
O-GlcNAcylated peptides and proteins for structural and
functional studies
Aaron T Balana1,3, Stuart P Moon1,3 and Matthew R Pratt1,2

O-GlcNAcylation is an enzymatic post-translational

modification occurring in hundreds of protein substrates. This

modification occurs through the addition of the

monosaccharide N-acetylglucosamine to serine and threonine

residues on intracellular proteins in the cytosol, nucleus, and

mitochondria. As a highly dynamic form of modification,

changes in O-GlcNAc levels coincide with alterations in

metabolic state, the presence of stressors, and cellular health.

At the protein level, the consequences of the sugar modification

can vary, thus necessitating biochemical investigations on

protein-specific and site-specific effects. To this end,

enzymatic and chemical methods to ‘encode’ the modification

have been developed and the utilization of these synthetic

glycopeptides and glycoproteins has since been instrumental

in the discovery of the mechanisms by which O-GlcNAcylation

can affect a diverse array of biological processes.
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Introduction
O-GlcNAcylation is a post-translational modification
(PTM) of intracellular proteins wherein the protein is
attached to a monomer of b-N-acetylglucosamine
(GlcNAc) through the side chains of serine and threonine
residues (Figure 1a). Akin to protein phosphorylation, this
modification is highly dynamic. Throughout a substrate’s
lifetime, O-GlcNAc can be added and removed cyclically
by O-GlcNAc transferase (OGT) and O-GlcNAc hydro-
lase (OGA), respectively. OGT relies on its catalytic
region, comprised of its N-Cat and C-Cat domains, for
its transferase activity, while its interactions with

substrates are mediated by a number of tetratricopeptide
repeat (TPR) domains. OGA contains an N-terminal
catalytic glycoside hydrolase domain fused by a stalk
domain to a pseudo histone acetyltransferase (HAT)
domain [1]. The levels of O-GlcNAc are highly responsive
to the metabolic state of the cell because OGT uses the
high-energy UDP-GlcNAc donor which is produced via
the hexosamine biosynthetic pathway, intimately linking
global O-GlcNAc levels to the metabolic state of the cell
[2]. The disease state of the cell also impacts global O-
GlcNAcylation as evidenced by the detection of per-
turbed modification levels in many cancers and neurode-
generative diseases [3,4] This modification imparts its
functional effects on substrates in a variety of ways
dependent on the protein’s biochemical and biophysical
properties. By competing with phosphorylation on the
same Ser/Thr residues, O-GlcNAcylation can modulate
protein function through PTM cross-talk [5]. The modi-
fication can also have profound effect on the protein-
protein interactions of its substrates [6].

This review seeks to consolidate current literature con-
cerning the site-specific effects of protein O-GlcNAcyla-
tion. We first present an overview of various techniques
used to precisely encode the PTM onto polypeptides.
Then, we review studies that use these modified poly-
peptides to examine the structure and function of OGT
and OGA. We then summarize research by our lab and
others into the biochemistry and biophysics of O-GlcNAc
modified proteins. Finally, we highlight where the prop-
erties of O-GlcNAc have been exploited in non-native
contexts.

Methods for the preparation of O-GlcNAc
modified peptides and proteins
The earliest method described to produce highly homo-
geneous O-GlcNAcylated polypeptides involves the
enzymatic modification of protein substrates using in vitro
reactions with purified OGT [7]. Originally this tech-
nique involved the expression and purification of OGT
and a putative substrate protein and their subsequent in
vitro incubation. This approach proved useful on a variety
of peptide and protein substrates and led to the charac-
terization of the kinetic parameters for OGT’s variable
catalytic activities towards different substrates [8]; how-
ever, it requires the relatively difficult expression and
refolding of OGT. As an alternative, an OGT and sub-
strate co-expression approach was developed to work in
culture in Escherichia coli [9] and eukaryotic systems [10]
where both proteins are expressed prior to a single lysis
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and isolation step. Further optimizations [11] led to
improved efficiency and yield of protein expression
and modification stoichiometry. More recently, the E.
coli system also incorporated overexpression of UDP-
GlcNAc biosynthetic pathway enzymes GlmM and
GlmU for better donor sugar availability required during
in vivo OGT modification [12!].

