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Abstract

Pre-trained language models (PLMs) aim to
learn universal language representations by con-
ducting self-supervised training tasks on large-
scale corpus. Since PLMs capture word seman-
tics in different contexts, the quality of word
representations highly depends on word fre-
quency, which usually follows a heavy-tailed
distribution in the pre-training corpus. Thus,
the embeddings of rare words on the tail are
usually poorly optimized. In this work, we fo-
cus on enhancing language model pre-training
by leveraging definitions of the rare words in
dictionary. To incorporate a rare word defini-
tion as a part of input, we fetch it from the
dictionary and append it to the end of the in-
put text sequence. In addition to training with
the masked language modeling objective, we
propose two novel self-supervised pre-training
tasks on word-level and sentence-level align-
ment between the input text and rare word defi-
nition to enhance language representations. We
evaluate the proposed model named Dict-BERT
on the GLUE benchmark and eight specialized
domain datasets. Extensive experiments show
that Dict-BERT significantly improves the un-
derstanding of rare words and boosts model per-
formance on various NLP downstream tasks.

1 Introduction

Recently pre-trained language models (PLMs) such
as BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019) have revolutionized the field of natural
language processing (NLP), yielding remarkable
performance on various downstream tasks (Qiu
et al., 2020). However, these PLMs suffer from
lacking knowledge when completing real-world
tasks. To address this issue, some methods have
incorporated the knowledge to enrich language rep-
resentations, ranging from linguistic (Wang et al.,
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2021a), commonsense (Guan et al., 2020; Liu et al.,
2020), factual (Wang et al., 2021b), to domain
knowledge (Liu et al., 2020; Yu et al., 2022b).

Nevertheless, rare words (Schick and Schütze,
2020) and unseen words (Cui et al., 2021) are
still blind spots of pre-trained language models
when they are fine-tuned on downstream tasks. For
instance, in a dialogue system, users often talk
to chatbots about recent hot topics, e.g., “Covid-
19”, which may not appear in the pre-training cor-
pus (Cui et al., 2021). Since PLMs capture word
semantics in different contexts to address the is-
sue of polysemous and the context-dependent na-
ture of words, consequently they usually perform
poorly when a user mentions such novel words (Wu
et al., 2021; Ruzzetti et al., 2021). As indicated
by Wu et al. (2021), the quality of word represen-
tations highly depends on the word frequency in
the pre-training corpus, which typically follows a
heavy-tail distribution. Thus, a large proportion of
words appear very few times and the embeddings of
these rare words are poorly optimized (Gong et al.,
2018; Schick and Schütze, 2020). Such embed-
dings usually carry inadequate semantic meaning,
which complicate the understanding of input text,
and even hurt the pre-training of the entire model.

In this work, we focus on enhancing language
model pre-training by leveraging rare word defi-
nitions in English dictionaries (e.g., Wiktionary).
Definitions in dictionaries are intended to describe
the meaning of a word to a human reader. We
append the definitions of rare words to the end
of the input text and encode the whole sequence
with Transformer encoder. The pre-training tasks
are mainly based on the alignment between input
text and the appended word definitions, some of
which are randomly sampled polluted words and
don’t explain the input. We propose two types of
pre-training objectives: 1) a word-level contrastive
objective aims to maximize the mutual information
between Transformer representations of a rare word
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appeared in the input text and its dictionary defini-
tion. 2) a sentence-level discriminative objective
aims at learning to differentiate between correct
and polluted word definitions. During downstream
fine-tuning, in order to avoid the appended rare
word definitions diverting the sentence from its
original meaning, we employ a knowledge atten-
tion mechanism that makes word definitions only
visible to the corresponding words in the input text
sequence. We name our method Dict-BERT. No-
tably, Dict-BERT is general and model-agnostic, in
the sense that any pre-trained language model (e.g.,
BERT, RoBERTa) suffices and can be used.

Overall, our main contributions in this work can
be summarized as follows:
1. We are the first work to enhance language

model pre-training with rare word definitions from
dictionaries (e.g., Wiktionary).
2. We propose two novel pre-training tasks on

word-level and sentence-level alignment between
input text sequence and rare word definitions to
enhance language modeling with dictionary.
3. We evaluate Dict-BERT on the GLUE (Wang

et al., 2019) benchmark, in which our model pre-
trained from scratch can improve accuracy by
+1.15% on average over the vanilla BERT.

4. We follow the domain adaptive pre-training
(DAPT) setting (Gururangan et al., 2020), where
language models are continuously pre-trained with
in-domain data. We evaluate Dict-BERT on eight
specialized domain datasets. Our method can im-
prove F1 score by +0.5%/+0.7% on average over
the BERT-DAPT/RoBERTa-DAPT settings.

