
Hardness and Algorithms for Robust and Sparse Optimization

Eric Price * 1 Sandeep Silwal * 2 Samson Zhou * 3

Abstract

We explore algorithms and limitations for sparse
optimization problems such as sparse linear re-
gression and robust linear regression. The goal
of the sparse linear regression problem is to iden-
tify a small number of key features, while the
goal of the robust linear regression problem is to
identify a small number of erroneous measure-
ments. Specifically, the sparse linear regression
problem seeks a k-sparse vector x ∈ Rd to mini-
mize ‖Ax−b‖2, given an input matrixA ∈ Rn×d
and a target vector b ∈ Rn, while the robust
linear regression problem seeks a set S that ig-
nores at most k rows and a vector x to mini-
mize ‖(Ax− b)S‖2. We first show bicriteria, NP-
hardness of approximation for robust regression
building on the work of (O’Donnell et al., 2015),
which implies a similar result for sparse regres-
sion. We further show fine-grained hardness of
robust regression through a reduction from the
minimum-weight k-clique conjecture. On the
positive side, we give an algorithm for robust re-
gression that achieves arbitrarily accurate addi-
tive error and uses runtime that closely matches
the lower bound from the fine-grained hardness
result, as well as an algorithm for sparse regres-
sion with similar runtime. Both our upper and
lower bounds rely on a general reduction from
robust linear regression to sparse regression that
we introduce. Our algorithms, inspired by the
3SUM problem, use approximate nearest neigh-
bor data structures and may be of independent
interest for solving sparse optimization problems.
For instance, we demonstrate that our techniques

1Department of Electrical and Computer Engineering, The Uni-
versity of Texas at Austin. 2Electrical Engineering and Com-
puter Science Department, Massachusetts Institute of Technol-
ogy. 3Computer Science Department, Carnegie Mellon Univer-
sity.. Correspondence to: Eric Price <ecprice@gmail.com>,
Sandeep Silwal <silwal@mit.edu>, Samson Zhou <sam-
sonzhou@gmail.com>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

can also be used for the well-studied sparse PCA
problem.

1. Introduction
Sparsity is often a key feature embedded within large
datasets and fundamentals tasks in data science and ma-
chine learning. For example, in the sparse linear regression
or variable selection problem, the goal is to find a k-sparse
vector x ∈ Rd to minimize ‖Ax−b‖2, given an input matrix
A ∈ Rn×d and a target vector b ∈ Rn. The intuition is that
the target vector can be effectively summarized as the linear
combination of a small number of columns ofA that denote
the important features of the data. Similarly, in the robust
linear regression or constraint selection problem, the goal
is to find a set S that ignores at most k rows and a vector
x ∈ Rd to minimize ‖(Ax − b)S‖2, given an input matrix
A ∈ Rn×d and a target vector b ∈ Rn, where the notation
(·)S means we only measure the loss over coordinates in S.
In other words, we suppose that up to k entries of the target
vector can be arbitrarily corrupted and thus ignored in the
computation of the resulting empirical risk minimizer. In
both the sparse and robust linear regression problems, the
L2 loss function can be naturally generalized to other loss
functions that align with specific goals, such as truncating
or mitigating the penalty beyond a certain threshold.

Sparsity is a desirable attribute for model design in ma-
chine learning, statistics, estimation, and signal processing.
Simpler models with a small number of variables not only
provide more ease for interpetability, but also tend to have
smaller generalization error (Foster et al., 2015). A com-
mon algorithmic approach for acquiring sparse vectors for
the task of sparse linear regression is to use greedy algo-
rithms that iteratively select features, e.g., stepwise selec-
tion, backward elimination, and least angle regression. An-
other common technique for inducing sparse solutions is to
penalize the objective with a regularization function. For
example, the well-known LASSO adds a penalty term to the
regression objective that is proportional to the L1 norm of
the underlying minimizer x (Tibshirani, 1996) while ridge
regression (Hoerl & Kennard, 1970) often adds a penalty
that is proportional to the L2 norm of x.

Hardness and Algorithms for Robust and Sparse Optimization

1.1. Our Results

We study algorithms and limitations for sparse regression
and robust regression. In particular, we consider the follow-
ing problems:

Problem 1.1 (Robust Regression). Given A ∈ Rn×d, b ∈
Rn, a loss function L : R∗ → R, and integer 0 < k ≤
n, find T ⊂ [n] satisfying |T | ≥ n − k and x ∈ Rn to
minimize L((Ax − b)T), where (Ax − b)T denotes that
we only measure the loss on the coordinates in T . The
coordinates not in T are called ignored.

Problem 1.2 (Sparse Regression). Given A ∈ Rn×d, b ∈
Rn, a loss function L : R∗ → R, and integer 0 < k ≤ n,
find x ∈ Rn with ‖x‖0 ≤ k to minimize L(Ax− b).

(O’Donnell et al., 2015) showed the hardness of approxi-
mation for maximizing the number of satisfied linear equa-
tions; their result can be translated to show bicriteria robust
regression is NP-hard, i.e., it is NP-hard to achieve a mul-
tiplicative factor approximation to the optimal loss while
allowing a constant factor larger parameter for sparsity. We
introduce a further reduction to show the NP-hardness of
bicriteria sparse regression.

Theorem 1.1. Let L : Rn → R be any loss function such
that L(0n) = 0 and L(x) > 0 for x 6= 0n. Given a matrix
X ∈ Ra×b, vector c ∈ Ra, and a sparsity parameter t, let
OPT = minw L(Xw − c) where ‖w‖0 = t. Then for any
C1 > 1 and any constant C2 > 1, it is NP-hard to find w′

satisfying ‖w′‖0 = C2t such that L(Xw′−c) ≤ C1 ·OPT .

We remark that the statement of Theorem 1.1 holds for any
parameter C1 > 1, showing that multiplicative approxi-
mation is NP-hard, even for arbitrarily large multiplicative
factors that could depend on n and d. It also applies to a
large number of commonly used loss functions, such as Lp
loss or various M -estimators, e.g., see Table 1. For com-
pleteness, we also formalize the proof of (O’Donnell et al.,
2015) to show bicriteria hardness of robust regression.

To prove Theorem 1.1, we prove a reduction (see Corollary
2.3), which states that an algorithm for the sparse regression
problem can be used to solve the robust regression problem
using a polynomial time blow-up. However, it is known
that the sparse regression problem requires runtime O(nk)
under the minimum-weight k-clique conjecture (Gupte &
Vaikuntanathan, 2021); could it be the case that robust re-
gression is significantly easier? We give a fine-grained hard-
ness result showing this is not the case:

Theorem 1.2. For every ε > 0, there exists a sufficiently
large n such that the robust regression problem requires
Ω(nk/2+o(1)) randomized time, unless the minimum-weight
k-clique conjecture is false.

To complement our fine-grained hardness results, we de-
velop nearly-matching upper bounds with additive error in

Loss function Formulation
Lp |x|p

Cauchy λ2

2 log
(
1 + (x/λ)2

)
Fair λ|x| − λ2 ln

(
1 + |x|

λ

)
Geman-McClure x2

2+2x2

Huber

{
x2/2 if |x| ≤ λ
λ|x| − λ2/2 otherwise

L1 − L2 2

(√
1 + x2

2 − 1

)
Tukey

λ2

6

(
1−

(
1− x2

λ2

)3)
if |x| ≤ λ

λ2

6 otherwise

Welsch λ2

2

(
1− e−(xλ)

2)
Table 1. Theorem 1.1 shows the bicriteria hardness of approxima-
tion for sparse regression for common loss functions. The same
bicriteria hardness also holds for robust regression.

the case there exists a diagonal S ignoring k rows achiev-
ing zero loss. Namely, we give an algorithm with time
O(nk(n/ε)Ck), where C < 1 can be any constant arbitrar-
ily close to 1

2 , thereby nearly matching the lower bounds of
Theorem 1.2.

Theorem 1.3. Given A ∈ Rn×d and b ∈ Rn such that
minS,x ‖S(Ax − b)‖2 = 0 over all diagonal matrices S
with n − k one entries in the diagonal and k zero entries,
there exists an algorithm that returns a diagonal matrix S′

with n − k one entries in the diagonal and k zero entries
and a vector x′ such that ‖S′(Ax′ − b)‖2 ≤ ε, in time

min
c≥1

O

(
nk ·

(
12c · n · ‖b‖2

ε

) k
2 ·(1+1/(2c2−1))

)
.

We obtain an algorithm with a similar guarantee for sparse
regression.

Theorem 1.4. Given A ∈ Rn×d and b ∈ Rn such that
there exists a k-sparse vector x satisfying Ax = b, there
exists an algorithm that returns a k-sparse vector z ∈ Rd
satisfying ‖Az − b‖2 ≤ ε, in time

min
c≥1

O

(
nk ·

(
12c · d · ‖b‖2

ε

) k
2 ·(1+1/(2c2−1))

)
.

Our algorithms for Theorems 1.4 and 1.3 are inspired by
techniques for the 3SUM problem and its generalization
to k integers, in which the goal is to determine whether
a set of n integers contain k integers that sum to zero.
Rather than check all O(nk) possible k-sparse vectors,
we first input all k

2 -sparse vectors into an approximate
nearest neighbor (ANN) data structure. Given a query q,

Hardness and Algorithms for Robust and Sparse Optimization

the ANN data structure will output a point x such that
‖x − q‖2 ≤ c · miny ‖y − q‖2, where the minimum is
taken over all points that are input into the data structure.
We can thus query the ANN data structure over all

(
n
k/2

)
differences between the measurement vector b and all k

2 -
sparse vectors, reconstructing the k-sparse vector from the
query that achieves the minimum value.

Surprisingly, our technique also works for the sparse princi-
pal component analysis (PCA) problem, in which the goal
is to find a k-sparse unit vector v ∈ Rn to maximize vTAv,
given an input PSD matrix A ∈ Rn×n of rank r.

Theorem 1.5. There exists an algorithm that uses
Õ
(
k2

ε ·
(
r
(
nκ
ε

)k(1+ε)/2
+
(
1
ε

)r/2+1
))

time and with
high probability, outputs a k-sparse unit vector u such that
with high probability,

uTAu ≥ (1− ε) max
‖v‖2=1 ,‖v‖0≤k

vTAv,

where κ is the condition number of A.

We also give a simple NP-hardness proof of the robust re-
gression problem in the appendix using a reduction from
the exact cover problem, in which the goal is to determine
whether there exists a sub collection S′ (of an input col-
lection S of subsets of X) such that every member of X
belongs to exactly one set in S′. Finally in the appendix,
we also give explicit examples of why natural algorithms
such as the greedy algorithm or alternating minimization
fail to achieve multiplicative guarantees.

