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Abstract. The aim of this paper is to study the optimal investment problem

by using coherent acceptability indices (CAIs) as a tool to measure the portfolio

performance. We call this problem the acceptability maximization. First, we
study the one-period (static) case, and propose a numerical algorithm that

approximates the original problem by a sequence of risk minimization problems.

The results are applied to several important CAIs, such as the gain-to-loss
ratio, the risk-adjusted return on capital and the tail-value-at-risk based CAI.

In the second part of the paper we investigate the acceptability maximization

in a discrete time dynamic setup. Using robust representations of CAIs in
terms of a family of dynamic coherent risk measures (DCRMs), we establish

an intriguing dichotomy: if the corresponding family of DCRMs is recursive
(i.e. strongly time consistent) and assuming some recursive structure of the

market model, then the acceptability maximization problem reduces to just a

one period problem and the maximal acceptability is constant across all states
and times. On the other hand, if the family of DCRMs is not recursive, which

is often the case, then the acceptability maximization problem ordinarily is

a time-inconsistent stochastic control problem, similar to the classical mean-
variance criteria. To overcome this form of time-inconsistency, we adapt to our

setup the set-valued Bellman’s principle recently proposed in [23] applied to
two particular dynamic CAIs - the dynamic risk-adjusted return on capital and
the dynamic gain-to-loss ratio. The obtained theoretical results are illustrated

via numerical examples that include, in particular, the computation of the

intermediate mean-risk efficient frontiers.

1. Introduction. The renowned Sharpe ratio, introduced in [31], besides being
one of the best known tools in measuring the performance of financial portfolios,
played an important role in developing the modern portfolio optimization theory. It
is well-known that one of the major shortcomings of the Sharpe ratio, as a perfor-
mance measure, is its lack of monotonicity, i.e. a portfolio with strictly larger future

2020 Mathematics Subject Classification. 91G10, 93E20, 93E35, 49L20.
Key words and phrases. Acceptability index, acceptability maximization, optimal portfolio,

gain-to-loss ratio, dynamic performance measures, tail-value-at-risk, set-valued Bellman principle.
IC acknowledges partial support from the National Science Foundation (US) grant DMS-

1907568.
∗ Corresponding author: Gabriela Kováčová.
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gains may have a smaller Sharpe ratio. Over the years, in particular to overcome
this drawback, a number of performance measures that generalize Sharpe ratio were
introduced such as the Gini ratio [30], the MAD ratio [22], the minimax ratio [33],
the gain-to-loss ratio [6], the Sortino-Satchell ratio [32], among many others; see [15]
or [27] for a comprehensive survey of ratio type performance measures. This natu-
rally raises the question which properties – and, consequently, which performance
measures – are desirable from decision making point of view. [17] took an axiomatic
approach to performance measurement, in line with the classical axiomatic approach
to risk measurement by [4], by introducing the concept of a coherent acceptability
index (CAI) as a measure of performance in a static setup that satisfies a set of
desirable properties – monotonicity, quasi-concavity, scale invariance and the Fatou
property. It was proved that an unbounded CAI α admits a robust representation
in terms of a family of coherent risk measures (CRMs) (ρx)x∈(0,∞) given by

α(D) = sup{x ∈ (0,∞) : ρx(D) ≤ 0}. (1)

Equivalently, the representation (1) can be stated in terms of a family of accep-
tance cones, or in terms of a family of sets of probability measures. The concept
of a coherent acceptability index in a dynamic setup was first studied in [13], and
consequently in [9, 8, 29, 7]. We emphasis that CAIs form a large class of perfor-
mance measures that goes beyond traditional ratio based measures of performance
that separate risk and reward.

The main goal of this paper is to study the optimization problem of the form

max
D∈D

α(D), (2)

where α is a static or dynamic CAI and D is a set of feasible financial positions
available to the investor through active or passive trading. We refer to this problem
as acceptability maximization. The obtained results contribute directly to the rich
literature on optimal portfolio selection or optimization of performance, such as clas-
sical mean-variance portfolio analysis or Sharpe ratio maximization [3, 20]. Using
an CAI as an optimization criteria is meant to overcome the commonly recognized
drawback of mean-variance analysis of being less suited for non-Gaussian models
or financial markets involving options or dividend paying securities; cf. [14, 18, 19].
Closest to the spirit and motivations of our study is [19], where the authors solve an
acceptability maximization problem for some specific choices of static CAIs (AIMIN,
AIMAX, AIMINMAX and AIMAXMIN) which are represented through families of
distortion functions (or Choquet integrals). To the best of our knowledge, this is
the only work that considers optimal control problems with CAI criteria. The pro-
posed solution in [19] fundamentally relies on the representation of CAIs in terms
of distortion functions.

In contrast to [19], in this work we mostly exploit the representation (1), and we
consider both the static and the dynamic case. We start by considering the one-
period (static) setup, presented in Section 2. First, we recall some key definitions
and relevant results on CAIs (Section 2.1), and then we propose a numerical algo-
rithm for solving (2) that approximates the maximal acceptability by a sequence of
risk minimization problems (Section 2.2). In Section 2.3 we apply this algorithm to
several important CAIs, such as the gain-to-loss ratio, the risk-adjusted return on
capital and the tail-value-at-risk based CAI.

Undoubtedly, for many practical purposes, acceptability or performance needs
to be measured in a multi-period setting where the investor dynamically rebalances
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her portfolio. We study this in Section 3. As was noted in [8] and later systemically
addressed in [11, 12], the time consistency property stays at the heart of the matter
when studying dynamic coherent acceptability indices (DCAIs) and their robust rep-
resentations of the form (1) in terms of families of dynamic coherent risk measures
(DCRMs) (ρxt )x>0

t=0,...,T . We prove that if for every x > 0 the DCRM (ρxt )t=0,...,T

is recursive (or strongly time consistent as a DCRM), and assuming some recur-
sive structure of the underlying market model, then the maximal acceptability is
constant across all times and states. Thus, in this case, it is enough to solve the cor-
responding optimization problem only once, at one state and one period of time; see
Section 3.2.1 for details. Hence, practically speaking, one should avoid using such
DCAI. Luckily, in many relevant examples of DCAIs, the corresponding DCRMs
(ρxt )t=0,...,T are not strongly time consistent, and, similar to the classical control
problems with mean-variance criteria, problem (2) is time-inconsistent in the sense
that the (naive) dynamic programming principles does not hold true. There are
several approaches in dealing with time-inconsistent stochastic control problems,
and in this work we adapt to our setup the set-valued Bellman’s principle recently
proposed in [23]. This approach also provides the intermediate mean-risk efficient
frontiers, in the spirit of the mean-variance efficient frontier. Within this approach,
we consider two specific performance measures - the dynamic risk-adjusted return
on capital (Section 3.2.2) and the dynamic gain-to-loss ratio (Section 3.2.3). The
majority of the proofs are deferred to the appendices.

As mentioned above, this is the first attempt to study stochastic control prob-
lems with dynamic CAI criteria. While the static case is now relatively well under-
stood, the acceptability maximization problem in a dynamic setup appears to be
an interesting research area, with many open problems, primarily due to the time-
inconsistent nature of such problems, as argued in this manuscript. In particular,
it would be far-reaching to develop a Bellman’s principle of optimality for a class of
DCAIs, beyond particular examples. In addition, from a practical point of view, it
would be important to study the acceptability maximization problem for a larger
classes of indices, for example not necessarily coherent ones. The authors plan to
treat these problems in future works.

2. Acceptability maximization in the static setting. In this section, we con-
sider the static setting, before moving to the dynamic one in Section 3. First, we
recall the definition of a coherent acceptability index and its connection to coher-
ent risk measures. This serves as our framework for studying the maximization of
performance, i.e., acceptability maximization. In Subsection 2.2 we provide a way
to solve the acceptability maximization problem through a sequence of risk mini-
mizations. At the end of the section, we provide examples of this approach. Proofs
can be found in Appendix A.

2.1. Static coherent acceptability indices and risk measures. We start by
briefly reviewing the notion of a (static) coherent acceptability index (CAI) and its
connection to (static) coherent risk measures (CRMs), following [17]. The concept
of acceptability was developed as a methodology to define axiomatically minimal
desirable properties of a functional that is meant to measure or assess the perfor-
mance of a financial position or trading portfolio. As usual, we consider an under-
lying probability space (Ω,F ,P), and we denote by L∞ := L∞(Ω,F ,P) the space of
essentially bounded random variables on this space. In what follows, all equalities
and inequalities between random variables will be understood in a P almost surely
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sense. In this section, an element D ∈ L∞ can be viewed as a discounted terminal
cash flow of a zero-cost self-financed portfolio, or the terminal profit and loss (P&L)
of a financial position. The mapping D 7→ α(D) ∈ [0,∞] assigns to the portfolio D
the degree of its acceptability, with higher values corresponding to more desirable
positions.

Definition 2.1. A coherent acceptability index (CAI) is a function α : L∞ →
[0,∞] satisfying for all positions D,D′ ∈ L∞ and any level x ∈ (0,∞)

(A1) Monotonicity: if D ≤ D′, then α(D) ≤ α(D′),
(A2) Scale invariance: α(λD) = α(D) for all λ > 0,
(A3) Quasi-concavity: if α(D) ≥ x and α(D′) ≥ x, then α(λD+ (1−λ)D′) ≥ x for

all λ ∈ [0, 1],

(A4) Fatou property: if |Dn| ≤ 1, α(Dn) ≥ x for all n ≥ 1, and Dn
P→ D, then

α(D) ≥ x.

We refer to [17] for a detailed discussion and interpretation of properties (A1)-
(A4) from an economic and finance point of view. Also in [17] four further properties
– law invariance, consistency with the second order stochastic dominance, arbitrage
consistency and expectation consistency – are discussed, although these are not
required for the coherent acceptability index. Additionaly, it was shown that co-
herent acceptability indices are closely related to coherent risk measures, a concept
introduced in [4].