2 Related Work

Rare word representation in language models.
The quality of word representations highly depends
on word frequency creating a heavy-tail distribu-
tion (Wu et al., 2021). Recent works have shown
rare words that are not frequently covered in the
corpus can hinder the understanding of specific yet
important sentences (Noraset et al., 2017; Bosc and
Vincent, 2018; Schick and Schütze, 2020; Ruzzetti
et al., 2021). Due to the poor quality of rare word
representations, the pre-training model built on
top of it suffers from noisy input semantic signals
which lead to inefficient training. Gao et al. (2019)
provided a theoretical understanding of the rare
word problem, which illustrates that the problem
lies in the sparse stochastic optimization of neu-
ral networks. Schick and Schütze (2020) adapted

attentive mimicking to explicitly learn rare word
embeddings to language models. Wu et al. (2021)
proposed to maintain a note dictionary and saves a
rare word’s contextual information as notes. When
the same rare word occurs again during language
model pre-training, the note information saved be-
forehand can be employed to enhance the seman-
tics of the current sentence. Different from afore-
mentioned works that keep a fixed vocabulary of
rare words during pre-training and fine-tuning, our
method can dynamically adjust the vocabulary of
rare words, obtain and represent their definitions in
a dictionary in a plug-and-play manner.

Language model pre-training and knowledge-
enhanced methods Recent years have seen sub-
stantial pre-trained language models (PLMs) such
as BERT (Devlin et al., 2019) and T5 (Raffel et al.,
2020) have achieved remarkable performance in
various NLP downstream tasks. However, these
PLMs suffer from lacking domain-specific knowl-
edge when completing many real-world tasks (Yu
et al., 2022c). For example, BERT cannot give full
play to its value when dealing with electronic med-
ical record analysis tasks in the medical field (Liu
et al., 2020). A lot of efforts have been made
on investigating how to integrate knowledge into
PLMs (Yu et al., 2022b; Liu et al., 2021; Xiong
et al., 2020; Guan et al., 2020; Zhou et al., 2021;
Yu et al., 2022a,d). Overall, these approaches can
be grouped into two categories: The first one is
to explicitly inject knowledge representation into
PLMs, where the representations are pre-computed
from external sources (Zhang et al., 2019; Liu et al.,
2021). However, it has been argued that the em-
bedding vectors of input words and knowledge are
obtained in separate ways, making their vector-
space inconsistent (Liu et al., 2020). The sec-
ond one is to implicitly model knowledge informa-
tion into PLMs by performing knowledge-related
tasks, such as concept order recovering (Zhou et al.,
2021), entity category prediction (Yu et al., 2022b).
However, none of existing work has explored using
dictionary to enhance language model pre-training.

3 Proposed Method

In this section, we introduce the details of our
model Dict-BERT. We first describe the notations
and how to incorporate rare word definitions as a
part of input. Then we detail the two novel self-
supervised pre-training objectives. Finally, we in-
troduce the knowledge attention during fine-tuning.
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3.1 Notation and Problem Definition

Given the input text sequence X =
[CLS, x1, x2, · · · , xL, SEP] with L tokens,
a language model fLM produces the con-
textual word representation fLM (X) =
[hCLS, h1, h2, · · · , hL, hSEP]. For a specific
downstream task, a header function fH further
uses fLM (X) and generates the prediction as
fH(hCLS) for sequence classification tasks.

The goal of our work is to learn better contex-
tual word representation fLM (x) by leveraging
definitions of the rare words in dictionaries (e.g.,
Wiktionary). Suppose S = [s1, · · · , sK ] and
C = [c(1), · · · , c(K)] are the sets of rare words in
the input text sequence X and their definitions
in the dictionary. When a rare word si appears
in the input text sequence, we fetch its definition
from the dictionary as c(i) = [c(i)1 , · · · , c(i)

Ni
] with

Ni tokens, and append it to the end of the input
text sequence. If a word has multiple definitions,
we use the definition of their first etymology (i.e.,
the most commonly used meaning). Therefore,
an input sequence X with appended definitions
of K rare words can be written as: [X; C] =

[CLS, x1, x2, ..., xL, SEP(1), c(1)1 , c(1)2 , ..., c(1)
N1

; ...;

SEP(K), c(K)
1 , c(K)

2 , ..., c(K)
NK

, SEP], and the cor-
responding contextual representation generated
from the language model fLM as: fLM (X,C) =

[hCLS, h1, h2, · · · , hL, h(1)SEP, h
(1)
1 , · · · , h(1)

N1
; · · · · · ·

;h(K)
SEP , h

(K)
1 , · · · , h(K)

NK
, hSEP]. For a specific down-

stream task, a header function fH still uses
fLM (X,C) to generate the prediction as fH(hCLS)
for sequence classification tasks.

3.2 Choosing the Rare Words

There are different ways to choose the rare word
set S in a pre-training corpus. One way is to use a
pre-defined absolute frequency value as the thresh-
old. Wu et al. (2021) used 500 as the threshold to
divide frequent words and rare words, and main-
tained a fixed vocabulary of rare words during pre-
training and fine-tuning. However, rare words can
vary greatly in different corpora. For example, rare
words in the medical domain are very different
from those in general domain (Lee et al., 2020).
Besides, keeping a large threshold for a small down-
stream datasets makes the vocabulary of rare words
too large. For example, only 51 words in the RTE
dataset have a frequency of more than 500.

