph (DAG) that is traversed
forward and backward for direct and unrolled-matrix-adjoint
sensitivities, respectively. Neither method has addressed unresolved
theoretical and numerical questions in transient adjoint sensitivities.
[9, 10], which employed Lagrange multipliers to formulate adjoints,
considered special DAE formulations that are different from those
commonly used in circuit simulators. In [9, 10], treatment of
DAE forms suited for circuits is limited to outputs that are
integrals of circuit waveforms with finite kernels (single-timepoint
outputs cannot be captured in this form). Moreover, [9, 10] do
not identify or address the issue of impulsive components in the
ASF—which, as we show here, can be present, causing numerical
problems unless treated specially. Note that for ODEs, [11] showed
that impulsive inputs to the adjoint equation can be handled by
(analytical) integration over an infinitesimal interval, reducing
them to finite-valued initial conditions that are perfectly amenable
numerically; however, [11] does not consider DAEs. In short,
key theory and implementation questions for transient adjoint
sensitivities have remained unanswered.

In this paper, we provide a comprehensive exposition of the core
questions in transient adjoint sensitivity computation, along with
answers that are not only theoretically rigorous but also well suited
for numerical implementation in circuit simulators. We make the
following contributions:

1) We provide a clear, from-first-principles derivation3 of transient
adjoint DAE sensitivities that reveals under what conditions the
adjoint DAE is useful, why it must be integrated backwards, etc.
In particular, we show why impulsive inputs are needed for the
adjoint DAE, and bring out that the ASF (solution of the adjoint

3without using Lagrange multipliers [10] or Tellegen’s theorem [4].



II THEORY 2

DAE) can have an impulsive component. Attempting to compute
the ASF by applying numerical methods blindly will, therefore,
result in severe errors. We show, however, that the ASF can
be separated analytically into impulsive and finite components,
and both components can be computed independently using
well-posed numerics. The presence of the impulsive component
in the ASF makes intuitive sense for DAEs, which contain
algebraic equations; e.g., a linear algebraic equation with an
impulsive input will have a impulsive solution. Separating out
and solving for the impulsive component involves finding the
null space of a rank-deficient4 DAE Jacobian matrix.

2) Further, we show that even after the impulsive component of the
ASF has been separated out, the remaining finite-valued ASF
component can be discontinuous at the initial timepoint due to
the presence of algebraic equations in DAEs. The discontinuity
leads to numerical inaccuracies in a post-processing step, needed
for computing output sensitivities, that involves integrating the
ASF. We provide simple means to circumvent this discontinuity
and resultant inaccuracy.

3) We demonstrate our method, dubbed TADsens (Transient
Adjoint DAE Sensitivities), on two circuits whose operation is
fundamentally nonlinear (hence more challenging for simula-
tors): a BJT Schmitt trigger circuit featuring hysteresis, and a
51-stage MOS ring oscillator circuit generating self-sustaining
oscillations. On the latter, we use TADsens to find parametric
sensitivities of the oscillation period. We provide comparisons
against direct sensitivities, obtaining speedups of more than 2
orders of magnitude for the larger circuit. We also compare
TADsens against analytically-derived sensitivities for a small,
illustrative example.

4) We have implemented TADsens in Berkeley MAPP [12, 13],
an open-source prototyping simulator, primarily because of its
modular algorithm structuring and the powerful mathematical
primitives available in MATLAB®. These features facilitated
a compact, readable implementation that explicitly follows the
theory and equations in this paper. We plan to release our
implementation as open source, enabling our method to be
easily ported to other simulators, including commercial ones.

In Section II-A, we state in concrete terms the problem setup and
desired outputs of sensitivity computations, and examine the direct
method. In Sections II-B and II-C, we apply adjoint operators to
sensitivity computation, explaining the necessity of a δ -function
input into the adjoint DAE. We then derive the impulsive and finite-
valued components of the ASF in Section II-D, via an infinitesimal
integration. In Section II-E, we address the possible discontinuity
of the ASF solution at the first timestep, as well as a method to
mitigate the resulting numerical inaccuracies. We summarize a
step-by-step procedure for computing sensitivities via TADsens,
and compare the runtime of the direct and adjoint methods in
Section II-F. In Section II-G, we examine adjoint DAEs for ODE
and purely Algebraic Equation systems, revealing useful intuition
about the two components of the ASF. In Section III, we detail
the results of applying TADsens to three circuits, demonstrating
that it is accurate and more efficient than direct computation.

II. Theory

A. Problem Definition and Direct Method

Consider a DAE in standard form,
d

dt
~q(~x(t),~p)+~f (~x(t),~p)+~b(t) =~0, (1)

with initial condition ~x(0) =~x0.5 The functions ~q(~x(t),~p) ∈ R
n

and ~f (~x(t),~p) ∈ R
n, and therefore the solution ~x(t) ∈ R

n, depend
on a set of parameters ~p ∈ R

np .