The major downsides to these enzymatic modification
approaches is the resulting heterogeneity of the protein
product and the presence of remaining unmodified sub-
strate. The addition of O-GlcNAc by OGT is substoichio-
metric leading to varying levels of non-incorporation
depending on protein substrate. While the completeness
of the in vitro modification can be pushed with longer
incubation, less stable proteins can degrade, precipitate,
or lose activity with extended reaction times. In co-
expression systems, the modification can also be removed
by endogenous glycosidases [13] further contributing to
lower modification efficiencies. Another source of hetero-
geneity stems from the fact that for a number of known
substrates, OGT can modify multiple serine and threo-
nine modification sites within the protein sequence.
Enzymatic approaches hence result in a mixture of
unmodified, singly-modified and multiply-modified pro-
teins that are ultimately challenging to purify as the sugar
modification does minimal alteration to the protein’s size,
polarity, or charge.

Hence for investigations requiring highly homogeneous
and site-specifically O-GlcNAc modified peptides or pro-
teins, chemical methods have proven to be more useful.
One proposed method is posttranslational mutagenesis
which involves the chemoselective installation of the
GlcNAc sugar onto engineered dehydroalanine residues
on a target protein (Figure 1b) [14]. While this method is
arguably the simplest and most straightforward way to
install the modification, it does not perfectly recapitulate
O-GlcNAc modification as the sugar is linked either
through a cysteine thio-linkage [15] or a homohomoserine
O-linkage [16] that is one carbon longer than found in
nature. Most importantly, posttranslational mutagenesis
causes racemization at the a-carbon generating an often
inseparable mixture of diastereomer that may have dif-
ferent biochemistry.

The only method for site-specific and homogeneous O-
GlcNAc modification of polypeptides, to date, is the
installation of sugar-modified amino acid building blocks
during solid phase peptide synthesis (Figure 1c). These
O-GlcNAcylated Fmoc-serine or threonine monomers
can be prepared using a variety of available synthetic
routes [17], but are also conveniently available for pur-
chase from commercial sources. To overcome the size
limitations of peptide synthesis, chemical ligation tech-
niques have also been employed to synthesize longer
polypeptides or full-length proteins (Figure 1c). The gold
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O-GlcNAc modification and methods to prepare site-specifically modified
proteins. (a) O-GlcNAc modification is the dynamic addition of N-
acetylglucosamine to serine/threonine side-chains of intracellular proteins.
(b) Posttranslational mutagenesis can be used to transform a cysteine
residue into an S-linked analog of O-GlcNAc. (c) Solid-phase peptide
synthesis used alone or in combination with protein ligation techniques
can be used to prepare O-GlcNAc modified peptides and proteins.
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standard in the field is native chemical ligation (NCL),
which involves the reaction of a peptide C-terminal
thioester with an N-terminal cysteine containing peptide
resulting in the formation of the native amide bond [18].
An extension of this technique, expressed protein ligation
(EPL), enables the recombinant production of protein C-
terminal thioesters, dramatically extending the scope of
this approach [19]. As a robust and flexible techniques,
NCL/EPL have been the most widely used method to
prepare a number of site-specifically O-GlcNAc-modified
full-length proteins.

Synthetic polypeptides applied to the study of
O-GlcNAc cycling enzymes
A composite model of the full-length human OGT was
determined in 2011 both as a binary complex with UDP,
and in a ternary complex with a casein kinase II-derived
peptide substrate [20] (Figure 2a). For this structure, a
truncated version of the enzyme with 4.5 of the 13 TPRs
was used during the crystallization experiments and the
TPR region was modeled in from a separate structure
[21]. Although complex formation with the UDP-GlcNAc
sugar donor was also attempted in this work, the hydro-
lysis of the sugar precluded the crystallization process. In
order to include the sugar moiety in the structural char-
acterization, an O-GlcNAcylated peptide from substrate
TAB1 was used [22]. Alternatively, the use of a 5S-
GlcNAc sugar analog previously shown to inhibit OGT
activity [23] enabled successful crystallization of com-
plexes of OGT with UDP-5SGlcNAc and various sub-
strate peptides [22,24,25]. In these experiments, obtain-
ing a crystal structure in the presence of synthetic peptide
substrates was important in characterizing the distinct
binding modes of OGT as it reveals the peptide-binding
cleft not seen in the OGT-UDP or OGT-UDP-
5SGlcNAc complexes.

