
Mathematical Programming
https://doi.org/10.1007/s10107-021-01766-4

FULL LENGTH PAPER

Series B

Linear-step solvability of some folded concave and
singly-parametric sparse optimization problems

Andrés Gómez1 · Ziyu He1 · Jong-Shi Pang1

Received: 18 April 2021 / Accepted: 22 December 2021
© Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2022

Abstract
This paper studies several versions of the sparse optimization problem in statistical
estimation defined by a pairwise separation objective. The sparsity (i.e., �0) func-
tion is approximated by a folded concave function; the pairwise separation gives rise
to an objective of the Z-type. After presenting several realistic estimation problems
to illustrate the Z-structure, we introduce a linear-step inner-outer loop algorithm
for computing a directional stationary solution of the nonconvex nondifferentiable
folded concave sparsity problem. When specialized to a quadratic loss function with
a Z-matrix and a piecewise quadratic folded concave sparsity function, the overall
complexity of the algorithm is a low-order polynomial in the number of variables of
the problem; thus the algorithm is strongly polynomial in this quadratic case. We also
consider the parametric version of the problem that has a weighted �1-regularizer and a
quadratic loss function with a (hidden) Z-matrix. We present a linear-step algorithm in
two cases depending on whether the variables have prescribed signs or with unknown
signs. In both cases, a parametric algorithm is presented and its strong polynomiality
is established under suitable conditions on the weights. Such a parametric algorithm
can be combined with an interval search scheme for choosing the parameter to opti-
mize a secondary objective function in a bilevel setting. The analysis makes use of a
least-element property of a Z-function, and, for the case of a quadratic loss function,
the strongly polynomial solvability of a linear complementarity problemwith a hidden
Z-matrix. The origin of the latter class of matrices can be traced to an inspirational
paper of Olvi Mangasarian to whom we dedicate our present work.
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1 Introduction

In 1976,Mangasarian published a paper [44] on the solution of linear complementarity
problems (LCPs) as linear programs. The main result of the paper is the identifica-
tion of a special class of matrices for which positive vectors can be constructed to
serve as the objective coefficients of a single linear program whose optimal solutions
yield complementary solutions of the LCP. The work has led to the Ph.D. thesis [49]
of the third author which connects Mangasarian’s findings with a previous theory of
polyhedra having least elements by Cottle and Veinott [22].Kindly check and confirm
that the article title is correctly identified. Coined “hidden Z” (see [21, Notes and
Comments 3.13.26] for the background of this term), Mangasarian’s class of matri-
ces becomes the foundation for the strong polynomialilty of the parametric principle
pivoting algorithm and Lemke’s algorithm for solving LCPs with these matrices; see
[1,50] and the related paper [48]. With the exception of Adler et al. [1], all these ref-
erences are decades old. An important goal of the present paper is to highlight how
Mangasarian’s seminal work before the birth of the field of machine learning benefits
the modern topic of sparse optimization with such structures.

Sparse optimization is an important topic in statistical estimation [32]. Typically,
the objective function of the optimization problem consists of a weighted sum of a
loss function and a sparsity term defined by the �0-function of the variables; i.e.,

�0(t) �
{
1 if t �= 0
0 if t = 0

for t ∈ R. To handle the latter discontinuous function, various

convex and nonconvex surrogate functions as well as integer and complementarity
formulations have been proposed, the former as approximations and the latter for
global optimization. Among the family of convex surrogate functions, the weighted
�1-function is perhaps the most popular due to its simplicity although there are many
variations [32].As early as 2001, it has been recognized [27] in the statistics community
that nonconvex surrogate sparsity functions have favorable statistical properties that
are lacking in the family of convex sparsity functions. In particular, the class of folded
concave functions [28] provides a unification of many nonconvex approximations
of the �0-function; for the study of optimization problems using a folded concave
sparsity function, see [2,40] where these problems are treated as difference-of-convex
programs. In the machine learning literature, there is an early result [43] showing
that for the least-squares regression problem, the Lasso regularization path has an
exponential number (in the number of variables) of linear segments. More recently,
the paper [16] presents some NP-hardness results pertaining to a variety of sparse
optimization problems with folded concave penalty functions.

Motivated by some recent works [3,4] by the first author on the subject of sparse
optimization with M-matrices (and a further related work [29]) and by the connection
of these problems to strongly polynomially solvable LCPs with matrices of the same
class, we are led to the question of whether some sparse optimization problems and
their bilevel extensions of optimally selecting the sparsity penalty can be solved by
strongly polynomially bounded algorithms. The main goal of this paper is to identify
some such problems along with the solution algorithms that answer this question
affirmatively. Thus this goal is in direct contrast to the negative results in [16,43]. Some
comparative remarks with several most relevant references [9,10,41,47] are given in
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Sect. 5.1. To clarify, by strongly polynomial complexity, wemean that the total number
of arithmetic operations of the algorithm is a (low-degree) polynomial of the number of
variables of the problem. In the presence of nonlinear functions (e.g., a non-quadratic
loss function), we use the term “linear-step” to refer to the linear number (in the
number of variables of the problem) of subproblems each solvable by an algorithm
that involves solving a finite number of nonlinear equations; needless to say, each such
equation step is in general an infinite process. When these equations are linear, then
the linear-step algorithm becomes a strongly polynomial algorithm. The main factor
contributing to our favorable complexity results is the Z-property of the loss functions.
As a unification of the motivating works and other related problems, such as a sparse
nearly isotonic regression problem [55], we frame our study based on a generalization
of the deviation-separation problem defined in [34] parameterized by the sparsity of
the variables. An important remark about the strong polynomiality property of an
algorithm is that all computations are assumed to be exact. For sparse minimization
problemswith quadratic loss functions and piecewise quadratic regularizers, exactness
of the computations and operation counts, both of which are finite, can be maintained
throughout. Since the emphasis of our paper is on strong polynomiality derived from
a “finite” algorithm in a more general setting, we do not concern with inexact versions
of the algorithm, which typically will involve some inexactness measures that lead to
a complexity analysis of a different kind.

We end this introduction by re-iterating the motivation for us to undertake this
research. Namely, by way of the identification of important classes of sparse mini-
mization problems that are strongly polynomially solvable, as opposed to much (if not
all) of the existing literature that has not touched on this aspect of these problems, we
are able to pay tribute to our beloved colleague Olvi Mangasarian for his pioneering
contributions that allow us to deepen the understanding of some contemporary prob-
lems of significance in machine learning and statistical estimation. Overall, our study
not only enriches the computational research of sparse optimization, it expands the
domain of modern nonconvex nondifferentiable optimization [24] involving the min-
imization of a sum objective consisting of a convex function and a concave composite
piecewise affine function.

2 Problem formulations

Generalizing the formulation in [34], consider the following parametric nonlinear
program with sparsity control:

minimize
� ≤ x ≤ u

n∑
i=1

hi (xi ) +
∑

(i, j)∈V
gi j (ai j xi − bi j x j )

︸ ︷︷ ︸
denoted θ(x)

+γ

n∑
i=1

| xi |0, γ ≥ 0, (1)

where each hi : R → R+ is a continuously differentiable, strongly convex function;
each gi j : R → R+ is a continuously differentiable convex function;V ⊆ {1, . . . , n}×
{1, . . . , n}; {ai j , bi j }(i, j)∈V are nonnegative scalars; and to avoid some tedious details,
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−∞ ≤ �i < 0 < ui ≤ ∞ are given upper and lower bounds on the variable xi .
The “pairwise separation” summands gi j (ai j xi − bi j x j ) generalize the deviation-
separation objectives in [34] that have all the coefficients {ai j , bi j }(i, j)∈V equal to
unity. We will denote the feasible set {x ∈ R

n | � ≤ x ≤ u } � [ �, u ]. The latter
interval notation allows some of the bounds to be ±∞; in this case, it is understood
that the corresponding [ �i , ui ] is meant to be an unbounded interval. In applications,
there is often a multiplicative factor λ > 0 of the second sumwhich is a measure of the
separation of the pairs of the variables (xi , x j ) for (i, j) ∈ V ; this factor is a weight
of the deviation measure relative to the first sum. Throughout this paper, we take λ to
be a constant and absorb it into the functions gi j . Under the given setting, the function
θ is continuously differentiable and strongly convex. For any positive integer k, we
write [k] � {1, . . . , k}.

The problem (1) encompasses two cases: fixed and parametric γ . While the fixed-γ
case is of independent interest, the parametric-γ case is the cornerstone for solving
the singly-parametric bilevel optimization problem:

minimize
(x,γ )∈Rn×R+

ψ(x, γ )

subject to x is a “solution” of (1) corresponding to γ,
(2)

where ψ : R × R+ → R is a given “easy-to-handle” function; e.g., ψ(x, γ ) is a
quadratic function in x alone; more generally, this outer objective function is such that
for any “solution” path x(γ ) of the parametric problem (1), the univariate composite
function ψ(x(γ ), γ ) in γ alone is easy to minimize. The word “solution” is in quotes
becausewe have yet to specify itsmeaning in view of the nonconvex and discontinuous
objective function of (1). The use of bilevel programming as a systematic approach
for the optimal selection of hyper-parameters in machine learning models has been
investigated more than a decade ago; see [7,36,37] and more recently [38]. In these
references, the learning models are support vector machines with 2 parameters, which
are being optimized with respect to a cross-validation objective formed from some
hidden data. As it is known, the global resolution of such a bi-parameter identification
problem [39] is computationally very challenging. While the problem (2) is singly-
parametric, the computation of its global solution remains elusive in general. Part of the
contributions of this paper is the identification of some (surrogate) sparsity problems
whose solution paths can be traced out in linear number of iterations in terms of the
number of variables; thus the global solution of the bilevel parameter identification
can be accomplished via linearly many successive interval searches.

2.1 Some source problems

We give several source problems that all lead to special cases of the problem (1).

Sparse and smooth signal estimation [4,5] Consider the problem of recovering an
uncorrupted sparse signal represented by a vector x ∈ R

n from corrupted data a ∈
R
n . In addition to sparsity of the signal which is at the core of compressed sensing,

smoothness of the signal is often an important characteristics in denoising. Combining
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these two criteria, one simple version of the signal recovery problem can be formulated
as:

minimize
x∈Rn

1
2

⎡
⎣ n∑

i=1

( ai − xi )
2 + λ

∑
(i, j)∈V

( xi − x j )
2

⎤
⎦+ γ

n∑
i=1

| xi |0, (3)

which is clearly of the form (1) for each fixed λ. The version of this problem consid-
ered in [4] has the data vector a as nonnegative; in this case, a nonnegative signal x
is sought, rendering the above problem a nonnegatively constrained quadratic mini-
mizaion problem with sparsity control.

Inference of time-varying Gaussian Markov Random Fields (MRFs) [29] The stan-
dard approach, the so-called time-varying Graphical Lasso [11,31], for addressing this
problem of estimating the precisionmatrix of a time-varyingGaussianMRFgiven data
calls for solving a semidefinite optimization problem (SDP). Similar to the previous
problem, the objective of the MRF problem contains both an �1 regularization (cap-
turing the sparsity of the precision matrix) and fused lasso terms (capturing a smooth
evolution of the process over time). For the purpose of handling large-scale prob-
lems more effectively, the authors in [29] propose an alternative to the SDP approach
to compute estimates

{
�̂t
}T
t=1 of the precision matrices by solving an optimization

problem of the form:

minimize
�t∈[�,u]n×n

T∑
t=1

[
1
2

∥∥∥�t − �̂−1
t

∥∥∥2
F

+ λ

T−1∑
t=1

g(�t+1 − �t ) + γ ‖�t ‖0
]

, (4)

where ‖ · ‖F is the Fröbenius norm of a matrix, �̂−1
t are estimates (computed a priori)

of the precision matrix at time t that ignore the smooth evolution of the process, and
g : Rn×n → R is a separable function capturing the time dependence. The squared
‖ · ‖F-norm of the deviation from the estimates is an alternative to a constrained
formulation used in [29].

Scaled nearly isotonic regression with sparsity control The isotonic (modeled by the
constraints xi ≤ xi+1 for i ∈ [n − 1]) regression problem is classical in statistics
[6]. The paper [55] introduces the “nearly isotonicity regression” problem without
sparsity control wherein the order constraint is replaced by a penalty term max(xi −
xi+1, 0) added to the objective function as a relaxation of the isotonic constraint. The
near isotonicity can be generalized to scaled near isotonicity; this generalization with
sparsity control leads to the problem:

minimize
x∈Rn

1
2

[
n∑

i=1

( ai − xi )
2 + λ

n−1∑
i=1

max ( xi − bi+1 xi+1, 0 )2

]
+ γ

n∑
i=1

| xi |0,

(5)

123



A. Gómez et al.

where we have used a quadratic penalty function to model the violation of the scaled
isotonicity constraint: xi ≤ bi+1xi+1. Since the univariate function t 
→ max(t, 0)2

is nondecreasing, (once but not twice) differentiable, and convex, we obtain yet
another instance of the problem (1). An interesting application of the above prob-
lem pertains to spike detection in calcium imaging data [14,35,56]. In such data,
moments in which a neuron spikes are characterized by an intense flood of calcium
into the cell, followed by a smooth decay to a baseline level. The near isotonic-
ity term

∑n−1
i=1 max ( xi − bi+1 xi+1, 0 )2 is a variation of the smoothness term∑

(i, j)∈V (xi − x j )2 in (3) and may serve to more adequately model such sudden
calcium spikes; moreover sparsity captures the fact that neurons are inactive most of
the time.