Given a nominal set of parameters, ~pnom and input ~bnom(t), we
can solve the DAE using Linear Multi-Step (or LMS) methods
[14] for nominal solution ~xnom(t). From there, our goal is to find

4Rank deficiency stems from the presence of algebraic equations.
5For this paper, we assume that neither ~x0 nor ~b(t) depend on ~p.

the parameter sensitivity matrix of the DAE solution,

M(t) =
d~x

d~p

∣

∣

∣

∣

~xnom(t),~pnom

∈ R
n×np . (2)

The direct sensitivity computation for M(t) is derived below.

1) Solve for ~xnom(t) over t ∈ [0,T ] for some end time T , nominal

parameters ~pnom, and input ~bnom(t). For each timestep of the
simulation, compute Jacobian matrices

C(t) =
∂~q

∂~x
, G(t) =

∂~f

∂~x
, Sq(t) =

∂~q

∂~p
, Sf(t) =

∂~f

∂~p
, (3)

evaluated at ~xnom(t) and ~pnom.
C(t) and G(t) are ∈ R

n×n and Sq(t) and Sf(t) are ∈ R
n×np .

2) Rewrite (1), defining ~p = ~pnom +∆~p and ~x(t) =~xnom(t)+∆~x(t),
where ∆~p is a perturbation of the parameters from the nominal
values, and ∆~x(t) is the corresponding deviation of ~x(t) from
the nominal solution.

d

dt
~q(~xnom(t)+∆~x(t),~pnom +∆~p)

+~f (~xnom(t)+∆~x(t),~pnom +∆~p)+~bnom(t) =~0. (4)

We can then linearize the DAE around ~xnom, ~pnom:
d

dt
(C(t)∆~x(t)+Sq(t)∆~p)+G(t)∆~x(t)+Sf(t)∆~p ≈ 0. (5)

As ∆~p approaches ~0, (5) approaches a strict equality and ∆~x(t)
approaches M(t)∆~p. So, taking the limit as ∆~p →~0, we get the
following linear time-varying DAE:

d

dt
(C(t)M(t)+Sq(t))+G(t)M(t)+Sf(t) = 0, (6)

with initial condition M(0) = 0.
3) Solve (6) over t ∈ [0,T ] running a transient simulation for each

column of M(t) separately.

This method, though straightforward, is computationally inefficient.
We must solve np separate DAEs of size n, which results in
a runtime complexity of O(nnpT ). The memory complexity is
also O(nnpT ), as the solution to (6) is commonly dense. For
most physical systems, np � n, making a complexity of O(nnpT )
nonviable in practice.

B. Applying Adjoint Operators to Parameter Sensitivities

In almost all circuit applications, we do not use all entries of
the sensitivity matrix M(t) over all t ∈ [0,T ]. We instead focus
on a single scalar output, o(t) =~c∗~x(t), where ~c∗ represents the
conjugate transpose of output selection vector~c∈R

n. Using adjoint
operators, we can efficiently compute

~m∗(T ) =~c∗M(T ), (7)

the sensitivities of output o(t) at time t = T .

The adjoint of linear operator L {~u(t)}=~x(t), for input ~u(t) and
output ~x(t), is defined as L † {~y(t)}=~z(t), such that

〈~x(t),~y(t)〉= 〈~u(t),~z(t)〉 . (8)
To apply adjoints to sensitivity computation, let us define our
linear operator of interest to be L {~u(t)}= ∆~x(t), where

u(t) =−S(t)∆~p =−

(

d

dt
Sq(t)+Sf(t)

)

∆~p. (9)

This operator can be derived by rearranging terms of (5) to get
d

dt
C(t)∆~x(t)+G(t)∆~x(t) =−S(t)∆~p =~u(t). (10)

Choose ~y(t), the input to the adjoint operator L † {~y(t)} =~z(t),
to be ~cδ (t −T ).6 The output ~z(t) of the adjoint is known as the
adjoint sensitivity function (ASF).

Applying the sifting property of the Dirac δ [15] to (8), we select
the sensitivities of o(t) at a specific time T :

∫ B

A
~c∗∆~x(t)δ (t −T )dt =−

∫ B

A
~z∗(t)S(t)∆~pdt

~c∗∆~x(T ) =−∆~p
∫ B

A
~z∗(t)S(t)dt.

(11)

6δ (t) is the Dirac δ function.



II THEORY 3

The upper bound of the integrals must satisfy B > T for the left-
hand side to properly evaluate to ~c∗∆~x(T ), as will become relevant
when deriving the adjoint DAE in Section II-C.