While these structures definitively describe the UDP-
GlcNAc binding pocket and the catalytic residues, the
basis for how OGT recognizes its peptide substrates is
less understood. Given that OGT does not appear to have
a strict sequence preference for residues near the serine/
threonine acceptor site, cataloging its substrates [26] has
been a useful approach to determine potential contribut-
ing factors for recognition. Through in vitro modification
of a 720-member synthetic peptide library [27], it was
demonstrated that there is some degree of amino acid
preference at the "3 to 2 sites of the peptide, suggesting
that OGT’s catalytic domain surrounding this substrate
region imposes some selectivity constraints. This peptide
library modification approach was also miniaturized to a
microarray format [28] for high-throughput identification
of novel OGT substrates. Also contributing to substrate
recognition is the participation of the TPR region where
the extended TPR interacts with the solvent-exposed
region of protein substrates through a ’ladder’ of aspara-
gine residues [29,30]. This was corroborated in a

microarray analysis of >6000 proteins showing that aspar-
agine-to-alanine mutations in the TPR ladder results in
retention OGT activity in shorter peptides but not full-
length proteins [31]. Moreover, a similar protein micro-
array analysis was also utilized to demonstrate that addi-
tional aspartic acid residues in the TPR also contribute to
substrate recognition [32].

Knowledge of OGT’s catalytic site was used to guide the
development of small molecule OGT inhibitors through
5S-GlcNAc derivatization [33,34] or structure-guided
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Structural characterization of O-GlcNAc transferase (OGT) and O-
GlcNAcase (OGA). Synthetic (glyco)peptides played key roles in
helping determine the biochemistry of OGT and OGA using structural
biology.

Current Opinion in Structural Biology 2021, 68:84–93 www.sciencedirect.com



medicinal chemistry [35,36]. In addition, synthetic pep-
tides have also been proposed as OGT inhibitors. Noting
that the sugar moiety in UDP-GlcNAc does not contrib-
ute to its binding to OGT, a short peptide with an
acceptor serine was linked directly to UDP with a carbon
chain tether [37]. Termed goblins (OGT bisubstrate-
linked inhibitors), these bisubstrate-peptide conjugates
were able to inhibit OGT activity, albeit having lower
affinities compared to small molecule inhibitors. By repla-
cing the serine with cysteine in the peptide portion to
generate S-linked UDP-peptide conjugates, a newer
generation of goblins was developed with improved affin-
ities comparable to the best performing OGT inhibitors
[38]; however, their bi-substrate nature yields poor cell
permeability. Another modification on this approach
removed the diphosphate of UDP as a strategy to improve
cellular permeability leading to peptides conjugated to
uridine-like scaffolds with some inhibitory activity but
relatively weak affinity [39].

For structural studies on OGA, three separate groups
concurrently published similar apo and inhibitor-bound
crystal structures [40–42]. Both groups utilized truncated
versions of OGA that lack the C-terminal HAT domain of
yet unknown significance for its activity. These structures
show a homodimeric configuration where the stalk
domain of one OGA molecule is enclosed by the alpha
helical barrel of the catalytic domain of the sister mole-
cule. This interface appears to form the substrate-binding
cleft as the co-crystal with the transition state analog
inhibitor Thiamet-G [43] shows the pyranose ring of
the inhibitor sitting at this interface. In addition to the
inhibitor-bound structure, Li et al. also obtained a crystal
structure of an O-GlcNAcylated p53 peptide bound to
catalytically-inactive OGA (Figure 2b). This structure
identified multiple key residues that strongly interacted
with the GlcNAc moiety as well as a hydrophobic sub-
strate cleft that contributes to the p53 peptide side chain
recognition. Interestingly, later co-crystallization experi-
ments of OGA with four other glycopeptides [44!]
revealed that while the GlcNAc conformation generally
remains the same, the different peptides can be bound in
a variety of modalities, rationalizing OGA’s adaptability
to deglycosylate a diverse array of sequences.