Portfolio revision with transaction costs [3,8] Consider the problem of portfolio selec-
tion/revision with transaction costs. There are N risky assets with current holdings
w ∈ R

N , expected returns {μi }Ni=1, and variance-covariance matrix � ∈ R
N×N . Let

a ∈ R++ be the positive fixed transaction costs associated with the buying/selling any
quantity, and c ∈ R

N be the unit variable costs of trading the assets. Let u ∈ R++ be
the upper bounds of the transacted amounts; these bounds are used in lieu of the usual
budget constraint. Then with the objective of maximizing returns less transaction costs
and minimizing the variance of the transactions, with the two conflicting objectives
being balanced by a parameter ρ ≥ 0 in accordance with the classicMarkowitz portfo-
lio model, this problem with a suitable nonnegative ε-regularization for stability may
be formulated as:

minimize−u ≤ x ≤ u
1
2

[
( w + x )��(w + x ) + ε

n∑
i=1

x2i

]

+ ρ

n∑
i=1

[−μi wi − ( μi − ci ) xi + ai | xi |0 ] . (6)

The quadratic termwith the general variance-covariancematrix� may not correspond
directly to the form (1); in particular, it does not have the required non-positive sign
patterns in the off-diagonal elements as would be implied by the terms gi j (ai j xi −
bi j x j ). Nevertheless, with � being strictly quasi-diagonally dominant, i.e., if there
exists a positive vector d such that

�i i di >
∑
j �=i

| �i j | d j , ∀ i = 1, . . . , n, (7)

or in general, with a large enough choice of the regularization scalar ε, the above
parametric problem (in ρ) is still amenable to treatment by an easy extension of
Algorithm III in Sect. 7.1. While diagonal dominance of � arises in a factor model if
the idiosyncratic risk of a portfolio overshadows the systematic risk, the choice of a
sufficiently large ε > 0 may help to induce less frequency of the portfolio transactions
(thus more sparsity in x) due to the associated costs and also as a mechanism to
robustify the problem against uncertainty as suggested in [8].

123



Linear-step solvability of some folded concave and...

3 Folded concave approximations: fixed � > 0

The complication of the problem (1) is due to the third sum, without which the prob-
lem is a standard differentiable, strongly convex program. Obviously, this problem
as stated, not to mention its parametric extension (2), is computationally very chal-
lenging. Aside from the fact that (1) admits a mixed-integer nonlinear programming
formulation, for any algorithm that attempts to relieve the global minimization of the
problem, it is important to understand what property a computed solution can possibly
have. For this purpose, we follow a common approach in statistics to deal with the
�0-function, which is to approximate this discontinuous function by a scaled folded
concave function. For each i ∈ [n], let fi : R+ → R+ satisfy:

• (blanket assumption): fi is continuous, concave, and such that fi (0) = 0 and the
one-sided directional derivative f ′

i (0; 1) > 0; moreover fi is strictly increasing
before it eventually becomes flat after a certain value, which we may assume
without loss of generality is to the left of the upper bound ui .

See the right-hand functions in Fig. 1 which we borrow from Cui and Pang [24].
We then approximate the problem (1) by

minimize
� ≤ x ≤u

ϕγ,δ(x) � θ(x) + γ

n∑
i=1

fi

( | xi |
δ

)
︸ ︷︷ ︸

denotedρ(|xi |,δ)in Fig. 1

, ( γ, δ ) > 0. (8)

The two parameters serve different roles: γ for sparsity control and δ for approximation

accuracy. For a large family of concave functions fi , we have limδ↓0 fi
(

ξ
δ

)
= | ξ |0

for all ξ > 0 although this limiting property is not essential throughout this paper.
See [25,40] for studies on the use of the δ-parameter to control the approximation
of the �0-function. In addition to the �1-function, there are several popular classes
of folded concave functions, all being of the piecewise kind: the capped �1-function
[40, Section 5] defined by ξ(≥ 0) 
→ min(ξ, 1), the minimax concave penalty mcp
function [26,58], and the smoothly clipped absolute deviation scad function [27]; as
demonstrated in [2], all these functions are not differentiable at the origin as they are
approximations of the �0 function that is discontinuous there; see Fig. 1. Omitting
their explicit definitions, which can be found in the cited references, we note that both
the scad and mcp functions are both once continuous differentiable and piecewise
linear-quadratic; the latter means that for each of the associated fi functions, there is
a partition of the interval [0,∞) into a finite number of non-overlapping subintervals
on each of which fi is a quadratic function; see Sect. 6.2 for a more formal definition.

As a coupled nonconvex nondifferentiable optimization problem, a first question
to ask about (8) is what kind of solution an algorithm can be expected to compute.
Since the computation of a globally optimal solution is out of the question, one should
settle for a stationary solution of the sharpest kind; see [24,51]. For (8), a (directional)-
stationary solution is the best kind one can hope for. In general, for a function ϕ : O ⊆
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−0.5
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1

t

| t |0

−0.5

0.5

1

t

ρ(t; 0.1)

SCAD
MCP
capped 1

trunc. trans. 1

trunc. log.

Fig. 1 The �0 function and surrogate sparsity functions ρ(·, 0.1)

R
n → R defined on an open set O, the directional derivative of ϕ at a vector x̄ ∈ O

along a direction v, denoted ϕ ′(x̄; v), is by definition

ϕ ′(x̄; v) � lim
τ↓0

ϕ(x̄ + τv) − ϕ(x̄)

τ

provided that the limit exists. A directional stationary solution of (8) is a feasible
vector x̄ ∈ [�, u] such that ϕ ′

γ,δ(x̄; x − x̄) ≥ 0 for all x ∈ [�, u]. We have

ϕ ′
γ,δ(x̄; v) = ∇θ(x̄)�v + γ

δ

⎡
⎣ ∑

i : x̄i>0

f ′
i

(
x̄i
δ

; vi

)
+
∑

i : x̄i<0

f ′
i

(−x̄i
δ

; −vi

)

+
∑

i : x̄i=0

f ′
i (0; |vi |)

⎤
⎦

=
∑

i : x̄i>0

[
∂θ(x̄)

∂xi
vi + γ

δ
f ′
i

(
x̄i
δ

; vi

)]

+
∑

i : x̄i<0

[
∂θ(x̄)

∂xi
vi + γ

δ
f ′
i

(−x̄i
δ

; −vi

)]

+
∑

i : x̄i=0

[
∂θ(x̄)

∂xi
vi + γ

δ
f ′
i (0; |vi |)

]
.

For a nonzero scalar t , we let sgn(t) � ±1 depending on the sign of t . Define, for a
given vector x̄ ∈ R

n , the index sets:

A+(x̄) � { i | x̄i > 0 } ; A0(x̄) � { i | x̄i = 0 } and A−(x̄) � { i | x̄i < 0 } . (9)

Based on the above expression for the directional derivatives, we obtain the following
necessary and sufficient conditions for a vector x̄ ∈ [ �, u ] to be a d-stationary point
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of the problem (8). The proposition also identifies a distinguished property of such a
stationary point when each fi is additionally piecewise affine. We recall that in our
setting −∞ ≤ �i < 0 < ui ≤ ∞ for all i ∈ [n].
Proposition 1 For every pair (γ, δ) > 0, problem (8) has a global minimizer, thus a
d-stationary point. Moreover, a feasible vector x̄ is a d-stationary point if and only if
the following conditions hold:

• fi is differentiable at |x̄i |/δ for all i such that x̄i �= 0 and �i < x̄i < ui ;

• ∂θ(x̄)

∂xi
+ sgn(x̄i )

γ

δ
f ′
i

( |x̄i |
δ

)
= 0 for all i such that x̄i �= 0 and �i < x̄i < ui ;

•
∣∣∣∣ ∂θ(x̄)

∂xi

∣∣∣∣ ≤ γ

δ
f ′
i (0; 1) for all i ∈ A0(x̄);

• ∂θ(x̄)

∂xi
+ γ

δ
f ′
i

( |x̄i |
δ

;−1

)
≥ 0 for all i such that x̄i = �i ;

• −∂θ(x̄)

∂xi
+ γ

δ
f ′
i

( |x̄i |
δ

;−1

)
≥ 0 for all i such that x̄i = ui .

If each fi is additionally piecewise affine, then every d-stationary point of problem
(8) is a local minimizer.

Proof Since θ is strongly convex and each fi is nonnegative, the function ϕγ,δ is
coercive. Therefore, problem (8) has a global minimizer which must necessarily be a
d-stationary point. The sufficiency condition of such a stationary point is easy to show
by using the directional derivative formula and verifying that ϕ ′

γ,δ(x̄; x − x̄) ≥ 0 for
all x satisfying � ≤ x ≤ u. To show necessity, let i be such that 0 < x̄i < ui . It then
follows that

∂θ(x̄)

∂xi
vi + γ

δ
f ′
i

(
x̄i
δ

; vi

)
≥ 0, ∀ vi ∈ R.

Letting vi = ±1 we obtain the two inequalities:

∂θ(x̄)

∂xi
+ γ

δ
f ′
i

(
x̄i
δ

; 1
)

≥ 0 and − ∂θ(x̄)

∂xi
+ γ

δ
f ′
i

(
x̄i
δ

;−1

)
≥ 0.

Adding, we obtain

f ′
i

(
x̄i
δ

; 1
)

+ f ′
i

(
x̄i
δ

;−1

)
≥ 0;

since fi is concave, the left-hand sum is nonpositive. Hence we deduce

∂θ(x̄)

∂xi
= −γ

δ
f ′
i

(
x̄i
δ

; 1
)

= γ

δ
f ′
i

(
x̄i
δ

;−1

)
.

It follows that fi is differentiable at x̄i/δ and we have

∂θ(x̄)

∂xi
= −γ

δ
f ′
i

(
x̄i
δ

)
.
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By a similar argument, we can prove the case when �i < x̄i < 0. This completes the
proof of the case where i is such that x̄i �= 0 and �i < x̄i < ui . The remaining three
conditions can also be proved by similar arguments. Consider for instance the case
where x̄ = �i . We then have

∂θ(x̄)

∂xi
vi + γ

δ
f ′
i

( |x̄i |
δ

; −vi

)
≥ 0, ∀ vi ∈ R+,

which is equivalent to
∂θ(x̄)

∂xi
+ γ

δ
f ′
i

( |x̄i |
δ

;−1

)
≥ 0. We omit the proof of the other

two cases. The last assertion of proposition is an immediate consequence of Cui et al.
[23, Proposition 4.1]. ��
Remark 2 When each fi is a piecewise linear-quadratic function, there is an equiv-
alence of a local minimizer of problem (8) and a d-stationary point satisfying a
“second-order directional stationarity condition”. The latter enhanced stationarity con-
dition is defined in terms of the “second-order directional derivatives” of fi . For more
details on the theory of piecewise linear-quadratic optimization, see [23] for details.
The question of whether this theory can be sharpened when each fi is additionally
continuously differentiable, particularly for the mcp and scad regularizers, requires
further investigation.

The following result establishes a necessary condition of a global minimizer of (1)
that leads to a concept of a “pseudo-minimizer”. This kind of “minimizers” turns out
to be the limits of convergent sequences of d-stationary solutions to (8) as δ ↓ 0.

Proposition 3 Let X ⊆ R
n, θ : R

n → R, and γ > 0 be given. If x̄ is a global
minimizer of the problem:

minimize
x∈X θ(x) + γ

n∑
i=1

| xi |0, (10)

then x̄ is a global minimizer of the problem:

minimize
x∈X θ(x) subject to xA0(x̄) = 0. (11)

Proof Indeed, for any feasible solution x of (11), we have

θ(x) = θ(x) + γ

n∑
i=1

| xi |0 − γ ( number of nonzero components of x)

≥ θ(x̄) + γ

n∑
i=1

| x̄i |0 − γ ( number of nonzero components of x̄) = θ(x̄),

where the inequality holds because x̄ is a global solution of (10) and the number of
nonzero components of x is no more than that of x̄ . ��
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We say that a vector x̄ ∈ X is a pseudominimizer of the problem (10) if x̄ is a global
minimizer of (11). The following result gives a necessary and sufficient condition for
a feasible vector of (11) to be a pseudo minimizer when θ is convex and X � [ �, u ].

Proposition 4 Let −∞ ≤ �i < 0 < ui ≤ ∞ for all i ∈ [n]. If θ is convex, then a
feasible vector x̄ of (11) with X � [ �, u ] is a pseudo minimizer of (10) if and only if
the following three conditions hold for all i ∈ [n],

• if x̄i �= 0 and �i < x̄i < ui , then
∂θ(x̄)

∂xi
= 0;

• if x̄i = �i , then
∂θ(x̄)

∂xi
≥ 0;

• if x̄i = ui , then
∂θ(x̄)

∂xi
≤ 0.

By our convention of the (positive) upper and (negative) lower bounds (to simplify
the subsequent analysis), the origin is always a pseudo-minimizer. For problemswhere
some suchbounds are zero, the concept of a pseudominimizer canbe suitablymodified.
We omit such modifications. It turns out that the limits of d-stationary solutions of the
δ-approximated problems (8) are pseudominimizers of (1). This is the main reason for
introducing this kind of a solution of (1). The convergence result below is in contrast to
Le Thi et al. [40, Theorem 1] that pertains to global minimizers of the folded concave
approximating problems. While such a convergence result about global minimizers is
conceptually useful to justify the folded concave approximations, it is practically not
very meaningful because such minimizers cannot be computed. This computational
consideration motivates the following result that pertains to practically computable
stationary solutions.