Taking the limit as ~p →~0, ∆~x approaches M(t)∆~p, so

~m∗(T ) =~c∗M(T ) =−
∫ B

A
~z∗(t)S(t)dt. (12)

C. Deriving the Adjoint DAE

The adjoint operator L † {~y(t)}=~z(t) for (10) is

−C∗(t)
d

dt
~z(t)+G∗(t)~z(t) =~y(t). (13)

This can be verified by evaluating both sides of the inner product
relation in (8) and demonstrating their equality. The left-hand side
evaluates to

〈∆~x(t),~y(t)〉=−
∫ B

A

(

d

dt
~z∗(t)

)

C(t)∆~x(t)dt

+
∫ B

A
~z∗(t)G(t)∆~x(t)dt.

(14)

Likewise, the right-hand side is

〈~u(t),~z(t)〉=
∫ B

A
~z∗(t)

(

d

dt
C(t)∆~x(t)

)

dt

+
∫ B

A
~z∗(t)G(t)∆~x(t)dt.

(15)

Applying integration by parts, it can be shown that (15) is
equivalent to (14), plus a boundary term of

[~z∗(t)C(t)∆~x(t)]

∣

∣

∣

∣

B

A

. (16)

For (13) to be a valid adjoint of (10), the boundary term must
evaluate to 0. The initial condition of the original DAE is assumed

to not depend on the parameters, so ∆~x(0) =~0. If we solve (13)
backwards in time from B to A, we can choose the final condition
to be ~z(B) =~0. Thus, by choosing A = 0 and ~z(B) =~0, we can
ensure that the boundary term is 0.

Not only does solving the adjoint DAE backwards help us eliminate
the boundary term, it is also necessary for maintaining dynamical
stability of the solution~z(t). The original DAE is typically stable in
the forward direction, which implies that its adjoint is dynamically
unstable in the forward direction.

D. Deriving Impulsive and Finite Components of the ASF

The input to the adjoint DAE, ~y(t) =~cδ (t −T ) is infinite-valued
and thus not numerically well-defined. So, we cannot solve for the
ASF ~z(t) directly through transient analysis. Instead, we derive
an expression for ~z(t) of the form

~z(t) =~z1(t)+~kδ (t −T ), (17)

where~z1(t) is well-defined ∀t. In this section, we will determine~k
and~z1(t), via integration over an infinitesimal region in t. Then, we
will demonstrate that the expression for ~m(T ) in (12) is numerically
well-defined.

First, substitute (17) for ~z(t) into the adjoint DAE and integrate
both sides from T− to T+.

−
∫ T+

T−
C∗(t)

d

dt

(

~z1(t)+~kδ (t −T )
)

dt

+
∫ T+

T−
G∗(t)

(

~z1(t)+~kδ (t −T )
)

dt =
∫ T+

T−
~cδ (t −T )dt.

(18)

By applying integration by parts to the first integral and utilizing
the sifting property of the Dirac δ , it can be shown that (18)
simplifies to

C∗(T )~z1(T
−)+

(

d

dt
C∗(T )+G∗(T )

)

~k =~c. (19)

The above equation allows us to find values of ~k and ~z1(T
−).

Noting that, for a DAE with algebraic components, C(T ) will
have a nontrivial null space, split ~c into two components: one in
the column space of C∗(T ), and one in the null space of C(T ).
Since these two subspaces are orthogonal complements of each

other, we can rewrite ~c as
~c = projCol(C∗(T ))~c+projNull(C(T ))~c. (20)

The first term of (19), C∗(T )~z1(T
−), must lie in the column space

of C∗(T ), so we set

C∗(T )~z1(T
−) = projCol(C∗(T ))~c. (21)

~z1(T
−) can be found by solving the above equation. Since the

right-hand side is in the column space of C∗(T ), a solution is
guaranteed to exist even if C∗(T ) is rank-deficient.

Likewise, we can set the second term of (19) to the projection of

~c onto the null space of C(T ) and find ~k by solving
(

d

dt
C∗(T )+G∗(T )

)

~k = projNull(C(T ))~c. (22)

Now, we can find ~z1(t) by solving the adjoint DAE in (13)
backwards from t = T− to t = 0 with final condition ~z1(T

−).
Over t ∈ [0,T−], ~z(t) =~z1(t) and ~y(t) =~0, so (13) becomes

−C∗(t)
d

dt
~z1(t)+G∗(t)~z1(t) =~0, (23)

which can solved numerically, such as with LMS methods [14].

Now that all the components of ~z(t) have been found, we must
show that the integral expression for ~m(T ) in (12) is well-defined.

Substituting ~z1(t)+~kδ (t −T ) for ~z and simplifying,

~m∗(T ) =−
∫ B

0

(

~z∗1(t)+~k
∗δ (t −T )

)

S(t)dt

=−
∫ T−

0
~z∗1(t)S(t)dt −~k∗S(T ).