Definition 2.2. A coherent risk measure (CRM) is a function ρ : L∞ → R
satisfying for any D,D′ ∈ L∞

(R1) Monotonicity: if D ≤ D′, then ρ(D) ≥ ρ(D′),
(R2) Positive homogeneity: ρ(λD) = λρ(D) for all λ > 0,
(R3) Translation invariance: ρ(D + k) = ρ(D)− k for all k ∈ R,
(R4) Subadditivity: ρ(D +D′) ≤ ρ(D) + ρ(D′),

(R5) Fatou property: if |Dn| ≤ 1, for all n ≥ 1, and Dn
P→ D, then ρ(D) ≤

lim infn→∞ ρ(Dn).

A family of coherent risk measures (ρx)x∈(0,∞) is called increasing if x ≥ y > 0
implies ρx(D) ≥ ρy(D) for any D ∈ L∞.

We note that coherent risk measures belong to the class of monetary (risk) mea-
sures, by sharing the translation invariance property, also known as cash-additivity.
As such, the values of a monetary (risk) measure are expressed in units of the
underlying currency. The fundamental difference between CAI and monetary mea-
sures lies in the scale invariance property versus translation invariance. Similar
to classical measures of performance such as Sharpe Ratio or gain-to-loss ratio
(see Section 3.2.3), a CAI is a unitless measure, meant to capture the direction
of trade and a re-scaled portfolio is accepted at the same level. However, as was
proved in [17], there is a strong connection between CAIs and increasing families of
CRMs. Namely, the following robust representation type result holds true: A map
α : L∞ → [0,∞], unbounded from above, is a coherent acceptability index if and
only if there exists an increasing family of coherent risk measures (ρx)x∈(0,∞) such
that

α(D) = sup{x ∈ (0,∞) : ρx(D) ≤ 0} (3)
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with the convention sup ∅ = 0. Equivalently, the representation (3) can be formu-
lated in terms of a family of acceptance sets, or an increasing family of sets of proba-
bility measures associated with dual representations of CRMs (see also Section 2.3).
For various degrees of generalization of (3) see, for instance, [25, 9, 8, 29, 7]. In par-
ticular, one can consider sub-scale invariant performance measures, reflecting the
market participants perception of re-scaled portfolios, i.e. due to market impact a
scaled up portfolio is less preferable.

2.2. Algorithm for acceptability maximization: The static case. We fix a
set D ⊂ L∞ of available or feasible positions. For example, D could be the P&Ls
of portfolios that satisfy certain trading or other constraints. Our aim is to identify
among the available positions the ones with the highest degree of acceptability.
Namely, we wish to solve the following optimization problem,

max
D∈D

α(D). (A)

We denote the maximal acceptability by

α∗ := sup
D∈D

α(D) (4)

and the set of maximally acceptable (optimal) portfolios by D∗ := {D ∈ D : α(D) =
α∗}. Generally speaking, a maximally acceptable portfolio may not exist, i.e. the set
D∗ is empty if α∗ is not attained as a maximum. We also remark that the feasible
set D and the market model of the underlying assets should be chosen such that
trivial or degenerate solutions are avoided. For example, using monotonicity, scale
invariance and the Fatou property of CAI, one can show that α(c) = sup

D∈L∞
α(D),

for any constant c ≥ 0. Namely, a riskless gain is accepted at the highest level of
acceptability. Thus, doing nothing, or investing only in the riskless asset (if such
asset is available), will yield a maximal acceptable portfolio. For this reason, similar
to the classical Sharpe ratio optimization problems, we exclude such positions from
the feasible set.

For ε > 0 we define the set of ε-optimal positions

Dε := {D ∈ D : α(D) ≥ α∗ − ε}.

The following Lemma summarizes the properties of these sets.

Lemma 2.3. 1. If the feasible set D is convex, then the sets D∗ and Dε are
convex, for any ε > 0.

2. The sets D∗ and Dε are nested: D∗ ⊆ Dε1 ⊆ Dε2 , for any ε2 > ε1 > 0.
3. D∗ =

⋂
ε>0
Dε.

Proof. The proof is deferred to Appendix A.

To solve the maximization problem (A), we will use the robust representation
(3), with (ρx)x∈(0,∞) denoting the corresponding increasing family of CRMs. For a
given level x > 0 we consider the problem of minimizing risk over the feasible set
D,

min
D∈D

ρx(D). (Px)

We denote the optimal value of the risk minimization problem (Px) by p(x) :=
inf
D∈D

ρx(D), and its optimal solution by Dx ∈ arg min
D∈D

ρx(D), assuming that the
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infimum p(x) is attained. In what follows we make the following standing assump-
tion:

Assumption 2.4. The acceptability index α is unbounded from above, and for every
x ∈ (0,∞) the risk minimization problem (Px) attains its minimum.

The unboundness from above of α is usually satisfied in all practically important
cases, while attainability of the min in (Px) can be guaranteed, for example, by
assuming that D is compact. With this at hand, and in view of (3), we note that:

• if the risk minimization problem (Px) has a positive optimal value, then no
portfolio in D has a degree of acceptability above x;

• if the risk minimization problem (Px) has a non-positive optimal value, then
some portfolio in D has a degree of acceptability of at least x.

The next result summarizes the above observations, which are used in developing
Algorithm 1 that solves the acceptability maximization problem (A).

Lemma 2.5. Let Assumption 2.4 hold and let x ∈ (0,∞).

1. If p(x) > 0, then x ≥ α∗.
2. If p(x) ≤ 0, then x ≤ α∗.
3. If x < α∗, then p(y) ≤ 0 for all y ≤ x.
4. If x > α∗, then p(y) > 0 for all y ≥ x.

Proof. The proof is given in Appendix A.

The main idea of the proposed numerical solution of (A) is to approximate the
maximal acceptability by a sequence of risk minimization problems (Px) for some
appropriately chosen levels - a variation of the bisection method that will find a
pair (x,D) maximizing the level x while satisfying ρx(D) ≤ 0. First, find two levels
with opposite signs of the minimal risk p(x), namely find a lower and upper bound
on the maximal acceptability α∗. Then, iteratively decrease the distance between
the two bounds. This replaces one acceptability maximization problem (A) with a
sequence of risk minimization problems (Px). This becomes particularly useful if
the acceptability maximization is complicated and the risk minimization is easier to
solve. Note that if the feasible set D is convex, then the risk minimization becomes
a convex optimization problem.

The procedure is described in Algorithm 1 below.
The next result summarizes the key features of Algorithm 1.

Lemma 2.6. Suppose that Assumption 2.4 holds, and let x0 ∈ (0,∞) be the initial
(seed) value, M̄ ∈ N be the maximal number of iterations (of Step 1) and ε > 0 be
the tolerance level. Denote

α := x0 · 2−M̄+1, α := x0 · 2M̄−1.

1. If α∗ ∈ [0, α), then Algorithm 1 returns α as an upper bound for α∗, no
acceptable portfolio is found.

2. If α∗ ∈ (α,∞], then Algorithm 1 returns α as a lower bound for α∗ and a
portfolio with (at least) this degree of acceptability.

3. If α∗ ∈ (α, α), then
(a) Algorithm 1 returns bounds xL and xU such that xL ≤ α∗ ≤ xU and

xU − xL < ε,
(b) Algorithm 1 returns an ε-solution, i.e. D̄ ∈ Dε,
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Input: initial level x0 ∈ (0,∞), max. iterations M̄ ∈ N of Step 1, tolerance ε > 0.
Step 1: Find an initial interval xL ≤ α∗ ≤ xU
Set n := 0; xL := 0; xU :=∞; D̄ := null ;

while (xL == 0 or xU ==∞) and (n < M̄) do
if The optimal value of (Pxn) is positive then

xU := xn, select xn+1 := xU/2 ;

else
xL := xn, select xn+1 := 2 · xL, assign D̄ := Dxn ;

end

n := n+ 1 ;

end
Step 2: Decrease the length of the interval [xL, xU ] (via bisection)
while (xU − xL ≥ ε) and (n < M̄) do

Select x := (xU + xL)/2 ;

if The optimal value of (Px) is positive then
xU := x ;

else
xL := x, assign D̄ := Dx ;

end

end

Output: Interval [xL, xU ] as an approximation to α∗, portfolio D̄ as
approximately optimal one

Algorithm 1: Approximating maximal acceptability α∗ via risk minimiza-
tion

(c) Step 2 of Algorithm 1 terminates after at most
⌈
log2

x0

ε + M̄ − 2
⌉

itera-
tions.

Proof. The proof is postponed to Appendix A.

Remark 1. Several comments are in order:

(i) In Step 1, instead of the halving (xn+1 := xU/2), respectively the doubling
(xn+1 := 2 · xL), one could select any xn+1 < xU , respectively xn+1 > xL.
Similarly, in Step 2 one could replace the bisection with any choice of x ∈
(xL, xU ). The results of Lemma 2.6 would differ in the interval (α, α) on
which α∗ is identified and the number of iterations.

(ii) The case α∗ = x is not included in Lemma 2.5. If α∗ = x, then we can only
say that p(y) ≤ 0 for all y < x. The sign of p(α∗) is not clear, since we do not
know if the suprema in (4) and (3) are attained as maxima. Consequently, in
the cases α∗ ∈ {α, α} we cannot derive the behaviour of Algorithm 1.

(iii) Assumption 2.4 allows us to merge the case p(x) = 0 with the case p(x) < 0.
Without it, we would need to distinguish between attained and not attained
infimum for p(x) = 0. If the infimum p(x) = 0 is attained for some portfolio

D̃ ∈ D, then ρx(D̃) = 0 and x is a lower bound on α∗. If the infimum is
not attained, then for all positions D ∈ D we have ρx(D) > 0, so x is an
upper bound on α∗. This distinction would need to be built into Algorithm 1.
Alternatively, if p(x) = 0, this level x could be discarded and the iteration
repeated with some other choice of level in the appropriate interval. However,
it is not clear how many such repetitions might be needed.
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(iv) Instead of specifying the maximal number of iterations M̄ and the initial value
x0 we could directly specify the interval [α, α] in which the optimal α∗ would
be searched. Then, Step 1 of the algorithm would need to check the signs
of p(α) and p(α) and terminate immediately if α∗ lies in the interval [0, α)

or (α,∞]. Step 2 would require
⌈
log2

α−α
ε

⌉
iterations to terminate, assuming

bisection steps. This might be of interest especially if the risk measure is well
defined also for the limiting cases x = 0 and x = ∞. Note that in that case
the bisection steps cannot be preformed on the parameter x directly, but a
transformation of the parameter can be used, see Section 2.3 for an example.

