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Abstract

In this paper, we consider convex quadratic optimization problems with indicator
variables when the matrix Q defining the quadratic term in the objective is sparse.
We use a graphical representation of the support of Q, and show that if this graph is
a path, then we can solve the associated problem in polynomial time. This enables
us to construct a compact extended formulation for the closure of the convex hull
of the epigraph of the mixed-integer convex problem. Furthermore, motivated by
inference problems with graphical models, we propose a novel decomposition method
for a class of general (sparse) strictly diagonally dominant Q, which leverages the
efficient algorithm for the path case. Our computational experiments demonstrate
the effectiveness of the proposed method compared to state-of-the-art mixed-integer
optimization solvers.
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1 Introduction

Given a positive semi-definite matrix Q € R"*" and vectors a, ¢ € R”, we study the
mixed-integer quadratic optimization problem

1
. T T T
min a c x4+ —x' 0Ox la
xeR",ze{0,1}" ot + 2 0 (1a)

st.xi(1—2z;)=0 i=1,...,n. (1b)

Binary vector of indicator variables, z, is used to model the support of the vector of
continuous variables, x. Indeed, if a; > 0, then z; = 1 < x; # 0. Problem (1) arises
in portfolio optimization [13], sparse regression problems [9, 18], and probabilistic
graphical models [40, 43], among others.

1.1 Motivation: Inference with graphical models

A particularly relevant application of Problem (1) is in sparse inference problems with
Gaussian Markov random fields (GMRFs). Specifically, we consider a special class of
GMRF models known as Besag models [10], which are widely used in the literature
[11,12,31,37,48, 56] to model spatio-temporal processes including image restoration
and computer vision, disease mapping, and evolution of financial instruments. Given
an undirected graph Gy rr = (N, E) with vertex set N and edge set E, where edges
encode adjacency relationships, and given distances d;; associated with each edge,
consider a multivariate random variable V € RY indexed by the vertices of Gy rF
with probability distribution

1
p(V) ocexp [ =D —(Vi—V))°
(,)eE "

This probability distribution encodes the prior belief that adjacent variables have
similar values. The values of V cannot be observed directly, but rather some noisy
observations y of V are available, where y; = V; + &;, with &; ~ N(0, ol.z). Figure 1
depicts a sample GMRF commonly used to model spatial processes, where edges
correspond to horizontal and vertical adjacency.

In this case, the maximum a posteriori estimate of the true values of V can be found
by solving the optimization problem

1 1
min > —Oi—x)’+ ), o —x)” @)

ieN “i T
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Sparse convex quadratic optimization with indicators

Fig.1 Two-dimensional GMRF

Problem (2) can be solved in closed form when there are no additional restrictions on
the random variable. However, we consider the situation where the random variable
is also assumed to be sparse [7]. For example, few pixels in an image may be salient
from the background, few geographic locations may be affected by an epidemic, or the
underlying value of a financial instrument may change sparingly over time. Moreover,
models such as (2) with sparsity have also been proposed to estimate precision matrices
of time-varying Gaussian processes [25]. In all cases, the sparsity prior can be included
in model (2) with the inclusion of the £ term ) ; N @iZi, Where a is a penalty vector
and binary variable z; indicates whether the corresponding continuous variable x; is
nonzero, for i € N . This results in an optimization problem of the form (1):

. 1 2 1 2
min Zz(yi — X))+ Z Ij(xi —Xxj) +Zaizz‘ (3a)
ieN 1 @i,j)eE ieN
st. —Mz; <x; <Mz; VieN (3b)
xeRY, ze{o, 1}V, (3¢)

Note that constraint (3b) corresponds to the popular big-M linearization of the
complementarity constraints (1b). In this case, it can be shown that setting M =
max;ey yi — min;ep y; results in a valid mixed-integer optimization formulation.
Therefore, it is safe to assume that (x, z) belongs to a compact set X = {(x,z) €
RY x [0, 11N : =Mz <x < Mz}.