Therefore, we propose to choose specialized rare

words for each pre-training corpus and downstream
tasks. Specifically, we ranked all word frequency
from smallest to largest, and add them to the list one
by one until the word frequency of the added word
reaches 10% of the total word frequency. Com-
pared with Wu et al. (2021) which maintained a
fixed vocabulary, our method can dynamically ad-
just the vocabulary of rare words, obtain and rep-
resent their definitions in dictionary in a plug-and-
play manner. To fetch the definition of rare words,
we leveraged the largest online dictionary, i.e., Wik-
tionary, and collected a dump of Wiktionary which
includes definitions of 999,614 concepts.

We noted that when choosing the rare words, we
used a word tokenizer (i.e., NLTK) instead of using
any subword tokenizer (e.g., WordPiece). This is
mainly because quite a few rare subwords, either
generated by BPE or in WordPiece, do not have spe-
cific understandable semantic meanings to humans,
such as “123@@”, “elids”, “al”, “ch”, “di”. For
such subwords, their contexts can be very diverse
due to their vague semantic meanings. As most
rare words have their own concrete semantics, the
subword meanings cannot act as effective auxiliary
semantics to enhance the current input.

3.3 Dict-BERT: Language Model Pre-training
with Dictionary

Dict-BERT is based on the BERT architecture,
which can be initialized either randomly or from a
pre-trained checkpoint with the same structure. It
is worth noting that we slightly modified the type
embedding, in which the type embedding of the
input text is set as 0, and the type embedding of the
dictionary definitions is set as 1. In addition, we
used the absolute positional embedding.

We represent each input text sequence and dic-
tionary definitions pair as a tuple (X,C). The se-
mantics of a word in the input text depends on the
current context, while the semantics of a word in
the dictionary is standardized by linguistic experts.
In order to better align the representations between
them, we propose two novel pre-training tasks on
word-level and sentence-level alignment between
input text sequence and rare word definitions to en-
hance pre-trained language models with dictionary.

3.3.1 Word-level Mutual Information
Maximization

Recently, there has been a revival of approaches in-
spired by the InfoMax principle (Oord et al., 2018;
Tschannen et al., 2020): maximizing the mutual
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max(       )

input text (with masked tokens) definition of Covid-19 definition of SARS

[CLS] Covid-19 has become a global epidemic [SEP] Covid-19 is the disease caused by severe acute respiratory [SEP] SARS … [SEP]

[CLS]   [MASK]   has   become    a    [MASK] epidemic

Covid-19

Token Emb
Pos. Emb
Type Emb

Input text

BERT 
architecture

Pre-training
tasks

[SEP] Covid-19    is    disease [MASK] [SEP]    SARS      is
0           1          2          3          4         5            6   7            8           9         10         11 21        22         23     
0           0          0          0          0         0            0   1            1           1          1           1 … 1          1           1                

Task 1: masked language model Task 3: definition discrimination

[MASK] 

Covid-19

SARS

global

[SEP] for Covid-19

Task 2: mutual information maximization

Transformer Encoder

…

caused viral

…
…

…
…

[SEP] for SARS

min(       )

Figure 1: The overall architecture of Dict-BERT. The definitions of rare words are appended to the end of input text.
In additional to training with masked language modeling, Dict-BERT performs two novel self-supervised learning
tasks: word-level mutual information maximization (§3.3.1) and sentence-level definition discrimination (§3.3.2).

information (MI) between the input and its repre-
sentation. MI measures the amount of informa-
tion obtained about a random variable by observ-
ing another random variable. As the input text
sequence and rare word definitions are obtained
from different sources, in order to better align their
semantic representations, we proposed to maxi-
mize the MI between a rare word xi in the input
sequence and its well-defined meaning in the dictio-
nary c(i), with joint density p(xi, c(i)) and marginal
densities p(xi) and p(c(i)), is defined as the Kull-
back–Leibler (KL) divergence between the joint
and the product of the marginals,

I(xi; c
(i)) = DKL

�
p(xi, c

(i))||p(xi)p(c(i))
�

(1)

The intuition of maximizing mutual information
between a rare word appeared in the input text se-
quence and its definitions in the dictionary is to en-
code the underlying shared information and align
the semantic representation between the contex-
tual meaning and well-defined meaning of a word.
Nevertheless, estimating MI in high-dimensional
spaces is a notoriously difficult task, and in prac-
tice one often maximizes a tractable lower bound
on this quantity (Poole et al., 2019). Intuitively,
if a classifier can accurately distinguish between
samples drawn from the joint p(xi, c(i)) and those
drawn from the product of marginals p(xi)p(c(i)),
then xi and c(i) have a high mutual information.