(v) We note that at each iteration in Algorithm 1 we solve one risk minimization
problem, which is a convex optimization problem that can be solved numeri-
cally efficiently with any degrees of accuracy.

Algorithm 1 with tolerance ε outputs an ε-solution to the acceptability maximiza-
tion problem, an element of the set Dε. We also know that the sets of ε-solutions are
nested and intersect in the set of optimal solutions. Therefore, it is natural to ask
about the convergence of the algorithm output as the tolerance ε vanishes. As the
next result shows, such convergence holds true if the feasible set D is compact. Gen-
erally speaking, for a non-compact D it is possible to construct counter-examples,
where the ε-solutions Dε ∈ Dε converge to an (infeasible) element outside of a
(non-empty) optimal set D∗, or diverge.

Lemma 2.7. Let α∗ ∈ (α, α) and suppose that the feasible set D is a compact
set w.r.t. the topology of convergence in probability. Let {Dεn}n∈N be a sequence
of solutions outputed from Algorithm 1 for a sequence of tolerances {εn}n∈N with
lim
n→∞

εn = 0. Then {Dεn}n∈N has an P-a.s. convergent subsequence whose limit

belongs to the set of optimal solutions D∗.

Proof. The proof is given in Appendix A.

2.3. Numerical examples. We will illustrate the proposed algorithm with three
examples of CAIs: the acceptability index corresponding to the tail-value-at-risk
(AIT), the gain-to-loss ratio (GLR) and the risk-adjusted return on capital
(RAROC). First, we define these CAIs as well as identify the families of risk
measures from the robust representation (3).

1. The TV@R at level q ∈ (0, 1) is defined as

TV@Rq(D) =
1

q

q∫
0

V@Rp(D) dp,

where V@Rp(D) := inf{r ∈ R : P(D + r < 0) ≤ p} is the value-at-risk at
level p ∈ (0, 1). It is well known that V@R is not a coherent risk measure,
while TV@R is a coherent risk measure. Moreover, using TV@R as a family
of CRMs, we define the the acceptability index

AIT(D) := sup
{
x ∈ (0,∞) : TV@R 1

1+x
(D) ≤ 0

}
.

It is easy to show that AIT indeed is a CAI that is also law invariant, consis-
tent with second order stochastic dominance, and arbitrage and expectation
consistent; for more details see [17, Section 3.5]. However, one notable draw-
back of AIT is that it ignores the gains and only takes into account the tail
corresponding to losses.
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2. The gain-to-loss ratio is a CAI, popular among practitioners, and defined as
the ratio of the mean and the expectation of the negative tail, namely

GLR(D) :=
(E[D])+

E[D−]
,

where D− = max{0,−D}, D+ = max{D, 0} and the convention a
0 := +∞

for all a ≥ 0 is used. For additional properties of GLR see, for instance, [17,
Section 3.2]. We recall several representations of GLR, useful for our purposes.
The representation of the form (3) is given in terms of expectiles. We recall
that the expectile eq(D) of a random variable D at level q ∈ (0, 1) is defined
by a first-order condition

qE[(D − eq(D))+] = (1− q)E[(D − eq(D))−],

or as a minimizer of an asymmetric quadratic loss, see [5] for more details.
The expectile-V@R,

EV@Rq(D) := −eq(D),

for q ≤ 1/2, is an increasing family of CRMs. One can show, for example

by using that AEV@Rq
=
{
D | E(D+)

E(D−) ≥
1−q
q

}
is the acceptance set of EV@Rq,

that the representation (3) for GLR has the form

GLR(D) := sup
{
x ∈ (0,∞) : EV@R 1

2+x
(D) ≤ 0

}
.

Alternatively, one can use the system of supporting kernels corresponding to
GLR, as well as the explicit form of the extreme measures, cf. [17, Propo-
sition 2]. It is also clear that for x > 0, GLR(D) ≥ x if, and only if,
E[−D] + xE[D−] ≤ 0, which can be conveniently used for computation pur-
poses. This is not linked to the robust representation (3) since the mappings
D 7→ E[−D] + xE[D−] are not CRMs (for instance they are not translation
invariant). Finally, we remark that there is another popular version of GLR,

defined as GLR(D) = E[D+]
E[D−] . This version of GLR is also monotone, scale in-

variant and has the Fatou property, but lacks quasi-concavity, and thus GLR
is not coherent. The two are connected via GLR(D) = max{GLR(D)− 1, 0}.

3. The risk-adjusted return on capital, similar to GLR, is a reward-risk type
ratio, formally defined as

RAROC(D) :=
(E[D])+

(π(D))+
, (5)

where π is a fixed CRM. The corresponding family of CRMs is given by

ρx(D) = min

{
π(D),

1

1 + x
E[−D] +

x

1 + x
π(D)

}
.

For risk measures π satisfying E[−D] ≤ π(D) this simplifies to ρx(D) =
1

1+xE[−D]+ x
1+xπ(D). For more details see [17, Section 3.4]. In our numerical

examples we will use RAROC with π = TV@R0.01, also known as the stable
tail-adjusted return ratio (see, for instance, [26]).

In our numerical examples below, we maximize the acceptability index over the
set of profits and losses that are possible to attain by investing in the market with d
(risky) assets. Without loss of generality, thanks to scale invariance of CAIs, we fix
the initial investment to 1. For numerical tractability, we assume that Ω is finite.
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The (gross or total) returns Sj1/S
j
0, j = 1, . . . , d, of these d assets are modeled as a

matrix R ∈ Rd×|Ω|. Then, the sets of available profits and losses, with or without
short-selling, become

D = {RTh− 1 : 1Th = 1} or D = {RTh− 1 : 1Th = 1, h ≥ 0},

where 1 = (1, 1, . . . , 1)T. So, h corresponds to the trading strategy (the amount
invested in each asset) and D(h) = RTh− 1 to the corresponding terminal P&L.

To illustrate the main features of the proposed algorithm, we first consider a toy
market model, consisting of d = 2 assets and with returns given in Table 1, Panel
A. Generally speaking, it is reasonable to select the input parameters such that
that ε ≤ α. Panel B of Table 1 summarizes the iterations of the algorithm with the
following input parameters: the starting (seed) acceptability level set to x0 = 2, the
tolerance ε = 10−4 and the maximal number of iterations M̄ = 15 of Step 1. The
algorithm outputs bounds on the maximal acceptability and an ε-optimal solution
hε; see the last two rows of Table 1, Panel B. For each of the three acceptability
indices, the optimal portfolio puts more weight on the first asset, with AIT being
the most balanced and RAROC being the most extreme. This is because the first
asset carries (in some sense) less risk, although at the cost of lower mean return
than the second one. All three considered CAIs are loss based measures, but each in
a different way. The AIT measures how far and how deep into the tail the losses can
go. The optimal position for AIT balances the return in the second and the third
state of the world. The GLR treats loss directly through the expectation of effective
losses (the negative part of the P&L). Thus, the corresponding optimal position is
in the range where the portfolio return is negative in only one state of the world.
Since we are using TV@R0.01 in defining the RAROC, only the worst-case scenario
(state of the world) is considered, which is the reason why the corresponding optimal
position relies heavily on the first asset, for which the worst-case loss is lower. We
also remark that in this market model, the short-selling constraints do not change
the results.

For the sake of completeness, we also show the iteration of the modified algorithm
outlined in Remark 1(iv). We use the fact that for each of the three indices –
AIT, GLR, RAROC – the corresponding risk measures are well-defined for the
limiting parameter values x = 0 and x =∞. Since the bisection cannot be done on
an interval of infinite length, we index the families of risk measures by a parameter
q = 1

1+x on a bounded interval [0, 1], or, respectively by q = 1
2+x on [0, 0.5]. Then,

the bisection is performed with respect to the parameter q. The iterations for GLR
are presented in Table 2, see the modified algorithm. This modification avoids the
risk of failing to find a lower or upper bound for a badly chosen starting point x0

(compare to Table 3). Moreover, zero and infinite acceptability are often determined
after solving two risk minimization problems, instead of M̄. On the other hand,
one needs to treat the tolerance parameter ε carefully: although the bisection is
performed on the parameter q, the termination criterion needs to be set on x in
order for the error not to be distorted (see Table 2). A mixed version of the algorithm
is also provided – it switches to a bisection on the original parameter x, as soon as
a finite upper bound is found. The iterations for GLR are also given in Table 2, see
the mixed algorithm. In addition, we also make the following slight modification to
the algorithm: at each iteration a risk minimization problem P (x) is solved, finding
its optimal solution Dx. If the considered level x is found to be a lower bound for
the maximal acceptability, then the position Dx is used for updating the optimal
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solution of the acceptability maximization. Otherwise, it is not used at all. One
can easily see that given a fixed position Dx, all levels y satisfying ρy(Dx) ≤ 0 are
lower bounds on the maximal acceptability. Hence, if it is relatively easy to find
a level y such that ρy(Dx) = 0, then it can be used to update the lower bound.
For the CAIs used in this example such level y can be found without any further
optimization. We refer to this modification of the original algorithm as zero-level
version.

We also run the proposed algorithm on a more realistic market model, consisting
of d = 10 stocks and |Ω| = 1000 states of the world. The return matrix is obtained as
draws from a multivariate Student’s t-distribution. In Table 3 we report the results
for various input parameters x0, ε and M̄ . The results are intuitively clear, and
expected: the distance of the initial guess x0 from the true α∗ affects the number
of iterations needed to find the upper and lower bound (Step 1). The tolerance ε
determines the number of iterations in Step 2. We also note that for a badly chosen
starting point the algorithm can fail to find a lower or an upper bound unless M̄
is increased. We also note that the maximal acceptability differs in a market with
and without short-selling, but the impact of the parameters is the same. Similar to
the toy model, we list in Table 4 the results for different versions of the algorithm
– original one, modified, mixed and zero-level. We also present the results both
with and without short-selling constraints. These results show that neither of the
versions of the algorithm is performing strictly better than the others. Similar
conclusions were observed for various other sets of parameters.