1.2 Background
Despite problem (1) being NP-hard [17], there has been tremendous progress towards

solving it to optimality. Due to its worst case complexity, a common theme for suc-
cessfully solving (1) is the development of theory and methods for special cases of the
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problem, where matrix Q is assumed to have a special structure, providing insights
for the general case. For example, if matrix Q is diagonal (resulting in a fully separa-
ble problem), then problem (1) can be cast as a convex optimization problem via the
perspective reformulation [16]. This convex hull characterization has led to the devel-
opment of several techniques for problem (1) with general Q, including cutting plane
methods [26, 27], strong MISOCP formuations [1, 33], approximation algorithms [57],
specialized branching methods [35], and presolving methods [5]. Recently, problem
(1) has been studied under other structural assumptions, including: quadratic terms
involving two variables only [2, 3, 28, 34, 38], rank-one quadratic terms [4, 6, 51,
52], and quadratic terms with Stieltjes matrices [7]. If the matrix can be factorized
as Q = Q(—)r Qo where Qy is sparse (but Q is dense), then problem (1) can be solved
(under appropriate conditions) in polynomial time [22]. Finally, in [19], the authors
show that if the sparsity pattern of Q corresponds to a tree with maximum degree d,
and all coefficients a; are identical, then a cardinality-constrained version of problem
(1) can be solved in O(n3d) time—immediately leading to an O(n4d) algorithm for
the regularized version considered in this paper.

We focus on the case where matrix Q is sparse, and explore efficient methods to
solve problem (1). Our analysis is closely related to the support graph of Q, defined
below.

Definition 1 Given matrix Q € R"*", the support graph of Q is an undirected graph
G=(N,E),where N={1,...,n}and, fori < j, (i, j) € E & Q;j #0.

Note that we may assume without loss of generality that graph G is connected, because
otherwise problem (1) decomposes into independent subproblems, one for each con-
nected component of G.

1.3 Contributions and outline

In this paper, we propose new algorithms and convexifications for problem (1) when
Q is sparse. First, in Sect. 2, we focus on the case when G is a path. We propose an
O(n?) algorithm for this case, which improves upon the complexity resulting from
the algorithm in [19] without requiring any assumption on vector a. Moreover, we
provide a compact extended formulation for the closure of the convex hull of

X={(x,z,t)eR"X{O,l}”xR:tszQx, xi(l1—z)=0, VieN}

for cases where G is a path, requiring O(n?) additional variables. In Sect. 3, we
propose a new method for general (sparse) strictly diagonally dominant Q, which
leverages the efficient algorithm for the path case. In particular, using Fenchel duality,
we relax selected quadratic terms in the objective (la), ensuring that the resulting
quadratic matrix has a favorable structure. In Sect. 4, we elaborate on how to select
the quadratic terms to relax. Finally, in Sect. 5, we present computational results
illustrating that the proposed method can significantly outperform off-the-shelf mixed-
integer optimization solvers.
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Sparse convex quadratic optimization with indicators

1.4 Notation

Given a matrix Q € R"" and indices 0 < i < j < n + 1, we denote by QIi, j] €
RU—I=Dx(=i=1) the submatrix of Q from indices i + 1 to j — 1. Similarly, given
any vector ¢ € R”, we denote by ¢[i, j] € R/~~! the subvector of a vector ¢ from
indices i + 1 to j — 1. Given a set S C R”, we denote by conv(S) its convex hull and
by cl conv(S) the closure of its convex hull.

2 Path Graphs

In this section, we focus on the case where graph G is a path, that is, there exists a
permutation function  : {1,...,n} — {1,..., n} such that (i, j) € E if and only if
i=mn(k)and j = (k+ 1) forsome k = 1,2,...,n — 1. Without loss of generality,
we assume variables are indexed such that w(k) = k, in which case matrix Q is
tridiagonal and problem (1) reduces to

1 n—1
a'z+clx+ 5 Y Qix®+ ) Qiirixixipl (42)

i=1 i=1

g_

= min
xeR”, ze{0,1}"

st.xi(1—2z)=0 i=1,...,n. (4b)

Problem (4) is interesting in its own right: it has immediate applications in the
estimation of one-dimensional graphical models [25] (such as time-varying signals),
as well as sparse and smooth signal recovery [7, 44, 58]. In particular, suppose that our
goal is to estimate a sparse and smoothly-changing signal {x,}}_, from observational
data {y,};_,. This problem can be written as the following optimization:

n n—1
. T 5 )
min + _ " 3 .
xeR",ze{0,1}" az ;(xt yt) tgl:(xt_H Xt) (5a)
st.x;(1—2z)=0 t=1,...,n. (5b)

The first term in the objective promotes sparsity in the estimated signal, while the sec-
ond and third terms promote the closeness of the estimated signal to the observational
data and its temporal smoothness, respectively. It is easy to see that (5) can be written
as a special case of (4).