A recent development in the field is the discovery that
cysteine residues can also undergo enzymatic GlcNAc
modification to form thio-linked S-GlcNAc sites. Nota-
bly, S-GlcNAcylation was previously proposed as an
artificial strategy to prepare metabolically stable GlcNAc
modified peptides and proteins [45,46]. Through a prote-
omics approach, S-GlcNAcylation was shown to occur in
living systems while in vitro OGT modification of sub-
strate peptides whose serine acceptors were replaced with
cysteines confirmed that this process occurs enzymati-
cally [47]. With the use of an S-GlcNAcylated synthetic
peptide and a semi-synthetic protein, the stability of this

modification towards human OGA removal was demon-
strated in in vitro hydrolysis experiments [48]. Computa-
tional and biochemical analyses were also used to dem-
onstrate that S-GlcNAc is a suitable structural and
functional mimic for O-GlcNAc, at least in certain cases.
This mimetic approach was later used to study the
consequence of Ser-405 O-GlcNAc modification in
OGA [49!!]. An OGA peptide bearing a cysteine GlcNAc
modification was similarly found to be more stable in in
vitro hydrolysis experiments with bacterial CpOGA com-
pared to its O-GlcNAc counterpart. Genetically convert-
ing OGA’s serine-405 to cysteine in mammalian cells
through CRISPR technology showed that in vivo S-
GlcNAcylation results in higher modification stoichiom-
etry as a consequence of its nonhydrolyzable nature, with
a level of upregulation equivalent to OGA chemical
inhibition. Importantly, this genetic substitution led to
the discovery that GlcNAc modification at position
405 reduces OGA’s stability and half-life compared to
the unmodified enzyme.

Structural and functional studies of O-
GlcNAcylated substrates
O-GlcNAc can influence its substrates through its inter-
play with protein phosphorylation. The first semi-syn-
thetic O-GlcNAcylated protein was generated using
SPPS and EPL to study this cross-talk in the context
of kinase CK2 [46]. In this case, the authors took
advantage of the O-substitution to S-substitution men-
tioned above to produce a stable O-GlcNAc mimic for
cell microinjection studies. They showed that phos-
phorylation at T344 improved the stability of the pro-
tein, and that S-GlcNAcylation at S347 block the
endogenous phosphorylation at T344, resulting in
CK2 degredation. Additionally, the presence of the
glycan lead to an altered kinase substrate profile com-
pared to wild-type and phosphorylated variants, pre-
sumably via contacts with CK2 substrates. To further
study the cross-talk between these PTMs, the Pieters
lab developed a synthetic peptide microarray to iden-
tify peptides that could be modified by both Jak2 and
OGT [50,51]. They discovered that the phosphoryla-
tion (pY364) of a peptide corresponding to ZO-3 sig-
nificantly impeded its O-GlcNAcylation (gS369) due to
disruption of peptide-OGT contacts, whereas the
inverse was not found to be true. A further study added
to this finding by showing that phosphorylation of the
ZO-3 peptide inhibited O-GlcNAc hydrolysis by OGA,
while dephosphorylation was only slightly impacted by
the presence of the glycan. With these findings and
their own, Leney et al. used kinetic-based mass spec-
trometry assays to determine and validate a specific
cross-talk motif: (pS/pT)P(V/A/T)(gS/gT) [52]. This
motif is highly identified in the phosphoproteome,
and it can be used to identify putative O-GlcNAcylation
sites, particularly those with the potential for phosphor-
ylation interplay.
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Additionally, O-GlcNAc modification can also impart its
functional effects by positively or negatively influencing
the abilities of its substrates to interact with their binding
partners. The Davis lab studied these consequences on
histone stability and function [15,53]. Semisynthetic O-
GlcNAcylated histones were generated by expressing
H2A or H2B with a cysteine mutations capable of con-
version to dehydroalanine before introduction of an
S-GlcNAc monomer via a Michael addition (Figure 3a).
Glycosylation of H2A at T101 destabilizes its interaction
with H2B, while modification of H2B’s S112 recruits the
FACT complex, both of which significantly aid in tran-
scription elongation. The Boyce group, attempting to
determine protein interactors with O-GlcNAc with syn-
thetic, OGT-treated, biotinylated peptides, identified the
14-3-3 family of proteins [54]. Further structural studies
showed that this interaction is mediated through exten-
sive hydrogen bonding between the glycan and 14-3-3
isoform binding pockets. Two of our own recent studies
also examine interactions impacted by O-GlcNAc modi-
fication. In our study of the O-GlcNAc modification of
caspase-8, we generated O-GlcNAc-modified peptides