In order to approximate the mutual information,
we adopted InfoNCE (Oord et al., 2018), which is
one of the most commonly used estimators in the

representation learning literature, defined as

I(xi; c
(i)) � [

KX

i=1

log
efMI(hi,h

(i))

P
K

j=1 [j 6=i]efMI(hi,h
(j))

]

, INCE(xi; c
(i)), (2)

where the expectation is over K independent sam-
ples {(hi, h(i))}Ki=1 from the joint distribution
p(xi, c(i)) (Poole et al., 2019). Intuitively, the critic
function fMI(·) measures the similarity (e.g., inner
product) between two word representations. The
model should assign high values to the positive
pair (hi, h(i)), and low values to all negative pairs.
We compute InfoNCE using Monte Carlo estima-
tion by averaging over multiple batches of sam-
ples (Chen et al., 2020). By maximizing the mutual
information between the encoded representations,
we extract the underlying latent variables that the
rare words in the input text sequence and their dic-
tionary definitions have in common.

3.3.2 Sentence-level Definition Discrimination

Instead of locally aligning the semantic representa-
tion, learning to differentiate between correct and
polluted word definitions helps the language model
capture global information of input text and dictio-
nary definitions. We denote the set of definitions
of rare words in the input text as C. We then create
a set of “polluted” word that are randomly sampled
from the entire vocabulary together with its defini-
tion. The number of sampled “polluted” words is
equal to the number of rare words appeared in the
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Figure 2: An illustration of knowledge-visible attention
matrix. “Def 1” is the dictionary definition of the second
word in the input text, and “Def 2” is the definition of
the third word in the input text. Colored circle means
token i can attend information from token j, while white
circle means no attention from token i to token j.

input text sequence.

LDD = �
KX

i=1

log p(y|fMLP(h
(i)
SEP). (3)

3.3.3 Overall objective.
Now we present the overall training objective of
Dict-BERT. To avoid catastrophic forgetting (Mc-
Closkey and Cohen, 1989) of general language un-
derstanding ability, we train the masked language
modeling together with word-level mutual informa-
tion maximization (MIM) and definition discrim-
ination (DD) tasks. We denote LMIM as the loss
function of the MIM task which is the opposite
of expectation in Equation 2. Hence, the overall
learning objective is formulated as:

L = LMLM + �1LMIM + �2LDD (4)

where �1, �2 are introduced as hyperparameters to
control the importance of each task.

3.4 Dict-BERT: Fine-tuning with
Knowledge-visible Attention

Most existing work uses the final hidden state of the
first token (i.e., the [CLS] token) as the sequence
representation (Devlin et al., 2019; Liu et al., 2019;
Yang et al., 2019). For a sequence classification
task, a multi-layer perception network function fH
takes the output of fLM as input and generates the
prediction as fH(hCLS). Notably, when fine-tuning
a language model on downstream tasks, there could

be many rare/unseen words in the dataset. So, in the
fine-tuning stage, when encountering a rare word
in the input text, we append its definition to the end
of input text, just like what we did in pre-training.

However, the appended dictionary definitions
may change the meaning of the original sentence
since the [CLS] token attend information from both
input text and dictionary description. As pointed
in Liu et al. (2020) and Xu et al. (2021), too much
knowledge incorporation may divert the sentence
from its original meaning by introducing a lot of
noise. This is more likely to happen if there are mul-
tiple rare words in the input text. To address this is-
sue, we adopt the visibility matrix (Liu et al., 2020)
to limit the impact of definitions on the original
text. In BERT, an attention mask matrix is added
with the self-attention weights before softmax. If
token j is not supposed to be visible to token i, we
add a -1 value in the attention matrix (i, j).

As shown in Figure 2, we modify the attention
mask matrix such that a token i can attend to an-
other token j only if: (1) both tokens belong to the
input text sequence, or (2) both tokens belong to
the definition of the same rare word, or (3) i is a
rare word in the input text sequence and j is from
its definition in the dictionary.

4 Experiments

4.1 Tasks and Datasets
To show the wide adaptability of our Dict-BERT,
we conducted experiments on 16 NLP benchmark
datasets. We use BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019) as the backbone pre-
trained language methods. First, we followed Liu
et al. (2019) and Wu et al. (2021) to use 8 natu-
ral language understanding tasks in GLUE, includ-
ing CoLA, RTE, MRPC, STS, SST, QNLI, QQP,
and MNLI. Second, we followed Gururangan et al.
(2020) to use 8 specialized domain tasks, including
Chemprot, RCT-20k, ACL-ARC, SciERC, Hyper-
Partisan, AGNews, Helpfulness, IMDB.

4.2 Rare Word Collection
Here, we briefly introduce the statistic of rare words
in BERT pre-training corpus: English Wikipedia
and BookCorpus. By concatenating these two
datasets, we obtained a corpus with roughly 16GB
in size. The total number of unique words in the
pre-training corpus is 504,812, of which 112,750
(22.33%) words are defined as frequent words.
In other words, the sum of the occurrences of
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Table 1: Performance of different models on GLUE tasks. Each configuration is run five times with different random
seeds, and the average of these five results on the validation set is reported in the table. We note that our code
is implemented on Huggingface Transformer (Wolf et al., 2020). The performance of our implemented BERT is
consistent with the official performance, but it is slightly lower than the performance reported by Wu et al. (2021).
We reported the relative improvement (�) of BERT-TNF and Dict-BERT compared with the original BERT.