First, we discuss how to solve (4) efficiently as a shortest path problem. For sim-
plicity, we assume that Q > 0 (unless stated otherwise).

2.1 A shortest path formulation

In this section, we explain how to solve (4) by solving a shortest path problem on an
auxiliary directed acyclic graph (DAG). Define for0 <i < j <n+1
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j-1 j-1 j-1 j-2
def . 1 2
wij = Z ag+  min Z CrXkt> Z Qkrxk™+ Z Qe k+1XkXk41

PSR UV P k=i+1 k=i+1
Jj—1 1

= D a— 5eli. 1T QL. j17"eli, j), (6)
k=i+1

where the equality follows from the fact that
x40, j) = =0li, j1  eli j] ™

is the corresponding optimal solution. By convention, we let w; ;41 = 0 for all i =
0,...,n.

We start by discussing how to solve a restriction of problem (4) involving only
continuous variables. Given any fixed 7 € {0, 1}, let x(z) be the unique minimizer of
the optimization problem

) . . 1 n n—1
(@) =a'z+ min cTx+ 5 21 Qiixi® + 21 Qi i41XiXit1 (8a)
i= i=
s.t.x;(1—2;)=0 i=1,...,n. (8b)

Lemma 1 discusses the structure of the optimal solution x(Z) in (8), which can be
expressed using the optimal solutions x*(i, j) of subproblems given in (7).

Lemmal LetO=vy < v < vy <:-- < vy < Vgt = n—+ 1 be the indices such that
zj =0ifand only if j = v for some 1 <k <Landl € {0, ...,n}. Then x(2)y, =0
fork =1,...,¢ and x(Z)[vk, vk+1] = x*(vk, vi41). Finally, the optimal objective
value is £(7) = Zi:o Wy, v -

Proof Constraints x,, (1 — z,,) = 0 and z,, = 0 imply that x,, = 0 in any fea-
sible solution. Moreover, note that since x,, = 0 forall k = 1..., £, problem (8)
decomposes into £ 4 1 independent subproblems, each involving variables x[vk, vi+1]
for k = 0, ..., ¢. Note that some problems may contain no variables and are thus
trivial. Finally, by definition, the optimal solution of those subproblems is precisely
Xx*(vk, vk+1). The optimal objective value can be verified simply by substituting x
with its optimal value. O

Lemma 1 shows that, given the optimal values for the indicator variables, problem
(4) is decomposable into smaller subproblems, each with a closed-form solution. This
key property suggests that (4) can be cast as a shortest path (SP) problem.

Definition 2 (SP graph) Define the weighted directed acyclic graph Ggp with vertex

set NU{O,n+ 1}, arcset A = {(i, j) € Zi_ 10 <i < j<n+ 1} and weights w
given in (6). Figure 2 depicts a graphical representation of Ggp.
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Wo,n+1

Win+1

Fig.2 Graphical depiction of Ggp

Proposition 1 The length of any (0, n + 1)-path p = {0, vy, ..., ve,n+ 1} on Gsp is
the objective value of the solution of problem (4) corresponding to setting 7, = 0 if
and only if v € p, and setting x = x(2).

Proof There is a one-to-one correspondence between any path p on Ggp, and the
solution (x(z), z) where 7 is given as in Lemma 1, thatis, z; = 0 < j = vy for some
k =1,...,¢. By construction, the length of the path is precisely the objective value
associated with (x(z), 2). O

Proposition 1 immediately implies that the solution with smallest cost corresponds
to a shortest path, which we state next as a corollary.

Corollary 1 An optimal solution (x(z*), z*) of (4) can be found by computing a (0, n +
1)-shortest path on Gsp. Moreover, the solution found satisfies z = 0 if and only if
vertex i is visited by the shortest path.

2.2 Algorithm

Observe that since graph Ggp is acyclic, a shortest path can be directly computed by a
labeling algorithm in complexity linear in the number of arcs | A|, which in this case is
O(n?). Moreover, computing the cost w; ; of each arc requires solving the system of
equalities Qli, jlx[i, j] = —cli, j], which can be done in O(n) time using Thomas
algorithm [20, Chapter 9.4]. Thus, the overall complexity of this direct method is
O(n?) time, and it requires O (n%) memory to store graph Gsp. We now show that this
complexity can in fact be improved.

Proposition 2 Algorithm 1 solves problem (4) in O(n?®) time and using O(n) memory.