1.2. Prior Works

Robust regression. Robust regression has been well-
studied in recent years. However, virtually all works rely
on distributional assumptions on the input. The goal is to
statistically recover the coefficient vector which minimizes
the expected loss given a small number of corruptions to
the distributional input. In contrast, we assume no distribu-
tional assumptions at all and our goal is to solve the com-
putational problem given a corrupted input. Distributional
assumptions have been well-studied in part because they are
tractable; see (Klivans et al., 2018; Karmalkar et al., 2019;
Diakonikolas et al., 2019; Cherapanamjeri et al., 2020; Zhu
et al., 2020; Bakshi & Prasad, 2021; Jambulapati et al.,
2021) and the references within for a more comprehensive
overview of distributional works.

Indeed, many such works such as (Bhatia et al., 2015; 2017;
Suggala et al., 2019) state their main motivation behind us-
ing distributional assumptions is that they believe the com-
putational version, which we study, to be ‘hard.’ Since
the focus of these works is statistical in nature, they do
not rigorously justify why the robust regression problem in
general is computationally hard. Our work aims to fill in

this gap and initiate the study of hardness for robust regres-
sion. Note that some works such as (Bhatia et al., 2015;
2017; Suggala et al., 2019) incorrectly state that a proof of
NP-hardness of robust regression is given in (Studer et al.,
2012). However, (Studer et al., 2012) actually does not
study robust regression at all; they study the problem of
sparse regression, which although seems related, does not
imply anything about the hardness of robust regression. In
fact, one of our results (Corollary 2.3) gives a reduction
from robust regression to sparse regression, which implies
that robust regression is a strictly easier problem than sparse
regression. Thus hardness for sparse regression does not
necessarily imply hardness for robust regression.

Sparse regression. The sparse regression problem has
also recently received significant attention, e.g., (Natara-
jan, 1995; Davis et al., 1997; Mahabadi, 2015; Foster
et al., 2015; Har-Peled et al., 2018; Chen et al., 2019;
Gupte & Vaikuntanathan, 2021). (Natarajan, 1995) showed
the NP-harndess of sparse regression while (Foster et al.,
2015) showed that assuming SAT cannot be solved by
a deterministic algorithm in O(nlog logn) time, then no
polynomial-time algorithm can find a k′-sparse vector x
with ‖Ax − b‖2 ≤ poly(n), for k′ = k · 2log1−δ n. Sub-
sequently, (Har-Peled et al., 2018) showed the sparse re-
gression required Ω(nk/2) time, assuming the k-SUM con-
jecture from fine-grained complexity. (Gupte & Vaikun-
tanathan, 2021) strengthened this lower bound to Ω(nk−ε)
time, for any constant ε > 0, using the minimum-weight
k-clique conjecture.

L1-relaxation based algorithms such as basis pursuit (Chen
et al., 1998), Lasso (Tibshirani, 1996), and the Dantzig
selector (Candes & Tao, 2007) have been developed for
practical usage that do not involve worst-case inputs. For
example, they consider the setting b = Ax + g, where
the noise vector g is drawn from a Gaussian distribution
and the design matrix A is well-conditioned. There has
also been an extensive study on other penalty classes, such
as the smoothly clipped absolute deviation penalty (Fan
& Li, 2001), the Lp norm for bridge estimators (Frank
& Friedman, 1993), or as the regularization function for
M -estimators (Loh & Wainwright, 2015). (Chen et al.,
2019) showed the NP-hardness of O(nC1dC2) multiplica-
tive approximation for these common regularizations of the
sparse regression problem and fixed constants C1, C2 > 0,
when the loss function is convex and the penalty function is
sparse, such as L1-relaxation. By comparison, we show bi-
criteria NP-hardness of any multiplicative approximation of
the actual sparse regression problem, even when the sparsity
constraint can be relaxed up to a multiplicative factor.

Other sparse optimization problems. Sparsity has also
been highly demanded in other optimization problems. We

Hardness and Algorithms for Robust and Sparse Optimization

show that our algorithmic ideas also extend to the sparse
PCA problem, which was first introduced by (d’Aspremont
et al., 2007) and subsequently shown to be NP-hard by
(Moghaddam et al., 2006). In fact, it is NP-hard to
obtain any multiplicative approximation if the input ma-
trix is not PSD (Magdon-Ismail, 2017) and to obtain a
(1 + ε)-multiplicative approximation when the input matrix
is PSD (Chan et al., 2016a), though (Asteris et al., 2015b)
gave an additive polynomial time approximation scheme
based on the bipartite maximum weight matching problem.
In practice, techniques for the more general PCA prob-
lem based on rotating previously studied PCA approaches
based on rotation (Jolliffe, 1995) or thresholding (Cadima
& Jolliffe, 1995) the top singular vector of the input ma-
trix seemed to suffice for specific applications. L1 relax-
ations (Jolliffe et al., 2003) and similar heuristics (Zou &
Hastie, 2005; Zou et al., 2006; Shen & Huang, 2008) have
also been considered for the sparse PCA problem. Another
line of direction considered semidefinite programming re-
laxations (d’Aspremont et al., 2008; Amini & Wainwright,
2008; d’Orsi et al., 2020; Chowdhury et al., 2020; 2022).

Our work also connects to the problem of recovering the
sparsest non-zero element in a linear subspace problem (see
Theorem G.1). This problem is known to be NP-hard in the
worst case (Coleman & Pothen, 1986). On the positive side,
there exists work on planted settings of the problem where
the subspace is generated by the span of random Gaussian
vectors along with a planted sparse vector; see (Demanet &
Hand, 2014) and references within.

2. Bicriteria Hardness of Approximation
We show the bicriteria hardness of approximation for both
robust regression and sparse regression. Our results also
generalize to loss functions that have no penalty on the zero
vector and positive penalty on any nonzero vector. The bi-
criteria hardness result for robust regression is immediately
implied by the results in (O’Donnell et al., 2015), but it is
not phrased in terms of the robust regression problem. We
formalize the details in Section A for completeness, where
the following theorem is proved.
Theorem 2.1. Given a matrixA ∈ Zn×d, a sparsity param-
eter k, and a vector b ∈ Rn, let OPT = minS,x ‖SAx −
Sb‖2, where the minimum is taken over all diagonal matri-
ces S that have k entries that are zero and n−k entries that
are one and all x ∈ Rd. Then for any C1 > 1 (which can
depend on the parameters n, d) and any constant C2 > 1,
it is NP-hard to find a matrix S′ with C2k entries that are
zero and n−C2k entries that are one and a vector x ∈ Rd
such that ‖S′Ax− S′b‖2 ≤ C1 ·OPT .

We now extend the bicriteria hardness results for the prob-
lem of sparse regression. Note that in the sparse regression
problem, including as many variables as possible only helps

us. For example, including as many columns as possible in
linear regression only enlarges the column space and hence
finds a possibly closer vector to the target. In the linear re-
gression case, we prove the following theorem, which states
that it is NP-hard to choose a set of columns to ignore, even
if we relax the number of ignored columns by a multiplica-
tive factor.
Theorem 2.2. Given a matrix X ∈ Ra×b, vector c ∈ Ra,
and a sparsity parameter t, let OPT = minw ‖Xw − c‖
where ‖w‖0 = t. Then for any C1 > 1 and any constant
C2 > 1, it is NP-hard to find w′ satisfying ‖w′‖0 = C2t
such that ‖Xw′ − c‖ ≤ C1 ·OPT .

Proof. We will show that solving the sparse regression
problem allows us to solve the robust regression problem.
Let A ∈ Zn×d, b ∈ Rn, and k be the parameters in The-
orem 2.1. Note that the matrix A in the proof of Theo-
rem 2.1 satisfies n > d. Given A, we construct the ma-
trix X ∈ R(n−d)×n so that the rows of X will span the
space that is orthogonal to the column subspace of A, i.e.,
XA = 0. We also let c = −Xb, and t = k. We claim
that if we can solve the sparse regression problem with this
derived instance, then we can solve the robust regression
problem of Theorem 2.1. Parameters C1 and C2 are the
same in both theorems.

First, note that the OPT value in Theorem 2.1 is equal to
0: we can ignore k linear constraints and get 0 loss. This
means that there exists a diagonal matrix S and a vector x
such that SAx − Sb = 0 which implies Ax − b = w for
‖w‖0 = k i.e., w has n − k zero entries. Therefore, the
value of OPT in the sparse regression problem is also 0 by
multiplying the equationAx−b = w by the matrixX since
X(Ax− b) = Xw implies Xw = c. Now suppose we can
solve the sparse regression problem with any factor C ′1 > 1
approximation while satisfying ‖w′‖0 ≤ C ′2k. Since we are
assuming a multiplicative approximation factor, w′ must
also evaluate to 0 loss in our objective. Furthermore, w′ has
n− C ′2k zero entries.

Now Xw′ = c which is the same as X(w′ + b) = 0. Thus,
w′ + b lies in the orthogonal complement of the rows of X
by our construction of X . Hence, w′ + b lies in the column
space ofA. Therefore, there exists some x′ such thatAx′ =
w′ + b or in other words, Ax′ − b = w′. Letting S′ have
the diagonal which is the indicator for the sparsity of w′,
we get that S′ has C2k zero entries on the diagonal. This
implies ‖S′Ax′ − S′b‖2 = 0 ≤ C1 · OPT . Since finding
such a pair S′, x′ is NP-hard from Theorem 2.1, it must be
the case that the sparse regression selection problem stated
in the current theorem statement must also be NP-hard, as
desired.

Observe that in the proof of Theorem 2.2, in one case, we
have Xw = c so that the resulting loss is the all zeros vec-

Hardness and Algorithms for Robust and Sparse Optimization

tor while in the other case, the resulting vector is nonzero.
Therefore, the proof of Theorem 2.2 generalizes to any loss
function L such that L(0n) = 0 and L(x) > 0 for x 6= 0n,
giving Theorem 1.1.

Note that the reduction given in the above proof implies the
following general statement: robust regression is ‘easier’
than sparse regression selection. That is, if there exists an
algorithm for sparse regression, we can use it to solve robust
regression as well.
Corollary 2.3. Let A be an algorithm that solves the
following sparse regression problem: minw ‖Xw −
c‖2 s.t. ‖w‖0 = t in time f(X, c, t). Consider the robust
regression problem of minS,x ‖S(Ax−b)‖2, where S is con-
strained to be a diagonal matrix with n−k one entries in the
diagonal and k zero entries. A solves this problem in time
f(X ′, c′, k) where X ′ is any matrix satisfying X ′A = 0
and c′ = −X ′b.