3. Acceptability maximization in the dynamic setting. In this section, we
consider the acceptability maximization problem in a dynamic setting. We use the
theory of dynamic coherent acceptability indices introduced in [13] and their link
to dynamic coherent risk measures. We briefly recall the key definitions and results
from [13], and then focus on acceptability maximization in the context of optimal
investment in a multi-period market model. It turns out that the maximal accept-
ability is constant in a setting when the determining family of dynamic coherent
risk measures is recursive and when the underlying market has a recursive structure.
We conclude by considering the non-recursive case by focusing on two specific per-
formance measures – the dynamic risk-adjusted return on capital and the dynamic
gain-to-loss ratio – where we use the specific structure of the problem to introduce
a solution scheme tailored to these performance measures.

3.1. Dynamic CAIs and dynamic CRMs. The concept of a coherent accept-
ability index was first extended to a dynamic setting in [13] and consequently studied
in [9, 8, 29, 7]. A dynamic coherent acceptability index (DCAI) is meant to mea-
sure the performance of financial positions or instruments over time, accounting
for the incoming flow of information. We start by briefly recalling the setup of
[13], where DCAIs are designed to measure the performance of (discounted) cash
flows or dividend streams or unrealized P&Ls. Most of the properties from the
static setup are naturally transferred to the dynamic case. An addition is the time
consistency property, which stays at the core of financial interpretations of DCAIs,
but is also fundamentally used in establishing the dual representations. We refer to
[11, 12] for an in-depth discussion of various forms of time-consistency in decision
making, in particular those arising in the theory of dynamic risk and performance
measures. Following [13], we take a discrete and finite state setting by denoting
T := {0, 1, . . . , T} for some fixed T ∈ N, and letting (Ω,F ,F = (Fs)s∈T ,P) be a
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finite filtered probability space, with P having full support. We will write Et instead
of the conditional expectation given Ft. Without loss of generality, we will assume
that F0 is trivial. The dividend streams or unrealized P&Ls will be modeled as
F-adapted real-valued stochastic process D = {Dt}Tt=0. We will denote by D the
set of all such processes, and by Lt = Lt(Ω,Ft,P) the Ft-measurable random vari-
ables. As usual, for A ⊂ Ω will 1A denote the indicator function which is equal
to one for ω ∈ A and zero otherwise. Without loss of generality, we assume a zero
interest rate, or, view D ∈ D as discounted cash flows. Operations between random
variables, such as minimum, maximum, product, or sum will be understood ω-wise.

Definition 3.1. A dynamic coherent acceptability index (DCAI) is a func-
tion α : T ×D×Ω→ [0,∞] satisfying for all times t ∈ T , all cash flows D,D′ ∈ D,
all events At ∈ Ft, and all random variables λt ∈ Lt
(A1) Adaptiveness: αt(D) is Ft-measurable,
(A2) Independence of the past: if 1At

Ds = 1At
D′s for all s ≥ t, then 1At

αt(D) =
1At

αt(D
′),

(A3) Monotonicity: if Ds ≥ D′s for all s ≥ t, then αt(D) ≥ αt(D′),
(A4) Scale invariance: αt(λtD) = αt(D) for all λt > 0,
(A5) Quasi-concavity: αt(λtD + (1− λt)D′) ≥ min{αt(D), αt(D

′)} for 0 ≤ λt ≤ 1
(A6) Translation invariance: αt(D + mt1{t}) = αt(D + mt1{s}) for any mt ∈ Lt

and s ≥ t,
(A7) Dynamic consistency: if Dt ≥ 0 ≥ D′t and there exists an mt ∈ Lt such that

αt+1(D) ≥ mt ≥ αt+1(D′), then αt(D) ≥ mt ≥ αt(D′).
A DCAI α is normalized if for all t ∈ T , ω ∈ Ω, there exist D,D′ ∈ D such
that αt(D,ω) = +∞ and αt(D

′, ω) = 0. It is right-continuous if lim
c→0+

αt(D +

c1{t}, ω) = αt(D,ω) for any t ∈ T , D ∈ D, ω ∈ Ω.

As in the static case, DCAIs are closely related to dynamic coherent risk measures
(DCRMs).

Definition 3.2. A dynamic coherent risk measure (DCRM) is a function
ρ : T ×D×Ω→ R satisfying for all times t ∈ T , all cash flows D,D′ ∈ D, all states
ω ∈ Ω, all events At ∈ Ft, and all random variables λt ∈ Lt
(R1) Adaptiveness: ρt(D) is Ft-measurable,
(R2) Independence of the past: if 1At

Ds = 1At
D′s for all s ≥ t, then 1At

ρt(D) =
1At

ρt(D
′),

(R3) Monotonicity: if Ds ≥ D′s for all s ≥ t, then ρt(D) ≤ ρt(D′),
(R4) Homogeneity: ρt(λtD) = λtρt(D) for all λt > 0,
(R5) Subadditivity: ρt(D +D′) ≤ ρt(D) + ρt(D

′)
(R6) Translation invariance: ρt(D + mt1{s}) = ρt(D) −mt for any mt ∈ Lt and

s ≥ t,
(R7) Dynamic consistency:

1A

(
min
ω∈A

ρt+1(D,ω)−Dt

)
≤ 1Aρt(D) ≤ 1A

(
max
ω∈A

ρt+1(D,ω)−Dt

)
.

A family of dynamic coherent risk measures (ρx)x∈(0,∞) is called increasing if
x ≥ y > 0 implies ρxt (D) ≥ ρyt (D) for any t ∈ T , D ∈ D. It is left-continuous at
x0 > 0 if lim

x→x−0
ρxt (D,ω) = ρx0

t (D,ω) for any t ∈ T , D ∈ D, ω ∈ Ω.
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Originally, DCRMs were introduced in [28], although with a different (stronger)
notion of time-consistency, which will be discussed in Section 3.2.1. As proved in
Theorems 4.6, 4.7 and 4.8 of [13], there is a one-to-one relationship between a DCAI
and an increasing family of DCRMs, similar to (3). Namely, the following assertions
hold true:

1. [13, Theorem 4.6] For a normalized dynamic coherent acceptability index α
the functions (ρx)x∈(0,∞) defined as

ρxt (D,ω) = inf{c ∈ R : αt(D + c1{t}, ω) ≥ x}, . (6)

form an increasing, left-continuous family of dynamic coherent risk measures.
2. [13, Theorem 4.7] For an increasing family of dynamic coherent risk measures

(ρx)x∈(0,∞) a function α defined as

αt(D,ω) = sup{x ∈ (0,∞) : ρxt (D,ω) ≤ 0} (7)

is a normalized, right-continuous dynamic coherent acceptability index. More-
over, there exists an increasing sequence of sets of probability measures
{Qxt }t∈T ,x≥0 such that

ρxt (D,ω) = − sup
Q∈Qx

t

EQ
t

[
T∑
s=t

Ds

]
, x > 0, t ∈ T . (8)

The converse implication is also true, under an additional technical property
of time consistency of {Qxt }t∈T ,

3. [13, Theorem 4.8] If α is a normalized, right-continuous dynamic coherent
acceptability index, then there exists an increasing, left-continuous family
of dynamic coherent risk measures (ρx)x∈(0,∞), such that representation (7)
holds. Vice versa, for an increasing, left-continuous family of dynamic coherent
risk measures (ρx)x∈(0,∞) there exists a normalized, right-continuous dynamic
coherent acceptability index α, such that (6) holds.

Similar to the static case, we are interested in finding the position with highest
degree of acceptability. Given a set of available, or feasible, cash flows D ⊆ D, the
problem of interest is

max
D∈D

α0(D). (9)

It is straightforward to adapt Algorithm 1 to the dynamic setup to solve the cor-
responding version of (9) for a given t ∈ T and ω ∈ Ω. However, this approach,
generally speaking, is computationally not feasible. Usually one would aim to es-
tablish a recursive set of equations in the form of a dynamic programming principle
or Bellman’s principle of optimality that would solve (9), which will be provided in
the next section for the optimal investment problem.

3.2. Optimal portfolio selection problem. In this section, we consider the ac-
ceptability maximization problem in the context of optimal portfolio selection in a
market model with d available assets. We denote by Rs+1 = (R1

s+1, . . . , R
d
s+1) the

vector of assets (total or gross) returns between time s and time s + 1, namely, if

Sjs denotes the price of the j-th asset at time s, then Rjs+1 :=
Sj
s+1

Sj
s

. We assume

that R1, . . . , RT are independent and identically distributed on a probability space
(Ω,F ,P), and denote by (Fs)s∈T the natural filtration generated by the process
(Rs)s=1,...,T . In addition, we assume that all one step asset returns Rjs are strictly
positive. Note that we implicitly assume that these assets do not pay dividends.
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We assume that the investor starts with a positive initial wealth V0 > 0, and
invests it in the d available assets by following a self-financing trading strategy,
possibly with some additional trading constraints. A trading strategy is an adapted
stochastic process h = (hs)s=0,...,T−1 with hs = (h1

s, . . . , h
d
s), where his is the mon-

etary amount invested in asset i between time s and s + 1. The portfolio value at
time s + 1 arising from the trading strategy h is given by Vs+1(h) = RT

s+1hs for
any s = 0, . . . , T − 1. We consider two feasible sets in particular, one with no trad-
ing constraints and one with short-selling constraints. The set of all self-financing
trading strategies with initial value V0 is

H0(V0) := {(hs)s=0,...,T−1 | 1Ths = Vs, Vs+1 = RT
s+1hs, s = 0, . . . , T − 1}.

Correspondingly, the set of feasible trading strategies with short-selling constraints
is

H+
0 (V0) = {(hs)s=0,...,T−1 | h ∈ H0(V0), hjs ≥ 0, s = 0, . . . , T − 1, j = 1, . . . , d}.

The time t feasible sets Ht(Vt) and H+
t (Vt) are defined analogously. The next result

shows that the feasible sets are positive homogeneous and recursive.