Observe that since Algorithm 1 has two nested loops (lines 3 and 7) and each
operation inside the loop can be done in (1), the stated time complexity of O(n?)
follows. Moreover, Algorithm 1 only uses variables ¢, g, k, Lo, ..., €yt1, thus the
stated memory complexity of O(n) follows. Therefore, to prove Proposition 2, it
suffices to show that Algorithm 1 indeed solves problem (4).
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Algorithm 1 Algorithm for problem (4)

Input: a,c € R", Q € R"*" tridiagonal positive definite.
Output: Optimal objective value ¢ of (4).

1: £y <0

2: 4y «<—oofork=1,....,.n+1 > Shortest path labels, initially oo

3:fori =0,...,ndo

4 Ly < mln{€z+1 4} >wj iy =0

50 ¢<0,g <o > Stores linear and quadratic coefficients

6: w<«0

7: forj=i+2,....,n+1do

8: C<cj| —%E > Assume Qo 1 =0
2

9: q&Qj—l,j—l—w > Assume Qg 1 =0

10: lI)(—u_)—%CqTZ-‘raj,I >1D:w,-j

11: ¢; =min{¢;, {; + w}

12:  end for

13: end for

14: return ¢,

Algorithm 1 is based on the forward elimination of variables. Consider the opti-
mization problem (6), which we repeat for convenience

Jj—1 Jj—1
wij = Z ar+ 'min___ { Z Ck Xk

k=it+1 xlijleRI== L 2
J— j—2

+— Z Qrixi” + Z QO k+1Xka+1} ©))
k—l+1 k=i+1

Lemma 2 shows how we can eliminate the first variable, that is, variable x; 41, in (9).

2
. . C~ .
Lemma?2 If j =i+ 2, then wij = aj1 — ﬁ Otherwise,
1 N
i—1
Cz‘2+1 X
Wij = di+1 T 20 + Z ak
i+1,i+1 k=i t2
j—1 j—1
+ min > ax +3 Z Ouixi” + Z Qe ket I XKXEA1 [ 5

; P j—i—2
xli+1,jleR k=i+2 2,55 k=it2

~ Qit+l.i+2 . A
where Ciya = Ciy2 — C:+1ﬁ Ck =ckfork >i+4+2 Qiyit2 = Qit2i42 —

Qi ung O = Qu fork > i +2.

Qz+1 i+1’

Proof If j = i + 2 then the optimal solution of miny,  cr{ai+1 + cip1xiq1 +
1 . . . ..
jQi+l,i+]x,‘2+1} is given by x| = —ci41/Qi+1,i+1, With objective value a; 11 —
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2
Cit1

o Otherwise, from the KKT conditions corresponding to x;41, we find that

—Cit1 — Qit1,i+2Xi+2
OQit1,iv1

Cit1 + Qittit1Xit1 + Qiyrivaxipo =0 = x;41 =

Substituting out x;4 in the objective value, we obtain the equivalent form

j—1 2 j—1 2
Y a Cirt  _ Cit1Qivli+a¥ie2 Y ot 1 (=¢it1 = Qit1,i42%i42)
k=it1 Q1+].1+] Qz+l,l+1 k=i+2 Q1+1,1+l
j—1 2 j—2
1 2 Qitlit2 (Qit1,i12%i12)
3 Z QkkxXi, — iy 12 = 5 + Z Ok k+1XkXk+1
k=it2 i+1,i+1 i+1,i+1 k=it+2
Jj—1 2 j—1
py L
i+1 Ql+1,l+2
= Z ax — 201101 + (Ci+2 —Citl Q7> Xji42 + Z Ck Xk
k=it i+1,i+1 i+1,i+1 k=i+3
1 Q2 o [ 2, o
1 N3
5| Qivzit2 - Oietier |52 3 > Ouxi+ Y Qb1 Xk X1
i+Li+l k=i+3 k=i+2

]

The critical observation from Lemma 2 is that, after elimination of the first variable,
only the linear coefficient ¢; ;2 and diagonal term Q;;2 ;42 need to be updated. From
Lemma 2, we can deduce the correctness of Algorithm 1, as stated in Proposition 3
and Corollary 2 below.

Proposition 3 Given any pair of indices i and j corresponding to the outer (line 3)
and inner (line 7) loops of Algorithm 1, respectively, w = wj; in line 10.