Proof. Proof follows from the proof of Theorem 2.2.

3. Fine-Grained Hardness
We prove a fine-grained hardness result for robust regres-
sion. We first need the following definition and theorem
from (Gupte & Vaikuntanathan, 2021).
Definition 3.1 (Definition 1 in (Gupte & Vaikuntanathan,
2021), k-SLRp). For any integer k ≥ 2 and 1 ≤ p ≤ ∞,
the k-sparse regression problem with respect to the `p norm
is defined as follows. Given a matrix A ∈ RM×N , a target
vector b ∈ RM , and a number δ > 0, distinguish between:

• YES instance: there is some k-sparse x ∈ RN such
that ‖Ax− b‖p ≤ δ, and

• NO instance: ∀k-sparse x ∈ RN , ‖Ax− b‖p > δ.

Theorem 3.1 (Theorem 3 in (Gupte & Vaikuntanathan,
2021)). For any integer k ≥ 4, the k-SLR2 problem re-
quires time Ω(Nk−o(1)) (randomized) time, unless the min-
weight-k-clique conjecture is false.

Using this theorem (or rather its proof), we can prove the
hardness of the following decision version of sparse regres-
sion:
Problem 3.1. Given a matrix A ∈ RM×N , a target vector
b ∈ RM , integer 0 < k ≤ M , and a number δ > 0,
distinguish between:

• YES instance: there is some diagonal matrix S with k
zeros on the diagonal and n− k ones on the diagonal
and some x ∈ RN such that ‖S(Ax− b)‖2 ≤ δ, and

• NO instance: for all diagonal matrices S with k ze-
ros and n − k ones on the diagonal and all x ∈ RN ,
‖S(Ax− b)‖2 > δ.

We first recall the following theorem of (Gupte & Vaikun-
tanathan, 2021) and the key underlying details of the proof
which we encapsulate in the following theorem.

Theorem 3.2. (Gupte & Vaikuntanathan, 2021) Let G =
(V,E) be a graph with N vertices with we denoting the
integer weight of edge e. Let W,k be integer parameters
and Z = |{(u, v) 6∈ E|u, v ∈ V }| to be the number of non-
edges in the graph G. Suppose that we know a partition
of the N vertices into k blocks of size N/k such that if a
k-clique of weight at most W exists then there is such a
k-clique with exactly one vertex in each block 1. Set

α =

√√√√max

(
1,
∑
e∈E

we + 8W

)
,

β =

√∑
e∈E

we + 8W + α2Z

·max

(
8Z, 50

(
α2Z,+

∑
e∈E

we

))
.

Define the matrix A =

(
C
D

)
and the vector b =

(
c
d

)
as

follows: C ∈ R(N2)×N with rows indexed by all unordered
pairs of possible edges and columns indexed by vertices.
For a possible edge e = (u, v) not in G, the row of C
corresponding to e has 2α in the columns of u and v and
the corresponding entry of c has α. If e = (u, v) ∈ E
then the columns of u and v have the entry 2

√
we and the

corresponding entry of c has
√
we. All other entries of C

are 0. We also have D ∈ Rk∈N

D =


β1 0 · · · 0
0 β1 · · · 0
· · · · · · · · · · · ·
0 0 · · · β1

 , d =


β
β
...
β


where 1 denotes a row vector of length N/k of all ones.
Finally, set δ =

√∑
e∈E we + 8W + α2Z > 0. The fol-

lowing statements hold about A and b:

• (Completeness) If G contains a k-clique of weight at
most W then we can let x be the indicator vector of
the clique and we have ‖Ax− b‖2 ≤ δ.

• (Soundness) If there exists x such that ‖Ax− b‖2 ≤ δ
then x must be the indicator vector of a k-clique in
G of weight at most W and furthermore, each block
of N/k vertices must have exactly one vertex in the
clique.

1This is a standard assumption and is without loss of general-
ity; see Section 2.2 of (Gupte & Vaikuntanathan, 2021). We can
assume the k blocks are N/k consecutive integers of {1, . . . , N}
in order.

Hardness and Algorithms for Robust and Sparse Optimization

We now formalize the conditions in the following formal
theorem which proves Theorem 1.2.

Theorem 3.3. For every ε > 0, there exists a sufficiently
largeM such that Problem 3.1 requires Ω(Mk/2+o(1)) ran-
domized time, unless the min-weight-k-clique conjecture is
false.

Proof. Consider the hard instance of Theorem 3.1 and 3.2,
given by A ∈ RM×N , b ∈ RM , δ > 0, and parameter k
where we set M = Θ(

(
N
2

)
), specified fully later. Note

that A in the proof in (Gupte & Vaikuntanathan, 2021) is
constructed from a min-weight-k-clique graph instance G
and is composed of matrices C,D in their notation (see
the statement of Theorem 3.2). We will augment A in two
ways. First, note that D there is a k × N matrix. We will
copy each row of D so that each row is copied k + 1 times.
The corresponding part of the b vector is also copied. We
will also add N additional rows to A: one additional row
C̃ · xi = 0 for each i ∈ [N] for some polynomially large
factor C̃. The parameter k in Problem 3.1 will be equal to
the same k in Theorem 3.1.

We now mimick the proof of Theorem 3.1 in (Gupte &
Vaikuntanathan, 2021). We first handle the easier direction.
We claim that if there is a k-clique of weight at most W for
the k-clique instance corresponding to A, then we are in the
YES case of Problem 3.1. Indeed, the proof of Theorem 3.1
in (Gupte & Vaikuntanathan, 2021), summarized in Theo-
rem 3.2, shows that we can let x be the indicator vector for
the k-clique and the loss is at most δ by ignoring k of the
C̃ · xi = 0 constraints, setting the value of the ignored vari-
ables to be equal to 1, and letting the rest of the variables
(which are not ignored) be equal to 0. The matrix D will
contribute 0 loss, even with the augmentation.

We now handle the remaining case. We claim that if there
exists S, x as in the YES case of Problem 3.1, then a k-
clique of weight at most W exists in G. (Soundness case
of Theorem 3.2). Let’s focus on the D matrix and point out
useful facts. Each row of D was copied sufficiently many
times such that we can’t ignore all the copies of any row of
D. Furthermore, the x vector is partitioned into k blocks of
size N/k and each row of D represents the constraint that
one of these N/k blocks sums to 1. Lastly, the sum of each
block must be in the range [1 − 2δ/β, 1 + 2δ/β] (for the
parameter β defined in Theorem 3.2) since otherwise, some
row of D will already give loss at least δ, which cannot
happen since we are assuming we are in the YES case of
Problem 3.1. This implies the following two statements.

First, each of the N/k (consecutive) blocks of x must have
at least 1 ignored variable. That is, for each block of N/k
coordinates, there must be some i belonging to the block
that has its corresponding C̃ · xi = 0 constraint ignored.
Otherwise, we will incur a loss larger than δ: the sum of

the variables in each block must be Ω(1) due to the prior
paragraph (otherwise we get a large loss for a row ofD) but
then summing the constraints C̃ ·xi = 0 for a block gives us
a large loss. The only way to avoid this is to ignore one of
the C̃ · xi = 0 for an index i in a block. Since we can only
ignore k variables and there are k blocks, it follows that
each block has one ignored variable and overall, we only ig-
nore the constraints of the form C̃ · xi = 0. The un-ignored
variables can now be made arbitrarily (polynomially) small
in absolute value by setting C̃ to be sufficiently large since
otherwise the constraint C̃ · xi = 0 contributes more than δ
loss.

The second statement we claim is that the ignored variable
in each block must have its value in the range [1−2δ/β, 1+
2δ/β]. This follows from the exact same reasoning used
in the proof of Theorem 3.1. To summarize, if the ignored
variable is outside this range, then the corresponding row of
D will induce loss larger than δ since we require the sum
of all variables in a block to be close to 1. In our case, we
can potentially get some contribution from the variables not
ignored. However, as stated previously, their contribution
to the loss can be made to be polynomially small by setting
C̃ large enough.

Given these two statements, the proof of the reduction fol-
lows exactly as in (Gupte & Vaikuntanathan, 2021): the
k ignored variables, one in each block, will correspond to
the k-clique instance. To recap the argument, the same
steps as in the proof of Theorem 3.1 (and 3.2 in (Gupte &
Vaikuntanathan, 2021)) show that we must have (u, v) ∈ E
for every xu, xv that are ignored. Otherwise, the loss of
‖Ax − b‖2 coming from the non-edge terms in the matrix
C is much larger than δ already (see Page 8 in (Gupte &
Vaikuntanathan, 2021)). In addition, the proof of the fact
that the k-clique instance has weight at mostW also follows.
This is because our vector x satisfies the same conditions re-
quired for the soundness case of Theorem 3.2; this portion
of the proof in (Gupte & Vaikuntanathan, 2021) proceeds by
lower bounding the error from the matrix C alone, which is
unchanged for us, and comparing it to the given hypothesis
that the overall error is bounded by δ. Thus the same lower
bound statements employed there also hold for us as they
only consider the ignored variables. See the second half of
Page 8 in (Gupte & Vaikuntanathan, 2021).

Finally, the runtime bound required is at least Ω(Nk−o(1))
by Theorem 3.1. Note that the final value of M is equal to
M =

(
N
2

)
+ N + k2 ≤ 2N2. Therefore, the runtime is at

least Ω(Nk−o(1)) = Ω(Mk/2+o(1)).

4. Upper Bounds
In this section, we present upper bounds for sparse linear re-
gression and robust linear regression. We utilize data struc-

Hardness and Algorithms for Robust and Sparse Optimization

tures for the following formulation of the c-approximate
nearest neighbor problem. See (Indyk & Motwani, 1998;
Har-Peled et al., 2012) for more information.
Problem 4.1 (Approximate nearest neighbor). Given a set
P of n points in a d-dimensional Euclidean space, the c-
approximate nearest neighbor (c-ANN) problem seeks to
construct a data structure that, on input query point q, re-
ports any x ∈ P such that ‖x− q‖2 ≤ c minp∈P ‖p− q‖2.

In particular, we use the following data structure:
Theorem 4.1. (Andoni & Razenshteyn, 2015) For any fixed
constant c > 1, there exists a data structure that solves
the c-ANN problem in d-dimensional Euclidean space on
n points with O(dnρ+o(1)) query time, O(n1+ρ+o(1) + dn)
space, and O(dn1+ρ+o(1)) pre-processing time, where ρ =

1
2c2−1 .