Lemma 3.3. 1. For a positive Ft-measurable wealth Vt the feasible sets scale as
follows

Ht(Vt) = Vt · Ht(1) and H+
t (Vt) = Vt · H+

t (1).

2. The feasible sets are recursive,

Ht(Vt) =
{

(hs)s=t,...,T−1 | ht ∈ Ht(Vt), (hs)s=t+1,...,T−1 ∈ Ht+1(RT
t+1ht)

}
,

H+
t (Vt) =

{
(hs)s=t,...,T−1 | ht ∈ H+

t (Vt), (hs)s=t+1,...,T−1 ∈ H+
t+1(RT

t+1ht)
}
,

where Ht(Vt) = {ht | 1Tht = Vt} and H+
t (Vt) = {ht ∈ Ht(Vt) | ht ≥ 0}.

Proof. The proof is deferred to Appendix B.

Our aim is to find the optimal trading strategy among the feasible ones by max-
imizing the portfolio’s acceptability as measured by a given DCAI α. We recall
that the dynamic setup of [13] and [28] assumes that the inputs D to a DCAI are
(discounted) dividend processes, a setup usually convenient for pricing purposes or
assessing the performance or riskiness of some dividend paying securities, or ran-
dom future cash-flows (cf. [1, 2, 10, 8] and references therein). When dealing with
optimal investment (i.e. an optimal portfolio selection problem), traditionally and
also more conveniently, one works with the value process or the (discounted) cumu-
lative dividend process. However, to use the existing results on DCAIs, we briefly
discuss the connection between value process and dividend streams in the context
of optimization problems. Given a portfolio with value process V = (Vs)s=0,...,T ,
the corresponding dividend stream D = (Ds)s=0,...,T is defined as

Ds = Vs − Vs−1, s = 1, . . . , T,

and D0 = 0. Thus, the cumulative P&L up to time t becomes
∑t
s=0Ds = Vt − V0.

We refer the reader to [2, 9] for a detailed discussion on use of dividend streams
and cumulative dividend streams within the general theory of assessment indices.

We denote by V (h) the wealth process generated by the trading strategy h and
D(h) will stand for the corresponding dividend stream. In addition, for a given
dividend stream D = (D0, . . . , DT ) we define the time t tail dividend stream as
D[t,T ] := (0, . . . , 0, Dt, . . . , DT ), and we also put D[t] := (0, . . . , 0, Dt, 0, . . . , 0).
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The optimization problem we wish to solve at initial time is

max
h∈H+

0 (V0)
α0(D(h)) (A0(V0))

or the variant thereof, if short-selling is allowed, in which case the feasible set is
H0(V0). By property (A2) defined in Definition 3.1, independence of the past of
DCAIs, we have that αt(D) = αt(D

[t,T ]). This would suggest that in order to
solve A0(V0) we should consider the problems

max
h∈H+

t (Vt)
αt(D

[t,T ](h)). (At(Vt))

One certainly can study (At(Vt)), and try to establish a dynamic programming prin-
ciple for this stochastic control problem, although, generally speaking, this problem
is not time consistent. More importantly, from a practical point of view, including
the change in portfolio value from time t− 1 to t, namely the term Dt = Vt− Vt−1,
in the optimization criteria at time t is less desirable. In particular, using (8), one
would optimize at time t a function that depends on VT −Vt−1, rather than a func-
tion depending on total future return VT −Vt. With this in mind, we introduce and
focus our attention on a family of auxiliary acceptability maximization problems

max
h∈H+

t (Vt)
αt(D

[t+1,T ](h)), (Ãt(Vt))

which are more in line with the setup from the optimal portfolio selection problem.
Note that for any trading strategy h the cash flows D(h) and D[1,T ](h) coincide, and

hence at the initial time the auxiliary problem Ã0(V0) is the same as the original
problem A0(V0). Therefore, solving the auxiliary family of problems, which we will
address next, will lead to the solution of the original acceptability maximization
problem.

We will start in a setting when the determining family of dynamic coherent risk
measures is recursive and when the underlying market has a recursive structure
(Section 3.2.1). Then, we will consider the non-recursive case by focusing on two
specific performance measures, the dynamic risk-adjusted return on capital in Sec-
tion 3.2.2 and the dynamic gain-to-loss ratio in Section 3.2.3, where we use the
specific structure of the problem that allows to solve the time-inconsistent problem
by applying the set-valued Bellman’s principle of [23].

3.2.1. The case of recursive risk measures (ρxt )t∈T . As we already mentioned, the
form of the time consistency property (R7) for DCRMs is tailored for the robust
representation (7) of DCAIs with the time consistency property (A7). This form
of time consistency is weaker than the so-called strong time consistency of risk
measures:

(R7’) Strong time consistency: for any D,D′ ∈ D and t = 0, . . . , T − 1, if Dt = D′t
and ρt+1(D) = ρt+1(D′), then ρt(D) = ρt(D

′).

Strong time consistency (R7’) is the one usually associated with dynamic risk mea-
sures (cf. [28, 11]), due to its natural financial interpretation, but also because of
its equivalence to:

(R7”) Recursiveness: ρt(D) = ρt
(
−ρt+1(D)1{t+1}

)
− Dt, for any D ∈ D and t =

0, . . . , T − 1.

One major benefit of having the recursive property is its direct applicability to
stochastic control problems. Recursiveness makes many stochastic control problems
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with risk as the terminal criteria to be time consistent. Note that such recursive
property in principle can not be satisfied by any DCAI, cf. [12, 11].

In this section, we study the acceptability maximization problem (Ãt(Vt)) as-
suming that the corresponding family of risk measures is strongly time consistent.
We work under the market setup of Section 3.2 with short-selling constraints and
with an initial value V0 > 0.

The one-step risk measures generated by ρx are defined as

ρxt,t+1(Z, ω) := ρxt (0 + 1{t+1}Z)(ω), t = 0, . . . , T − 1, ω ∈ Ω,

for any Ft+1-measurable random variable Z, here 0 denotes the zero process. In
what follows we assume that the one-step risk measures are identical across all
nodes of the multinomial model. Namely, with Pt denoting the partition of Ω that
generates Ft, we assume that for any t, s ∈ T , and any Ωt ∈ Pt and Ωs ∈ Ps

ρxt,t+1(Dt+1, ω) = ρxs,s+1(D′s+1, ω
′) (10)

for all ω ∈ Ωt, all ω′ ∈ Ωs and all D,D′ satisfying 1ΩtDt+1
(d)
= 1ΩsD

′
s+1 and zero

otherwise. Here
(d)
= denotes equality of distributions. As previously, we denote the

maximal acceptability attainable at the market as

α∗t (Vt;ω) := sup
h∈H+

t (Vt)

αt(D
[t+1,T ](h);ω).

Under the above, what may appear, natural assumptions, we obtain a somehow
surprising result: the maximal acceptability α∗ is constant across wealth level, time
and states of the world.

Theorem 3.4. Let α be a normalized right-continuous DCAI and (ρx)x∈(0,∞) be
the corresponding family of DCRMs. Assume that for each x > 0 the DCRM ρx

is strongly time consistent, and all the one step risk measures ρxt,t+1 satisfy (10).
Then, under the market model assumption of this section, the maximal acceptability
α∗t is independent of the wealth, time and state, that is,

α∗t (Vt;ω) = α∗0(1),

for all t ∈ T , ω ∈ Ω and positive Vt ∈ Lt.

Proof. The proof is given in Appendix B.

In view of Theorem 3.4 the auxiliary acceptability maximization has a constant
optimal objective value in time, and since at the initial time the auxiliary and the
original problem coincide, we obtain that it suffices to solve ÃT−1(1)(ω̄) for some
ω̄ ∈ Ω instead of A0(V0). The next result shows how to construct the corresponding
optimal trading strategy.

Theorem 3.5. Assume that for some ω̄ ∈ Ω the supremum α∗T−1(1; ω̄) is attained

and denote by h∗ ∈ Rd the corresponding optimal position (given ω̄),

h∗ = arg max
hT−1∈H+

T−1(1)
αT−1(D[T ](hT−1); ω̄)(ω̄),

where H+
T−1(1) was defined in Lemma 3.3(2). Let (h̄s)s=0,...,T−1 be the trading

strategy defined as

h̄0 = V0 · h∗,
h̄s = Vs(h̄s−1) · h∗, s = 1, . . . , T − 1.
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Then, the trading strategy h̄ is an optimal solution of A0(V0), i.e. α0(D(h̄)) = α∗.

Proof. The proof is given in Appendix B.

The results of this subsection rely on the properties of the family of risk measures
{(ρxt )t=0,...,T }x>0 corresponding to the DCAI α under consideration. Similar to the
static case, one may be interested in the risk minimization problem corresponding
to a fixed level x > 0. As may be expected, the recursive setting of this section has
direct implications on the minimal achievable risk (infimum of the risk minimization
problem). It can be proved that the minimal risk is positively homogeneous and it
also has a recursive form. Unlike the maximal acceptability it is not constant, but
it maintains the same sign over all times and states. Furthermore, if an optimal
solution (optimal trading strategy) exists, it can be constructed recursively in the
spirit of Theorem 3.5.

Next we will consider several cases for which the family of risk measures (ρxt )t∈T
are not recursive, and hence Theorems 3.4 and 3.5 do not apply.

3.2.2. The case of dynamic RAROC. Using the definition of the static RAROC,
the identity (5), as well as the representation (8), one naturally defines the dynamic
risk adjusted return on capital (dRAROC) as follows:

dRAROCt(D) =

(
Et
(∑T

s=tDs

))+

(
πt

(∑T
s=tDs

))+ , D ∈ D,

with the convention a
0 = +∞, where π is a given dynamic coherent risk measure

(not to be confused with the family of DCRMs corresponding to an acceptability
index).