derived from the sequences surrounding the protein’s
self-cleavage/activation sites [55]. O-GlcNAcylated pep-
tides were significantly resistant to active caspase-8 cleav-
age, presumably via the obscuring of the cleavage sites by
the glycans. We also used SPPS and EPL to generate
a-synuclein variants modified at T72 and at T87 and
studied their interactions with the protease calpain [56].
The presence of these glycans modified calpain binding
as evidenced by changes in cleavage sites: both modifica-
tions obviated nearby cleavage sites, while glycosylation
at T72 resulted in the appearance of a new cleavage site,
implying that this modification both stabilizes and
destabilizes different protein-protein interactions
simultaneously.

A particularly important facet of these interaction effects
is their implications in neurodegenerative disorders. A
number of identified O-GlcNAcylation substrates partici-
pate in amyloidogenic pathways, often with the modifi-
cation imparting anti-amyloid effects. One such protein is
tau, the aggregation of which leads to Alzheimer’s disease
pathology. Frenkel-Pinter et al. used SPPS to construct O-
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Protein synthesis for studying O-GlcNAc biochemistry. (a) Posttranslational mutagenesis was used to install O-GlcNAc analogs onto the the
histone proteins H2A and H2B, allowing the effects of site-specific O-GlcNAc on nucleosome biology. (b) Protein ligation was used to generate O-
GlcNAc modified versions of a-synuclein, showing that these glycans have site-specific effects on amyloid formation. The synthesis of a-synuclein
with O-GlcNAc at threonine 72 is shown as an example.
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GlcNAc-modified peptides corresponding to PHF6, a
hexamer required for tau oligomer formation [57]. These
modified peptides aggregated to a far lesser degree than
the unmodified control peptides, and, more importantly,
inhibited the aggregation extent and kinetics of unmodi-
fied peptides in co-aggregation experiments. Further, the
Hackenberger group has also used SPPS, NCL, and EPL
to generate S400-glycosylated tau, which can be used to
study the PTM’s effect on aggregation using a full-length
variant [58] (Figure 3b). Our group has also studied the
aggregatory effects of O-GlcNAcylation of a-synuclein,
the Parkinson’s disease analog of tau. Recently, we used
EPL and SPPS to construct full-length, O-GlcNAcylated
variants of ɑ-synuclein (gT72, gT75, gT81, gT87, and
triply-modified gT72/gT75/gT81) and used these pro-
teins to show that O-GlcNAc modification is extremely
inhibitory to the aggregation process, but to site-depen-
dent extents [59,60,61!!]. Also, we showed that these
PTMs can alter the architecture of the aggregates that
form and can also impact their relative cytotoxicity in
primary neurons. These effects are presumably due to the
hydrophilic glycan’s disruption of the hydrophobic inter-
actions required for aggregation. Another player in the
neurodegenerative aggregation scheme are small heat-
shock proteins (sHsps), which protect against the forma-
tion of cytotoxic aggregates by acting as chaperones of
unstructured proteins. In our recent work, we prepared O-
GlcNAcylated sHsps Hsp27, ɑA-crystallin, and ɑB-crys-
tallin via SPPS and EPL and determined that the modi-
fication is aggregation-protective because of the improve-
ment of the chaperone activity of these sHsps [62!!]. We
show this effect is caused by the disruption the back-
binding of the substrates’ IXI domains to their chaperone

clefts, circumventing their auto-regulation and imparting
an ’always-on’ effect [62!!].