We first get an algorithm for sparse regression in the noise-
less setting.
Theorem 4.2. Suppose we are given A ∈ Rn×d
and b ∈ Rn such that there exists a k-sparse vec-
tor x satisfying Ax = b. Algorithm 1 returns
a k-sparse z satisfying ‖Ax − Az‖2 ≤ ε in time

minc≥1O

(
nk ·

(
12c·d·‖b‖2

ε

) k
2 ·(1+1/(2c2−1))

)
.

Proof. By scaling, we can assume b to be a unit vector with-
out loss of generality. This means our ε term will implicitly
be multiplied by a ‖b‖2 factor. We first show that z satisfies
the approximation guarantees of Theorem 4.2. Note z is k-
sparse since all y and ỹ considered in line 18 of Algorithm
1 are k/2-sparse in Rd (all y′s considered satisfy that Ay
is in the image of some k/2 columns of A). Our task now
is to show ‖Az − Ax‖2 ≤ ε. Now let x = x1 + x2 be
any division of x into the sum of two k/2-sparse vectors x1
and x2. Define b1 = Ax1, b2 = Ax2 so that b = b1 + b2
and let y be such that Ay is the closest point in some net
N (considered in line 6 of the algorithm) to b1. By the
choice of our net, we know that ‖Ay − Ax1‖2 ≤ δ. We
have ‖(b − Ay) − b2‖2 = ‖(b − Ay) − (b − Ax1)‖2 =
‖Ay − Ax1‖2 ≤ δ. Letting b′ = Ay for this y and con-
sidering this choice of y and b′ in the loop on line 15 of
Algorithm 1, the above calculation shows the existence of a
b′′ = b − b′ such that ‖b2 − b′′‖ ≤ δ. By the construction
of D in line 11 of Algorithm 1, it follows that D will output
a b̃ on query b′′ such that ‖b′′ − b̃‖2 ≤ 2cδ. This is because
there must exist some ȳ ∈ N such that ‖Ax2−Aȳ‖2 ≤ δ by
our net. Thus since ‖b2−b′′‖ ≤ δ, we have ‖b′′− b̄‖2 ≤ 2δ
by triangle inequality asince D is only guaranteed to return
a c-approximate neighbor.

Altogether, for this y and corresponding ỹ from line 17 of
Algorithm 1, we have

‖A(y + ỹ)− b‖2 = ‖A(y + ỹ)− (Ax1 +Ax2)‖2

Algorithm 1 Sparse Regression Upper Bound
1: Input: Matrix A ∈ Rn×d, vector b ∈ Rd, sparsity k,

accuracy ε
2: procedure SPARSEREGRESSION-

UPPERBOUND(A, b, k, ε)
3: δ ← ε/((2c+ 2)
4: S ← ∅
5: for each choice T of k/2 columns of A do
6: N ← δ net over the image of AT . AT

denotes the submatrix of A with only columns in T
7: for each b′ = Ay ∈ N do
8: S ← S ∪ (b′, y, T)
9: end for

10: end for
11: D ← c-approximate nearest neighbor data structure

for {b′ | (b′, y, T) ∈ S}
12: Best←∞
13: for each (b′, y, T) ∈ S do
14: b′′ ← b− b′
15: (b̃, ỹ, T̃)← output of D on query b′′

16: Best← min(Best, ‖b′ + b′′ − b‖2) .
We are extending y, ỹ to k/2 sparse vectors in Rd in
the natural way, i.e., supported on the coordinates of T
and T̃ respectively

17: if Best is updated then
18: Associate vector z = y + ỹ with Best
19: end if
20: end for
21: Return the vector z associated with Best
22: end procedure

= ‖(Ay −Ax1) + (Aỹ −Ax2)‖2
≤ ‖A(y − x1)‖2 + ‖Aỹ − b2‖2
≤ δ + ‖Aỹ − b2‖2
≤ δ + ‖b̃− b′′‖2 + ‖b′′ − b2‖2 (from Aỹ = b̃)
≤ δ + 2cδ + δ = (2c+ 2)δ ≤ ε,

or in other words, ‖A(x− z)‖2 ≤ ε, as desired.

We now compute the runtime of Algorithm 1. The size
of N is upper bounded by |N | ≤

(
3·
δ

)k/2 ≤ (
12c
ε

)k/2
.

Picking all the choice of T and looping over all the vec-
tors in N in the for loop of line 5 of Algorithm 1 takes
time at most O(dk/2 · |N | · nk). Initializing D on the
set S is dominated by the |S| many queries performed
on D which we discuss now. Looping over S and query-
ing D in the for loop on line 15 takes time O(|S| · k ·
|S|1/(2c2−1)) by the guarantees of approximate nearest
neighbor search (Andoni & Razenshteyn, 2015). Note that
|S| ≤ dk/2 · |N |. Putting everything together, the total
runtime is O

(
dk/2 · |N | · nk + k · |S| · |S|1/(2c2−1)

)
=

Hardness and Algorithms for Robust and Sparse Optimization

O

(
nk ·

(
12c·d
ε

) k
2 ·(1+1/(2c2−1))

)
.

By modifying the size of the net, we can also find a sparse
vector z that is arbitrarily close to the sparse vector x as
well.

Corollary 4.3. Suppose we are given A ∈ Rn×d and b ∈
Rn such that there exists a k-sparse vector x satisfying
Ax = b. There exists an algorithm that returns a k-sparse
z satisfying ‖z − x‖2 ≤ ε in time

min
c≥1

O

(
nk ·

(
12c · d · κ · ‖b‖2

ε

) k
2 ·(1+1/(2c2−1))

)
,

where κ = σmax(A)/σmin(A) where the ratio is over non-
zero singular values.

Proof. We modify Algorithm 1 by setting ε′ = ε/κ in The-
orem 4.2. This implies ‖Az − Ax‖2 ≤ ε/κ. Letting A+

denote the pseudo-inverse of A, we have that ‖x − z‖2 =
‖A+A(x− z)‖2 ≤ ‖A+‖2‖A(x− z)‖2 ≤ κ · εκ ≤ ε, as de-
sired. The runtime follows from the parameter change.

Remark 4.4. By letting c = 2 and under the assumption
‖b‖2 = O(1), we achieve the runtime of

nk · (O(d)/ε)k/2·(1+1/7).

By letting c = Θ(1/
√
ε), we can achieve the runtime of

nk · (O(d)/ε1.5)k/2·(1+ε).

In general, the best choice for c depends on the relationship
between d and k.

Remark 4.5. Note that in Corollary 4.3, we can replace
the parameter κ by the largest condition number κ′ of any
n× k submatrix of A since x− z is a k-sparse vector. This
is an improvement as κ′ ≤ κ.

In Section B, we also give an algorithm which recovers
x perfectly when x is a binary signal or each coordinate
has a finite number of choices. This setting is motivated
by a number of applications including wideband spectrum
sensing, wireless networks, group testing, error correcting
codes, spectrum hole detection for cognitive radios, massive
Multiple-Input Multiple-Output (MIMO) channels, etc. to
name a few (Candès et al., 2005; Rossi et al., 2014; Axell
et al., 2012; Dymarski & Romaniuk, 2013; Ens et al., 2013;
Keiper et al., 2016; Fosson, 2018; Karahanoglu & Erdogan,
2012; Nakarmi & Rahnavard, 2012; Meng et al., 2010) In
this setting, we can recover x perfectly in roughly O(d)k/2

time using Algorithm 4:

Theorem 4.6. Suppose we are given A ∈ Rn×d and
b ∈ Rn such that there exists a unique k-sparse vector

x satisfying Ax = b. Furthermore, suppose that each coor-
dinate of x must lie in the set {0} ∪U . Then there exists an
algorithm that recovers x exactly in time

nk(d|U |)k/2 +O(1) · (d|U |)k/2.

Remark 4.7. In the case of binary vectors, U = {1} so we
achieve the runtime of (nk +O(1)) · dk/2.

Using Corollary 2.3, we can also get an algorithm for robust
regression, formalizing the conditions of Theorem 1.3.

Theorem 4.8. Suppose we are given A ∈ Rn×d and
b ∈ Rn such that minS,x ‖S(Ax − b)‖2 = 0 where S is
constrained to be a diagonal matrix with n− k one entries
in the diagonal and k zero entries. Algorithm 2 returns a
diagonal matrix S′ with n− k one entries in the diagonal
and k zero entries and a x′ such that ‖S′(Ax′ − b)‖2 ≤ ε
in time

min
c≥1

O

(
nk ·

(
12c · n · ‖b‖2

ε

) k
2 ·(1+1/(2c2−1))

)
.

Proof. We assume we are not in the if statement case in line
3 of Algorithm 2 since otherwise we are done. Consider the
quantities X and c associated with the robust regression
instance arising from Corollary 2.3. Now from Corollary
2.3, we know the following statements: first, we know that
all non zero singular values of X must be 1 since XXT is
the identity matrix and the non zero eigenvalues of XTX
and XXT are the same. Second, we know that ‖z−w‖2 ≤
ε where Xw = c. This implies that if Xz = c′ then ‖c −
c′‖ ≤ ε. Therefore, we have Xz = c+ e or in other words,
X(z + b) = e for ‖e‖2 ≤ ε. Now write z + b = v1 + v2
where v1 is the orthogonal projection of z + b onto the
column span of A. We know that Xv1 = 0 by definition
and thus, there exists a x̃ such thatAx̃ = v1. This x̃ satisfies

‖Ax̃− (z + b)‖2 = ‖v2‖2 = ‖e‖2 ≤ ε.

Therefore, we know that x′ chosen in line 10 of Algorithm
2 satisfies ‖Ax′ − b − z‖2 ≤ ε as well. Finally, z is a
k-sparse vector since it is the output of Algorithm 1 which
implies that our choice of S′ in line 11 of Algorithm 2 gives
us ‖S′(Ax′ − b)‖2 ≤ ε as desired.

We now compute the runtime of Algorithm 2. The run-
time is dominated by the call to Algorithm 1. Note that
our matrix X has all non-zero singular values equal to 1 so
we can take κ in Theorem 4.2 (more specifically in Corol-
lary 4.3) to be equal to 1. Furthermore, we can check that
‖c‖2 ≤ ‖b‖2.

Remark 4.9. The same comments as in Remark 4.4 apply,
except we no longer have a κ dependency and therefore do
not need any assumptions on its value.