Methods Dict in MNLI QNLI QQP SST CoLA MRPC RTE STS-B Avg �
PT FT Acc. Acc. Acc. Acc. Matthews Acc. Acc. Pearson

BERT (Wu’s) ⇥ ⇥ 85.00 91.50 91.20 93.30 58.30 88.30 69.00 88.50 83.10 -
BERT-TNF

p p
85.00 91.00 91.20 93.20 59.50 89.30 73.20 88.50 83.90 +0.80

BERT (ours) ⇥ ⇥ 84.12 90.69 90.75 92.52 58.89 86.17 68.67 89.39 82.65 -
Dict-BERT-F ⇥

p
84.19 90.94 90.68 92.59 59.16 85.75 68.10 88.72 82.51 -0.14

Dict-BERT-P
p

⇥ 84.33 91.02 90.69 92.62 60.44 86.81 73.86 89.81 83.70 +1.05
` w/o MIM

p
⇥ 84.24 90.79 90.24 92.22 60.14 87.03 73.79 89.67 83.52 +0.87

` w/o DD
p

⇥ 84.18 90.54 90.30 92.39 61.49 86.49 71.89 89.60 83.36 +0.71

Dict-BERT-PF
p p

84.34 91.20 90.81 92.65 61.68 87.21 72.89 89.68 83.80 +1.15
` w/o MIM

p p
84.22 90.67 90.66 92.53 61.58 87.20 71.58 89.37 83.47 +0.82

` w/o DD
p p

84.16 90.21 90.78 92.39 61.14 87.19 71.84 89.24 83.37 +0.72

Table 2: Performance of different models on eight specialized domain datasets under the domain adaptive pre-
training (DAPT) setting. Each configuration is run five times with different random seeds, and the average of these
five results on the test set is calculated as the final performance.

Methods ChemProt RCT ACL-ARC SciERC HP AGNews Helpful IMDB Avg
Mi-F1 Mi-F1 Ma-F1 Ma-F1 Ma-F1 Ma-F1 Ma-F1 Ma-F1

BERT 81.16 86.91 64.20 80.40 91.17 94.48 69.39 93.67 82.67
BERT-DAPT 83.10 86.85 71.45 81.62 93.52 94.58 70.73 94.78 84.57
Dict-BERT-DAPT 83.49 87.46 74.18 83.01 94.70 94.58 70.04 94.80 85.25
` w/o MIM 83.33 87.38 72.26 82.70 94.72 94.58 70.33 94.73 85.06
` w/o DD 84.09 87.23 72.78 82.54 94.69 94.57 70.43 94.70 85.01

RoBERTa 82.03 87.14 66.20 79.55 90.15 94.43 68.35 95.16 83.15
RoBERTa-DAPT 84.02 87.62 73.56 81.85 90.22 94.51 69.06 95.18 84.51
Dict-RoBERTa-DAPT 84.41 87.42 75.33 82.53 92.51 94.80 70.57 95.51 85.32
` w/o MIM 84.49 87.51 74.83 81.58 93.27 94.75 70.67 95.40 85.31
` w/o DD 84.09 87.39 74.04 81.18 90.91 94.64 70.81 95.51 84.82

these 112,750 words in the corpus accounts for
90% of the occurrences of all words in the cor-
pus. We look up definitions of the remaining
392,062 (77.67%) words in the Wiktionary, of
which 252,581 (64.42%) can be found. The av-
erage length of definition is 11.51±6.84 words.

4.3 Pre-training Corpus and Tasks

Experiments on the GLUE benchmark. The
language model is first pre-trained on the general
domain corpus, and then fine-tuned on the training
set of different GLUE tasks. Following BERT (De-
vlin et al., 2019), we used the English Wikipedia
and BookCorpus as the pre-training corpus. We
removed the next sentence prediction (NSP) as sug-

gested in RoBERTa (Liu et al., 2019), and kept
masked language modeling (MLM) as the objec-
tive for pre-training a vanilla BERT.

Experiments on specialized domain datasets.
The language model is not only pre-trained on
the general domain corpus, but also pre-trained
on domain specific corpus before fine-tuned on do-
main specific tasks. We initialized our model with
the checkpoint from pre-trained BERT/RoBERTa
and continue to pre-train on domain-specific cor-
pus (Gururangan et al., 2020). The four domains
we focus on are biomedical science (BIOMED),
computer science (S2ORC-CS), news text (REAL-
NEWS), and e-commerce reviews (AMAZON).
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4.4 Baseline Methods

Vanilla BERT/RoBERTa. We use the off-the-shelf
BERT-base (Devlin et al., 2019) and RoBERTa-
base (Liu et al., 2019) model and perform super-
vised fine-tuning for each downstream tasks.
BERT-DAPT/RoBERTa-DAPT. It continues pre-
training BERT/RoBERTa on a large unlabeled
domain-specific corpus (e.g., BioMed, RealNews)
by MLM objective (Gururangan et al., 2020).
BERT-TNF. It takes notes for rare words on the fly
during pre-training to help the model understand
them when they occur next time. Specifically, it
maintains a note dictionary and saves a rare word’s
contextual information in it as notes when the rare
word occurs in a sentence (Wu et al., 2021).