2
Proof If j = i +2,then¢ = ciy1, G = Qit1,i+1, W = Qi1 — QQL;—TH and the

conclusion follows from Lemma 2. If j = i + 3, then ¢ = ¢i+2, ¢ = Qiy2.i+2,
and the conclusion follows from a recursive application of Lemma 2 to the reduced
problem, after the elimination of variable x; 1. Similarly, cases j > i + 3 follow from
recursive applications of Lemma 2. O

Corollary 2 At the end of Algorithm 1, label £y corresponds to the length of the shortest
(0, k)-path. In particular, Algorithm I returns the length of the shortest (0, n+ 1) path.

Proof The proof follows due to the fact that line 11 corresponds to the update of the
shortest path labels using the natural topological order of Gsp. O

Remark 1 Algorithm 1 can be easily modified to recover, not only the optimal objective
value, but also the optimal solution. This can be done by maintaining the list of
predecessors p of each node (initially, py <« @) throughout the algorithm; if label
£; is updated at line 11, then set p; < i. The solution can then be recovered by
backtracking, starting from p; 1. |
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2.3 Convexification
Recall the definition of

X:l(x,z,t)eR"x{O,l}”xR:tszQx, xi(1—z2) =0, VieN},

which we repeat for convenience. The polynomial time solvability of problem (4)
suggests that it may be possible to find a tractable representation of the convex hull of
X when Q is tridiagonal. Moreover, given a shortest path (or, equivalently, dynamic
programming) formulation of a pure integer linear optimization problem, it is often
possible to construct an extended formulation of the convex hull of the feasible region,
e.g., see [23, 29, 41, 53]. There have been recent efforts to generalize such methods to
nonlinear integer problems [21], but few authors have considered using such convex-
ification techniques in nonlinear mixed-integer problems as the ones considered here.
Next, using lifting [47] and the equivalence of optimization over X to a shortest path
problem proved in Sect. 2.1, we derive a compact extended formulation for cl conv(X)
in the tridiagonal case.

The lifting approach used here is similar to the approach used recently in [6, 32]: the
continuous variables are projected out first, then a convex hull description is obtained
for the resulting projection in the space of discrete variables, and finally the description
is lifted back to the space of continuous variables. Unlike [6, 32], the convexification
in the discrete space is obtained using an extended formulation (instead of finding the
description in the original space of variables).

In particular, to construct valid inequalities for X we observe that for any (x, z, t) €
X and any 6 € R",

1 1

Et > ExTQx

& %t —0"x > —0Tx + %x—r Ox

— %t —0Tx > go(2) dzefmxin {—GTx + %xTQx xi(1—2i) =0, ie N} .
(10)

We now discuss the convexification in the space of the discrete variables, that is,
describing the convex envelope of function gy.

2.3.1 Convexification of the projection in the z space
We study the epigraph of function gg, given by
Go={(z,9) €{0, 1} xR:s5 > gg(2)}.

Note that conv(Gy) is polyhedral. Using the results from Sect. 2.1, we now give
an extended formulation for Gy. Given two indices 0 < i < j < n + 1 and vector
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6 € R", define the function

2ij(6) “if—zez J1Toli, j17'61, jl.

Observe that g;;(0) = g;j(—6) for any 6 € R", and that weights w;; defined in (6)
are given by w;; = g;j(—cli, j1) + Z,{;}H ar. Moreover, forO <i < j <n+1,
consider variables u;; intuitively defined as “u;; = 1if and only if arc (i, j) is used
in a shortest (0, n + 1) path in Ggp.” Consider the constraints

n  n+l

D &ij @i <s (11a)
i=0 j=i+1

n+1 —1 ifk=0

Nouw— 3wy =41 ifk=n+1 k=0,....,n4+1  (11b)
J J=k+1 0  otherwise.

D upg=1-z k=1,...,n. (11¢)
u>00<z<l. (11d)

Proposition 4 If Q is tridiagonal, then the system (11) is an extended formulation of
conv(Gy) for any 6 € R".