Hardness and Algorithms for Robust and Sparse Optimization

Algorithm 2 Robust Regression Upper Bound
1: Input: Matrix A ∈ Rn×d, vector b ∈ Rd, sparsity k,

accuracy ε
2: procedure ROBUSTREGRESSION-

UPPERBOUND(A, b, k, ε)
3: if Columns of A span all of Rn then
4: Let x′ be such that Ax′ = b
5: Return any diagonal matrix S′ with n− k one

entries on diagonal and x′

6: end if
7: LetX be such thatXA = 0 with orthonormal rows
8: c← −Xb
9: z ← output of Algorithm 1 on input (X, c, k, ε)

10: x′ ← arg minx′ ‖Ax′ − b− z‖2
11: S′ ← diagonal matrix with diagonal entry encoding

the zero coordinates of z . Note z has
k non zero coordinates and thus, S′ has n− k ones on
the diagonal and k zeros

12: Return S′ and x′

13: end procedure

5. Sparse PCA
We present our results for the sparse PCA problem which
is defined as follows. Let A be a PSD matrix of rank r. The
goal of sparse PCA is to solve max‖v‖2=1, ‖v‖0≤k v

TAv.

Sparse PCA is known to be NP-hard to solve exactly and
approximate with a 1 − δ factor for some small constant
δ > 0 (Chan et al., 2016b). It is also known how to obtain
a k-sparse unit vector v which achieves at least a 1 − ε
approximation to the objective in time O((4/ε)r · n · k2)
(Asteris et al., 2015a).

We obtain an algorithm with an improved dependence on
the exponent of 1/ε via a novel connection to the computa-
tional geometry and our ideas from the prior sections. We
need the following theorems from (Chan, 2018) about the
runtime of approximating the diameter and the bichromatic
farthest pair of point sets.

Theorem 5.1. Consider P ⊂ Rd with |P | = n. Let
diam(P) = maxx,y∈P ‖x − y‖2 denote the diameter of
P . There exists an algorithm which computes x′, y′ such
that ‖x′ − y′‖2 ≥ (1 − ε) diam(P) in time Õ(nd/

√
ε +

(1/ε)d/2+1).

Theorem 5.2. Consider P,Q ⊂ Rd with |P ∪ Q| = n.
There exists an algorithm which computes x′ ∈ P and y′ ∈
Q such that

‖x′ − y′‖2 ≥ (1− ε) max
x∈P,y∈Q

‖x− y‖

in time
Õ(nd/

√
ε+ (1/ε)d/2+1).

We now show Theorem 1.5. The main idea behind our
algorithm is to note that since A = BTB, we have
vTAv = ‖Bv‖22. We now employ a trick from our pre-
vious algorithmic result: we partition v into the differ-
ence of two k/2 sparse vectors x1 − x2. This gives us
vTAv = ‖Bx1 − Bx2‖22. Thus, maximizing the original
quadratic form over A reduces to maximizing the distance
between the points {By1} and {By2} where x1 and x2
range over all k/2 sparse vectors. To do this, we invoke
the Bichromatic-Farthest-Pair guarantee from
(Chan, 2018) to find the best pair of k/2 sparse vectors.

One technical issue is that we must ensure the supports of
y1 and y2 are disjoint. Since we have to maximize over unit
norm vectors v, if the supports of y1 and y2 overlap, then we
cannot say anything about the norm of y1−y2. To overcome
this, we first randomly partition [n] = {1, · · · , n} into two
disjoint sets and only search over k/2 sparse vectors y1 with
support completely contained in the first set and vice versa
for y2. In expectation, the support of the true optimum v
is equally partitioned into the two sets and this fact holds
approximately with high probability. We then enforce the
vectors y1 and y2 we search over have norms which add up
to approximately 1 (by guessing over a net) and then invoke
the approximate Bichromatic-Farthest-Pair al-
gorithm over all pairs of points {By1} and {By2}. Finally
we take the best vector w = y1− y2 found among all of our
guesses. We formalize the argument in the proof of Theo-
rem 5.3 and Algorithm 3 which is given in the Appendix.

Theorem 5.3. Algorithm 3 returns a unit vector u satisfying
‖u‖0 ≤ k and uTAu ≥ (1 − ε) max‖v‖2=1,‖v‖0≤k v

TAv
with probability 1− exp(−Ω(kε2)).

The runtime is

Õ

(
k2

ε
·

(
r
(nκ
ε

)k(1+ε)/2
+

(
1

ε

)r/2+1
))

,

where κ is the ratio of the largest and smallest non-zero
singular values of A.

Remark 5.4. Note that we can think of the parameter k
as much smaller than r. Thus the dominant term in our
runtime is (1/ε)r/2+1 which improves upon the dependence
in prior works of (4/ε)r as (4/ε)r � (1/ε)r/2+1.

Acknowledgments
Eric Price is supported by NSF awards CCF-2008868, CCF-
1751040 (CAREER), and NSF IFML 2019844. Sandeep
Silwal is supported by an NSF Graduate Research Fellow-
ship under Grant No. 1745302, NSF TRIPODS program
(award DMS-2022448), NSF award CCF-2006798, and Si-
mons Investigator Award. Samson Zhou is supported by a
Simons Investigator Award of David P. Woodruff.

Hardness and Algorithms for Robust and Sparse Optimization

References
Amini, A. A. and Wainwright, M. J. High-dimensional

analysis of semidefinite relaxations for sparse principal
components. In 2008 IEEE international symposium on
information theory, pp. 2454–2458, 2008. 4

Andoni, A. and Razenshteyn, I. P. Optimal data-dependent
hashing for approximate near neighbors. In Proceedings
of the Forty-Seventh Annual ACM on Symposium on The-
ory of Computing, STOC, pp. 793–801, 2015. 7

Asteris, M., Papailiopoulos, D., Kyrillidis, A., and Dimakis,
A. G. Sparse pca via bipartite matchings. In NIPS, 2015a.
9, 15

Asteris, M., Papailiopoulos, D. S., Kyrillidis, A., and Di-
makis, A. G. Sparse PCA via bipartite matchings. In
Advances in Neural Information Processing Systems 28:
Annual Conference on Neural Information Processing
Systems, pp. 766–774, 2015b. 4

Axell, E., Leus, G., Larsson, E. G., and Poor, H. V. Spec-
trum sensing for cognitive radio : State-of-the-art and
recent advances. IEEE Signal Processing Magazine, 29:
101–116, 2012. 8

Bakshi, A. and Prasad, A. Robust linear regression: optimal
rates in polynomial time. In STOC ’21: 53rd Annual
ACM SIGACT Symposium on Theory of Computing, pp.
102–115, 2021. 3

Bhatia, K., Jain, P., and Kar, P. Robust regression via hard
thresholding. In Advances in Neural Information Pro-
cessing Systems 28: Annual Conference on Neural Infor-
mation Processing Systems, pp. 721–729, 2015. 3, 18

Bhatia, K., Jain, P., Kamalaruban, P., and Kar, P. Consistent
robust regression. In Advances in Neural Information
Processing Systems 30: Annual Conference on Neural
Information Processing Systems, pp. 2110–2119, 2017.
3, 18

Broderick, T., Giordano, R., and Meager, R. An au-
tomatic finite-sample robustness metric: Can drop-
ping a little data change conclusions. arXiv preprint
arXiv:2011.14999, pp. 16, 2020. 18

Cadima, J. and Jolliffe, I. T. Loading and correlations in
the interpretation of principle compenents. Journal of
applied Statistics, 22(2):203–214, 1995. 4

Candes, E. and Tao, T. The dantzig selector: Statistical
estimation when p is much larger than n. The annals of
Statistics, 35(6):2313–2351, 2007. 3

Candès, E. J., Rudelson, M., Tao, T., and Vershynin, R.
Error correction via linear programming. In FOCS 2005,
2005. 8

Chan, S. O., Papailliopoulos, D., and Rubinstein, A. On
the approximability of sparse PCA. In Proceedings of
the 29th Conference on Learning Theory, COLT, pp. 623–
646, 2016a. 4, 15

Chan, S. O., Papailliopoulos, D., and Rubinstein, A. On the
approximability of sparse pca. In COLT, 2016b. 9

Chan, T. M. Applications of chebyshev polynomials to low-
dimensional computational geometry. J. Comput. Geom.,
9:3–20, 2018. 9

Chen, S. S., Donoho, D. L., and Saunders, M. A. Atomic
decomposition by basis pursuit. SIAM J. Sci. Comput.,
20(1):33–61, 1998. 3

Chen, Y., Ye, Y., and Wang, M. Approximation hardness
for A class of sparse optimization problems. J. Mach.
Learn. Res., 20:38:1–38:27, 2019. 3

Cherapanamjeri, Y., Aras, E., Tripuraneni, N., Jordan, M. I.,
Flammarion, N., and Bartlett, P. L. Optimal robust linear
regression in nearly linear time. CoRR, abs/2007.08137,
2020. 3

Chowdhury, A., Drineas, P., Woodruff, D. P., and Zhou, S.
Approximation algorithms for sparse principal compo-
nent analysis. CoRR, abs/2006.12748, 2020. 4

Chowdhury, A., Bose, A., Zhou, S., Woodruff, D. P., and
Drineas, P. A fast, provably accurate approximation al-
gorithm for sparse principal component analysis reveals
human genetic variation across the world. In Research in
Computational Molecular Biology - 26th Annual Interna-
tional Conference, RECOMB, Proceedings, pp. 86–106,
2022. 4

Coleman, T. F. and Pothen, A. The null space problem i.
complexity. SIAM Journal on Algebraic Discrete Meth-
ods, 7(4):527–537, 1986. 4

d’Aspremont, A., Ghaoui, L. E., Jordan, M. I., and Lanck-
riet, G. R. G. A direct formulation for sparse PCA using
semidefinite programming. SIAM Rev., 49(3):434–448,
2007. 4

d’Aspremont, A., Bach, F., and El Ghaoui, L. Optimal so-
lutions for sparse principal component analysis. Journal
of Machine Learning Research, 9(7), 2008. 4

Davis, G., Mallat, S., and Avellaneda, M. Adaptive greedy
approximations. Constructive approximation, 13(1):57–
98, 1997. 3

Demanet, L. and Hand, P. Scaling law for recovering the
sparsest element in a subspace. Information and Infer-
ence: A Journal of the IMA, 3(4):295–309, 2014. 4, 19

Hardness and Algorithms for Robust and Sparse Optimization

Diakonikolas, I., Kong, W., and Stewart, A. Efficient al-
gorithms and lower bounds for robust linear regression.
In Proceedings of the Thirtieth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA, pp. 2745–2754,
2019. 3

d’Orsi, T., Kothari, P. K., Novikov, G., and Steurer, D.
Sparse PCA: algorithms, adversarial perturbations and
certificates. In 61st IEEE Annual Symposium on Foun-
dations of Computer Science, FOCS, pp. 553–564, 2020.
4