4.5 Implementation Details

We introduce our pre-training and fine-tuning de-
tails and hyperparameter choices in Appendix A.2
to A.4. We also listed several detail discussions
about using Wiktioanry in Appendix A.6.

4.6 Ablation Settings

Dict-BERT-F means that we load the vanilla BERT
checkpoint and fine-tune on the downstream tasks
by using knowledge attention for dictionary.
Dict-BERT-P means that we only leverage dictio-
nary in the pre-training stage and fine-tune Dict-
BERT on downstream tasks without dictionary.
Dict-BERT-PF indicates that we use dictionary in
both pre-training and fine-tuning stages.

Furthermore, Dict-BERT w/o MIM removes the
word-level mutual information maximization task
and Dict-BERT w/o DD removes the sentence-level
definition discriminative task during pre-training.

4.7 Experimental Results

Dict-BERT-F v.s. BERT. As shown in Table 1,
comparing the vanilla BERT with Dict-BERT-F,
we observed that only using dictionary during fine-
tuning could even hurt the model performance on
the GLUE benchmark, especially on those small
datasets (e.g., RTE, MRPC). This indicated the ex-
isting pre-trained language models cannot better
understand the input sequence by using word defi-
nitions when not pre-trained with dictionary. They
might be even misled by the noisy explanations in
the dictionary. Thus, it is important to incorporate
dictionary into language model pre-training so the
dictionary definitions can be better utilized.

Dict-BERT-PF v.s. BERT. As shown in Table
1, Dict-BERT-PF outperformed the vanilla BERT
on the GLUE benchmark by improving +1.15%
accuracy on average. This indicated leveraging
word definitions in dictionary can improve lan-
guage model pre-training and boost performance
on various NLP downstream tasks. On RTE, Dict-
BERT-P obtained the biggest performance improve-
ment compared with the vanilla BERT. On an-
other small-data sub-tasks CoLA, Dict-BERT-PF
also outperformed the baseline with considerable
margins. This indicated when Dict-BERT was
fine-tuned on a small downstream dataset, the im-
provement was particularly significant. Besides, as
shown in Table 2, Dict-BERT-DAPT outperformed
BERT-DAPT on the specialized domain datasets
by improving +0.68% F1 on average. The same ob-
servation was obtained from the RoBERTa setting.

Dict-BERT-PF v.s. Dict-BERT-P. As shown in
Table 1, we compared model performance between
using dictionary in fine-tuning (i.e., Dict-BERT-
PF) and not using dictionary in fine-tuning (i.e.,
Dict-BERT-P). First, after pre-training the language
model with dictionary, even without using dic-
tionary in fine-tuning, the performance has been
greatly improved. This indicated pre-training lan-
guage model with dictionary generally improved
the language representation and provided better ini-
tiation before fine-tuning the language model on the
downstream tasks. Besides, we also observed the
performance of Dict-BERT-PF performed slightly
better than Dict-BERT-P. We hypothesized the rea-
son behind can be the distribution discrepancy of
the pre-training and fine-tuning data.

Ablation study. As shown in Table 1 and Table 2,
we conducted ablation study on both GLUE bench-
mark and specialized domain datasets. First, both
MIM and DD helped learn knowledge from dic-
tionary and improve language model pre-training.
Specifically, DD demonstrated larger average im-
provement than MIM. The average improvements
on GLUE benchmark brought by DD and MIM
are +0.63% and +0.52%. Second, combining MIM
and DD together achieved the highest performance
on the GLUE benchmark, in which the average
gain enlarges to +1.15%. For specialized domain
datasets, we had the same observations as above.

Knowledge attention v.s. Full attention. As we
mentioned in the Section 3.4, too much knowledge
incorporation may divert the sentence from its orig-
inal meaning by introducing some noise. This is
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Figure 3: Model performance on CoLA, RTE, STSB and MRPC when (a) using two different attention mechanisms
and (b) selecting different rare word ratios on the downstream task datasets during fine-tuning.

more likely to happen if there are multiple rare
words appeared in the input text. Therefore, we
compared the model performance between using
knowledge attention and full attention. As shown
in Figure 3(a), we observed that using knowledge
attention can consistently perform better than us-
ing full attention mechanism during the fine-tuning
stage on CoLA, RTE, STSB and MRPC datasets.
Besides, Dict-BERT with full attention even under-
performed than the vanilla BERT without using
any dictionary definition, which indicates the ap-
pended description in the dictionary may change
the meaning of the original sentence. For example,
STSB compares similarity between two sentence.
Using full attention includes semantic meanings of
definitions into the sentence representation, which
might reduce the sentence similarity score and hurt
the model performance.