Proposition 5 Let −∞ ≤ �i < 0 < ui ≤ ∞ for all i ∈ [n]. Let θ be strongly convex
and let {δk} be a sequence of positive scalars converging to zero. For each k, let x̄k

be a d-stationary solution of (8) corresponding to δk . If for every i ∈ [n], fi (t) is a
constant for all t > 0 sufficiently large, then every accumulation point of the sequence
{x̄ k} is a pseudo minimizer of (10).

Proof Let x̄∞ be the limit of a convergent subsequence, which without loss of gener-
ality wemay take to be the entire sequence {x̄ k}. We need to verify the three conditions
in Proposition 4. For an index i such that x̄∞

i �= 0 and �i < x̄∞
i < ui , we must have

x̄ ki �= 0 and �i < x̄ ki < ui for all k sufficiently large; moreover, limk→∞
|x̄ ki |
δk

= ∞,

which yields f ′
i

(
|x̄ ki |
δk

)
= 0 for all k sufficiently large, by the constancy assumption

of fi (t) for t > 0 sufficiently large. Hence
∂θ(x̄ k)

∂xi
= 0 for all such k, which yields

∂θ(x̄∞)

∂xi
= 0. Consider next an index i such that x̄∞

i = �i . We then have x̄ ki < 0 < ui

for all k sufficiently large. Moreover, either x̄ ki = �i for infinitely many k’s, or x̄ ki > �i
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for all k sufficiently large. In either case, we can deduce that ∂θ(x̄∞)
∂xi

≥ 0 by an argu-
ment similar to the previous case. Lastly, we can similarly show that for an index i

such that x̄∞
i = ui , we must have

∂θ(x̄∞)

∂xi
≤ 0. ��

4 Z- andM-functions

In proving the linear (in n) number of steps of the main algorithm to be introduced
in Sect. 6, the Z-property of the gradient ∇θ , which is motivated by the structure
of the function θ in the applied pairwise separation problem (1), plays a prominent
role. Specifically, the gradient ∇θ : Rn → R

n is a Z-function, also called an “off-
diagonally antitone” function. As a generalization of a Z-matrix, which is a real square
matrix with nonpositive off-diagonal entries, this class of vector functions was first
introduced by Rheinboldt [52] and has been studied extensively in the context of com-
plementarity problems [49,54]. We formally define a Z-function and related functions
below. For two vectors a and b of the same dimension, the notation a ≤ b is meant to
be componentwise.

Definition 6 [45] A function F : Rn → R
n is

• a Z-function if the univariate, scalar-valued function t 
→ Fi (x + te j ), where e j

is the j-th coordinate vector, is nonincreasing for all i �= j and all x ∈ R
n ;

• inverse isotone if F(x) ≤ F(y) implies x ≤ y for all x and y in Rn ;
• an M-function if it is an inverse isotone Z-function.
• strongly monotone if a constant c > 0 exists such that (F(x) − F(y))�(x − y) ≥
c (x − y)�(x − y) for all x, y ∈ R

n .

For every index set β ⊆ {1, . . . , n} with complement α and for every vector
bβ ∈ R

|β|, the function xα 
→ Fα(xα, bβ) is called a principal subfunction of F .
It can be shown that every principal subfunction of an M-function is an M-function. It
is well known that the gradient of a continuous differentiable, strongly convex function
is stronglymonotone.Moreover, byMoré and Rheinboldt [45, Theorem 3.8], a contin-
uously, strongly monotone, Z-function must be inverse isotone, thus is an M-function.
Moreover, it is well-known that a continuous, strongly monotone function must be
surjective. A simple proof of this statement when F is the gradient of a continuously
differentiable, strongly convex function is given in the proof below.

Proposition 7 Let θ be defined in (1) and satisfy the stated assumptions. Then F � ∇θ

is a surjective M-function. Thus, for every vector b ∈ R
n, a vector a ∈ R

n exists such
that F−1[ b,∞ ) ⊆ [ a,∞ ).

Proof For each i , observe that for all (i, j) ∈ V and ( j, i) ∈ V with j �= i ,

∂gi j (ai j xi − bi j x j )

∂xi
= ai j g

′
i j (ai j xi − bi j x j ) and

∂g ji (a ji x j − b ji xi )

∂xi
= −b ji g

′
j i (a ji x j − b ji xi ).
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By the nonnegativity of the scalars {ai j , bi j }(i, j)∈V and the nondecreasing property
of g ′

i j and g ′
j i , both due to the convexity of gi j and g ji , respectively, it follows that

the above two partial derivatives are nonincreasing functions of x j . Thus ∇θ is a Z-
function. By the aforementioned remark, it follows that ∇θ is strongly monotone; the
surjectivity of ∇θ can be proved by noting that the equation ∇θ(x) = b is equivalent
to the problem minimizex θ(x) − b�x which has a strongly convex objective, thus
has a unique minimizer that satisfies the gradient equation. To prove the last assertion
of the proposition, it suffices to note that, by surjectivity, for every vector b ∈ R

n ,
there exists a vector a ∈ R

n such that F(a) = b; hence if x ∈ F−1[ b,∞ ), then
F(x) ≥ b = F(a); The inverse isotonicity of F then yields x ≥ a. ��

5 Solving (8) with � = ı = 1: a synopsis and related literature

Having settled the convergence as δ ↓ 0, we proceed next to discuss the computation
of a d-stationary solution of the problem (8) with a fixed δ which we take to be 1; we
also take γ = 1 to simplify the notation. Thus, we consider:

minimize
� ≤ x ≤u

ϕ(x) � θ(x) +
n∑

i=1

fi (| xi |). (12)

Throughout θ is continuously differentiable and strongly convex such that ∇θ is a Z-
function; by the proof of Proposition 7, it follows that ∇θ is a surjective M-function.
Before proceeding, we should point out that as a stand-alone problem, there is to date
no known algorithm that can compute a d-stationary solution of (12) when each fi
is a general concave function. Our main contribution is an algorithm with favorable
computational complexity for the case where each fi is piecewise smooth. This is
a significant departure from the algorithms in [42,51] for structured difference-of-
convex problems where only subsequential convergence is established.

The overall algorithm to be proposed for problem (12) consists of outer (Algo-
rithm I) and inner (Algorithm II) loops which can be implemented (see Sect. 6.4)
by a “greedy” procedure originated from the study of complementarity problems with
Z-properties to preserve the favorable computational complexity. Each outer loop con-
sists of solving a fixed-sign subproblem determined by a pair (S, S̄) of complementary
index sets whose union is {1, . . . , n}:

minimize
� ≤ x ≤u

θ(x) +
n∑

i=1

fi (| xi |)
subject to xS ≥ 0 and xS̄ ≤ 0

⎫⎪⎬
⎪⎭ ⇔

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
minimize

x∈Rn
θ(x) +

n∑
i=1

fi (| xi |)
subject to uS ≥ xS ≥ 0
and �S̄ ≤ xS̄ ≤ 0.

(13)

With each fi being piecewise smooth (see Sect. 6.2), each inner loop solves a finite
number of differentiable subproblems each defined by a “piece” of the sum function∑n

i=1 fi . Together, the two loops break down the nondifferentiability of the regular-
izer

∑n
i=1 fi (| xi |) in two steps: (i) the outer loop deals with the positive and negative
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pieces of the absolute-value function, and (ii) the inner loop exploits the piecewise
differentiability of fi to define smooth subproblems that become the workhorse of
the overall algorithm. Supported by the well-definedness results in Sects. 6.1 and 6.2,
Theorem 11 shows that at most n + 1 subproblems of the kind (13) are solved. This
explains the term “linear-step” in the title of this paper. When each fi is differen-
tiable, each subproblem (13) can be solved via its first-order Karush–Kuhn–Tucker
conditions formulated as an upper-bounded nonlinear complementarity problem with
a Z-function. This solution strategy is applicable to each differentiable subproblem in
the piecewise smooth case. The literature for Z-structured complementarity problems
starts with the work of Chandrasekaran [13] for the linear complementarity problem,
extended to the nonlinear problem by Tamir [54], and further extended to problems
with upper bounds by the last author in the paper [48]. A summary of this literature
can be found in the Ph.D. thesis [49]. At the ground level, each of the cited algorithms
solves a system of linear equations when θ is quadratic and each fi is piecewise
linear-quadratic (as in scad or mcp), and a system of nonlinear equations when θ is
non-quadratic and/or some fi are not piecewise linear-quadratic; in each case, there
are at most O(n)many such equations to be solved (when the number of pieces of each
fi is independent of n). Putting together these complexity bounds for the two loops,
the resulting algorithm for computing a directional stationary solution of (12) has a
strongly polynomial complexity when θ is quadratic and each fi is piecewise linear
quadratic. In the general case, the proposed algorithm requires solvingO(n2) nonlinear
equations each involving a subset of the n variables. More details of the computational
efforts are described in Sect. 6.4. In addition to such favorable complexity, the itera-
tions of the overall algorithm also yield descent in the objective function ϕ; see the
last conclusion in Theorem 15 and the follow-up comment in the ensuing paragraph.

5.1 Related literature

A major distinction between the present work and the relevant literature on folded
concave optimization is our emphasis of finiteness of the algorithms, which yields
the strongly polynomial complexity for problems with quadratic loss and piecewise
linear-quadratic regularizers. In what follows, we contrast our algorithmic complexity
results with those in several most relevant papers. In [10], the authors study the �0-
problem with a quadratic loss function; a specialized iterative thresholding algorithm
that depends on the parameter γ was presented and analyzed. A most notable result
therein is that under the condition that ‖∇2θ‖2 < 1 where ∇2θ is the Hessian of
the quadratic function θ , the proposed algorithm produces a sequence of iterates that
converge to a local minimizer of the problem. The cornerstone of the convergence is
based on the key fact that under the norm condition, a minimizer of the �0-problem
is a subset of a γ -dependent fixed-point mapping. Under a further assumption on the
quadratic loss function θ , the rate of convergence is obtained. It is worth pointing
out that it is not clear whether the algorithm in [10] is applicable to a weighted �0-
problem with unequal weights on the separable sparsity terms. As noted in the paper
[33], the equal-weighted and unequal-weighted versions of the �0-problem can be
quite different. In contrast, with the use of the surrogate sparsity functions fi , these
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two versions of the approximated problem can be treated in a unified way. In [41], the
authors studied the problem (13) with differentiable functions fi and used scad and
mcp as the primary examples to illustrate the results. When it comes to algorithms, the
authors mentioned on page 235 of the reference that they applied a potential reduction
algorithm [57] for quadratic programming (QP) to compute a “second-order KKT
solution” of the problem. Such an algorithm is of the iterative kind and computes only
an approximate solution with complexity inversely proportional to the accuracy.

Capped folded concave approximations have been studied in two recent papers
[9,47] as an approximation of the �0-function. The principal method for the solution
of the resulting optimization problem (12) employed therein is smoothing [15]. Thus
in terms of the original �0-minimization problem, there are two levels of approxi-
mation: using a folded concave approximation of the sparsity function, and a further
approximation of the folded concave function by smoothing. In contrast, themethod in
this paper involves only one layer of approximation via the folded concave functions.
In particular, for a piecewise affine (such as the capped �1-function) or a piecewise
linear-quadratic (such as scad or mcp) regularizer appended to a quadratic loss func-
tion with a Stieltjes matrix, our overall algorithm is a finite method with a strongly
polynomial complexity. This very favorable computational complexity is believed to
be the first of its kind in the area of nonconvex sparsity minimization. As an initial
extension of this study on a stand-alone problem (8) with a fixed pair (γ, δ), we briefly
touch on the complete parametric �1-problem with δ fixed in the last Sect. 7. The goal
there is to show that the entire solution path of certain instances of the problem (8)
can be followed with strongly polynomial computational complexity also.

6 The linear-step two-loop algorithm

As a prerequisite, we present the following result similar to Proposition 1 that gives a
necessary and sufficient condition for a directional stationary point of (13). No proof
is needed. We recall the index set A0(x̄) defined in (9).

Proposition 8 A feasible vector x̄ is a directional stationary point of (13) if and only if

• fi is differentiable at |x̄i | for all i such that x̄i �= 0 and �i < x̄i < ui ;

• ∂θ(x̄)

∂xi
+ sgn(x̄i ) f ′

i ( |x̄i | ) = 0 for all i such that x̄i �= 0 and �i < x̄i < ui ;

• ∂θ(x̄)

∂xi
+ f ′

i (0; 1) ≥ 0 for all i ∈ A0(x̄) ∩ S;

• −∂θ(x̄)

∂xi
+ f ′

i (0; 1) ≥ 0 for all i ∈ A0(x̄) ∩ S̄;

• ∂θ(x̄)

∂xi
+ f ′

i ( |x̄i |; −1 ) ≥ 0 for all i such that x̄i = �i ;

• −∂θ(x̄)

∂xi
+ f ′

i ( |x̄i |; −1 ) ≥ 0 for all i such that x̄i = ui .

Notice that a d-stationary solution of (13) can be expected to contain zero
components where the absolute-value function is not differentiable. The following
consequence of the proposition is immediate.
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Corollary 9 Let x̄ be a directional stationary point of (13) such that x̄i < 0 for all
i ∈ S̄. Then x̄ is a directional stationary point of (12) if and only if

∂θ(x̄)

∂xi
≤ f ′

i (0; 1) ∀ i such that x̄i = 0.