As was shown in [13, Section 6], dRAROC fulfills the properties (A1)-(A6), but
it, in general, fails to satisfy the dynamic consistency property (A7), and therefore,
it is not a DCAI. Nevertheless, for some choices of π, dRAROC satisfies some weaker
forms of time consistency. In particular, if π is the dynamic version of TV@R, then
the corresponding dRAROC is so-called semi-weakly acceptance time consistent,
but not semi-weakly rejection time consistent; for more details see [11, 12]. This
will be the example we consider in our numerical experiment below. With this in
mind, we are interested in identifying an investment with the highest performance
measured by dRAROC, i.e. the maximization of the dRAROC-performance in the
framework of self-financing portfolios introduced in Section 3.2. Furthermore, we
focus our attention only on the case of a feasible set with short-selling constraints
H+

0 (V0), but most of the results can be extended to the case with no trading con-
straints. Hence, we wish to solve the following optimization problem:

max
h∈H+

0 (V0)
dRAROC0(D(h)). (11)

As already mentioned, this problem is time-inconsistent (in the sense of optimal
control), and in view of the above it does not fit the framework of Section 3.2.1.

We will take the approach of [23] to deal with time-inconsistency of (11). We
will use a time consistent bi-objective problem to solve a time inconsistent scalar
problem. First we note that for a positive level x > 0

dRAROC0(D) ≥ x ⇔ min

{
π0

(
T∑
s=0

Ds

)
,−E0

(
T∑
s=0

Ds

)
+ xπ0

(
T∑
s=0

Ds

)}
≤ 0.
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Using this, one could apply the idea of Algorithm 1 to the family of functions
ρx0(·) = min{π0(·),−E0(·) + xπ0(·)} for x > 0. In the nutshell, the procedure would
consist of the following: First, minimize the risk π0(·) among the feasible positions,
i.e. solve the mean-risk problem with an infinite risk aversion. If the optimal value
were negative, an infinite performance measured by dRAROC0 would be implied.
Second, repeatedly minimize −E0(·)+xπ0(·) among the feasible positions for various
levels x – that is, solve the mean-risk problem for the risk aversion at various levels
x. Therefore, the algorithm would be iteratively computing elements of the mean-
risk efficient frontier. If the (full) efficient frontier, i.e. the set of all portfolios
that are not dominated in terms of their mean and risk, was available instead, the
optimal solution of (11) could be found simply as the element of the frontier with
the highest ratio of the mean to the risk. Of course, applying Algorithm 1 is not
computationally efficient in the dynamic setup, but it motivates us to compute the
efficient frontier, i.e. to consider the bi-objective mean-risk problem

min
h∈H+

0 (V0)

(
− E0(VT (h)− V0)

π0(VT (h)− V0)

)
w.r.t. ≤R2

+
, (12)

where we used the fact that
∑T
s=0Ds(h) = VT (h)−V0. This will also overcome the

problem of time-inconsistency of (11) and thus lead to an efficient way to solve (11).
As it turns out, problem (12) is time consistent in the set-valued sense, i.e., the set-
valued Bellman’s principle of optimality recently proposed in [23] provides a way
to solve the mean-risk problem (12) recursively, assuming that the dynamic risk
measure π is recursive, i.e. strongly time consistent. We emphasise that the re-
cursiveness of π does not imply the recursiveness of the members of the family
(ρx0)x∈(0,∞) and is a separate property from the dynamic consistency of the perfor-
mance measure dRAROC. The set-valued Bellman’s principle of optimality of [23]
also provides the intermediate mean-risk efficient frontiers, namely it solves the
sequence of mean-risk problems

min
h∈H+

t (Vt)

(
− Et(VT (h)− Vt)

πt(VT (h)− Vt)

)
w.r.t. ≤Lt(R2

+),

for each time point t = 0, . . . , T − 1. Note that since dRAROC0 is equal to the
ratio of the mean to the risk, the element of the frontier of the time-consistent
problem (12) with the highest ratio is the optimal solution of the time-inconsistent
problem (11). The same can be said about the intermediate mean-risk efficient
frontiers and (auxiliary) problems max

h∈H+
t (Vt)

dRAROCt(D
[t+1,T ](h)).

We illustrate this on a dynamic version of the example from Section 2.3. We
consider the market model with two assets, and with one-time-step asset returns
Rit, i = 1, 2, having the probability law given in Panel A of Table 1, and we take
T = 6. We take the DCRM π to be the recursive dynamic TV@R(see [16]) at
significance level 1%. We recall that the dynamic TV@R is defined analogously to
the static TV@R by replacing V@R with the conditional V@R, which in turn is
defined as a conditional quantile.

In Figure 1 we display the mean-risk efficient frontier of problem (12), as well
as the intermediate frontiers. The bright green points correspond to the elements
with the highest dRAROC.

The trading strategy (ht)t=0,...,T−1 corresponding to the highest-dRAROC0 el-
ement of the time 0 frontier can be recovered from the solution of the mean-risk
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Figure 1. Efficient frontiers (black) of the mean-risk problems
and elements with the highest mean-to-risk ratio (green). All fron-
tiers are depicted in the (ρ,E) plane for the returns vT − vt with
vt = 1.

problem, see [23] for details. The mean-risk profiles, and the corresponding val-
ues of dRAROC, of this portfolio in the subsequent time points are determined
by the strategy itself and vary over times and states of the world. They are de-
picted as yellow triangles for a selected state of the world ω in Figure 2. All of
them lie on the efficient frontiers (yellow triangles), but, in general, do not coincide
with the highest-dRAROCt element (bright green points). This confirms the time-
inconsistency of dRAROC – the strategy optimal from the viewpoint of time t = 0
is not dRAROC-maximal at the subsequent time instances.

For comparison, we include also a myopic (magenta square) and an inconsis-
tent switching (red diamond) approach. In the myopic case, the investor at each
time solves a one step optimization problem, hence looking always only one period
ahead and chooses the position that maximizes the RAROC over this one-period
horizon. The switching strategy represents a time inconsistent behavior in the sense
that at time t the dRAROC-maximal element of the (time consistent) frontier is

selected, the trading strategy (h
(t)
s )s=t,...,T−1 corresponding to it is found, and the

position h
(t)
t is taken. At the next time t+ 1 the previously found trading strategy

(h
(t)
s )s=t+1,...,T−1 is discarded and a new one, (h

(t+1)
s )s=t+1,...,T−1 corresponding to

the dRAROC-maximal element of the t + 1 frontier, is selected. Since each (effi-
cient) trading strategy is discarded after one time period, none of the corresponding
(dRAROC-optimal) mean-risk profiles are ever realized. Figure 2 shows the actual
means, risks and values of dRAROC that these behaviors yield. Clearly, neither
the myopic nor the switching give at any time (except at T − 1) the maximal per-
formance. They even lead to portfolios, which are not mean-risk efficient at all, i.e.
they do not lie on the frontier.

Finally, let us look again at the strategy depicted in yellow, namely the strategy
that solves (11) at time zero. While this stochastic control problem is
time-inconsistent, one can ask which objective does the optimal strategy maximize
at the intermediate times. Note that the dRAROC0-maximal element of the time
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Figure 2. Efficient frontiers for returns over time. The mean-risk
profiles and the corresponding values of dRAROC are depicted for
three trading strategies: the time consistent mean-risk strategy in
one state ω (yellow triangle), the switching strategy (red diamond)
and the myopic strategy (magenta square). The element of the
frontier with the highest dRAROC is also depicted at each time
(green circle).

0 frontier corresponds to a nonlinear scalarization(
− E0(VT (h)− V0)

ρ0(VT (h)− V0)

)
7→ E0(VT (h)− V0)

ρ0(VT (h)− V0)
.

Thus, we will concentrate on a class of non-linear scalarizations including the one
above. Specifically, we consider scalarizations of the time t frontier of the form(

− Et(VT (h)− Vt)
ρt(VT (h)− Vt)

)
7→ (Et(VT (h)− Vt))λt

ρt(VT (h)− Vt)
, (13)

where the mapping is fully determined by the value λt, which can be interpreted
as a non-linear risk aversion parameter. For any given efficient trading strategy,
one can compute the value of λt, such that the strategy is an optimal solution of
a scalar problem with the objective (13). This way, a sequence of λ0, . . . , λT−1

can be computed for the dRAROC0–optimal strategy (ht)t=0,...,T−1 (represented
on the frontiers by the yellow mean-risk pairs). Since the frontiers (and the mean-
risk profiles) are adapted, also the corresponding scalarization coefficient λt will be
adapted. We computed the corresponding λt in the given state of the world ω and
depicted it also in Figure 2.

Thus, the sequence of scalar problems (13) is time consistent in the usual sense for
the computed risk aversion parameters λ0, . . . , λT−1. As λ0 = 1 is by construction
included, a time zero member of this time consistent family is the dRAROC0–
maximization problem. Thus, an investor with a dRAROC0 criteria at time zero
and a dRAROCt like criteria, that differs only in a changed risk aversion parameter
λt, where λt is changing in a certain manner according to the changes in the stock
market, would behave time consistent in the classical sense. This is in line with the
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findings about the moving scalarization (a time and state dependent risk aversion
parameter) that leads to a time consistent problem and a time consistent behaviour
of the investor as also discussed in the mean-risk portfolio optimization problem in
[23] and for other otherwise time inconsistent problems in [21].

3.2.3. The case of dynamic GLR. Similar to dRAROC, the dynamic gain-to-loss
ratio (dGLR) is defined as

dGLRt(D) =

(
Et
(∑T

s=tDs

))+

Et
((∑T

s=tDs

)−) , D ∈ D, (14)

with the convention a
0 := +∞. Unlike dRAROC, dGLR is a normalized and right-

continuous DCAI (see [13, Section 6]). Our aim is to identify among all self-financing
portfolios the ones with the highest dGLR, that is to solve the problem

max
h∈H0(V0)

dGLR0(D(h)). (15)

Similar to the static GLR, the family ρx of DCRM from the robust representation is
identified by the conditional expectiles, and since the conditional expectiles are not
strongly time consistent, the results of Subsection 3.2.1 do not apply here. As was
also noted in the static case, instead of the corresponding family of risk measures

one can consider the family −E0(·) + xE0

(
(·)−

)
for x > 0. Note that for any fixed

time instance one can view the problem as a static one, and thus one can apply
Algorithm 1, but this would be, as discussed before, computationally infeasible to
do for all t ∈ T . Here, with the intention of obtaining a Bellman’s principle of
optimality, we take an approach inspired by the previous subsection and in the
spirit of [23]. Motivated by the numerator and denominator of (14), we consider
the bi-objective mean-loss problem

min
h∈H0(V0)

(
−E0(VT (h)− V0)

E0

(
(VT (h)− V0)

−
))

w.r.t. ≤R2
+
. (16)

By the same argument as in the dRAROC case, the element of the efficient frontier
with the highest ratio corresponds to the portfolio with the highest value of dGLR0.
The recursive approach of [23], unfortunately, can not be applied directly here, due
to the lack of translation invariance of the objective function Et (X−) , which makes

it impossible to express E0

(
(VT (h)− V0)

−
)

through Et
(

(VT (h)− Vt)−
)

. Never-

theless, to solve (16), we consider the following sequence of bi-objective problems

min
h∈Ht(Vt)

(
−Et(VT (h)− V0)

Et
(

(VT (h)− V0)
−
))

w.r.t. ≤R2
+
, (17)

where V0 is the fixed initial wealth. Problem (17) does not have a natural inter-
pretation as a mean-loss problem, unless Vt = V0, however, it does give a recursive
solution of (16) in terms of the set-valued Bellman’s principle of [23].