Proof It suffices to show that optimization over Gy is equivalent to optimization over
constraints (11). Optimization over Gy corresponds to

min {,BTZ + s}
(z,5)€Gy

1
< min {—OTx + ,BTZ + ExTQx} stt. x;i(1—2z;)=0, z€{0,1}"
X,z

for an arbitrary vector 8 € R”. On the other hand, optimization over (11) is equivalent,
after projecting out variables z and s, to

n  n+l
m;gZ,B, <I—Zu5,)+z > gij@uij st (11b), (11d)
" i=1 j=i+1
i—1 n+l n  n+l
@manﬂ, Z Z " +Z Z gij(@uij st (11b), (11d)  (12)
i=1 (=0 j=i+1 i=1 j=i+1
n  n+l j—1
@migz Yo lei®+ DO Be|uy st (11b), (114),
=N =i t=i+1
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where the first equivalence follows from the observation that if node i is not visited
by the path (Z’@;}) u¢; = 0), then one arc bypassing node i is used. The equivalence
between the two problems follows from Corollary 1 and the fact that (11b), (11d) are
precisely the constraints corresponding to a shortest path problem. O

2.3.2 Lifting into the space of continuous variables

Frominequality (10) and Proposition 4, we find thatforany 6 € R”" the linear inequality

n  n+l

1
Et —0Tx > Z Z 8ij(@u;j (13)

i=0 j=i+1

is valid for X, where (u, z) satisfy the constraints in (11). Of particular interest is
choosing 6 that maximizes the strength of (13):

1 n  n+l -
5t = max Z(;Z;lgij(e)uiﬁe Xt (14)
1=V j=1

Proposition 5 If Q is tridiagonal, then inequality (14) and constraints (11b)—(11d)
are sufficient to describe cl conv(X) (in an extended formulation).

Proposition 5 is a direct consequence of Theorem 1 in [47]. Nonetheless, for the sake
of completeness, we include a short proof.

Proof of Proposition 5 Consider the optimization problem (1), and its relaxation given

by
n  n+l
: T T . - T
)lelga z4+c x—i—gé%)’(t Z Z 8ij@uij +6 x (15a)
i=0 j=i+1
s.t. (11b)—(11d). (15b)

It suffices to show that there exists an optimal solution of (15) which is feasible for
(1) with the same objective value, and thus it is optimal for (1) as well. We consider

a further relaxation of (15), obtained by fixing &6 = —c in the inner maximization
problem:
n  n+l
T
)Icnzll; a z+ Z Z gij(—O)uij (16a)
i=0 j=i+1
s.t. (11b)—(11d). (16b)

In particular, the objective value of (16) is the same for all values of x € R”. Moreover,
using identical arguments to Proposition 4, we find that the two problems have in
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fact the same objective value. Finally, given any optimal solution z* to (16), the point
(x(z*), z*) is feasible for (1) and optimal for its relaxation (16) (with the same objective
value), and thus this point is optimal for (1) as well. O

_ We close this section by presenting an explicit form of inequalities (14). Define
Q(i, j) € R"™" as the matrix obtained by completing Q[i, j] with zeros, that is,
oa, jli, jl = Qli, jland Q(i, j)r¢ = O otherwise. Moreover, by abusing notation,

we define Q@i, j)~' € R™" similarly, that is, Q(i, /)~ '[i,j] = Qli.j]™" and
0(i, )i = 0 otherwise.

Proposition 6 For every (x, u) € cl conv(X), inequality (14) is equivalent to

t x!
n  n+l
= - > 0. 17
S 06y | |2 (a7
i=0 j=i+1
Proof Note that
1 n  n+l
T
Etz(gléig,g Z Z 8ij@uij +6 x
i=0 j=i+l1
1 n  n+l 1
.oaT .=l - T
& i = max —ZZ (59[1,11 oli, jl 9[1,J]>Mij+9 x
i=0 j=i+1
1 1 n  n+l
& Stzmax =0T 1> > 06N wy |0+6Txr. (18)
fek i=0 j=i+1
M(u)

Observe that matrix M (u) is positive semidefinite (since it is a nonnegative sum of
psd matrices), thus the maximization (18) is a convex optimization problem, and its
optimal value takes the form

IxTM@)Tx if x € Range(M(u)),

+00 if otherwise,

where M (u)" and Range(M (1)) denote the pseudo-inverse and range of M (u),
respectively. If x ¢ Range(M(u)), then inequality (14) is violated, and hence,
(x,u) ¢ cl conv(X). Therefore, we must have x € Range(M (u)), or equivalently,
M )M ()" x = x. In other words,

t>x Mw'x and MwM®uw)'x =x.