(24)

All components of the above equation are finite-valued, so we can
use numerical integration methods to find ~m(T ).

E. Discontinuity in First Timestep of Computing the ASF

Due to the rank deficiency in C∗(t), there may be an abrupt jump
from the final condition z1(T

−) to z1(T
−−h), where h is the

transient timestep. For instance, consider a simple, illustrative
example:

−

[

1 0
0 0

]

d

dt
~z1(t)+

[

1 0
1 1

]

~z1(t) =~0,~z1(T
−) =

[

1
0

]

. (25)

For the purpose of this example, let us examine the first step of a
Backward Euler transient simulation:

−

[

1 0
0 0

](

~z1(T
−−h)−

[

1
0

])

−h

[

1 0
1 1

]

~z1(T
−−h) =~0. (26)

It is readily apparent by simplifying the above and solving for
~z1(T

−−h) that, in the limit as the transient timestep goes to 0,

~z1(T
−−h) approaches

[

1
−1

]

.

In theory, the value of the final condition is correct, but it
contributes nothing to the integral for ~m∗(T ) in (24), since the
discontinuity occurs at an infinitesimal distance from T . The
contribution to the integral is instead limh→0~z1(T

−−h). We can
mitigate these accuracies by taking a very small first timestep for
the adjoint DAE, and using the resulting value of ~z1(t) in lieu of
~z1(T ) when evaluating the integral for ~m∗(T ). (24) now integrates
a continuous function over a region very close to [0,T−], and will
therefore provide a numerically accurate result.

F. Full Steps of TADsens and Runtime Analysis

In summary, we can compute the parameter sensitivities ~m∗(T )
of o(T ) =~c∗~x(T ) as follows:

1) Solve the DAE in (1) for~xnom(t), with nominal parameter values

~pnom and input ~bnom(t) from 0 to T . If the Jacobian matrices

of ~q and ~f with respect to ~x are sparse, this will have runtime
complexity of O(nT ).7

2) While solving the above DAE, compute the Jacobian matrices

of ~q and ~f with respect to ~x and ~p enumerated in (3) at every

7When solving a DAE using transient methods, we run the Newton-Raphson
algorithm at every timestep. So, for a sparse system of size n, each iteration
of a transient simulation would have runtime complexity O(n).



III RESULTS 4

timestep. Assuming all Jacobians are sparse, this calculation has
a runtime complexity of O((n+np)T ). To improve memory
efficiency, these may be computed as needed in subsequent
steps.

3) Compute the null space of C(T ) and the column space of C∗(T ),
and the projection of ~c onto those two subspaces. If C∗(T ) is
a sparse matrix of size n, this can be done in O(n) time, such
as by LU factorization.

4) Compute~k, the vector scaling factor to the δ -function constituent
of ~z(t), as the solution to (22). This (sparse) matrix-vector
equation can be solved in O(n) time via LU factorization, or
an equivalently efficient method.

5) Compute the final condition ~z1(T
−) by solving (21). As above,

this can be done in O(n) time.
6) Solve adjoint DAE (13) backwards from T− to 0 for~z1(t). This

size-n DAE can be solved in O(nT ) time.
7) Numerically integrate (24) to get ~m∗(T ). Assuming sparse

Jacobians, this takes O((n+np)T ) time.

Overall, we can compute the parameter sensitivities, ~m∗(T ),
of a DAE output with a runtime and memory complexity of
O((n+np)T ). For DAEs with large numbers of parameters, such
as most circuit DAEs, this is significantly better than the O(nnpT )
complexity provided by the direct method.

G. Insights into Adjoint Parameter Sensitivities for ODEs and
Algebraic Equations

We can provide additional insight into the effect of a δ -function
input on the solution of the adjoint DAE by examining ODEs
and Algebraic Equations. In this section, we use the theory from
Section II-D to build intuition behind the separation of~z(t) into a
delta function and a finite transient waveform.

Consider an ODE,
d

dt
~x(t)+~f (~x(t),~p)+~b(t) = 0. (27)

C(t), the Jacobian matrix of ~q with respect to ~x, is the size-n
identity matrix, In. ~q does not depend on any parameters, so Sq,
the Jacobian matrix of ~q with respect to ~p, is 0.

The final condition of~z1(t) is~z1(T
−) = projCol(In)~c, or~z1(T

−) =~c.

~k is the solution to
(

d
dt

In +G∗(T )
)

~k = projNull(In)~c. In has a null

space of dimension 0, so ~k =~0. As a result, the adjoint DAE has
a finite solution ∀t, without a δ -function component despite the
δ -function input.