Other application for synthetic O-GlcNAc
peptides
While various chemical and biological methods have been
developed for the detection, enrichment, and identifica-
tion of O-GlcNAc substrates, the most convenient and
highly used technique is through the use of antibodies
during Western blotting, immunoprecipitation, ELISAs,
or tissue staining [63]. A number of these antibodies are
pan-selective and are able to recognize GlcNAc regard-
less of the protein sequence or identity [64]. For the
production of such antibodies, various antigens have been
used during immunization including nuclear pore com-
plex fractions [65] or synthetic glycopeptides [66,67].
Unfortunately, some of these antibodies suffer from
selectivity by cross-reacting with terminal residues in
complex glycans [63]. Furthermore, these antibodies
possibly do not exhibit true ’pan’ selectivity based on
non-reactivity to bona fide O-GlcNAc-modified synthetic
proteins [61!!]. In order to improve sensitivity, as well as
to allow site-specific detection, protein-specific antibo-
dies have also been developed for a number of substrates
again with the use of synthetic glycopeptides [68].

The extent to which O-GlcNAc modification affects
protein function is closely tied to its stoichiometry, which
varies widely from substrate to substrate. Traditional
mass spectrometry techniques can precisely identify sites
of modification, but are unable to determine modification
number on a particular protein under a given set of
conditions. To this end, our lab (in collaboration with
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Determining O-GlcNAc stoichiometry using mass shifting. Synthetic, homogeneously O-GlcNAc modified ubiquitin was used to optimize conditions
for chemoenzymatic mass-shifting of O-GlcNAc modified proteins.
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the Hsieh-Wilson lab) optimized a Western blotting assay
capable of determining modification stoichiometry
[10,69!]. Briefly, in this technique, endogenously O-
GlcNAcylated proteins in cell lysates are appended with
azide-labeled galactose monomers via a selectively-
mutated galactosyltransferase. These azide handles can
then be linked to DBCO-functionalized PEG, resulting
in gel-shifting mass tags proportional to the modification’s
stoichiometry which are visualizable via Western blotting.
To optimize this protocol, we used EPL to generate an
HA-tagged ubiquitin thioester which we reacted with
either an unmodified or O-GlcNAcylated small peptide
prepared via SPPS. This enabled us to have a 100%
modified protein control to test different conditions
and optimize the overall protocol (Figure 4).

Finally, O-GlcNAc modifications have also been intro-
duced to pharmacologically-active peptides as a strategy
to modulate their therapeutic potential. Notably, these
peptides are non-native substrates for O-GlcNAcylation
by OGT. Inspired by the observation that O-GlcNAc
modifications improve the stability of certain substrates
against proteolytic cleavage [56], the addition of the sugar
to GPCR peptide agonists GLP-1 (glucagon-like peptide)
and PTHRP (parathyroid hormone receptor peptide) was
proposed as a potentially generalizable peptide engineer-
ing strategy to improve serum half-lives [70!] Indeed, the
strategy worked in certain peptide variants without
adversely affecting potency or affinity for the receptor.
In addition, the production of the bacteriostatic Lactoba-
cillus plantarum di-GlcNAcylated 43-mer peptide glyco-
cin F has also been described [71]. Glycocin F is naturally
GlcNAc modified by the bacterial glycosyltransferases at
Ser19 and Cys43. Using a sophisticated semi-synthesis
strategy, variants of glycocin F were prepared and tested
for differences in antibacterial activities. Interestingly, a
glycocin F variant that had O-GlcNAc to S-GlcNAc
substitution showed improved biological activity likely
as a consequence of enhanced stability of S-GlcNAc
against hydrolysis by bacterial glycosidases.

Conclusions
O-GlcNAc modifications play myriad roles in a number of
different cellular processes by imposing varied biochemi-
cal and biophysical characteristics on its substrates. By
leveraging a chemical protein synthesis toolbox, research-
ers can generate homogeneously modified proteins for the
interrogation of modification consequences. These tech-
niques have facilitated studies into the readers, writers,
and erasers of O-GlcNAc modification, as well as the
direct impacts on its substrates themselves. Further,
semisynthesis of O-GlcNAcylated proteins has enabled
the optimization of techniques to study the endogenous
modification and has allowed for the modulation of poly-
peptide-based therapeutics. Together, these works high-
light the utility of protein semi-synthesis to probe the
biological implications of protein PTMs and establish

that O-GlcNAcylation is highly multifaceted in terms
of its substrates and its effects.
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