Dymarski, P. and Romaniuk, R. Sparse signal modeling in
a scalable celp coder. 21st European Signal Processing
Conference (EUSIPCO 2013), pp. 1–5, 2013. 8

Ens, A., Yousaf, A., Ostertag, T., and Reindl, L. M. Op-
timized sinus wave generation with compressed sensing
for radar applications, 2013. 8

Fan, J. and Li, R. Variable selection via nonconcave pe-
nalized likelihood and its oracle properties. Journal
of the American statistical Association, 96(456):1348–
1360, 2001. 3

Fosson, S. M. Non-convex lasso-kind approach to com-
pressed sensing for finite-valued signals. arXiv: Opti-
mization and Control, 2018. 8

Foster, D. P., Karloff, H. J., and Thaler, J. Variable selec-
tion is hard. In Proceedings of The 28th Conference on
Learning Theory, COLT, volume 40, pp. 696–709, 2015.
1, 3

Frank, L. E. and Friedman, J. H. A statistical view of some
chemometrics regression tools. Technometrics, 35(2):
109–135, 1993. 3

Gupte, A. and Vaikuntanathan, V. The fine-grained hardness
of sparse linear regression, 2021. 2, 3, 5, 6

Har-Peled, S., Indyk, P., and Motwani, R. Approximate
nearest neighbor: Towards removing the curse of dimen-
sionality. Theory of computing, 8(1):321–350, 2012. 7

Har-Peled, S., Indyk, P., and Mahabadi, S. Approxi-
mate sparse linear regression. In 45th International Col-
loquium on Automata, Languages, and Programming,
ICALP, volume 107, pp. 77:1–77:14, 2018. 3

Hoerl, A. E. and Kennard, R. W. Ridge regression: Biased
estimation for nonorthogonal problems. Technometrics,
12(1):55–67, 1970. 1

Indyk, P. and Motwani, R. Approximate nearest neighbors:
towards removing the curse of dimensionality. In Pro-
ceedings of the thirtieth annual ACM symposium on The-
ory of computing, pp. 604–613, 1998. 7

Jambulapati, A., Li, J., Schramm, T., and Tian, K. Robust
regression revisited: Acceleration and improved estima-
tion rates. arXiv preprint arXiv:2106.11938, 2021. 3

Jolliffe, I. T. Rotation of principal components: choice of
normalization constraints. Journal of Applied Statistics,
22(1):29–35, 1995. 4

Jolliffe, I. T., Trendafilov, N. T., and Uddin, M. A modi-
fied principal component technique based on the lasso.
Journal of computational and Graphical Statistics, 12(3):
531–547, 2003. 4

Karahanoglu, N. B. and Erdogan, H. A* orthogonal match-
ing pursuit: Best-first search for compressed sensing sig-
nal recovery. Digit. Signal Process., 22:555–568, 2012.
8

Karmalkar, S., Klivans, A. R., and Kothari, P. List-
decodable linear regression. In Advances in Neural In-
formation Processing Systems 32: Annual Conference
on Neural Information Processing Systems, NeurIPS, pp.
7423–7432, 2019. 3

Keiper, S., Kutyniok, G., Lee, D. G., and Pfander, G. E.
Compressed sensing for finite-valued signals. arXiv: Op-
timization and Control, 2016. 8

Klivans, A. R., Kothari, P. K., and Meka, R. Efficient al-
gorithms for outlier-robust regression. In Conference On
Learning Theory, COLT, pp. 1420–1430, 2018. 3

Koren, Y., Bell, R., and Volinsky, C. Matrix factorization
techniques for recommender systems. Computer, 42(8):
30–37, 2009. 18

Loh, P.-L. and Wainwright, M. J. Regularized m-estimators
with nonconvexity: Statistical and algorithmic theory for
local optima. The Journal of Machine Learning Research,
16(1):559–616, 2015. 3

Magdon-Ismail, M. Np-hardness and inapproximability of
sparse PCA. Inf. Process. Lett., 126:35–38, 2017. 4

Mahabadi, S. Approximate nearest line search in high di-
mensions. In Proceedings of the Twenty-Sixth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA,
pp. 337–354, 2015. 3

Meng, J., Yin, W., Li, H., Hossain, E., and Han, Z. Collab-
orative spectrum sensing from sparse observations using
matrix completion for cognitive radio networks. 2010
IEEE International Conference on Acoustics, Speech and
Signal Processing, pp. 3114–3117, 2010. 8

Moghaddam, B., Weiss, Y., and Avidan, S. Generalized
spectral bounds for sparse LDA. In Machine Learning,
Proceedings of the Twenty-Third International Confer-
ence ICML, pp. 641–648, 2006. 4

Hardness and Algorithms for Robust and Sparse Optimization

Nakarmi, U. and Rahnavard, N. Bcs: Compressive sensing
for binary sparse signals. MILCOM 2012 - 2012 IEEE
Military Communications Conference, pp. 1–5, 2012. 8

Natarajan, B. K. Sparse approximate solutions to linear
systems. SIAM J. Comput., 24(2):227–234, 1995. 3

O’Donnell, R., Wu, Y., and Zhou, Y. Hardness of max-2lin
and max-3lin over integers, reals, and large cyclic groups.
ACM Trans. Comput. Theory, 7(2):9:1–9:16, 2015. 1, 2,
4, 13

Rossi, M., Haimovich, A. M., and Eldar, Y. C. Spatial
compressive sensing for mimo radar. IEEE Transactions
on Signal Processing, 62:419–430, 2014. 8

Shen, H. and Huang, J. Z. Sparse principal component
analysis via regularized low rank matrix approximation.
Journal of multivariate analysis, 99(6):1015–1034, 2008.
4

Studer, C., Kuppinger, P., Pope, G., and Bölcskei, H. Re-
covery of sparsely corrupted signals. IEEE Trans. Inf.
Theory, 58(5):3115–3130, 2012. doi: 10.1109/TIT.2011.
2179701. URL https://doi.org/10.1109/TIT.
2011.2179701. 3

Suggala, A. S., Bhatia, K., Ravikumar, P., and Jain, P. Adap-
tive hard thresholding for near-optimal consistent robust
regression. In Conference on Learning Theory, COLT,
pp. 2892–2897, 2019. 3, 18

Tibshirani, R. Regression shrinkage and selection via the
lasso. Journal of the Royal Statistical Society: Series B
(Methodological), 58(1):267–288, 1996. 1, 3

Zhu, B., Jiao, J., and Steinhardt, J. Robust estimation
via generalized quasi-gradients. CoRR, abs/2005.14073,
2020. 3

Zou, H. and Hastie, T. Regularization and variable selection
via the elastic net. Journal of the royal statistical society:
series B (statistical methodology), 67(2):301–320, 2005.
4

Zou, H., Hastie, T., and Tibshirani, R. Sparse principal com-
ponent analysis. Journal of computational and graphical
statistics, 15(2):265–286, 2006. 4

https://doi.org/10.1109/TIT.2011.2179701
https://doi.org/10.1109/TIT.2011.2179701

Hardness and Algorithms for Robust and Sparse Optimization

A. Bicriteria Hardness of Robust Regression
The goal of this section is to prove Theorem 2.1. We begin with some necessary setup.

Definition A.1 (MaxKLin). Suppose there exist a list of n linear equations of the form a1xi1 + . . . + akxik = b, where
a1, . . . , ak, b are constants from a ring R and xi1 , . . . , xik are variables from the set x1, . . . , xd. Then the goal of the
MaxKLin(R) problem is to assign values in R to the variables x1, . . . , xd such to maximize the total number of satisfied
linear equations.

Definition A.2 (Bounded−MaxΓ3− Lin). Suppose there exist a list of n linear equations of the form xi1 +xi2 −xi3 = b,
such that |b| ≤ B for some fixed B ∈ R and xi1 , xi2 , xi3 are variables from the set x1, . . . , xd. Then the goal of the
Bounded−MaxΓ3 − Lin(R) problem is to assign values in R to the variables x1, . . . , xd such to maximize the total
number of satisfied linear equations.

We use the notation OPTR(I) to denote the maximum fraction of equations of an instance I that can be satisfied when the
equations are evaluated over R.

Theorem A.1 (Theorem 1.2 in (O’Donnell et al., 2015), Hardness of Approximation of Bounded−MaxΓ3 − Lin(R)).
For all constants ε, κ ∈ (0, 1) and q ∈ N, given an instance of Bounded−MaxΓ3− Lin(R), it is NP-hard to distinguish
whether

• Completeness: There is a (1− ε)-good assignment over Z, i.e., OPTZ(I) ≥ (1− ε).

• Soundness: There is no (1/q + κ)-good assignment over Zq , i.e., OPTZq (I) ≤ 1
q + κ.

Although there seems to be a typo in the statement of Lemma A.1 in (O’Donnell et al., 2015), the corresponding proof
provides the following guarantee:

Lemma A.2 ((O’Donnell et al., 2015)). Given an instance I of Bounded−MaxΓ3− Lin, OPTR(I) ≥ 1
8 OPTZq (I).

By setting κ in the following statement to be 1
8q + 1

8κ in the above formulations, we have that

Corollary A.3. For all constants ε ∈ (0, 1), κ ∈ (0, 1/8), given an instance of Bounded−MaxΓ3− Lin, it is NP-hard to
distinguish whether

• Completeness: There is a (1− ε)-good assignment over Z, i.e., OPTZ(I) ≥ (1− ε).

• Soundness: There is no κ-good assignment over R, i.e., OPTR(I) ≤ κ.

We can now prove Theorem 2.1.

Proof of Theorem 2.1. Let κ and ε be constants so that 1−κ
ε ≥ C2. Given an instance I of Bounded−MaxΓ3 − Lin, set

k = εn, where n is the number of linear equations over the variables x1, . . . , xd. We create the corresponding n× d matrix
A by setting Ai,j ± 1 if the coefficient of xj = ±1 in the i-th linear equation. Otherwise, we set Ai,j = 0.

Observe that if there is a (1 − ε)-good assignment over Z, then there is a vector x ∈ Rd that satisfies (1 − ε)n linear
equations. Thus by ignoring k = εn linear equations, the remaining coordinates of b are satisfied by the vector x. Hence,
there exists a matrix S with k entries that are zero and n − k entries that are one such that SAx = Sb and in particular,
‖SAx− Sb‖2 = 0 and OPT = 0.