Now, let us consider an algebraic equation,
~f (~x(t),~p)+~b(t) = 0. (28)

This equation does not include a differential component, so
C(t) and Sq(t) are both 0. The null space of C(t) spans R

n,

so projNull(C(T ))~c =~c and ~k can be found as ~k = (G∗)−1~c. The

projection of ~c onto the column space of C∗(T ) is ~0, making

~z1(T
−) =~0. Thus, ~z1(t) =~0, ∀t ∈ [0,T−], since it is the output of

a linear DAE with a ~0 initial condition and an input of ~0 over

[0,T−]. So, ~z(t) =~kδ (t −T ).

Intuitively, a system of algebraic equations is purely a function of
the current state and inputs, so a δ -function input results solely
in a δ -function output.

A DAE can be viewed as a combination of ODEs and algebraic
equations, where the ODEs contribute to the column space of
C∗(t), or the linearly independent rows of C(t), and the algebraic
equations contribute the null space of C(t). The final condition
of ~z1(t), the finite part of the ASF, depends on the column space
of C∗(T ) and therefore the ODE components of the original

DAE. Likewise, ~k, the scaling factor of the delta, depends on the
algebraic equations, as it is derived using the null space of C(T ).

III. Results
In this section, we apply TADsens to three examples of varying
size. First, we examine a hand-solvable size-two DAE, plotting
direct, adjoint, and analytical solutions as a function of time, as

well as the relative error of the adjoint method as a function of
the transient method and timestep.

Then, using an implementation in MAPP [12, 13], we perform
direct and adjoint sensitivity computations on two larger examples:
a BJT Schmitt trigger circuit and a 51-stage ring oscillator. The
hand-calculable example demonstrates the accuracy of TADsens
with respect to the analytical solution. The larger analog circuits
show that TADsens is not only effective for larger systems, but
is also more computationally efficient, by a factor of 300, than
the direct method.

A. Hand-Solvable DAE

−
+

Vin

R

C
+

−
x(t)

Fig. 1: RC circuit with a
constant voltage input.

To verify our implementation against
a hand-calculable example, consider
the following DAE:

C
d

dt
x1(t)+

x1(t)−Vin

R
= 0,

x2(t)−
t

RC
= 0,

(29)

where x1(t) is the voltage across the capacitor in Figure 1, and
x2(t) =

t
RC

represents how many RC time constants have passed
since the start of simulation.

1) Analytical Solution

We can show that ~x(t) has the solution
[

x1(t)
x2(t)

]

=

[

x1(0)e
− t

RC +Vin

(

1− e−
t

RC

)

t
RC

]

. (30)

The sensitivities of ~x(t) with respect to ~p =

[

R
C

]

are

M(t) =

[

t
R2C

(x1(0)−Vin)e
− t

RC
t

C2R
(x0 −Vin)e

− t
RC

− t
R2C

− t
RC2

]

. (31)

2) Simulation Results

We computed ~m∗(t) = [2 1]M(t) from t = 0 to t = 10−3, with

~pnom =

[

1kΩ

1 µF

]

,~x(0) =

[

1/2
0

]

, and Vin = 1V . In Figure 2, we have

plotted the direct, adjoint, and analytically-calculated sensitivities
of the system output to R, in units of volt per percent deviation
from the nominal resistor value.

0 0.2 0.4 0.6 0.8 1

·10−3

−1.5

−1

−0.5

0

·10−2

Time

S
en

si
ti

v
it

y

∂~c∗~x(t)
∂R

/ 1
Rnom

, Size-Two DAE

Analytical

Direct

Adjoint

Fig. 2: Parameter sensitivity of ~c∗~x(t) to R, in V/%.

We also calculated the average relative error per timestep of the
TADsens-computed ~m∗(T = 10−3) to the analytical solution, using
transient timesteps ranging from 10−6 to 10−4 in Backward Euler,
Gear, and Trapezoidal transient simulations. The error is plotted
versus transient timestep on a log-log scale in Figure 3. The plot
shows that Backward Euler has a quadratic relation between error
and timestep, and the other two methods have a cubic relationship.
This is consistent with the order of error per timestep expected
for each transient simulation [14].

B. BJT Schmitt Trigger

We now consider the parametric sensitivities of a Schmitt trigger.
The Schmitt trigger circuit consists of two BJTs in the configura-
tion pictured in Figure 4. The input voltage is fed into the base
of Q1, and there is feedback from the collector node of Q1 to the



III RESULTS 5

10−6 10−5 10−4

10−10

10−5

Timestep

R
el

at
iv

e
E

rr
o

r
TADsens Per-Timestep Error, Size-Two DAE

Backward Euler

Gear

Trapezoidal

Fig. 3: Error of adjoint sensitivities of (29) to analytical solution.

base of Q2. This feedback causes hysteresis to occur, resulting
in a digital output signal that does not switch instantaneously
if,e.g., noise corrupts the input signal near the switching threshold.
The output is measured at the collector node of Q2. This circuit
is described by a DAE with four unknowns and 20 parameters,
where Q1 and Q2 use the Ebers-Moll BJT model.