We also note that the computational approach from [23] based on scaling ar-
guments is not applicable here either, and therefore one needs to solve (17) for
any Vt. As the problems (17) can be rewritten as bi-objective linear optimization
problems and differ only in the right-hand side of the constraints, they form a class
of parametric bi-objective linear problems with the parameter Vt. We solved these
parametric problems via polyhedral projection (cf. [24]).
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We conclude this section by illustrating the solution to (15) in the same market
model setup as in Section 3.2.2 and by taking the initial wealth V0 = 0. Figure 3
contains the efficient frontier at time t = 0 and the highest value of problem (15)
given by dGLR0 = 0.27. As the intermediate frontiers are computed for all possible
values of Vt, we depict for illustration only those frontiers corresponding to Vt = V0

for each time point t. The case of the current wealth Vt coinciding with the initial
wealth V0 would give problem (17) the interpretation as the mean-loss problem.
Therefore the corresponding maximal value of dGLRt can be obtained. Since the
zero-cost trading strategy can be scaled, the frontier is naturally a half-line. The
highest value of dGLR corresponds to the slope of the frontier. The optimal trading
strategy of (15) can be deduced from the solution of (17). Thus, an auxiliary, but
time-consistent bi-objective problem (17) (following a backward recursion by the set-
valued Bellman’s principle of optimality) is used to compute the optimal solution
of the time-inconsistent problem (15).

Figure 3. Efficient frontiers (black) of the problems (17) depicted
for wealth Vt = 0. All frontiers are depicted in the (Et(V −T ),Et(VT ))
plane. The corresponding highest value of dGLR (the slope of the
frontier) is given.
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Appendix A. Proofs from Section 2.

Proof of Lemma 2.3. The first property follows from the quasi-concavity of α, the
second from the definition of the sets, for the third consider⋂

ε>0

Dε = {D ∈ D : α(D) ≥ α∗ − ε, ∀ε > 0} = D∗.
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Proof of Lemma 2.5. 1. The positive value of the risk minimization problem
p(x) > 0 means that all portfolios have positive risk at level x - that is
ρx(D) > 0 for all D ∈ D. Therefore all portfolios have acceptability at most
x - that is α(D) ≤ x for all D ∈ D. Consequently, α∗ ≤ x. We do not obtain
a strict inequality as we have no information about the continuity of the risk
measure in the parameter x.

2. The assumption of attainment of the infimum implies that there exists D̃ ∈ D
such that ρx(D̃) ≤ 0. Then α(D̃) ≥ x and α∗ ≥ x.

3. The maximal acceptability α∗ above x means that there exists some portfolio
D̃ ∈ D with α(D̃) > x. From the monotonicity of the family of risk measures

and (3) it follows that ρy(D̃) ≤ 0 for all y ≤ x and therefore p(y) ≤ 0.
4. The maximal acceptability α∗ below x means that α(D) < x for all D ∈ D.

Consequently, for all D ∈ D it holds ρx(D) > 0. Since by Assumption 2.4
the infimum of the risk minimization problem is attained, also p(x) > 0. The
same follows for all y ≥ x as the family of risk measures is increasing.

Proof of Lemma 2.6. 1. Let α∗ < α. With the halving update rule, at iteration
n (counting from 0) the tested value is xn = 2−n · x0 and by Lemma 2.5 at
each step p(xn) > 0. Therefore after M̄ iterations the algorithm is terminated
and no non-zero lower bound on the acceptability is found. The portfolio D̄ is
never assigned, as no portfolio with a known lower bound on the acceptability
is found.

2. Let α∗ > α. With the doubling update rule, at iteration n (counting from 0)
the tested value is xn = 2n · x0 and by Lemma 2.5 at each step p(xn) ≤ 0.
Therefore, after M̄ iterations the algorithm is terminated and no finite upper
bound on the acceptability is found. The optimal solution DxM̄−1 of the
risk minimization problem P (xM̄−1) is outputted as D̄. It has a degree of
acceptability of at least α = xM̄−1.

3. (a) According to Lemma 2.5 for α∗ ∈ (α, α) it holds p(α) ≤ 0 < p(α),
therefore Step 1 of Algorithm 1 identifies both lower and upper bound, xL
and xU . Lemma 2.5 also guarantees that the found values are true bounds,
xL ≤ α∗ ≤ xU . Step 2 continues until the length of the interval is sufficiently
small.

(b) The optimal solution to the risk minimization problem P (xL) is re-
turned as D̄. By Assumption 2.4 it holds ρxL(D̄) ≤ 0, so α(D̄) ≥ xL. From
part (a) it follows that xL > α∗ − ε, so D̄ ∈ Dε.

(c) The worst-case scenario for the length of the interval after Step 1 is

xL = x0·2M̄−2, xU = x0·2M̄−1. Since the bisection step decreases the length of
the interval by half, after i bisection iterations the length of the interval would
be x0 · 2M̄−2−i. To obtain a length below ε we need i > log2

x0

ε + M̄ − 2.

Proof of Lemma 2.7. By Lemma 2.6 the algorithm for the tolerance ε outputs Dε ∈
Dε. Since D is compact (w.r.t. the topology of convergence in probability), there is
a subsequence {Dεnk}nk∈N with a limit (in the sense of convergence in probability),

denoted D̃, in the feasible set. The compactness also implies there exists C < ∞
such that |D| ≤ C for all feasible positions D ∈ D. Then, since | 1CD

εnk | ≤ 1 and
1
CD

εnk
p−→ 1

C D̃, scale invariance and the Fatou property of α imply for any fixed
δ > 0

∀εnk ≤ δ : α(Dεnk) ≥ α∗ − δ ⇒ α(D̃) ≥ α∗ − δ.
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Letting δ go to zero, we obtain α(D̃) ≥ α∗. Therefore, D̃ is an element of the set
D∗.

Appendix B. Proofs from Section 3.

Proof of Lemma 3.3. For the first part, positive homogeneity follows from the self-
financing property and the linearity of the portfolio value Vs. As for the second
part, the recursiveness, we have

Ht(Vt) := {(hs)s=t,...,T−1 | 1Ths = Vs, Vs+1 = RT
s+1hs, s = t, . . . , T − 1}

= {(hs)s=t,...,T−1 | 1Tht = Vt, Vt+1 = RT
t+1ht,

1Ths = Vs, Vs+1 = RT
s+1hs, s = t+ 1, . . . , T − 1}

= {(hs)s=t,...,T−1 | ht ∈ Ht(Vt), (hs)s=t+1,...,T−1 ∈ Ht+1(RT
t+1ht)}.

The result for the set H+
t (Vt) is obtained similarly.

Proof of Theorem 3.4. First we note that α∗ is scale invariant, i.e. α∗t (λVt) = α∗t (Vt)
for any λ > 0, λ ∈ Ft, t ∈ T , which follows immediately from the scale invariance of
the DCAI α and Lemma 3.3(1). Thus, it is enough to prove that α∗0(1) = α∗t (1;ω),
for all t ∈ T and ω ∈ Ω, which we will show next.

To prove the second claim we, use two types of sets of risks: the set of risks of
one-step-ahead dividends,

Qxt (ω) := {ρxt (D[t+1](ht);ω) | ht ∈ H+
t (1)},

and the set of risks of feasible portfolios,

P xt (ω) := {ρxt (D[t+1,T ](h);ω) | h ∈ H+
t (1)}.

The fact that the asset returns are iid and the assumption that the one-step risk
measures are identical imply that at a given level x the sets of one-step-ahead risks
coincide across all times and all states,

Qxt (ω1) = Qxs (ω2) for all s, t ∈ T and all ω1, ω2 ∈ Ω. (18)

At time T − 1 the two types of sets of risks for a given level x coincide, QxT−1(ω) =
P xT−1(ω). The relationship between the acceptability index α and the corresponding
family of risk measures (ρx)x∈(0,∞) implies the following two equivalence:

α∗t (1;ω) ≤ β ⇔ ∀y > β : P yt (ω) ∩ R− = ∅, and

α∗t (1;ω) ≥ β ⇔ ∀x < β : P xt (ω) ∩ R− 6= ∅.
(19)

We prove the claim by a backward induction. Let ω̄ ∈ Ω be an arbitrary state of
the world and set α∗ := α∗T−1(1; ω̄). In the first step of the induction we prove that
α∗T−1(1;ω) = α∗ for all states ω ∈ Ω: Consider a level y > α∗. According to (19) the
set P yT−1(ω̄) = QyT−1(ω̄) contains positive elements only. Then, (18) implies that

the same is true for the set P yT−1(ω) = QyT−1(ω), which means α∗T−1(1;ω) ≤ α∗.
Now consider a level x < α∗. According to (19) the set P xT−1(ω̄) = QxT−1(ω̄)
contains some non-positive element. By (18), the same is true for the set P xT−1(ω) =
QxT−1(ω), so α∗T−1(1;ω) ≥ α∗.