Invoking the Schur complement [14, Appendix A.5] completes the proof. O
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Fig.3 Support graphs for 0
Example 1. Left: original; right:
after dropping 0.4(xy — x4)%
after dropping 0.4(xy — x4) 3 @ 3 @

3 General (Sparse) Graphs

In this section, we return our attention to problem (1) where graph G is not a path (but

is nonetheless assumed to be sparse), and matrix Q is strictly diagonally dominant,

. def . .
i.e., Dj; = Qii — Z#i |Qijl > 0. In this case, we rewrite the problem as

] n ] n n
. T T 2 2
o = xeR”I,I;IGI}O,l}" a z+c x+ 3 ZDiix,- + 3 Z Z [Qijl(x; £xj)° (19a)
i=1 i=1 j=i+1
st. —Mz<x <Mz, (19b)
where D;;>0foralli =1, ..., n. Note that (3) is a special case of (19) withn = |N|,

ci = —2yl~/al.2, Qij = —2/d;j if (i, j) € E and Q;; = 0 otherwise, D;; = 2/0i2, and
every “+" sign corresponds to a minus sign.

A natural approach to leverage the efficient O(n?) algorithm for the tridiagonal
case given in Sect. 2.2 is to simply drop terms |Q;;|(x; £ x j)2 whenever j > i + 1,
and solve the relaxation with objective

1 ¢ 1 ¢

aTz+clxt > Zl Diix} + 5 Zl | Qi i1 (xi £ xi41)7 (20)
1= 1=

Note that, since Q is strictly diagonally dominant, D;; > 0 and objective (20) is convex.

Intuitively, if matrix Q is “close" to tridiagonal, the resulting relaxation could be a

close approximation to (19). Nonetheless, as Example 1 below shows, the relaxation
can in fact be quite loose.

Example 1 Consider the optimization problem with support graph given in Fig. 3:

¢* = min — 1.3x] — 2.5x) + 4.6x3 — 7.8x4 + 3x7 + 6x5 4 3x3 + 2x;
— 1.5x1xp — xpx3 — 0.8x0x4 +2(z1 + 22 + 23 + 24) (21a)
st.xi(l1—2z)=0,z€{0,1} i=1,...,4. (21b)
The optimal solution of (21) is x* = (0, 0, —1.53, 3.9) with objective value ¢* ~
—14.74. After deletion of the term 0.4(x, — x4)2 from (21a), we obtain the tridiagonal

problem

o = min — 1.3x] — 2.5x3 + 4.6x3 — 7.8x4 + 3x7 + 5.6x3 + 3x7 + 1.6x]
— 1.5x1x3 — xox3 + 2(z21 + 22 + 23 + 24)
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S.t.xi(l—z,‘)ZO, Z,‘E{O,l} i=1,...,4,

with optimal solution x;5 = (0, 0, —1.53, 6.5) and {o = —24.88. The optimality gap

is S50 = 68.8%. o
We now discuss how to obtain improved relaxations of (19), which can result in much
smaller optimality gaps.

3.1 Convex relaxation via path and rank-one convexifications

The large optimality gap in Example 1 can be attributed to the large effect of completely
ignoring some terms | Q;;| (x; £x; )2. To obtain a better relaxation, we use the following
convexification of rank-one terms for set

X, = {(x,z,z) ER {0, 1> xR:(x1£x)? <1, x;(1—2)=0, i = 1,2}.

Proposition 7 (Atamtiirk and Gomez 2019 [4])

+ 2
cl conv(Xp) = {(x,z,t) e R? x [0, 1]2 x R: (1 £x) < t} .

min{l, z; + 22} ~

We propose to solve the convexification of (19) where binary variables are relaxed
to 0 < z < 1, complementarity constraints are removed, each term |Q;;|(x; £ x j)2
with j > i + 1 is replaced with the convexification in Proposition 7, and the rest of the

terms are convexified using the results of Sect. 2.3. Formally, define the “zero”-indices
l=1 < <1 <7141 =n+ 1 such that

{TZa---,TZ}: {l e N : Qi—l,i :O}
Moreover, given indices 0 <i < j <n + 1, define
XG, )= {020 eI (0 1T xR 22T 06 ),

x(1—z2)=0, t:l,...,j—i—l},

where Q(i, j) is the tridiagonal (j —i — 1) x (j — i — 1) matrix corresponding to
indices i + 1 to j — 1 in problem (19), that is,

Diyigvi +1Qrvirrivt] ift =k

O, Nik =\ Qriki ifr —k==+1
0 otherwise.