Vin

Q1

RC1 C1

Q2

Vout

RC2 C2

RE
RD1

RD2

VCC

Fig. 4: Schmitt trigger circuit.

A 10kHz pulse signal with a 2V
amplitude and 0.5V DC offset is
applied as voltage input. For both
direct and adjoint computation,
we used second-order Gear tran-
sient simulations with a timestep
of 2 ·10−9, over one period of the
input waveform.

We then determined the most sig-
nificant parameters, or those with
the largest sensitivities relative to
their nominal value. Among the
most significant parameters were
the supply voltage VCC, the forward short-circuit current gain αF

of Q2, and the resistors RC1 and RD1.

In Figure 5, we have provided tables presenting the parameter
sensitivities of the output to these parameters, expressed in volts
per percent deviation from ~pnom. In Figure 6, direct and adjoint
sensitivities with respect to αF2 are plotted over time, with Vout(t)
displayed underneath for reference.

Schmitt Trigger Sensitivities (V/%), Direct Method

Computation Time for T=1.00e-04: 121.6 seconds

t ∂Vout

∂VCC
/ 1

VCC,nom

∂Vout

∂αF2
/ 1

αF2,nom

∂Vout

∂RC1
/ 1

RC1,nom

∂Vout

∂RD1
/ 1

RD1,nom

1.613e-05 1.02835e-02 -2.34134e-03 -2.10356e-03 2.12244e-03
2.662e-05 -7.01662e-02 -2.10569e-02 3.30722e-02 -3.31740e-02
3.711e-05 3.52495e-02 -2.58475e-03 4.05963e-03 -4.07212e-03
4.760e-05 4.81894e-02 -3.17280e-04 4.98322e-04 -4.99856e-04
6.857e-05 4.99727e-02 -4.78067e-06 7.50857e-06 -7.53168e-06
7.906e-05 4.99965e-02 -5.88964e-07 1.02232e-06 -9.58851e-07
8.955e-05 -4.51118e-02 -9.94840e-02 6.61450e-02 -4.59882e-02

Schmitt Trigger Sensitivities (V/%), Adjoint Method

Computation Time for T=1.00e-04: 11.1 seconds

t ∂Vout

∂VCC
/ 1

VCC,nom

∂Vout

∂αF2
/ 1

αF2,nom

∂Vout

∂RC1
/ 1

RC1,nom

∂Vout

∂RD1
/ 1

RD1,nom

1.613e-05 1.02836e-02 -2.34142e-03 -2.10353e-03 2.12247e-03
2.662e-05 -7.01612e-02 -2.10562e-02 3.30703e-02 -3.31721e-02
3.711e-05 3.52501e-02 -2.58466e-03 4.05940e-03 -4.07189e-03
4.760e-05 4.81895e-02 -3.17269e-04 4.98294e-04 -4.99827e-04
6.857e-05 4.99727e-02 -4.78051e-06 7.50815e-06 -7.53126e-06
7.906e-05 4.99965e-02 -5.88944e-07 1.02225e-06 -9.58793e-07
8.955e-05 -4.51113e-02 -9.94839e-02 6.61447e-02 -4.59880e-02

Fig. 5: Schmitt trigger sensitivities, in volts per percent of ~pnom.

−0.1

−0.05

0

S
en

si
ti

v
it

y

∂Vout(t)
∂αF2

/ 1
αF2,nom

, Schmitt Trigger

Direct

Adjoint

0 0.2 0.4 0.6 0.8 1

·10−4

2

4

Time (s)

V
o
u
t(

t)

Fig. 6: Sensitivity of the Schmitt trigger output to αF2. The lower
figure shows the nominal output waveform.

We recorded computation times of the direct and adjoint methods
using the same timestep, LMS (Linear Multi Step [16]) method,
and an end time of T = 10−4, but neglecting the time spent
computing xnom(t) and the appropriate Jacobian matrices—this
time is common to both direct and adjoint computation. We found
that the adjoint method was approximately 10 times faster than the
direct method, with a computation of 11.1 seconds, as opposed to
121.6 seconds. This speedup is relatively small due to the size of
the circuit: for much larger circuits, such as the ring oscillator in
the next section, the adjoint method is seen to be over 100 times
faster than direct computation.

Vout · · ·

VDD

Fig. 7: Circuit diagram of ring oscillator

C. 51-Stage Ring Oscillator

For our final example, we examine a ring oscillator consisting of
51 chained MOS inverters, which is represented by a DAE with
155 unknowns and 664 parameters. We computed the sensitivities
of the output of the first inverter over one period of oscillation,
and then used these sensitivities to compute the sensitivity of the
oscillation period to the parameters.