The induction hypothesis assumes that α∗s(1) ≡ α∗ for all s > t. For levels y > α∗

this means that the sets P yt+1(ω) and the sets Qyt (ω) (via (18) and the first step of
the induction) contain positive elements only. For levels x < α∗ this means that
the sets P xt+1(ω) and the sets Qxt (ω) (via (18) and the first step of the induction)
contain some non-positive element. The adaptiveness (R1) and independence (R2)
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of the risk measure imply that there exists an element p̄ ∈ P xt+1 that is non-positive
in all states of the world. The same is true also for the set Qxt .

Inductive step: The properties of the risk measure imply the following form of
the set P xt ,

P xt =
{
ρxt
(
− (Vt+1(ht) · p−Dt+1(ht)) 1{t+1}

)
| ht ∈ H+

t (1), p ∈ P xt+1

}
.

Consider a level y > α∗. According to the induction hypothesis all p ∈ P yt+1 are
positive. Then, by applying the monotonicity (R3), an arbitrary element of P yt can
be bounded by

ρyt
(
− (Vt+1(ht) · p−Dt+1(ht)) 1{t+1}

)
≥ ρyt

(
Dt+1(ht)1{t+1}

)
= ρyt

(
D[t+1](ht)

)
.

The risk ρyt
(
D[t+1](wt)

)
is an element of the set Qyt , so by the induction hypothesis

it is positive in all states of the world. This shows α∗t (1) ≤ α∗.
Now consider a level x < α∗. Consider the elements of P xt of the form{

ρxt
(
− (Vt+1(ht) · p̄−Dt+1(ht)) 1{t+1}

)
| ht ∈ H+

t (1)
}
,

where p̄ ≤ 0 is a non-positive element of P xt+1, whose existence is guaranteed by the
induction hypothesis. Monotonicity of the risk measure bounds these risks by

ρxt
(
− (Vt+1(ht) · p̄−Dt+1(ht)) 1{t+1}

)
≤ ρxt

(
Dt+1(ht)1{t+1}

)
= ρxt

(
D[t+1](ht)

)
.

The risks ρxt
(
D[t+1](wt)

)
are elements of the setQxt , and by the induction hypothesis

at least one of them is non-positive. Therefore, the set P xt contains at least one
non-positive element and α∗t (1) ≥ α∗.

Proof of Theorem 3.5. Firstly, note that the construction of the trading strategy
h̄ guarantees that it is adapted and feasible. We prove the claim via backward
induction by showing that

ρxt (D[t+1,T ](h̄)) ≤ 0 for all x < α∗.

This suffices to show that αt(D
[t+1,T ](h̄)) ≥ α∗. Since α∗ is a supremum, equality

follows.
Consider time T −1. Optimality of the position h∗ and the positive homogeneity

imply that

ρxT−1(D[T,T ](h̄); ω̄) ≤ 0

for all levels x < α∗. The iid asset returns and the identical one-step risk measures
together with the positive homogeneity give the same for all states ω ∈ Ω.

The induction hypothesis assumes that the risk

ρxt+1(D[t+2,T ](h̄)) ≤ 0 for all x < α∗.

For the inductive step we use the recursiveness of the risk measure to express the
time t risk as

ρxt (D[t+1,T ](h̄)) = ρxt

(
−
(
ρxt+1(D[t+2,T ](h̄))−Dt+1(h̄)

)
1{t+1}

)
.

At level x < α∗ the induction hypothesis and the monotonicity provide a bound

ρxt (D[t+1,T ](h̄)) ≤ ρxt (D[t+1](h̄)) ≤ 0.

The inequality ρxt (D̄t+1(h̄)) ≤ 0 follows again from the iid asset returns, identical
one-step risk measures, the positive homogeneity and the strategy h̄ corresponding
to the scaled position h∗. We conclude αt(D

[t+1,T ](h̄)) ≥ α∗.
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Table 3. The behavior of Algorithm 1 for various input parame-
ters in a market model with d = 10 assets with short-selling con-
straints.

Panel A: AIT, maximal acceptability α∗ = 25.45.

x0 ε M
Step 1 Step 2 Run time

Iter [xL, xU ] Iter xU − xL (s)

2 10−4 15 5 [16, 32] 18 6.1e-05 3.78

20 10−4 15 2 [20, 40] 18 7.6e-05 3.40
200 10−4 15 4 [25, 50] 18 9.5e-05 3.56

2 10−8 15 5 [16, 32] 31 7.5e-09 6.22

220 10−4 15 15 [0, 64] no Step 2 1.88
220 10−4 30 17 [16, 32] 18 6.1e-05 4.67

2−10 10−4 15 15 [16,∞] no Step 2 4.61

2−10 10−4 30 16 [16, 32] 18 6.1e-05 7.15

Panel B: GLR, maximal acceptability α∗ = 279.62.

x0 ε M
Step 1 Step 2 Run time

Iter [xL, xU ] Iter xU − xL (s)

2 10−4 15 9 [256, 512] 22 6.1e-05 21.53
20 10−4 15 5 [160, 320] 21 7.6e-05 17.27

200 10−4 15 2 [200, 400] 21 9.5e-05 15.74

2 10−8 15 9 [256, 512] 35 7.5e-09 30.40

225 10−4 15 15 [0, 2048] no Step 2 6.50

225 10−4 30 18 [0.5, 1] 22 6.1e-05 23.91
2−10 10−4 15 15 [16,∞] no Step 2 13.41

2−10 10−4 30 20 [256, 512] 22 6.1e-05 30.27

Panel C: RAROC, maximal acceptability α∗ = 279.62.

x0 ε M
Step 1 Step 2 Run time

Iter [xL, xU ] Iter xU − xL (s)

2 10−4 15 2 [2, 4] 15 6.1e-05 7.20

20 10−4 15 4 [2.5, 5] 15 7.6e-05 9.41
200 10−4 15 8 [1.56, 3.13] 14 9.4e-05 12.84

2 10−8 15 2 [2, 4] 28 7.5e-09 11.07

220 10−4 15 15 [0, 64] no Step 2 10.55
220 10−4 30 20 [2, 4] 15 6.1e-05 19.59

2−15 10−4 15 15 [0.5,∞] no Step 2 7.04

2−15 10−4 30 18 [2, 4] 15 6.1e-05 13.41
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[1] B. Acciaio, H. Föllmer and I. Penner, Risk assessment for uncertain cash flows: Model am-

biguity, discounting ambiguity, and the role of bubbles, Finance and Stochastics, 16 (2012),

669–709.
[2] B. Acciaio and I. Penner, Dynamic risk measures, Advanced Mathematical Methods for Fi-

nance, Springer, Heidelberg, (2011), 1–34.

[3] V. Agarwal and N. Y. Naik, Risks and portfolio decisions involving hedge funds, The Review
of Financial Studies, 17 (2004), 63–98.

[4] P. Artzner, F. Delbaen, J.-M. Eber and D. Heath, Coherent measures of risk, Math. Finance,
9 (1999), 203–228.

[5] F. Bellini and E. Di Bernardino, Risk management with expectiles, European Journal of

Finance, 23 (2015), 487–506.

http://www.ams.org/mathscinet-getitem?mr=MR2972238&return=pdf
http://dx.doi.org/10.1007/s00780-012-0176-1
http://dx.doi.org/10.1007/s00780-012-0176-1
http://www.ams.org/mathscinet-getitem?mr=MR2752539&return=pdf
http://dx.doi.org/10.1007/978-3-642-18412-3_1
http://dx.doi.org/10.1093/rfs/hhg044
http://www.ams.org/mathscinet-getitem?mr=MR1850791&return=pdf
http://dx.doi.org/10.1111/1467-9965.00068
http://dx.doi.org/10.1080/1351847X.2015.1052150


ACCEPTABILITY MAXIMIZATION 247

Table 4. A comparison of the different versions of the algorithm
in a market with d = 10 assets and |Ω| = 1000 states of the world
both with and without short-selling. A tolerance ε = 10−4 is used
for all algorithms, the original and zero-level version use x0 = 2 and
M̄ = 15. Obtaining the final approximation [xL, xU ] is denoted in
the table by α∗, values are listed to two decimal places.

Panel A: AIT, the maximal acceptability with short-selling constraints (h ≥ 0) is α∗ =
25.45, without short-selling constraints (h free) it is α∗ = 25.72.

Algorithm
Step 1 Bisection on q Bisection on x xU − xL Run time

Iter [xL, xU ] Iter [xL, xU ] Iter [xL, xU ] (s)

h ≥ 0

Original 5 [16, 32] 18 α∗ 6.1e-05 3.32
Modified 2 [0,∞] 23 α∗ 8.3e-05 3.67

Mixed 2 [0,∞] 5 [15, 31] 18 α∗ 6.1e-05 3.90

Zero level 3 [23.42, 46.84] 18 α∗ 5.9e-05 2.96

h free

Original 5 [16, 32] 18 α∗ 6.1e-05 4.89

Modified 2 [0,∞] 23 α∗ 8.5e-05 5.11
Mixed 2 [0,∞] 5 [15, 31] 18 α∗ 6.1e-05 5.09

Zero level 3 [23.45, 46.89] 18 α∗ 5.1e-05 4.36

Panel B: GLR, the maximal acceptability with short-selling constraints (h ≥ 0) is α∗ =
279.62, without short-selling constraints (h free) it is α∗ = 288.88.

Algorithm
Step 1 Bisection on q Bisection on x xU − xL Run time

Iter [xL, xU ] Iter [xL, xU ] Iter [xL, xU ] (s)

h ≥ 0

Original 9 [256, 512] 22 α∗ 6.1e-05 19.45
Modified 2 [0,∞] 29 α∗ 7.4e-05 18.42

Mixed 2 [0,∞] 8 [254, 510] 22 α∗ 6.1e-05 19.75

Zero level 3 [279.62, 559.24] 22 α∗ 6.7e-05 14.54

h free

Original 9 [256, 512] 22 α∗ 6.1e-05 39.56
Modified 2 [0,∞] 29 α∗ 7.9e-05 40.85

Mixed 2 [0,∞] 8 [254, 510] 22 α∗ 6.1e-05 41.66

Zero level 3 [288.88, 577.76] 22 α∗ 6.8e-05 32.17
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