Learning with different rare word ratios. As we
mentioned in Section 3.2, we select rare words for
each downstream tasks by truncating the tail distri-
bution of the word frequency. In order to verify the
impact of using different tail proportions of rare
words on the downstream tasks, we selected three
different ratios (i.e., 5%, 10%, and 15%) and exper-
imented on CoLA, RTE, STSB and MRPC datasets.
As shown in Figure 3(b), on the CoLA and STSB
datasets, the model achieves the best performance
when using 10% words at the tail as rare words. On
the MRPC data, there is no significant difference of
model performance in using different proportions
of rare words. However, the performance on RTE
data demonstrates a trend, that is, the more rare
words selected, the worse the performance of the
model. This is consistent with the conclusion of
whether the dictionary is used in fine-tuning in Ta-
ble 1, i.e., the performance of not using dictionary
is better than using dictionary on the RTE dataset.

Table 3: Performance of different models on WNLaM-
Pro test set, subdivided by word frequency.

Methods RARE (0, 10) FREQUENT (100, +1)
MRR P@3 p@10 MRR P@3 p@10

BERT (base) 0.117 0.053 0.036 0.356 0.179 0.116
Dict-BERT 0.145 0.068 0.041 0.359 0.181 0.117
` w/o MIM 0.144 0.067 0.041 0.357 0.180 0.115
` w/o DD 0.141 0.065 0.040 0.355 0.179 0.116

Thus, the selection of rare words with different tails
has no obvious correlation with the performance of
the model on downstream tasks.
Unsupervised language model probing. In order
to assess the ability of language models to under-
stand words as a function of their frequency, we
used WordNet Language Model Probing (WNLaM-
Pro) dataset (Schick and Schütze, 2020) to test how
well a language model understands a given word:
we can ask it for properties of that word using nat-
ural language. For example, a language model that
understands the concept of “guilt”, should be able
to correctly complete the sentence “Guilt is the
opposite of ___” with the word “innocence”. WN-
LaMPro contains four different kinds of relations:
antonym, hypernym, cohyponym+, and corruption.
Based on the word frequency in English Wikipedia,
WNLaMPro defines three subsets based on key-
word counts: RARE (0, 10), MEDIUM (10, 100),
and FREQUENT (100,+1). As shown in Table
3, Dict-BERT can greatly improve the word repre-
sentation compared with the vanilla BERT without
using a dictionary during pre-training. Based on
the word frequency, we observe Dict-BERT can
significantly help learn rare word representations.
Compared to the vanilla BERT, Dict-BERT im-
proves MRR and P@3 by relatively +23.93% and
+28.30%, respectively. In addition, Dict-BERT is
also able to learn better frequent word representa-
tions. Although we did not directly take frequent
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word definitions as part of the input, Dict-BERT
spends less memory on rare words, because it is
easier to predict rare words than the vanilla BERT,
so the saved memory power could be used to mem-
orize the facts involving popular words and interac-
tions between popular words.

5 Conclusions
In this work, we leveraged rare word definitions
in English dictionary to improve language model
pre-training. When encountering a rare word in the
input text during pre-training, we fetched its defini-
tion from Wiktionary and appended it to the end of
the input text. In order to make better interactions
between the input text and rare word definitions, we
proposed two novel self-supervised training tasks
to help language model learn better representations
for rare words. Experimental on the GLUE bench-
mark and eight specialized domain datasets demon-
strated that our method significantly improved the
understanding of rare words and boosted model
performance on various downstream tasks.
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A Appendix

A.1 Preliminary: BERT Pre-training
We use the BERT (Devlin et al., 2019) model as
an example to introduce the basics of the model
architecture and training objective of PLMs. BERT
is developed on a multi-layer bidirectional Trans-
former (Vaswani et al., 2017) encoder. The Trans-
former encoder is a stack of multiple identical
layers, where each layer has two sub-layers: a
self-attention sub-layer and a position-wise feed-
forward sub-layer. The self-attention sub-layer pro-
duces outputs by calculating the scaled dot products
of queries and keys as the coefficients of the values,

Attention(Q,K, V ) = Softmax(
QKT

p
d

)V. (5)

Q(Query), K(Key), V (Value) are the hidden repre-
sentations produced by the previous self-attention
layer and d is the dimension of the hiddens.
Transformer also extends the aforementioned self-
attention layer to a multi-head self-attention layer
version in order to jointly attend to information
from different representation subspaces.

BERT uses the Transformer model as its back-
bone neural network architecture and trains the
model parameters with the masked language mod-
eling (MLM) objective on large text corpora. In
the masked language modeling task, a random sam-
ple of the words in the input text sequence is se-
lected. The selected positions will be either re-
placed by special token [MASK], replaced by ran-
domly picked tokens or remain the same. The ob-
jective of masked language modeling is to predict
words at the masked positions correctly given the
masked sentences. RoBERTa (robustly optimized
BERT approach) is a retraining of BERT with im-
proved training methodologies, 1000% more data
(i.e., 160 GB) and computation power (i.e., 1024
V100 GPUs). To improve the training procedure,
RoBERTa introduces dynamic masking so that the
masked token changes during the training epochs.
Larger batch-training sizes were also found to be
more useful in the training procedure.