On the other hand, if there is no κ-good assignment over R to I , then any vector x ∈ Rd will satisfy fewer than κn linear
equations. In particular, even by ignoring C2k ≤ (1− κ)n linear equations, there still exists some coordinate of b that is
not satisfied by the vector x. Thus for every matrix S′ with C2k entries that are zero and n− C2k entries that are one, we
have S′Ax 6= Sb′ and in particular, ‖S′Ax− S′b‖2 > 0 and therefore ‖S′Ax− S′b‖2 > C1 · 0 for any C1 > 1.

Hence, any algorithm that finds a matrix S′ with C2k entries that are zero and n − C2k entries that are one, as well as a
vector x ∈ Rd such that ‖S′Ax − S′b‖2 ≤ C1 · OPT can differentiate whether (1) there is a (1 − ε)-good assignment
over Z, i.e., OPTZ(I) ≥ (1 − ε) or (2) there is no κ-good assignment over R, i.e., OPTR(I) ≤ κ. Therefore, it is
NP-hard to find a matrix S′ with C2k entries that are zero and n− C2k entries that are one and a vector x ∈ Rd such that
‖S′Ax− S′b‖2 ≤ C1 ·OPT .

Hardness and Algorithms for Robust and Sparse Optimization

Finally, we observe that in the proof of Theorem 2.1, in one case, the resulting loss is the all zeros vector while in the other
case, there are at least n−C2k nonzero entries. Thus the proof generalizes to any loss function L such that L(0n) = 0 and
L(x) > 0 for x 6= 0n.

B. Sparse Regression Upper Bound for Binary Signals

Algorithm 3 Sparse PCA Upper Bound
1: Input: PSD Matrix A ∈ Rn×n of rank r, sparsity k, accuracy ε
2: procedure SPARSEPCA-UPPERBOUND(A, k, ε)
3: Compute B such that BTB ← A . B is a r × n matrix
4: κ← σmax(A)/σmin(A) . The min /max is over non-zero singular values
5: δ ← ε/κ
6: U1 ∪ U2 ← random partition of [n] into two disjoint subsets
7: N ′ ← ε/2-net of the unit interval [0, 1]
8: for each choice of k1, k2 such that k1 + k2 = k and k1, k2 ≥ k(1− ε)/2 do
9: for each choice of z ∈ N ′ do

10: S1 ← ∅
11: S2 ← ∅
12: for every choice T of k1 columns of B restricted to the indices in U1 do . BT is r × k1 matrix restricted to

columns in T
13: N ← δ-net of ball of radius 1 in Rk1
14: for each y ∈ N do
15: if ‖y‖22 ∈ [z − ε/2, z + ε/2] then
16: S1 ← S1 ∩ {BT y}
17: end if
18: end for
19: end for
20: for every choice T of k2 columns of B restricted to the indices in U1 do . BT is r × k2 matrix restricted to

columns in T
21: N ← δ-net of ball of radius 1 in Rk2
22: for each y ∈ N do
23: if ‖y‖22 ∈ [1− z − ε/2, 1− z + ε/2] then
24: S2 ← S2 ∩ {−BT y}
25: end if
26: end for
27: end for
28: (BT1

y1,−BT2
y2)← solution of Bichromatic-Farthest-Pair on the pair (S1, S2)

29: w = (y1 − y2)/‖y1 − y1‖2
30: Keep track of the maximum value of wTAw encountered
31: end for
32: end for
33: Return w that maximizes wTAw over all w’s observed
34: end procedure

Theorem B.1. Suppose we are given A ∈ Rn×d and b ∈ Rn such that there exists a unique k-sparse vector x satisfying
Ax = b. Furthermore, suppose that each coordinate of x must lie in the set {0}∪U . Algorithm 4 recovers x exactly in time

nk(d|U |)k/2 +O(1) · (d|U |)k/2.

Remark B.2. In the case of binary vectors, U = {1} so we achieve the runtime of (nk +O(1)) · dk/2.

Proof. First we prove the approximation guarantee. Consider x = x1 + x2 be any decomposition of x into sum of two
k/2-sparse vectors. Consider the for loop in step 10 of Algorithm 4. We must consider b′ = Ax1 at some iteration since we

Hardness and Algorithms for Robust and Sparse Optimization

Algorithm 4 Sparse Regression Upper Bound for Finite Valued Signals
1: Input: Matrix A ∈ Rn×d, vector b ∈ Rd, sparsity k, accuracy ε
2: procedure SPARSEREGRESSION-UPPERBOUND-FINITE(A, b, k, ε)
3: S ← ∅
4: for each choice T of k/2 columns of A do
5: for each w = (wi)i∈T ∈ Lk/2 do
6: b′ ←

∑
i∈T wiA∗,i . A∗,i denotes the ith column of A

7: S ← S ∪ (b′, T, w)
8: end for
9: end for

10: D ← hashtable for the values {b′|(b′, T, w) ∈ S}
11: Best←∞
12: for each (b′, T, w) ∈ S do
13: b′′ ← b− b′
14: (b′′, T ′′, w′′)← output of D on query b′′ . If b′′ is not in hash table, continue for loop on step 12
15: Best← min(Best, ‖

∑
i∈T wiA∗,i +

∑
i∈T ′′ w

′′
i A∗,i − b‖2)

16: if Best is updated then
17: Associate vector z =

∑
i∈T wiA∗,i +

∑
i∈T ′′ w

′′
i A∗,i with Best

18: end if
19: end for
20: Return the vector z associated with the variable Best
21: end procedure

looped over all possible k/2 sparse vectors in step 4 of Algorithm 4. For this choice of b′, we have that b′′ = b− b′ satisfies
Ax2 = b′′. Therefore, the hash table D will return x2 on query b′′. Finally since x1 and x2 have disjoint support, the vector
z =

∑
i∈T wiA∗,i +

∑
i∈T ′′ w

′′
i A∗,i is indeed equal to x as desired.

We now analyze the runtime. Forming the set S takes time at most nk(d|U |)k/2 time and querying the hash table takes
O(1) time each in expectation. Thus the overall runtime is nk(d|U |)k/2 +O(1) · (d|U |)k/2.

C. Sparse PCA with Limited Alphabet
We consider a slight variation of SparsePCA where the entries in v are limited to a small alphabet. Formally, we consider
the problem of

max
∀i:vi∈{−L,...,L}, ‖v‖0≤k

vTAv

where A is a n × n PSD matrix of rank r. This formulation is motivated by its connection the the Densest k-Subgraph
problem where we wish to maximize vTAv over vectors v with a limited range of choices per coordinate but the matrix A
is not necessarily PSD which holds in our case; see (Chan et al., 2016a) for more information about the Densest k-Subgraph
problem.

For a relaxation of this version, we can also obtain an algorithm with an exponentially better dependence on ε than the
result from (Asteris et al., 2015a) via a novel connection to the computational geometry problem of Diameter.

Theorem C.1. Algorithm 5 returns a u satisfying ‖u‖0 ≤ k such that

uTAu ≥ (1− ε) max
∀i:vi∈{−L,...,L} ,‖v‖0≤k

vTAv

and all the entries of u are in the set {−2L, . . . , 2L} in time Õ((1/ε)r/2+1 + rk · ((2L+ 1)n)k/2/
√
ε).

Hardness and Algorithms for Robust and Sparse Optimization

Algorithm 5 Sparse PCA Limited Alphabet Upper Bound
1: Input: PSD Matrix A ∈ Rn×n of rank r, sparsity k, accuracy ε
2: procedure SPARSEPCA-UPPERBOUND-LIMITED(A, k, ε)
3: Compute B such that BTB ← A . B is a r × n matrix
4: S ← ∅
5: for every choice T of k/2 columns of B do . BT is r × k/2 matrix restricted to columns in T
6: for each w = (wi)i∈T ∈ {−L, . . . , L}k/2 do
7: y ←

∑
i∈T wiA∗,i . A∗,i denotes the ith column of A

8: S ← S ∪ {BT y}
9: end for

10: end for
11: (By,By′)← solution of Diameter on S using Theorem 5.1
12: Return u = y − y′
13: end procedure

Proof of Theorem C.1. We prove correctness first. Consider the optimal v and let v = x1 + x2 for k/2 sparse vectors
x1, x2. Note that

OPT = vTAv = vTBTBv

= xT1 B
TBx1 + 2x1B

TBx2 + xT2 B
TBx2

= ‖Bx1‖22 + ‖Bx2‖22 + 2〈Bx1, Bx2〉.

Letting x′2 = −x2, we get
vTAv = ‖Bx1 −Bx′2‖22.

Now consider y, y′ returned by Algorithm 5. From the guarantees of Diameter, it follows that

uTBu = ‖By −By′‖22 ≥ (1− ε)‖Bx1 −Bx′2‖22 = (1− ε)OPT.

Finally, u is k sparse and its entries belong to {−2L, · · · , 2L}. The runtime follows from Theorem 5.1 using the fact that
|S| = ((2L+ 1)d)k/2.

D. Proof of Theorem 5.3
In this section, we give the missing proof of Theorem 5.3.

Proof of Theorem 5.3. We refer to Algorithm 3. We first prove the approximation guarantee. Let v be the optimum k-sparse
unit vector. Note that with probability 1−exp(−Ω(kε2)), via a Chernoff bound, both U1 and U2 contain at least k(1−ε)/2
number of support indices of v. We now condition in this event. Let v = x1−x2 be a decomposition of v into the difference
of two vectors such that the support of x1 is contained entirely in U1 and similarly, the support of x2 is contained entirely
in U2. We know that we will loop over some z ∈ N ′ in step 9 and some T1 in step 12 of Algorithm 3 which satisfies
|‖x1‖22 − z| ≤ ε/2 and T exactly encodes the support of x1. Similarly, we will loop over some T2 in step 20 of Algorithm
3 such that T2 exactly encodes the support of x2. Now let y1 and y2 satisfy the following: (a) |‖y1‖22 − ‖x1‖22| ≤ ε/2,
|‖y2‖22−‖x2‖22| ≤ ε/2, (b) the supports of y1 and y2 exactly match those of x1 and x2 respectively, and (c) ‖y1−x1‖2 ≤ δ,
‖y2 − x2‖2 ≤ δ.