Based on the above corollary, we present the outer loop of themethod for computing
a d-stationary solution of (12).

Algorithm I: Outer loop for computing a d-stationary point of (12)

Initialization. Let S 0 = {1, · · · , n} and ν = 0.

General iteration. Let xν+1 be a directional stationary solution of the fixed-signed subproblem (13) with
the pair (Sν , S̄ν) such that xν+1 ≤ xν (this condition is not needed when ν = 0). Let

Sν+1 � Sν \
{
i ∈ Sν | x ν+1

i = 0 <
∂θ(xν+1)

∂xi
− f ′

i (0; 1)
}

︸ ︷︷ ︸
denotedE ν

.

If Sν+1 = Sν , then the iterate xν+1 is a d-stationary solution of (12); if Sν+1 = ∅, then the next iterate x ν+2

is d-stationary solution of (12). So the algorithm terminates successfully if either case occurs. Otherwise,
let ν ← ν + 1 and return to the general iteration.

Provided that each iterate is well defined, Algorithm I will terminate in no more
than n + 1 visits to the general iteration. Postponing the well-definedness proof until
later, we first establish this claim of linear-step termination of the algorithm. This is
accomplished with the aid of a lemma that gives an immediate consequence of the
isotonicity of the iterates; i.e, xν+1 ≤ xν . The lemma asserts that if at any point in the
algorithm a coordinate is negative (xν

i < 0) and i /∈ Sν−1, then the coordinate will
remain negative throughout the rest of the algorithm. Note that the condition x1i < 0
for i /∈ S0 is vacuously true because S0 is the full index set [n].

Lemma 10 Suppose x ν
i < 0 for all i /∈ Sν−1 for a given ν ≥ 1. Then x ν+1

i < 0 for
all i /∈ Sν .

Proof We note that

Sν = Sν−1 \ E ν−1 and S̄ν = S̄ν−1 ∪ E ν−1. (14)

Since x ν+1 ≤ x ν , it follows that x ν+1
i < 0 for all i /∈ Sν−1. It remains to show that

x ν+1
i < 0 for all i ∈ E ν−1. All indices of the latter kind are in S̄ν ; thus x ν+1

i ≤ 0 for
all such indices. Suppose that x ν+1

ī
= 0 for some ī ∈ E ν−1. By the d-stationarity of
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x ν+1 for the fixed-signed subproblem (13) with the pair (S ν, S̄ ν), we have

f ′
i (0; 1) ≥ ∂θ(xν+1)

∂xī
≥ ∂θ(xν)

∂xī
> f ′

i (0; 1),

where the second inequality holds by the Z-property of ∇θ because x ν+1 ≤ x ν and
x ν+1
ī

= x ν

ī
. The above inequalities yield a contradiction. ��

We state and prove the n-step convergence of Algorithm I in the result below.

Theorem 11 Let θ be continuously differentiable and strongly convex such that∇θ is a
Z-function. Suppose that the bounds satisfy: −∞ ≤ �i < 0 < ui ≤ ∞ for all i ∈ [n].
Provided that each xν+1 is well-defined (see Sects. 6.1 and 6.2), then in no more than
n + 1 iterations, Algorithm I will terminate with an iterate that is a d-stationary point
of the problem (12).

Proof SinceAlgorithm I is initiatedwith S0 = [n], byLemma10, it follows inductively
that x ν+1

i < 0 for all i /∈ Sν for all ν. By Corollary 9, a d-stationary solution x̄ of (13)
that has x̄i < 0 for all i ∈ S̄ is a d-stationary point of (12) if and only if

∂θ(x̄)

∂xi
≤ f ′

i (0; 1) ∀ i ∈ S such that x̄i = 0.

So if E ν = ∅ at some iteration ν, then the above requirement clearly holds for the pair
(Sν, S̄ν) and the d-stationary solution x ν+1 of (13) corresponding to this pair. Thus
x ν+1 is a d-stationary point of (12) in this case. On the other hand, if E ν = Sν so
that Sν+1 = ∅, then the above condition holds vacuously at the next iteration ν + 1.
Since the set Sν always decreases by at least one element if Eν �= ∅, the n-iteration
termination of the algorithm follows readily. ��

We prove the existence of the desired iterate xν+1 in two cases of the concave
functions fi , for i ∈ [n]: (a) differentiable and Lipschitz continuous, and (b) piecewise
smooth; (details of the assumptions will be clearly stated). In the former case, the proof
relies on a least-element property of a special d-stationary solution of the fixed-signed
subproblem (13) and the update (14) of the pair (Sν, S̄ν) from the preceding pair; the
latter case is similar. Subsequently, we will comment on the practical computation of
each iterate. Note that these two classes of concave functions do not include the power
function with an exponent less that unity; i.e., the function t(> 0) 
→ t p for p ∈ (0, 1)
(due to the non-Lipschitz behavior near the origin); nevertheless, the ε-smoothedpower
function: t(> 0) 
→ (t + ε) p for p ∈ (0, 1) and ε > 0 belongs to the differentiable
class. The power regularizer and its smoothing have been studied extensively; see e.g.
[17–19]. One theoretical drawback of this family of power regularizers is the lack of
favorable computational complexity, even with a quadratic loss function θ ; see [17,
Theorems 5 and 6]. This drawback can be contrasted with the n-step termination of
Algorithm I and the subsequent discussion of the efficient computation of xν+1.
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6.1 Existence of x�+1: the differentiable case

Throughout this subsection, we assume, in addition to the blanket assumption stated
in Sect. 3, that

• (diff + Lip) each fi is Lipschitz continuous on the closed interval Xi �
[ 0,max(−�i , ui ) ] and differentiable therein except at the origin.

Classes of functions satisfying this assumption include scad, mcp, and suitable
smoothings of nondifferentiable regularizers, such as that of the aforementioned power
function with an exponent less than one. In fact, this assumption is consistent with the
definition of a “folded concave penalty” employed in [41]. For a given pair (S, S̄), we
define the following set consisting of vectors in Rn satisfying three conditions:

ZS �

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x = ( xS, xS̄ ) satisfies
(a) 0 ≤ xS ≤ uS and 0 ≥ xS̄ ≥ �S̄

(b) ∀ i ∈ S : xi < ui ⇒ ∂θ(x)

∂xi
+ f ′

i ( xi ; 1 ) ≥ 0

(c) ∀ i ∈ S̄ : xi < 0 ⇒ ∂θ(x)

∂xi
+ f ′

i (−xi ;−1 ) ≥ 0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

,

whose construction is motivated by the classical case of an upper-bounded linear
complementarity problem with a Z-matrix; see [48]. It is not difficult to deduce from
the necessary and sufficient conditions in Proposition 8 that the set ZS contains all
d-stationary solutions of the problem (13).

For ease of reference in the proof of Proposition 13, we cite a combined statement of
Rockafellar [53, Theorems 24.1 and 25.4] pertaining to one-sided directional deriva-
tives of univariate convex/concave functions. Under the differentiability assumption,
the equalities (15) are for t̄ = 0 only while the second statement of the lemma applies
to t̄ �= 0.

Lemma 12 Let f be a convex/concave function on an open interval containing t̄ . It
holds that

f ′(t̄; 1) = ± lim
s↓t̄

f ′(s;±1) and f ′(t̄;−1) = ∓ lim
s↑t̄

f ′(s;±1). (15)

Moreover, if f is differentiable at t̄ , then f ′(·; ±1) is continuous at t̄ .

Under the afore-stated differentiability and Lipchitz continuity assumption, the
following proposition asserts the well-definedness of the iterate xν+1 as the least
element of the set ZSν .

Proposition 13 Let θ be continuously differentiable and strongly convex such that ∇θ

is a Z-function. Suppose that Assumption (diff + Lip) holds and that the bounds satisfy:
−∞ ≤ �i < 0 < ui ≤ ∞ for all i ∈ [n]. Let x ν (ν ≥ 1) be an iterate in Algorithm I.
Then x ν belongs to the set ZSν . Moreover, the set ZSν has a componentwise least
element, say x̄ , which must necessarily satisfy x̄ ≤ x ν and be a d-stationary solution
of the fixed-signed subproblem (13) with the pair (S ν, S̄ ν).

123



Linear-step solvability of some folded concave and...

Proof By definition, x ν is a d-stationary point of (13) corresponding to the pair
(Sν−1, S̄ν−1). As such, x ν

Sν−1 ≥ 0; thus x ν
Sν ≥ 0; similarly, x ν

S̄ν ≤ 0. We next show
that x ν satisfies the two properties (b) and (c) of elements in ZSν . To show (b), let
i ∈ Sν be such that x ν

i < ui . Then i ∈ Sν−1. It follows from the d-stationarity of

x ν that
∂θ(x ν)

∂xi
+ f ′

i ( x ν
i ) = 0 if x ν

i �= 0 (by the differentiability assumption of fi )

and
∂θ(x ν)

∂xi
+ f ′

i (0; 1) ≥ 0 if x ν
i = 0. Similarly, to show (c), let i ∈ S̄ν be such that

x ν
i < 0. Then i ∈ S̄ν−1. By d-stationarity, x ν satisfies:

∂θ(x ν)

∂xi
− f ′

i ( |x ν
i | ) = 0 if

x ν
i > �i (by the same differentiability assumption) and

∂θ(x ν)

∂xi
+ f ′

i (|xν
i |; −1) ≥ 0

if x ν
i = �i . This completes the proof that x ν ∈ ZSν .
To show that the setZSν has a least element, we need to show three things according

to Pang [48, Theorem 2.2]:

(i) the set ZSν is closed;
(ii) if x and x ′ are two vectors in ZSν , then their componentwise minimum y �

min(x, x ′) is also an element in this set; and
(iii) vectors in ZSν are bounded below componentwise.

We start with the closedness of ZSν . Let {xk} ⊆ ZSν converge to x∞. We need
to show that x∞ satisfies the defining conditions (b) and (c) in the set ZSν . For an
index i ∈ Sν such that x∞

i < ui , we have xki < ui for all k sufficiently large. Hence
∂θ(xk)

∂xi
+ f ′

i ( |xki |; 1 ) ≥ 0 for such k. There are two cases to consider: either x∞
i �= 0

or x∞
i = 0. In the former case, fi is differentiable at x∞

i and |xki | for all k sufficiently
large; thus by Lemma 12, we easily deduce

∂θ(x∞)

∂xi
+ f ′

i ( |x∞
i |; 1 ) ≥ 0. In the latter

case, we may assume without loss of generality that xki > 0 for all k sufficiently large.
It then follows that fi is differentiable at |xki | = xki ; moreover, by Lemma 12,

lim
k→∞ f ′

i (xki ) = lim
k→∞ f ′

i (|xki |; 1) = f ′
i (0; 1).

Consequently, we obtain
∂θ(x∞)

∂xi
+ f ′

i ( |x∞
i |; 1 ) ≥ 0 also. This shows that x∞

satisfies condition (b) inZSν . Let i ∈ S̄ν be such that x∞
i < 0.We then have

∂θ(xk)

∂xi
+

f ′
i ( |xki |; −1 ) ≥ 0 for all k sufficiently large. Again, there are two cases to consider:

x∞
i = �i or x∞

i > �i . Similarly to the above, it suffices to consider the case where
xki > �i = x∞

i for all k sufficiently large. By the differentiability of fi at |xki | for all
k sufficiently large, we have

f ′
i (|x∞

i |; −1) = lim
k→∞ f ′

i (|xki |; −1).

123



A. Gómez et al.

Hence it follows that
∂θ(x∞)

∂xi
+ f ′

i ( |x∞
i |; −1 ) ≥ 0. The proof of the closedness of

ZSν is completed.
To prove (ii), we need to verify the three conditions (a)–(c) in the definition of an

element in ZSν for the vector y � min(x, x ′). Since each component yi is equal to
either xi or x ′

i , condition (a) is obvious. For the remaining two conditions (b) and
(c), consider any index i and say yi = xi . We then have, by the Z-property of ∇θ ,
∂θ(y)

∂xi
≥ ∂θ(x)

∂xi
; the desired implications in conditions (b) and (c) can easily be seen

to hold for y.
To complete the proof of the existence of a least vector in ZSν , it remains to show

the bounded below property (iii) of elements inZSν . By the Lipschitz continuity of fi
on Xi , there exists a constant L > 0 such that

max
1≤i≤n

{
max

(
| f ′

i (0; 1) |; sup
ξ∈Xi

∣∣ f ′
i ( ξ ;±1 )

∣∣
)}

≤ L.

For any index set α equal to the disjoint union of two subsets α1 and α2, consider the
subfunction:

Fβ : xβ 
→
(

∂θ(xβ, uα1 , 0α2)

∂xi

)
i∈β

,

where β is the complement of α in {1, . . . , n}. By Proposition 7, it follows that there
exists a vector a ∈ R

n such that for all such pairs (α, β) of index sets and all x ∈ R
n ,

Fβ(xβ) ≥ −L 1β ⇒ xβ ≥ aβ. (16)

For any vector x ∈ ZSν let

α1 �
{
i ∈ Sν | xi = ui

}
and α2 �

{
i ∈ S̄ν | xi = 0

}
,

and let β be the complement of α = α1 ∪ α2. We can then deduce by conditions (b)
and (c) in ZSν and the bound (16) that x is bounded below.