We first ran a trapezoidal LMS simulation for several periods of
oscillation, and found the period to be 2.447 · 10−3. Inspecting
the transient waveform, we found a periodic initial condition,
i.e., an initial condition that immediately results in a periodic
waveform. We then computed direct and adjoint sensitivities over
one oscillator period, using a trapezoidal transient situation with
3000 timepoints.

As the output is switching, the most significant parameters are the
load capacitances (CL) at the output of the second, fifty-first, third,
and fiftieth inverters. These are the stages feeding and loading the
output inverter and are themselves also switching at roughly the
same times. In Figure 8, we have displayed the sensitivities of Vout

with respect to these parameters, in volts per percent deviation
from the nominal capacitance. The sensitivities of Vout(t) to CL2

are plotted in Figure 9, with Vout(t) shown below for reference.
TADsens computed the sensitivities at T = 2.447 ·10−3 in 24.6
seconds, 300 times faster than the direct method’s 7392 seconds.

We can use the value of ~m∗(Tosc, nom) =
dVout(t)

d~p

∣

∣

t=Tosc, nom
we have

computed to find the parametric sensitivities of the oscillator period,
Tosc. We provided the DAE with a periodic initial condition, so



IV CONCLUSION 6

Ring Oscillator Sensitivities (V/%), Direct Method

Computation Time (for T=2.447e-03): 7392 seconds

t ∂Vout

∂CL2
/ 1

CL2,nom

∂Vout

∂CL51
/ 1

CL51,nom

∂Vout

∂CL4
/ 1

CL4,nom

∂Vout

∂CL50
/ 1

CL50,nom

4.910e-04 -4.18740e-17 -5.61312e-13 -2.02375e-23 -4.56978e-16
7.364e-04 -1.29366e-21 -1.73412e-17 -6.25219e-28 -1.41179e-20
1.227e-03 1.72563e-02 1.76001e-02 1.64867e-02 1.63961e-02
1.473e-03 9.49880e-07 1.01082e-06 9.07513e-07 9.04581e-07
1.718e-03 2.93461e-11 3.12287e-11 2.80372e-11 2.79466e-11
2.209e-03 2.80088e-20 2.97947e-20 2.67598e-20 2.66733e-20
2.447e-03 -3.80260e-02 -3.74976e-02 -3.53447e-02 -3.51341e-02

Ring Oscillator Sensitivities (V/%), Adjoint Method

Computation Time (for T=2.447e-03): 24.6 seconds

t ∂Vout

∂CL2
/ 1

CL2,nom

∂Vout

∂CL51
/ 1

CL51,nom

∂Vout

∂CL4
/ 1

CL4,nom

∂Vout

∂CL50
/ 1

CL50,nom

4.910e-04 -4.15253e-17 -5.43021e-13 -2.00828e-23 -4.39843e-16
7.364e-04 -1.28288e-21 -1.67761e-17 -6.20441e-28 -1.35885e-20
1.227e-03 1.73271e-02 1.76544e-02 1.65806e-02 1.64862e-02
1.473e-03 9.53771e-07 1.01257e-06 9.12678e-07 9.09480e-07
1.718e-03 2.94663e-11 3.12830e-11 2.81968e-11 2.80980e-11
2.2d09e-03 2.81238e-20 2.98567e-20 2.69121e-20 2.68178e-20
2.447e-03 -3.82135e-02 -3.76212e-02 -3.55460e-02 -3.53277e-02

Fig. 8: Ring oscillator sensitivities, in volts per percent of ~pnom.

−0.04

−0.02

0

0.02

S
en

si
ti

v
it

y

∂Vout(t)
∂CL2

/ 1
CL2,nom

, Ring Oscillator

Direct

Adjoint

0 0.5 1 1.5 2 2.5

·10−3

0

2

4

Time (s)

V
o
u
t(

t)

Fig. 9: Parameter sensitivity of the output of the first inverter to CL2;
the lower plot is of the nominal output.

the following must hold:
Vout(Tosc,~p)−Vout(0,~p) = 0. (32)

Taking the derivative of both sides with respect to the parameters
and applying the chain rule,

∂Vout(Tosc,~p)

∂~p
+

∂Vout(Tosc,~p)

∂Tosc

dTosc

d~p
= 0. (33)

So, the parameter sensitivity of the oscillator period can be found
by evaluating

dTosc

d~p
=−

~m∗(Tosc, nom)
∂Vout(Tosc,~p)

∂Tosc

∣

∣

Tosc, nom,~pnom

. (34)

We found the time derivative of Vout at Tosc, for nominal parameters,
to be 7.477 ·104 V/s. Using this information, we calculated the
sensitivity of the oscillator period with respect to the four most
significant parameters, as shown in Figure 10.