A.2 BERT Pre-training Details
We conducted experiments on pre-training BERT-
base with 110M parameters (Devlin et al., 2019).
BERT-base consists of 12 Transformer layers. For
each layer, the hidden size is set to 768 and the

number of attention head is set to 12. All mod-
els (including BERT-base and Dict-BERT-base)
are pre-trained for 300k steps with batch size
2,000 and maximum sequence length 512. We
use Adam (Kingma and Ba, 2015) as the optimizer,
and set its hyperparameter ✏ to 1e-6 and (�1,�2)
to (0.9, 0.98). The peak learning rate is set to 7e-4
with a 10k-step warm-up stage. We set the dropout
probability to 0.1 and weight decay to 0.01. All
configurations are reported in Table 4.

A.3 Domain Adaptive Pre-training Details
We conducted experiments on domain adaptive
pre-training (DAPT) of BERT-base and RoBERTa-
base. RoBERTa (Liu et al., 2019) is a retraining
of BERT with improved training methodologies,
1000% more data (i.e., 160 GB) and computation
power (i.e., 1024 V100 GPUs). To improve the
training procedure, RoBERTa removes the next sen-
tence prediction task from BERT’s pre-training and
introduces dynamic masking so that the masked
token changes during the training epochs. To train
the models, we followed (Gururangan et al., 2020)
and domain adaptive pre-training for 12.5k steps
with batch size 2,000. All other configurations are
reported in Table 4.

A.4 Fine-tuning Details
Following previous work, we search the learning
rates during the fine-tuning for each downstream
task. The details are listed in Table 5. Each con-
figuration is run five times with different random
seeds, and the average of these five results on the
validation set is calculated as the final performance
of one configuration. We report the best number
over all configurations for each task.

A.5 Evaluation Metrics
For GLUE, we followed RoBERTa (Liu et al.,
2019) and reported Matthews correlation for CoLA,
Pearson correlation for STS-B, and Accuracy for
other tasks. For specialized tasks, we followed (Gu-
rurangan et al., 2020) and reported Micro-F1 for
Chemprot and RCT-20k, and Macro-F1 for other
tasks. For WNLaMPro, we followed (Schick and
Schütze, 2020) and reported MRR and P@K.

A.6 Usage of Wiktionary
Polysemy in Wiktionary. There are plenty of
English words having multiple meanings (aka. pol-
ysemy). If multiple meanings of a word are ap-
pended to the input text sequence simultaneously,
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Table 4: Hyperparameters for model pre-training and domain-adaptive pre-training (DAPT).

Hyperparameter Assignments

Pre-training setting BERT pre-training Domain adaptive pre-training

number of steps 300K 12.5K
batch size 2,000 2,000

maximum learning rate 7e-4 1e-4
learning rate optimizer Adam Adam

Adam epsilon 1e-6 1e-6
Adam beta weights 0.9, 0.98 0.9, 0.98

Weight decay 0.01 0.01
Warmup proportion 0.06 0.06
learning rate decay linear linear

Table 5: Hyperparameters for model fine-tuning on GLUE and specialized domain benchmarks.

Hyperparameter Assignments

Fine-tuning setting GLUE benchmark Specialized domain

number of epochs 5 or 10 10
batch size 24 or 168 168

learning rate 2e-5 2e-5 or 3e-5
learning rate optimizer Adam Adam

Adam epsilon 1e-6 1e-6
Adam beta weights 0.9, 0.98 0.9, 0.98

Dropout 0.1 0.1
Weight decay 0.01 0.01

learning rate decay linear linear

it may bring noisy information and disrupt the train-
ing of the entire language model.

In this work, we did not pay particular attention
to the polysemy issue, because for most rare words,
they often only have one meaning in the dictionary.
For example, as mentioned in Section 4.2, there
are a total of 252,581 rare words in the BERT pre-
training corpus (i.e., Bookcorpus and Wikipedia).
Among them, 228,658 (90.52%) words only have
one meaning, and 21,721 (8.6%) words have two
meanings. So, words less than three meanings
account for more than 99% of words. To deal with
the words having more than one meaning, we use
the definition of their first etymology, i.e., the most
commonly used meaning, in the Wiktionary.

Rare words during fine-tuning. One important
advantage of Dict-BERT is that it can dynamically
adjust the vocabulary of rare words, obtain and
represent their definitions in a dictionary in a plug-
and-play manner. As different domain datasets

usually follow different word distributions, the pre-
trained language model may still encounter many
rare words when fine-tuned on the downstream
tasks. To enhance the rare word representations
during fine-tuning process, when encountering a
rare word in the input text sequence, we append
its definition to the end of input text sequence, just
like what we did in pre-training.

Negative words sampling. The sentence-level
definition discrimination task samples negative
word for each input text sequence with rare words.
In order to select harder negative words, we
explored using the negative words with similar
GloVe (Pennington et al., 2014) embeddings or
taking the synonyms of rare words provided in the
dictionary as negative samples. However, either of
the two methods has the problem of extremely low
coverage. Most of the rare words are not appeared
in GloVe, and only about 10% of the words have
synonyms in the Wiktionary. Thus, we chose to
use the random negative sampling strategy.
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