Finally, to show that the least vector x̄ of the set ZSν is a d-stationary solution
of the fixed-signed subproblem (13) with the pair (Sν, S̄ν), we need to show that x̄
satisfies the conditions in Proposition 8. Consider an index i for which x̄i �= 0 and
�i < x̄i < ui . If such an index i belongs to Sν , then x̄i > 0 and we need to show that
∂θ(x̄)

∂xi
+ f ′

i ( |x̄i | ) = 0. Indeed, if this is not true, then by condition (b) in ZSν , we

must have
∂θ(x̄)

∂xi
+ f ′

i ( |x̄i | ) > 0. Since f ′ is continuous at |x̄i |, it follows that for
a sufficiently small δ > 0, the vector xδ � x̄ − δe i , where e i is the i th coordinate

vector, satisfies
∂θ(xδ)

∂xi
+ f ′

i ( |xδ
i | ) > 0; moreover, by the Z-property of ∇θ , xδ can

be shown to belong to ZSν . This contradicts the least property of x̄ . If such an index i
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belongs to S̄ν , then x̄i < 0 and we need to show that
∂θ(x̄)

∂xi
− f ′

i ( |x̄i | ) = 0. Again

if this is not true, then by condition (c) in ZSν , we must have
∂θ(x̄)

∂xi
− f ′

i ( |x̄i | ) > 0.

By a similar perturbation of x̄ , we can obtain a contradiction to the least property of

x̄ . Next consider an index i ∈ Sν for which x̄i = 0. Then
∂θ(x̄)

∂xi
+ f ′

i ( 0; 1 ) ≥ 0 by

condition (b) in ZSν . If i ∈ S̄ν and x̄i = 0 but −∂θ(x̄)

∂xi
+ f ′

i ( 0; 1 ) < 0, then since

f ′
i ( 0; 1 ) = limδ↓0 f ′

i ( δ; 1 ) by Lemma 12, it follows that for a sufficiently small

δ > 0, the vector xδ � x̄ − δe i satisfies −∂θ(xδ)

∂xi
+ f ′

i ( |xδ
i |; 1 ) < 0; or equivalently

0 <
∂θ(xδ)

∂xi
− f ′

i ( |xδ
i |; 1 ) = ∂θ(xδ)

∂xi
+ f ′

i ( |xδ
i |; −1 ),

where the latter equality is by the differentiability of fi at |xδ
i | = δ > 0. By the

Z-property of ∇θ , we can again show that the vector x̄δ belongs to ZSν , which is a
contradiction by the least property of x̄ . For the two remaining cases: x̄i ∈ {�i , ui },
the case x̄i = �i can be argued as for the case with i ∈ S̄ν and x̄i < 0. For the case
x̄i = ui , we need to show that ∂θ(x̄)

∂xi
+ f ′

i (x̄i ) ≤ 0. If this is not true, then by decreasing
x̄i slightly and keeping the other components unchanged, the Z-property of ∇θ yields
a contradiction to the least property of x̄ . ��

6.2 Existence of x�+1: the piecewise case

In this subsection, we consider the case where each fi is a piecewise smooth function
with a finite number of nondifferentiable points. To start, throughout this section, we
assume for simplicity of notation that −�i = ui for each i ∈ [n]. Moreover, there is a
partition of the interval [ 0, ui ]: for some integer Ki ≥ 1,

0 = ξi0 < ξi1 < · · · < ξi Ki < ξi Ki+1 � ui ≤ ∞ (17)

and an associated family of functions {φik(ξ)}Ki+1
k=1 where each φik : [ 0, ui ] → R for

k = 1, . . . , Ki + 1 is concave, Lipschitz continuous, and continuously differentiable
such that fi (ξ) = min

1≤k≤Ki+1
φik(ξ) for all ξ ∈ [ 0, ui ]; moreover, {ξik}Ki

i=1 are the

breakpoints of fi in the interval ( 0, ui ) such that

• Piece orderings: fi (ξ) = φik(ξ) for all ξ ∈ Iik � [ ξik−1, ξik ]; and the slopes
satisfy:

• Piecewise dominance:φ ′
ik(ξ) ≥ φ ′

i j (ξ) for all k = 1, . . . , Ki , j = k+1, . . . , Ki +
1 and all ξ ∈ [0, ui ]; and

• Strict dominance at breakpoints: φ ′
ik(ξik) > φ ′

ik+1(ξik) for all k = 1, . . . , Ki .

123



A. Gómez et al.

The latter two properties together yield φ ′
ik(ξik) > φ ′

i j (ξik) for all k ∈ [Ki ] and
j = k + 1, . . . , Ki + 1. Noting that

− φ ′
ik(ξk) = f ′

i (ξk;−1) and φ ′
ik+1(ξk) = f ′

i (ξk; 1), k ∈ [Ki ]
φ ′
i1(0) = f ′

i (0; 1) and φ ′
i K1+1(ui ) = − f ′

i (ui ;−1), (18)

it follows that the only nondifferentiable points of fi are at the end points of the
intervals Iik for all k ∈ [Ki + 1]; in particular, there are at most Ki of them in the
open interval ( 0, ui ). The strict dominance at the breakpoints is what distinguishes
this nondifferentiable case from the previous differentiable case. For instance, both
the mcp and scad belong to the latter case, whereas the capped �1 and any piecewise,
non-C1 approximation of a concave nondecreasing function belong to former case
discussed here.

The existence proof of xν+1 is constructive. The workhorse of the construction is
the following differentiable optimization problem: for a given tuple κ � {ki }ni=1 ⊆∏n

i=1 [ Ki + 1 ],

minimize
x∈Rn

θ(x) +
∑
i∈S

φiki (xi ) +
∑
i∈S̄

φiki (−xi )

subject to uS ≥ xS ≥ 0 and �S̄ ≤ xS̄ ≤ 0.
(19)

With nonconvex functions {φik}, the above problem has a nonconvex objective. Part
of the analysis is to show that (19) has a particular least-element solution that can be
computed efficiently. Subsequently, we will provide some detailed discussion for the
computation of such a solution. Associated with the problem (19), which is of the type
(13) with each fi being differentiable, we define the set

Zκ
S �

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x = ( xS, xS̄ ) satisfies
(a) 0 ≤ xS ≤ uS and 0 ≥ xS̄ ≥ �S̄

(b) ∀ i ∈ S : xi < ui ⇒ ∂θ(x)

∂xi
+ φ ′

iki (xi ) ≥ 0

(c) ∀ i ∈ S̄ : xi < 0 ⇒ ∂θ(x)

∂xi
− φ ′

iki (−xi ) ≥ 0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

.

By Proposition 13 applied to the differentiable functions {φiki }ni=1, it follows that this
set, if nonempty, has a least element that is a d-stationary solution of (19). We call
such an element, which must be unique, the least d-stationary solution of the latter
problem.

Given a vector x̄ ∈ [ �, u ], we define a unique tuple κ̄ � { k̄i }ni=1 ⊆∏n
i=1 [ Ki +1 ]

by:

k̄i =

⎧⎪⎪⎨
⎪⎪⎩

k if i ∈ S and 0 < x̄i ∈ ( ξik−1, ξik ] for some k ∈ [ Ki + 1 ]
1 if i ∈ S and x̄i = 0
k if i ∈ S̄ and ūi > |x̄i | ∈ [ ξik−1, ξik ) for some k ∈ [ Ki + 1 ]
Ki + 1 if i ∈ S̄ and |x̄i | = ui .
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This definition yields a necessary and sufficient condition for a vector to be a d-
stationary point of (13) in terms of the differentiable optimization subproblem defined
by this tuple of indices.

Proposition 14 Let x̄ be a feasible point of (19) with the zero-index setA0(x̄) defined
in (9). Then x̄ is a d-stationary point of (13) if and only if the following conditions
hold:

• fi is differentiable at |x̄i | for all i such that x̄i �= 0 and �i < x̄i < ui ;
• x̄ is a d-stationary point of (19) defined by the unique tuple { k̄i }ni=1 of indices
determined by x̄.

Thus, if x̄ is a d-stationary point of (19) defined by the unique tuple { k̄i }ni=1 of indices
determined by x̄, then x̄ is a stationary point of (13) if and only if |x̄i | is not equal to
any of the breakpoints of the partition (17) that lie within the interval (0, ui ).

Proof Similar to Proposition 8, assuming the differentiability condition on fi at |x̄i |,
wemay deduce that x̄ is a d-stationary point of (19) defined by the unique tuple {k̄i }ni=1
if and only if

• ∂θ(x̄)

∂xi
+ φ ′

i k̄i
(x̄i ) = 0 if 0 < x̄i < ui ;

• ∂θ(x̄)

∂xi
− φ ′

i k̄i
(−x̄i ) = 0 if �i < x̄i < 0;

• ∂θ(x̄)

∂xi
+ φ ′

i k̄i
(0) ≥ 0 for all i ∈ A0(x̄) ∩ S;

• −∂θ(x̄)

∂xi
+ φ ′

i k̄i
(0) ≥ 0 for all i ∈ A0(x̄) ∩ S̄;

• ∂θ(x̄)

∂xi
− φ ′

i k̄i
(−x̄i ) ≥ 0 for all i such that x̄i = �i ;

• −∂θ(x̄)

∂xi
− φ ′

i k̄i
(x̄i ) ≥ 0 for all i such that x̄i = ui .

The proof of the proposition can be completed by comparing the above conditions
with those in Proposition 8 and by the expressions in (18). ��

The algorithm below pertains to the pair (S ν, S̄ ν) at the outer iteration ν + 1 of
Algorithm I. Associated with this pair is an iterate xν from the previous iterationwhich
is a d-stationary solution of the problem (13) corresponding to the pair (S ν−1, S̄ ν−1).
By the definition (14) of the pair (S ν, S̄ ν) which involves the set

E ν−1 �
{
i ∈ S ν−1 | x ν

i = 0 <
∂θ(xν)

∂xi
− f ′

i (0; 1)
}

,

it follows that x ν
S ν−1 ≥ 0 and x ν

S̄ ν−1 < 0.While the former property is obvious because

S ν ⊆ S ν−1, the latter property holds by Lemma 10 and the initialization S 0 = [n] of
Algorithm I.

Theorem 15 Let each fi : R+ → R+ be a continuous, concave, function satisfying
fi (0) = 0 and f ′

i (0; 1) ∈ (0,∞). Let {φik}Ki+1
k=1 be the family of element functions
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Algorithm II: construction of xν+1 for piecewise regularizers

Initialization. Let (S, S̄) = (S ν , S̄ ν) be given and fixed. Let x (ν)0 = x ν and t = 0.

General iteration. Let x (ν)t+1 be the least d-stationary solution of the problem (19) corresponding to the

unique tuple κ
(ν)
t �

{
k̄(ν)t
i

}n
i=1

of indices determined by x (ν)t .

Terminate if x (ν)t+1 = x (ν)t ; otherwise, repeat the general iteration with t ← t + 1.

associated with fi as specified above. Then Algorithm II is well defined and will
terminate in no more than 2 +∑n

i=1 Ki iterations with a d-stationary solution x ν+1

of (13) satisfying (A) x ν+1 ≤ x ν , and (B) ϕ(x ν+1) ≤ ϕ(x ν), where ϕ is the objective
function of (12).

Proof The proof of assertion (A) consists of two main steps followed by a summary.
The proof of assertion (B) is presented as Step 4.

Step 1: well-definedness We prove by induction on the inner iteration counter t

that x (ν)t ∈ Z κ
(ν)
t

Sν for all t . Once this is proved, four things follow: (i) the well-
definedness of the iterate x (ν)t+1 as the least d-stationary solution of the problem (19)
corresponding to the tuple κ

(ν)
t , (ii) x (ν)t+1 ≤ x (ν)t , (iii) k̄(ν)t+1

i ≤ k̄(ν)t
i for all i ∈ S ν ,

and (iv) k̄(ν)t+1
i ≥ k̄(ν)t

i for all i ∈ S̄ ν .

Consider t = 0. To verify condition (b) in the set Z κ
(ν)
t

Sν for x (ν)t , consider an
index i ∈ Sν such that x ν

i < ui . Since x ν is stationary for (13) corresponding to the

pair (S(ν−1), S̄(ν−1)) and since Sν ⊆ Sν−1, it follows that
∂θ(x ν)

∂xi
+ f ′

i (0; 1) ≥ 0

if x ν
i = 0; and that

∂θ(x ν)

∂xi
+ f ′

i (xν
i ) = 0 if x ν

i > 0. In either case, we have

∂θ(x ν)

∂xi
+φ ′

i k̄(ν)t
i

(x ν
i ) ≥ 0 by the definition of the index k̄(ν)t

i . Next, to verify condition

(c) in the set Z κ
(ν)
t

Sν , consider an index i ∈ S̄ν = S̄ν−1 ∪ E ν−1 such that x ν
i < 0. Such

an indexmust belong to i ∈ S̄ν−1 andwe have
∂θ(x ν)

∂xi
+ f ′

i (|x ν
i |; −1) ≥ 0 if x ν

i = �i ;

and
∂θ(x ν)

∂xi
− f ′

i (|xν
i |) = 0 if x ν

i > �i . In either case, we deduce that condition (c)

holds.

Next assume that x (ν)t ∈ Z κ
(ν)
t

Sν so that the iterate x (ν)t+1 iswell defined and satisfies

x (ν)t+1 ≤ x (ν)t . To complete the induction, we need to show that x (ν)t+1 ∈ Z κ
(ν)
t+1

Sν .