IV. Conclusion
We have presented TADsens, a theoretically rigorous, numerically
accurate, and computationally efficient formulation for transient
adjoint parameter sensitivities of a DAE output. We have developed

Sensitivity of Oscillator Period (% of Tosc, nom/% of ~pnom)

∂Tosc

∂CL2
/

Tosc, nom

CL2,nom

∂Tosc

∂CL51
/

Tosc, nom

CL51,nom

∂Tosc

∂CL4
/

Tosc, nom

CL4,nom

∂Tosc

∂CL50
/

Tosc, nom

CL50,nom

Direct 2.0784e-02 2.0495e-02 1.9318e-02 1.9203e-02
Adjoint 2.0886e-02 2.0562e-02 1.9428e-02 1.9309e-02

Fig. 10: Sensitivities of ring oscillator period, in percent of nominal
period per percent deviation from ~pnom.

theory for applying adjoints to the DAE sensitivity problem,
yielding concrete insights into the response of the adjoint DAE to a
δ -function input; in particular, showing that the response consists
of δ -function and finite components. We have demonstrated that
both components can be computed in a numerically well-posed
manner. We have implemented TADsens in Berkeley MAPP,
a MATLAB® simulator freely available on github. Through
three circuit examples, we have confirmed that TADsens closely
matches results obtained analytically and from direct sensitivity
computation. The latter two examples also demonstrate that
TADsens is viable for larger circuits with high degrees of
nonlinearity. We have shown that, for large circuits, TADsens is
more than two orders of magnitude faster than direct computation.

Acknowledgments
JR thanks Eric Keiter for bringing the problem to his attention.
Support from Sandia National Laboratory and the U.S. National
Science Foundation (NSF) is gratefully acknowledged.

References
[1] U. M. Ascher and L. R. Petzold, Computer methods for ordinary

differential equations and differential-algebraic equations. Philadel-
phia: SIAM, 1998.

[2] J. Roychowdhury, Numerical Simulation and Modelling of Electronic
and Biochemical Systems, vol. 3. NOW Publishers, December 2009.

[3] G. Strang, Introduction to Linear Algebra. Wellesley-Cambridge
Press, Wellesley, MA, 1993.

[4] S. Director and R. Rohrer, “The Generalized Adjoint Network and
Network Sensitivities,” IEEE Trans. Ckt. Theory, vol. 16, pp. 318–
323, August 1969.

[5] D. Hocevar, P. Yang, T. Trick, and B. Epler, “Transient Sensitivity
Computation for MOSFET Circuits,” IEEE Trans. CAD, vol. 4,
pp. 609–620, October 1985.

[6] P. Feldmann, T. V. Nguyen, S. W. Director, and R. A. Rohrer,
“Sensitivity computation in piecewise approximate circuit simulation,”
IEEE Trans. CAD, vol. 10, no. 2, pp. 171–183, 1991.

[7] F. Liu and P. Feldmann, “A time-unrolling method to compute
sensitivity of dynamic systems,” in Proc. IEEE DAC, June 2014.

[8] K.V. Aadithya, E. Keiter and T. Mei, “DAGSENS: Directed acyclic
graph based direct and adjoint transient sensitivity analysis for event-
driven objective functions,” in Proc. ICCAD, pp. 155–162, Nov. 2017.

[9] Y. Cao, S. Li and L. Petzold, “Adjoint sensitivity analysis for
differential-algebraic equations: algorithms and software,” Journal
of Computational and Applied Mathematics, vol. 149, pp. 171–191,
December 2002.

[10] Y. Cao, S. Li, L. Petzold, and R. Serban, “Adjoint sensitivity analysis
for differential-algebraic equations: The adjoint DAE system and its
numerical solution,” SIAM Journal on Scientific Computing, vol. 24,
no. 3, pp. 1076–1089, 2003.

[11] A. Meir and J. Roychowdhury, “BLAST: Efficient Computation of
Nonlinear Delay Sensitivities in Electronic and Biological Networks
using Barycentric Lagrange enabled Transient Adjoint Analysis,” in
Proc. IEEE DAC, June 2012.

[12] T. Wang, A.V. Karthik, B. Wu, J. Yao, and J. Roychowdhury, “MAPP:
The Berkeley Model and Algorithm Prototyping Platform,” in Proc.
IEEE CICC, pp. 461–464, September 2015.

[13] “Berkeley MAPP source code.” Downloadable from web site
https://github.com/jaijeet/MAPP.

[14] L. Chua and P.-M. Lin, Computer-aided analysis of electronic
circuits: algorithms and computational techniques. Englewood Cliffs,
N.J.: Prentice-Hall, 1975.

[15] A. Oppenheim and A. Willsky, Signals and Systems. Prentice-Hall,
1997.

[16] C. Gear, Numerical initial value problems in ordinary differential
equations. Prentice-Hall series in automatic computation, Englewood
Cliffs, N.J.: Prentice-Hall, 1971.