Such a y1, y2 exist because of the net N and we looped over all choices k1, k2 such that k1 + k2 = k. We know that
w = y1 − y2 satisfies ‖w‖22 = ‖y1‖22 + ‖y2‖22 ≥ 1 − ε, since y1, y2 have disjoint support. Furthermore, we have
‖B(x1 − y1)‖ ≤ ε/κ and ‖B(x2 − y2)‖ ≤ ε/κ by our choice of δ in the net N . In addition,

vTAv = vTBTBv = ‖Bv‖22 = ‖Bx1 −Bx2‖22,

so by the above calculations,

wTAw = ‖By1 −By2‖22

Hardness and Algorithms for Robust and Sparse Optimization

≥ (1− ε)‖Bx1 −Bx2‖22
= vTAv.

The guarantees of Bichromatic-Farthest-Pair imply that we find a w′ such that w′TAw′ ≥ (1 − ε)wTAw ≥
(1−O(ε))vTAv in step 29 of Algorithm 3. Furthermore, w′ has norm at least 1− ε by our requirements on y1 and y2 in
Algorithm 3 so we get the desired approximation.

We now analyze the runtime. The runtime is consists of guessing over k1 a k2 with is O(k2) time and guessing over z
which has O(1/ε) choices. Looping over the choices of k1 columns (or k2 columns) is time O(nk(1+ε)/2(κ/ε)k(1+ε)/2).
The total number of points in the each instance of Bichromatic-Farthest-Pair used isO(nk(1+ε)/2(κ/ε)k(1+ε)/2)
and all vectors in the instance are in dimension r. Invoking Theorem 5.2, the overall runtime is

Õ(k2/ε · (r(nκ/ε)k(1+ε)/2 + (1/ε)r/2+1)).

E. NP Hardness Result
We give an alternate proof of NP hardness for robust regression based on exact cover.

Problem E.1 (Exact Cover). Given a collection S of subsets of X , determine if there exists a sub collection S′ of S such
that every member of X belongs to exactly one set in S′.

Problem E.2 (Robust Regression, Zero Cost Decision Version). Given A ∈ Rn×d, b ∈ Rn, and integer 0 < k ≤ n,
determine if there exists T ⊂ [n] satisfying |T | = k such that

min
y∈Rd

‖(Ay − b)T ‖ = 0 (1)

where (Ax − b)T denotes that we only measure the loss on the coordinates in T . The coordinates not in T are called
ignored.

Lemma E.1. Problem E.1 is reducible to Problem E.2.

Proof. Consider an exact cover instance given by S,X . Let n = 2|S|+ |X| and d = |S|. We form the matrix A ∈ Rn×d
as follows. We have a variable yi for the i th set in S for all i. The first 2|S| × |S| block of A will be the constraints
yi = 0 and 1− yi = 0. This also defines the b vector for this part of the matrix. The next |X| × |S| block of A will be the
indicator matrix for the sets in S. That is, each column will be a {0, 1} vector indicating which elements of X are in the set
corresponding to the column. The part of the b vector for this block of A will all 1′s. Finally, we set k = |X|+ |S|.

We now claim that Eq. (1) is equal to 0 iff an exact cover exists. In particular, we claim that Eq. (1) is equal to 0 iff y is the
indicator vector for which sets in S to pick to be part of S′, the exact cover. First, note that if an exact cover exists, letting
yi = 1 for the sets that are part of S′ (and thus ignoring the yi = 0 constraints), and letting yi = 0 for sets that are not part
of S′ (and again ignoring the 1− yi = 0 constraints) results in (Ay − b)T = 0. Note that we have chosen to ignore exactly
n− k = |S| many constraints, one for each yi.

We now show the other direction. Suppose that Eq. (1) holds. We first show that y must only have 0, 1 entries. Let’s focus
on the first 2|S| constraints of A. If both of the constraints yi = 0 and 1 − yi = 0 are not ignored for some i, then we
automatically induce a non zero cost. Since we are assuming Eq. (1) holds, it implies that all variables yi must only have
one of yi = 0 or 1 − yi = 0 present in T for all i and furthermore, only these types of constraints must be ignored in T .
Therefore, y ∈ {0, 1}n and y represents an indicator vector for the second |X| × |S| block of A. Since the b vector for this
block is the all 1’s vector, this automatically implies that the sets chosen by y forms an exact cover of X , as desired.

F. Simple Counter Examples to Natural Algorithms for Robust Regression
We present particularly simple counter examples to natural algorithms for robust regression which have also been studied
in applied works.

Hardness and Algorithms for Robust and Sparse Optimization

Greedy algorithm. First consider a greedy algorithm which fits a best fit linear regression on all data points and removes
the k data points with the largest residuals, such as in Algorithm 1. Variants of this algorithm have been used in applied
works such as (Broderick et al., 2020) to find the ‘most influential’ data points in econometric data analysis.

1. Given A ∈ Rn×d and b ∈ Rd, y = arg minx ‖Ax− b‖2.

2. Let S be the n × n identity matrix and let p1, . . . , pk be the indices of the k coordinates of Ay − b largest in
magnitude.

3. For i ∈ [k], set Spi,pi = 0.

4. Output S and y.

Figure 1. Greedy algorithm for robust regression

Now consider the following (x, y) data pairs: (0, 10), (1, 0), (2, 0), (3, 0). We can generalize this example to any total
number of data points by having multiple copies of each data point. Consider the simplest k = 1 case of robust regression
where we wish to remove one point to minimize the regression loss. In the example given, it is clear that if we remove
(0, 10), zero loss is achieved by the line y = 0. The best fit on all of the points is given by y = 7− 3x. We can check the
residual for the (0, 10) data point is 3 while the residual for (1, 0) is 4. Thus, the greedy algorithm removes (1, 0) which
results in a suboptmial algorithm which performs arbitrarily worse compared to the true solution with 0 loss.

Alternating minimization. We now consider another natural algorithm which performs alternating minimization: starting
from an arbitrary S, it optimizes for x given the choice of S. Then using the resulting x, it optimizes for S and continues in
this loop for a specified number of iterations. See Algorithm 2 for more details.

1. Given A ∈ Rn×d and b ∈ Rd, and number of iterations T , set S to be an arbitrary n × n diagonal matrix with
n− k ones on the diagonal and k zeros.

2. While # of iterations < T :

(a) Set y = arg minx ‖SAx− Sb‖2. (Optimize over x)
(b) Let p1, . . . , pk be the indices of the k coordiantes Ay − b largest in magnitude.
(c) For i ∈ [k], set Spi,pi = 0. (Optimize over S)

3. Output S and y = arg minx ‖SAx− Sb‖2.

Figure 2. Alternating minimization algorithm for robust regression

This class of algorithms is widely used in practice; for example, it was a key component in the winning submission for the
Netflix Prize Competition (Koren et al., 2009). Alternating algorithms have also been considered for robust regression in the
distributional setting (Bhatia et al., 2015; 2017; Suggala et al., 2019). Alternating minimization algorithms are especially
useful where one is interested in minimizing a complex function of various parameters with the property that minimizing
over specific subsets of the variables is tractable. Indeed, this is the case here: given S, finding x is just an instance of linear
least squares with no restrictions and given x, the best S is given by discarding the k datapoints with the largest loss.

Our example for the greedy algorithm again serves as a simple counter example for the proposed alternating minimization
algorithm for the most basic case of k = 1 in the robust regression problem. Suppose we start with the matrix S which
removes or ignores the point (1, 0). Doing so gives us the best fit line y = 9.29x − 3.57. However for this line, one
can check that the point (1, 0) would still have the largest residual among all four points. Therefore, the alternating
minimization algorithm would not make any further progress as it would continue to select the point (1, 0) to remove in all
future iterations. We can check that if we started by removing the point (2, 0) instead, the point (1, 0) would still have the

Hardness and Algorithms for Robust and Sparse Optimization

largest residual among all four data points in the resulting best fit line. Thus, we are back in the first case considered. If we
start by removing (3, 0), then (3, 0) will have the largest residual among all four data points so the alternating minimization
algorithm is again stuck. Therefore, the alternating minimization algorithm is guaranteed to return a suboptmial solution if
we do not initialize S with the optimal choice.

G. Polynomial-time Algorithm for Planted Instance of Robust Regression
We show that if the columns of the input matrix A are generated from a normal distribution and the measurement vector b
has Hamming distance at most k from a planted solution b′ that lies in the column span of A, then there is a polynomial
time algorithm that solves the robust regression problem:

Theorem G.1. Let C be a fixed constant and k ≤ C
√
n log n. Let the columns of an input matrix A ∈ Rn×d be drawn

independent and identically distributed from N (0, In). Let b′ ∈ Rn lie in the column span of A. Then given a vector b
such that ‖b− b′‖0 ≤ k, there exists an algorithm that solves n linear programs and then uses polynomial time to solve the
sparse linear regression problem with probability at least 2/3, i.e., the algorithm finds a diagonal matrix S ∈ Rn×n with
n− k nonzero entries along that diagonal that are set to 1 and a vector x ∈ Rd such that ‖S(Ax− b)‖ = 0.

Our result is motivated by the following result of (Demanet & Hand, 2014) which solve the problem of sparsest non-zero
vector in a subspace in a planted setting as well.

Lemma G.2 (Theorem 1 in (Demanet & Hand, 2014)). Given a basis of vectors w1, . . . , wd+1 ∈ Rn for a subspace
spanned by vectors v, v1, . . . , vd ∈ Rn, where vi ∼ N (0, In) for all i ∈ [d], then there exists an absolute constant C > 0
and an algorithm that solves n linear programs and uniquely recovers the vector v with probability at least 2/3, for
‖v‖0 ≤ C

√
n log n.

Proof of Theorem G.1. Given a matrix A whose columns u1, . . . , ud ∼ N (0, In) ∈ Rn and a vector b ∈ Rn such that there
exists a vector b′ ∈ Rn in the column span of A with ‖b− b′‖0 ≤ k, we construct the vectors w1, . . . , wd+1 by taking an
arbitrary basis over the d+ 1 vectors b, u1, . . . , ud. The vectors w1, . . . , wd+1 also form a basis for the subspace spanned
by the vectors b− b′, u1, . . . , ud, since b′ is in the column span of A and thus spanned by u1, . . . , ud. Since ‖b− b′‖0 ≤ k,
then by Lemma G.2, there exists an algorithm that solves n linear programs and uniquely recovers the vector b− b′ with
probability at least 2/3. Because we are given b as input, we can thus determine the vector b′, as well as a vector x ∈ Rd
such that Ax = b′. By setting S to be the diagonal matrix S with at most k zeros and at least n− k ones on the diagonal
such that the zero entries on the diagonal of S are located precisely in the coordinates for which b− b′ is nonzero, then we
have ‖S(Ax− b)‖ = ‖S(b− b′)‖ = 0, since S(b− b′) = 0n.