For this purpose, we compare the tuple κ
(ν)
t+1 �

{
k̄(ν)t+1
i

}n
i=1

of indices determined

by x (ν)t+1 and the tuple κ
(ν)
t �

{
k̄(ν)t
i

}n
i=1

of indices determined by x (ν)t . Since

x (ν)t+1 ≤ x (ν)t , it follows that k̄(ν)t+1
i ≤ k̄(ν)t

i for all i ∈ [n]. To verify condition
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(b) in the set Z κ
(ν)
t+1

Sν for x (ν)t+1, consider an index i ∈ Sν such that x (ν)t+1
i < ui .

Since x (ν)t+1 is a d-stationary solution of the problem (19) corresponding to the tuple

κ
(ν)
t , we have

∂θ(x (ν)t+1)

∂xi
+ φ ′

i k̄(ν)t
i

(x (ν)t+1
i ) ≥ 0 if x (ν)t+1

i = 0 and
∂θ(x (ν)t+1)

∂xi
+

φ ′
i k̄(ν)t

i

(x (ν)t+1
i ) = 0 if x (ν)t+1

i > 0. Since φ ′
i k̄(ν)t+1

i

(x (ν)t+1
i ) ≥ φ ′

i k̄(ν)t
i

(x (ν)t+1
i ) by the

piecewise dominance of the family {φik}Ki+1
k=1 , we easily deduce that condition (b) in

the set Z κ
(ν)
t+1

Sν holds for x (ν)t+1. Similarly so does condition (c). The induction is thus
completed.

Step 2: change of pieces For i ∈ S ν , the component x (ν)t+1
i of the new iterate

either transitions to a new interval to the left of the current interval
(

ξ
i k̄(ν)t

i −1
, ξ

i k̄(ν)t
i

]
that contains x (ν)t

i or stays in the same interval. Similarly, for i ∈ S̄ ν , the component∣∣∣ x (ν)t+1
i

∣∣∣ of the new iterate either transitions to a new interval to the right of the current

interval
[
ξ
i k̄(ν)t

i −1
, ξ

i k̄(ν)t
i

)
that contains |x (ν)t

i | or stays in the same interval. We claim

that in both cases, if |x (ν)t+1
i | stays in the same interval as the previous iterate |x (ν)t

i |,
then x (ν)t+1

i must lie in the interior of this interval unless x (ν)t+1
i ∈ { 0, �i , ui }. We

prove this only for the case i ∈ S ν as the proof for the case i ∈ S̄ ν is similar. So let
i ∈ S ν be such that 0 < x (ν)t+1

i < ui and assume that x (ν)t+1
i = ξ

i k̄(ν)t
i

. Then we have

x (ν)t
i = ξ

i k̄(ν)t
i

= x (ν)t+1
i and x (ν)t

i ∈ ( 0, ui ). Since x (ν)t is the d-stationary solution

of the problem (19) corresponding to the tuple κ
(ν)
t−1 associated with the previous iterate

x (ν)t−1, and x (ν)t+1 is the d-stationary solution of the problem (19) corresponding to
the tuple κ

(ν)
t , we have

∂θ(x (ν)t )

∂xi
+ φ ′

i k̄(ν)t−1
i

(ξ
i k̄(ν)t

i
) = ∂θ(x (ν)t )

∂xi
+ φ ′

i k̄(ν)t−1
i

(x (ν)t
i ) = 0

= ∂θ(x (ν)t+1)

∂xi
+ φ ′

i k̄(ν)t
i

(x (ν)t+1
i )

= ∂θ(x (ν)t+1)

∂xi
+ φ ′

i k̄(ν)t
i

(ξ
i k̄(ν)t

i
).

We must have k̄(ν)t−1
i > k̄(ν)t

i ; by the piecewise dominance of the gradients of
the functions φik , it follows that φ ′

i k̄(ν)t
i

(ξ
i k̄(ν)t

i
) > φ ′

i k̄(ν)t−1
i

(ξ
i k̄(ν)t

i
). This implies

∂θ(x (ν)t )

∂xi
>

∂θ(x (ν)t+1)

∂xi
. But this contradicts the antitonicity of the partial derivative

∂θ

∂xi
because x (ν)t+1

j ≤ x (ν)t
j for all j with equality holding for j = i .

Step 3: conclusion As the iterations proceed, after no more than 2 +∑n
i=1 Ki ≤

2 + nmax1≤i≤n Ki iterations, we will arrive at an iterate x (ν)t+1 with the following
property: (i) x (ν)t+1 is the least d-stationary solution of the problem (19) corresponding
to the tuple κ

(ν)
t ; (ii) κ(ν)

t+1 = κ
(ν)
t ; and (iii) for each i ∈ [n], either x (ν)t+1

i ∈ { 0, �i , ui }
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or x (ν)t+1
i /∈ { ξik}Ki

k=1. These 3 properties of x (ν)t+1 are enough to establish that it is
the desired d-stationary solution asserted by the theorem. The count of 2 +∑n

i=1 Ki

is the result of piece transitions plus the initial subproblem and the last one confirming
the d-stationarity of x (ν)t+1 for (13).

Step 4: assertion (B) We show inductively that ϕ
(
x (ν)t+1

) ≤ ϕ
(
x (ν)t

)
for all

iterations t throughout Algorithm II. From the piecewise structure of each fi , it follows
that for all iteration counts t ,

n∑
i=1

fi
(
|x (ν)t

i |
)

=
∑
i∈S ν

φ
i k̄(ν)t

i

(
x (ν)t
i

)
+
∑
i∈S̄ ν

φ
i k̄(ν)t

i

(
−x (ν)t

i

)
;

thus

ϕ
(
x (ν)t+1

)
= θ

(
x (ν)t+1

)
+
∑
i∈S ν

fi
(
x (ν)t+1
i

)
+
∑
i∈S̄ ν

fi
(
−x (ν)t+1

i

)
by definition

≤ θ
(
x (ν)t+1

)
+
∑
i∈S ν

φ
i k̄(ν)t
i

(
x (ν)t+1
i

)
+
∑
i∈S̄ ν

φ
i k̄(ν)t
i

(
−x (ν)t+1

i

)

since fi (ξ) = min
1≤k≤Ki+1

φik (ξ)for allξ ∈ [0, ui ]
≤ θ

(
x (ν)t

)
+
∑
i∈S ν

φ
i k̄(ν)t
i

(
x (ν)t
i

)
+
∑
i∈S̄ ν

φ
i k̄(ν)t
i

(
−x (ν)t

i

)
by optimality of x (ν)t+1

= ϕ
(
x (ν)t

)
by the definition of the index k̄(ν)t

i

as desired. ��

6.3 Linear-step complexity

At first sight, since Algorithm I requires solving n + 1 problems of the kind (13) and
Algorithm II solves each such problem by solving (at most) 2+∑n

i=1 Ki differentiable
programs each of the kind (19), it seems that the overall procedure for computing a
d-stationary point of (12) would need to solveO(n2) differentiable programs, provided
that each Ki is a constant independent of n. Nevertheless a careful look at the two
algorithms when they are combined reveal that only O(n) differentiable programs
need to be solved. We summarize this conclusion in the theorem below, which focuses
on the nondifferentiable case where Algorithm II is needed. The differentiable case is
directly covered by Theorem 11 with the supporting Proposition 13. With this remark,
it is understood that both Theorem 16 and the subsequent one, Theorem 17, apply to
all the differentiable and nondifferentiable piecewise regularizers.

Theorem 16 Let θ be continuously differentiable and strongly convex such that ∇θ is
a Z-function. Suppose that the bounds satisfy:−∞ ≤ �i < 0 < ui ≤ ∞ for all i ∈ [n]
and that each integer Ki is a constant independent of n. Algorithm I with Algorithm II
embedded in it computes a d-stationary point x∗ of (12) by solving 2+2

∑n
i=1 (Ki +1)

differentiable programs each of the kind (19). Moreover, ϕ(x∗) ≤ ϕ(x1), where x1 is
a d-stationary solution of (13) with S 0 = [n].
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Proof Consider an outer iteration ν with the pair (S ν, S̄ ν) kept fixed within a run
of Algorithm II that has x ν as the initial iterate and ends with x ν+1 and a new pair
(S ν+1, S̄ ν+1). Consider a variable xi and say i ∈ S ν so that xi is nonnegative through-
out Algorithm II. (The situation for an index i ∈ S̄i is similar; thus the factor of 2
in the final count.) This index i will remain in S ν+1 unless i ∈ E ν . In the former
case, the variable xi will continue to be restricted nonnegative. In the latter case, the
same variable switches from being nonnegative to being restricted nonpositive. In both
cases, the variable xi will onlymove to the left or stay at the same value. Consequently,
each variable |xi | can traverse each of the Ki + 1 intervals

{ [
ξik, ξik+1

] }Ki
k=0 only

once throughout the entire solution process. We further note that there must be one
change in the index set S ν at the end of each outer iteration. Putting these 3 properties
together: (i) only left movement of each variable, (ii) no reverse visits, and (iii) at
least one decrease in the S-set at each outer iteration, we deduce that the total count
of piece transitions is at most

∑n
i=1 (2Ki + 1); adding this count to the number n + 1

of d-stationarity confirmations in each inner loop per outer loop and the one initial
subproblem of the outer loop corresponding to S 0 = [n], we obtain the claimed total
count of differentiable programs each of the kind (19) being solved. ��
Remark Although Algorithm I is initiated with a special pair of index sets, it actually
can be initialized at any pair (S, S̄) such that (13) has a d-stationary solution x̄ such
that x̄i < 0 for all i /∈ S. The conclusions of Theorem 16 remain valid. The special
initialization ([n],∅) is a trivial choice satisfying the requirement.

6.4 Sketch of a finite-step algorithm for solving (19)

The workhorse in the update of the iterate xν+1 is the computation of a directional
stationary solution of the bounded-variable problem with a differentiable objective
function:

minimize
x∈Rn

θ(x) +
∑
i∈S

hi (xi ) +
∑
i /∈S

hi (−xi )

subject to uS ≥ xS ≥ 0
and �S̄ ≤ xS̄ ≤ 0,

(20)

where θ is strongly convex and continuously differentiable on R
n and each hi is a

continuously differentiable function on R; further, without loss of generality, we may
take each lower bound �i > −∞ for all i /∈ S.Wemake two remarks about this setting:
(i) Even though in the differentiable case, the original functions fi are differentiable
only on R++, as far as the fixed-sign subproblem (13) is concerned, we can extend
each fi to the whole real line in a continuously differentiable way without affecting
the solution of the subproblem, thus justifying the setting of (20). (ii) Even if some
original lower bounds are equal to −∞, as in an unconstrained problem, the strong
convexity of θ will lead to some implied bounds on the solutions of the problem.

Since the objective of (20) is differentiable, any gradientmethod can be employed to
compute a d-stationary point of the problem (without it being convex). In general, such
a method converges only in the limit; many of them have complexity inversely propor-
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tional to the prescribed accuracy that is quite different from the strongly polynomial
kind emphasized in this paper. In order to obtain a finite-step algorithm for solving (20),
we again employ the Z-property of ∇θ . To derive such an algorithm, note that with
the change of variables yS̄ � xS̄ − �S̄ (this is where the finiteness of the lower bound
is needed) and by defining θ̃ (xS, yS̄) � θ(xS, yS̄ + �S̄) and h̃i (yi ) � hi (−yi − �i ),
the problem (20) is equivalent to

minimize
(xS ,yS̄)∈Rn

θ̃ (xS, yS̄) +
∑
i∈S

hi (xi ) +
∑
i /∈S

h̃i (yi )

subject to uS ≥ xS ≥ 0
and −�S̄ ≥ yS̄ ≥ 0,

(21)

where the pair z � (xS, yS̄) is nonnegative and upper bounded. The gradient ∇ θ̃

remains a Z-function. We may write the Karush–Kuhn–Tucker conditions of (21) as
the following upper-bounded nonlinear complementarity problem:

0 ≤ z ⊥ F(z) + w ≥ 0, where F(z) � ∇ θ̃ (z) + D(z)

0 ≤ w ⊥ u − z ≥ 0, (22)

with D(z) = (di (zi ))ni=1 being a separable vector function whose components are
h ′
i (xi ) for i ∈ S and h̃ ′

i (yi ) for i /∈ S, and w is the multiplier vector of the upper
bound constraint on the primary variable z. At this point, by combining the algorithm
in [54] for a nonlinear complementarity problem and that in [48] for an upper-bounded
linear complementarity problem, we can obtain a linear-step algorithm of solving (22)
in which the principal computational effort is the solution of a (square) system of
nonlinear equations for various subsets α ⊆ [n] with complement ᾱ: Fα(zα, zfixedᾱ ) =
0, where the components of zfixedᾱ are fixed at either their upper or lower bounds.
Moreover, the index set α increases monotonically in size throughout the algorithm;
thus, the solution of such an equation can be employed to initiate the computation
of the next equation. In the case of an affine function F , which is derived when θ

and all the element functions φik are quadratic, efficient linear-algebraic updates can
further speed up the numerical solution of the resulting linear equations and reduce
the computational complexity by an order of magnitude. The solution produced by
the overall algorithm is a pair (z̄, w̄) such that z̄ is the least element of a set

Z � { z ∈ [ 0, u ] | ∀ i ∈ [n], zi < ui implies Fi (z) ≥ 0 } .

With a careful implementation that takes advantage of monotonic enlargement of the
index sets α mentioned above, the total number of equations to be solved is at most
O(n).

6.5 A summarizing strong polynomiality result

Due to the importance of the special case defined by quadratic functions, we present the
following summarizing strongly polynomial result. TheO(n3) complexity of obtaining
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the least-element solution of the upper-bounded linear complementarity problem (23)
below follows from a careful implementation of the algorithm in [48] as sketched
above.

Theorem 17 Let θ be a quadratic function with a Stieltjes Hessian matrix Q. Let each
function fi � min1≤k≤Ki φik with all the element functions {φik}Ki+1

i=1 being quadratic.
(For simplicity) assume that −� = ui < ∞ for all i ∈ [n]. Then by solving for the
least-element solution of at most ν̄ � 2 + 2

∑n
i=1 (Ki + 1) upper-bounded linear

complementarity problems each of the kind:

0 ≤ z ⊥ q + Q̂z + w ≥ 0, where Q̂ � Q + D,

0 ≤ w ⊥ u − z ≥ 0, (23)

where D is a diagonal matrix with nonpositive diagonal entries, Algorithm I gener-
ates a finite, monotonically nonincreasing sequence {x ν}Nν=1 with N ≤ ν̄ such that
ϕ(x ν+1) ≤ ϕ(x ν) for all ν = 1, . . . , N−1, where x 1 is a d-stationary solution of (13)
with S 0 = [n]; moreover, x N is a d-stationary solution of (12). In turn, each desired
least-element solution of (23) can be obtained in O(n3) complexity by solving linear
equations each defined by a principal submatrix of Q̂. Finally, if the integers Ki are
all independent of n, then the computational complexity of obtaining the d-stationary
solution xN is of order O(n4).

7 The parametric problem: quadratic objective

In this section, we consider the problem (3) with three specifications: δ = 1, θ is a
strongly convex quadratic function, and each fi is a positive multiple of the identity
function. Thus, the quadratic optimization problem with the weighted-�1 surrogate
sparsity control is as follows:

minimize
�≤x≤u

q�x + 1
2 x

�Qx + γ

n∑
i=1

pi | xi |, γ > 0, (24)

where the matrix Q ∈ R
n×n is symmetric positive definite, the vector p ∈ R

n is
positive; and there is no sign restriction on the components of q ∈ R

n . With a strongly
convex objective function, the problem (24) has a unique solution, denoted by x(γ ),
that is a piecewise affine function of the parameter γ . The main goal in the section is
to identify conditions on the pair (Q, p) under which there is at most a linear number
of pieces of linearity of the solution function x(γ ). As mentioned in Sect. 3, having
an efficient algorithm for identifying all such pieces allows us to globally resolve
the singly-parameter bilevel optimal parameter identification problem (2) via interval
searches. The linear (in n) number of such pieces offers a significant advantage in that
this bilevel problem can be solved with guaranteed effectiveness to global optimality
with a friendly (such as quadratic) outer objective. Another benefit of solving the
problem (24) for all values of γ is that one can determine a value γ such that the
corresponding solution x(γ ) has the smallest �0-value.
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Our treatment of the parametric problem (24) is divided into two cases: fixed sign
pattern of the variables, and no a priori knowledge of the signs of the variables. These
are the respective topics of discussion in the two subsections below. In the first subsec-
tion, the sign patterns of the off-diagonal entries of Q (in particular, the Z-structure)
turn out not needed; but the Z-structure is re-instated in the second subsection.

7.1 Fixed sign partition

Let (S, S̄) be a given pair of complementary index subsets of {1, . . . , n}. We are
interested in solving the problem (cf. (13)):

⎧⎪⎪⎨
⎪⎪⎩
minimize

x∈Rn
q�x + 1

2 x
�Qx + γ

⎡
⎣∑

i∈S
pi xi −

∑
i∈S̄

pi xi

⎤
⎦

subject to uS ≥ xS ≥ 0 and �S̄ ≤ xS̄ ≤ 0,

parametrically for all values of γ ≥ 0, with −∞ ≤ �i < 0 < ui ≤ ∞ for all
i ∈ [n]. Letting zS̄ � −xS̄ , we may write the problem equivalently as one where
all the variables are nonnegative and bounded above, the vectors q and p have the
signs of their S̄-components negated, and the matrix Q is changed accordingly to the
following matrix:

Q signed �
[

QSS −QSS̄−QS̄S QS̄S̄

]
.

which remains symmetric positive definite.Abusing the notation,wewrite the resulting
problem as:

{
minimize

x∈Rn
q�x + 1

2 x
�Qx + γ p�x

subject to u ≥ x ≥ 0

}
p > 0. (25)

Given a triplet of index subsets (β0, α, βub) that partitions the full index set {1, . . . , n},
we define a vector x(γ ) with xβ0(γ ) = 0, xβub(γ ) = uβub , and xα(γ ) =
−[Qαα]−1( qα +Qαβubuβub +γ pα ). By writing down the Karush–Kuhn–Tucker con-
ditions of the above QP, it is easy to deduce that this vector is an optimal solution of
(25) if and only if the following three conditions are satisfied:

• q̄β0 + γ p̄β0 ≥ 0;
• uα ≥ −q̄α − γ p̄α ≥ 0; and
• q̄βub + γ p̄βub ≤ 0; where

(
q̄α

p̄α

)
� [ Qαα ]

−1

(
qα + Qαβubuβub

pα

)

[
q̄β0 p̄β0

q̄βub p̄βub

]
�
[
qβ0 + Qβ0βubuβub pβ0

qβub + Qβubβubuβub pβub

]
−
[
Qβ0α

Qβubα

] [
q̄α p̄α

]
. (26)
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The parametric algorithm is initiated at the triplet of index sets with α = βub = ∅
and the smallest value γ0 ≥ 0 so that q + γ p ≥ 0 for all γ ≥ γ0; for such γ ,
we have x(γ ) = 0. The value of γ is then gradually pivoted down; in the process,
some x-variables will increase above zero and eventually reach their respective upper
bounds. During the pivots, the parametric vector p will ensure that the values of the
x-components will not decrease. This monotonic properties of the variables constitute
the proof of the linear number of iterations that is at most 2n (from zero to positive to
upper bound; thus the multiplicative factor 2). Phrased in terms of the triplet of index
sets (β0, α, βub), the algorithm below is in the spirit of the n-step parametric principal
pivoting algorithm [21, Section 4.8] extended here to deal with the upper bounds.

Algorithm III: a 2n-step parametric procedure for solving (25)

Initialization. Let ( β0, α, βub ) = ( {1, · · · , n}, ∅, ∅ ). Also let γold � ∞.

General iteration. Solve the system of linear equations in (26) to obtain q̄α and p̄α and compute[
q̄β0 p̄β0

q̄βub p̄βub

]
by (26). Perform the ratio test (by convention, the maximum over an empty set is equal

to −∞):

γnew � max

{
max

i∈β0 : p̄i>0

{
− q̄i

p̄i

}
, max
i∈α : p̄i>0

{
− ui + q̄i

p̄i

}
, 0

}

For γ ∈ [ γnew, γold
]
, let xβ0 (γ ) = 0, xβub (γ ) = uβub , and xα(γ ) = −q̄α − γ p̄α . Stop if γnew = 0; in

this case, the entire solution path {x(γ ) | γ ≥ 0} is computed. Otherwise let i ∈ α ∪ β0 be a maximizing
index of γnew (ties can be broken arbitrarily). Update the index sets as follows:

( β0, α, βub )new =
{

( β0 \ {i}, α ∪ {i}, βub ) ifi ∈ β0
( β0, α \ {i}, βub ∪ {i} ) if i ∈ α.

Set γold ← γnew and return to the beginning of the general iteration.

We recall [21, Section 4.8] that a vector p > 0 is an n-step vector for a P-matrix
M (i.e., one whose principal minors are all positive) if [Mαα]−1 pα > 0 for all index
subset α of {1, . . . , n}. In the case of the symmetric positive definite matrix Q, it
is known from Corollary 4.8.11 in the cited reference that Q has an n-step vector
if and only if it is a hidden Z-matrix, this being the class of matrices discovered by
Mangasarian [44]. There are many matrices known to belong to this class; a broad
family is the class of positively-scaled diagonally dominant matrices. Specifically, for
a symmetric strictly quasi-diagonally dominant matrix Q (not necessarily of class Z),
i.e., one that satisfies (7) for a positive vector d, the vector p defined by:

pi � Qii di +
∑

j : Qi j<0

Qi j d j , i = 1, . . . , n, (27)
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is an n-vector of Q; see [20, Corollary 1(ii)]. Below, we establish the claimed 2n-
iteration of the above algorithm for computing the entire solution path of the parametric
QP (25).

Theorem 18 Let p > 0 be an n-step vector for the symmetric positive definite matrix
Q. In at most 2n iterations, Algorithm III computes the entire solution path {x(γ ) |
γ ≥ 0} of the parametric QP (25).

Proof It suffices to show that p̄βub ≥ 0 throughout the algorithm. Consider an arbitrary
index i ∈ βub and the system of linear equations:

[
Qαα Qαi

Qiα Qii

](
p̃α

p̃i

)
=
(
pα

pi

)

whose unique solution is positive. It is not difficult to show that

p̄i = p̃i
[
Qii − Qiα[Qαα]−1Qαi

]
.

Being the Schur complement of Qαα in the matrix

[
Qαα Qαi

Qiα Qii

]
, which is positive

definite, the positivity of p̄i follows readily. ��
In general, the choice of the weights pi in the �1 function is dependent on the

matrix Q. In particular, the use of equal weights may not yield such linear-iteration
termination; see e.g., the vector p with components (27) in the case of a strictly quasi-
diagonally dominant matrix Q. Thus our results supplement the experimental work
of Candès et al. [12] which demonstrates that the use of weighted �1-functions can
enhance sparsity in practice; here the advantage of a weighted �1 function is for the
efficient identification of the sparsity parameter to optimize a secondary objective in
a bilevel setting.

7.2 Unknown sign pattern

This subsection addresses the solution of the following parametric problem:

minimize
x∈Rn

q�x + 1
2 x

�Qx + γ

n∑
i=1

pi | xi | (28)

for all values of γ ≥ 0 by a linear-iteration algorithm, where for notational simplicity,
we have dropped the bounds of the variables. Here we can no longer rely on a single
parametric quadratic program to determine the correct signs of the variables as this
is part of the solution requirement. Instead we may proceed similarly to the previous
case by considering two disjoint subsets (α+, α−) of {1, . . . , n}. This pair of index
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sets induces a vector x with xβ(γ ) = 0, where β � {1, . . . , n}\(α+ ∪ α−), and the
other components given by

(
xα+(γ )

xα−(γ )

)
= −

[
Qα+α+ Qα+α−
Qα−α+ Qα−α−

]−1 (qα+
qα−

)
− γ

[
Qα+α+ Qα+α−
Qα−α+ Qα−α−

]−1 ( pα+
−pα−

)

� −
(
q̄α+
q̄α−

)
− γ

(
p̄α+
p̄α−

)
.

[Remark: When explicit bounds are present, these index sets α± need to be refined to
account for the variables at bounds, thus complicating the notations without requiring
new ideas.] It is easy to show that

(
p̄α+
p̄α−

)
=
⎛
⎜⎝

[
Qα+α+ − Qα+α−

[
Qα−α−

]−1 Qα−α+
]−1 (

pα+ + Qα+α−
[
Qα−α−

]−1 pα−
)

−
[
Qα−α− − Qα−α+

[
Qα+α+

]−1 Qα+α−
]−1 (

pα− + Qα−α+
[
Qα+α+

]−1 pα+
)
⎞
⎟⎠ .

This vector x(γ ) is a solution of (28) if and only if

• xα+(γ ) ≥ 0 and xα−(γ ) ≤ 0; and
• 0 ≤ q̄β + γ p̄β ≤ 2γ pβ , where

(
q̄β p̄β

)
�
(
qβ pβ

)− [ Qβα+ Qβα−
] [ q̄α+ p̄α+

q̄α− p̄α−

]
. (29)

The n-step algorithm for solving the problem (28) parametrically for all γ ≥ 0 is
similar to the previous case. Namely, we start with γ > 0 sufficiently large so that
γ pi ≥ | qi | for all i which yields x(γ ) = 0 to be the unique solution of (28). We
then decrease γ by performing some ratio tests; during the algorithm, we are ensured
that p̄α+ ≥ 0 and p̄α− ≤ 0; these sign conditions in turn imply that a variable xi once
becomes positive will stay positive and similarly a variable xi once becomes negative
will stay negative. Before identifying conditions for these two sign conditions on
( p̄α+ , p̄α−) to hold, we stay the following algorithm and its n-step termination.

The n-step termination of the above algorithm assumes that Q is a Z-matrix, a
reversal of the non-requirement of this property in the previous case where the signs
of the variables are prescribed.

Theorem 19 Let Q be a Z-matrix in addition to being symmetric positive definite.
Provided that p > 0 is such that pi + Qiα[Qαα]−1 pα > 0 for all α ⊆ {1, . . . , n} and
i /∈ α, Algorithm IV will compute the entire solution path {x(γ ) | γ ≥ 0} of problem
(28) in no more than n iterations.

Proof The assumptions on Q imply that the matrices Qα±α± − Qα±α∓
[
Qα∓α∓

]−1

Qα∓α± , being Schur complements are M-matrices, are themselves M-matrices; thus
they have nonnegative inverses. Thus p̄α+ > 0 and p̄α− < 0 under the given assump-
tions on the vector p. This is enough to establish the claim of the theorem. ��

123



A. Gómez et al.

Algorithm IV: an n-step parametric procedure for solving (28)

Initialization. Let ( β, α+, α− ) = ( {1, · · · , n}, ∅, ∅ ). Also let γold � ∞.

General iteration. Solve the system of linear equations:

[
Qα+α+ Qα+α−

Qα−α+ Qα−α−

](
q̄α+ p̄α+

q̄α− p̄α−

)
=
(
qα+ pα+

qα− −pα−

)
,

and compute (q̄β , p̄β) by (29). Perform the ratio test:

γnew � max

{
max

i∈β : p̄i>0

{
− q̄i

p̄i

}
, max
i∈β : p̄i<2pi

{
q̄i

2pi − p̄i

}
, 0

}

For γ ∈ [ γnew, γold
]
, let xβ(γ ) = 0, xα+ (γ ) = −q̄α+ − γ p̄α+ and xα− (γ ) = −q̄α− − γ p̄α− Stop

if γnew = 0; in this case, the entire solution path {x(γ ) | γ ≥ 0} is computed. Otherwise let i ∈ β be a
maximizing index of γnew (ties can be broken arbitrarily). Update the index sets as follows:

( β, α+, α− )new =
{

( β \ {i}, α+ ∪ {i}, α− ) if i ∈ βand p̄i > 0

( β \ {i}, α+, α− ∪ {i} ) if i ∈ βand p̄i < 2pi .

Set γold ← γnew and return to the beginning of the general iteration.

To give a class of Z-matrices Q for which such a vector p can be easily identified,
we note that the scalar pi + Qiα[Qαα]−1 pα is the Schur complement of the matrix

Qαα in the bordered matrix R �
[

pi Qiα

−pα Qαα

]
, which is of class Z. Thus,

pi + Qiα[Qαα]−1 pα = det R

det Qαα

= pi
det Qαα

det

(
Qαα + 1

pi
pαQiα

)
.

Hence, pi + Qiα[Qαα]−1 pα > 0 if and only if Qαα + 1

pi
pαQiα , which itself is a

Z-matrix, has positive determinant. Based on this derivation, the following corollary
of Theorem 19 is easy to prove.

Corollary 20 Let Q be a symmetric positive definite Z-matrix. If there exists a positive
vector d such that

Qkk dk >
∑
j �=k

| Qkj | d j +
∑
j �=�

| Q� j | d j , ∀ k �= � ∈ {1, . . . , n}, (30)

then the n-step algorithm will compute the entire solution path {x(γ ) | γ ≥ 0} of
problem (28) in no more than n iterations with p being the vector of all ones.

Proof It suffices to show that the matrix Qαα + 1αQiα is an M-matrix. In turn, it is
enough to show that [ Qαα + 1αQiα ] dα > 0. Indeed, the k(∈ α)-th element of the
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latter vector is equal to

Qkk dk +
∑

j∈α : j �=k

Qkj d j +
∑
j∈α

Qi j d j ≥ Qkk dk −
∑
j �=k

| Qkj | d j −
∑
j �=i

| Qi j | d j

which is positive by assumption. ��
In general, for any matrix Q with positive diagonals, we may define a matrix Q̂

by:

Q̂i j �

⎧⎨
⎩

Qii ifi = j

−
[

| Qi j | + max
� �=i, j

| Q� j |
]
if i �= j .

It is then easy to see that (30) holds for some positive vector d if Q̂ is an M-matrix. In
general, if there are permissible controls on the diagonal and/or off-diagonal entries,
such as in the applied sparse-smooth signal problem (3) and portfolio revision problem
(6), the resulting matrix Q̂ can be seen to have this M-property. The upshot is that for
these two problems, with suitable choices on the smoothing parameter λ in the former,
and the proximal parameter ε > 0 in the latter, the �1-version of the former problem
can be solved parametrically for all values of the sparsity parameter γ > 0 in strongly
polynomial time and similarly for the latter problem; thus so can their respective
bilevel versions of optimally choosing the latter parameter with say, quadratic outer
objectives.

8 Numerical results

In this section, we test out the practical efficiency of Algorithm I with Algorithm
II embedded in it, which together we call the GHP Algorithm. We apply the GHP
Algorithm to problem (8) with θ(x) = q�x + 1

2 x
�Qx being quadratic with a

Stieltjes matrix Q and with (a) fi (t) = γ pi t , which leads to the scaled �1-

regularizer γ
∑n

i=1 pi | xi |, and (b) fi (t) = γ pi min

(
t

δ
, 1

)
, which leads to the

capped �1-regularizer γ
∑n

i=1 pi min

( | xi |
δ

, 1

)
. Problems with the �1-regularizer

are (equivalent to) convex quadratic programs; we compare the GHP Algorithm with
two well-established solvers GUROBI 9.1 [30] and MOSEK 9.3 [46]. For prob-
lems with the capped �1-regularizer, we compare the GHP Algorithm with GUROBI
applied to a mixed integer program reformulation specified Sect. 8.2. We termi-
nate Algorithms I and II as in their respective descriptions; for the latter algorithm,
x (ν)t+1 = x (ν)t is deemed satisfied if | x (ν)t+1

i − x (ν)t
i | ≤ 10−9 for all i ∈ [n].

We synthetically generate a sparse Stieltjesmatrix Q with n = 5, 000 (ameaningful
size for experimental purposes) with the density of the off-diagonal entries equal to
σ ∈ {0.01, 0.2}, i.e., the number of such entries is σn(n − 1). The nonzero off-
diagonal entries are uniformly generated within the interval [−1, 0); then we set the
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Table 1 Computational results for the �1-problems. In this case (convex), all methods solve the optimization
problem to optimality

Settings Unconstrained Constrained

GHP GRB time MSK time GHP GRB time MSK time

Time Steps I Time Steps I

(γ, σ ) = (0.01, 0.01) 1.32 5.2 176.20 59.71 1.49 5.4 197.50 77.12

(γ, σ ) = (0.01, 0.2) 10.51 5.4 286.17 61.16 11.10 5.2 335.78 63.63

(γ, σ ) = (1, 0.01) 1.35 5.2 174.93 52.49 1.32 5.0 198.54 81.95

(γ, σ ) = (1, 0.2) 12.28 6.0 295.37 77.52 11.39 5.4 333.67 60.80

(γ, σ ) = (10, 0.01) 1.13 5.0 196.06 56.13 1.16 5.0 185.70 88.44

(γ, σ ) = (10, 0.2) 9.23 5.2 312.28 63.86 9.34 5.0 331.36 59.10

diagonal terms Qii = 1.2
∑

j∈[n], j �=i |Qi j |,∀i ∈ [n] so that Q is positive definite.
Additionally, we randomly generate the components of q independently and uniformly
in [−100, 100] and those of p in (0, 1]. When constraints � ≤ x ≤ u are imposed,
we set −�i = ui = 2

3 ‖Q−1q‖∞ for all i ∈ [n], where −Q−1q is the unconstrained
minimizer of θ . All the statistics reported in the tables below are averaged over 5
random instances. The experiments were carried out within MATLAB R2017b on a
Mac OS X personal computer with 2.3 GHz Intel Core i7 and 8 GB RAM.

8.1 �1-Penalized problems

In Table 1, we summarize the computational time (in seconds) and the number of
iterations in Algorithm I (labelled steps I) under the aforementioned settings with
γ additionally fixed as 0.01, 1, or 10. (Note that Algorithm II is not needed for the
�1-problems.) Each fixed-sign subproblem in Algorithm I is solved as a linear com-
plementarity problem by the method described in [48]. The computational results of
GUROBI and MOSEK are abbreviated as “GRB” (resp. “MSK”) for short.

As we can observe from Table 1, the proposed method is many times faster than the
benchmark commercial solvers (by a factor of at least five in almost all the settings),
and can exploit sparsity in the data much more effectively as well. In particular, for
the cases with σ = 0.01 (low off-diagonal density), GHP can be 160 (resp. 75) faster
than GRB (resp. MSK), e.g., see setting with (γ, σ ) = (10, 0.01) and constrained
problems. For similar cases with σ = 0.2, GHP is (only) 40 times faster than GRB,
and6 times faster thanMSK.Wealso see thatwhileGHP requires in theworst casen+1
iterations, in practice, it terminates in practice in five iterations on average. Thus, the
practical performance of GHP may be substantially faster than the worst-case O(n4)
complexity, see Sect. 8.3 for more details.

8.2 Capped �1-Penalized problems

Besides the �1-cases, we also test and highlight the advantages of the GHP Algorithm
when applied to capped �1-problems. We fix γ = 1 and δ = 1

6 ‖Q−1q‖∞ in both
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unconstrained and constrained settings. Table 2 summarize the computing time, total
number of inner loops in Algorithm II (labelled steps II) and the final objective value
(denoted as “obj.”) when our method terminates with a d-stationary point xghp. As a
comparison, we apply GUROBI to solve the capped �1-problem reformulated as the
following mixed integer quadratic program:

minimize
x,t,s∈Rn

1
2 x

�Qx + q�x + γ p�t

subject to
|xi |
δ

≤ ti + Msi , ∀i ∈ [n]
1 ≤ ti + M(1 − si ), ∀i ∈ [n]
� ≤ x ≤ u, and s ∈ {0, 1}n .

where

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

M �

⎧⎪⎨
⎪⎩
max

{
2‖q̃‖2

δλmin(Q)
, 1

}
if uncons.

u1
δ

(= 4) if constr.

q̃i � qi + sign(qi )
γ

δ
∀ i ∈ [n]

λmin(Q) � minimal eigenvalue of Q

The choice of M for the unconstrained cases is motivated by the fact that if x∗ is

an optimal solution of the capped �1-problem, then ‖x∗‖∞ ≤ 2‖q∗‖2
λmin(Q)

≤ 2‖q̃‖2
λmin(Q)

,

where q∗
i � qi + γ

δ
pi if 0 ≤ x∗

i < δ, q∗
i � qi + γ

δ
pi if −δ < x∗

i < 0 and q∗
i � qi if

|x∗
i | > δ. In Table 2, we record the best objective values found by GUROBI when it is

set to stop at the time limit of 200 and 600 s. Additionally, we also initialize GUROBI
with xghp and rerun it for 600 seconds, with the results included in the column named
“GRB cont.”. Finally, we also present the gaps between the upper and lower bounds
of global optimality when GUROBI is terminated.

It is apparent that for all the cases except for the unconstrained, σ = 0.01 sce-
nario,the d-stationary points xghp achieved by GHP (in 2 s for σ = 0.01, and 20s for
σ = 0.2) are better than incumbents found by GUROBI in 200 seconds. On the other
hand, if the time limit is set as 600 seconds, GUROBI usually finds feasible solutions
whose objective values are close to (but slightly worse) than the objective value of
xghp, while requiring significantly more time. Finally, we note that the optimality gaps
proven fromGUROBI serve as a certificate that, for σ = 0.01, GHP delivers solutions
whose objective is (at most) 1% worse than the global minimizer of the problem.

8.3 Verifying strongly polynomial complexity

To verify the strongly polynomial complexity of our method, we test it on the
capped �1-problems, both constrained and unconstrained, with various sizes n ∈
{500, 1000, 2000, 4000, 8000, 16,000} and with the off-diagonal sparsity of Q being
σ ∈ {0.01, 0.05, 0.2}. Similar to previous experiments, γ is fixed to 1 and δ, u, �

are chosen identically. The computing time and the total number of subproblems (19)
solved in Algorithm II (labelled as steps II) are summarized in Table 3. We also plot
the computing time as a function of n under various settings in Fig. 2. The results indi-
cate that doubling n results in an 4 − 6x increase in computational times, suggesting
that the practical complexity of the GHP method is roughly of the order n2.5 in the
experiments, considerably less than the worst-case complexity of O(n4) established
in Theorem 17; the total number of steps II is also significantly less than the worst-case
bound of linear number of (inner) subproblems (19) stipulated in the same theorem.
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Fig. 2 Computing time vs. size n for capped �1-problems

Table 3 Computational results for the capped �1-problems

Settings n = 500 n = 1000 n = 2000 n = 4000 n = 8000 n = 16,000

Unconstrained

σ = 0.01 Time 0.03 0.04 0.15 0.61 2.79 11.39

Steps II 6.4 6.4 7.4 8.2 9.6 10.2

σ = 0.05 Time 0.04 0.10 0.43 2.18 9.64 50.36

Steps II 7.0 8.4 8.6 10.0 11.4 14.6

σ = 0.2 Time 0.07 0.32 1.44 6.33 25.92 86.68

Steps II 8.6 9.2 10.8 12.2 14.2 14.0

Constrained

σ = 0.01 Time 0.04 0.04 0.14 0.71 3.72 15.89

Steps II 6.4 6.4 7.4 8.6 9.8 10.4

σ = 0.05 Time 0.03 0.10 0.49 2.45 12.12 61.28

Steps II 7.0 8.4 9.2 10.2 12.2 15.0

σ = 0.2 Time 0.08 0.32 1.49 6.23 27.92 85.06

Steps II 8.6 8.8 10.4 11.4 14.2 13.6

In summary, we conclude that the strongly-polynomial worst-case complexity of
the proposed method translates to a practically efficient algorithm: it significantly
outperforms leading off-the-shelf solvers while delivering high-precision solutions
without additional computational effort.
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