Because Q is strictly diagonally dominant, the matrix Q(i, J) is positive definite.
Hence, we propose to use the description of cl conv(X (i, j)) given in Proposition 5
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to obtain a relaxation of (19) given by

i+
&p =m1 az—i—c x4+ = Ztk—i- ZZIQ,]I > xj) (23a)

i=1 j=it2 min{l, z; + 2}
s.t. (x[oe — L w1 zlte — L 1 ], @) € el conv(X (zx — 1, Txq1))
k=1,...,¢ (23b)
xeR", ze[0,1]",t € R". (23¢)

Note that the strength of relaxation (23) depends on the order in which variables
X1, ..., X, are indexed. We discuss how to choose an ordering in Sect. 4. In the rest
of this section, we assume that the order is fixed.

We first establish that relaxation (23) is stronger than the pure rank-one relaxation

) (x; :I:x)
LRI = min a'z+c'x+ - ZD” + Z Z 10| ————

xeR™,ze[0,1]" P Z pur et min{l, z; + z;}
(24)

used in [4] obtained via the perspective strengthening of the terms D,~,-)cl.2 (recall that
D;; > 0 by assumption) and the rank one strengthening of the last term in (20).

Proposition 8 Given any vectors a, c and matrix Q, (g, < {p < ¢*.

Proof Since both (23) and (24) are relaxations of (19), it follows that ¢g; < ¢* and
{p < ¢*. Moreover, note that

¢
1
LT T o, !
;r’lzl’r}a z+c x+22tk
k=1
s.t. (x[te — 1, tea1], 2l — 1, w1 ], 1) € clconv(X (e — 1, T441))

k=1,...,¢
xeR" ze[0,11",1 e R
is an ideal relaxation of the discrete problem
min Tetelx+ - ZD”x +5 Z|Qz il (i £ xig0)?

xe]R”,ze{O,l}”
i=1

st. —Mz<x SMZ,

whereas (24) is not necessarily an ideal relaxation of the same problem. Since the two
relaxations coincide in how they handle terms | Q;;|(x; £ x j)2 for j > i+ 1, it follows
that ¢g1 < ¢ P ]
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While relaxation (23) is indeed strong and is conic-representable, it may be diffi-
cult to solve using off-the-shelf solvers. Indeed, the direct implementation of (23b)
requires the addition of O(n?) additional variables and the introduction of the positive-
semidefinite constraints (17), resulting in a large-scale SDP. We now develop a tailored
decomposition algorithm to solve (23) based on Fenchel duality.

Decomposition methods for mixed-integer linear programs, such as Lagrangian
decomposition, have been successful in solving large-scale instances. In these frame-
works, typically a set of “complicating" constraints that tie a large number of variables
are relaxed using a Lagrangian relaxation scheme. In this vein, in [24], the authors
propose a Lagrangian relaxation-based decomposition method for spatial graphical
model estimation problems under cardinality constraints. The Lagrangian relaxation
of the cardinality constraint results in a Lagrangian dual problem that decomposes into
smaller mixed-integer subproblems, which are solved using optimization solvers. In
contrast, in this paper, we use Fenchel duality to relax the “complicating" terms in the
objective. This results in subproblems that can be solved in polynomial time, in paral-
lel. Furthermore, the strength of the Fenchel dual results in a highly scalable algorithm
that converges to an optimal solution of the relaxation fast. Before we describe the
algorithm, we first introduce the Fenchel dual problem.

3.2 Fenchel duality
The decomposition algorithm we propose relies on the Fenchel dual [8] of terms
resulting from the rank-one convexification.

Proposition 9 (Fenchel dual) For all (x, z) satisfying 0 < z < 1 and each «, B, p2 €
R

+ 2
_WERN it - fizi— frrr — @ B B, (25)
min{l, 71 + z2}

where

(x1 £x2)2

d
1@ Br. ) Emax a(xy £x0) — fro) — pozy — — - H
x.2 min{l, z; + 22}

2
= max/0, “7 — min{By. B2} — min{max {1, B2}, 0}.

Moreover, for any fixed (x, z), there exists a, B1, B> such that the inequality is tight.

Proof For simplicity, we first assume that the “+" sign is a minus. Define function f
as

(x1 — x2)?

Sflar, az, Bi, B2, x1,x2,21,22) = a1xy +aoxp — B1z1 — foro — ——————,
min{1, z; + 22}

and consider the maximization problem given by

[ (a1, a2, B1, B2) = max flai, a2, B1, P2, x1, X2, 21, 22) (26a)
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s.t. x;,x2 € R, z1,22 € [0, 1]. (26b)

We now compute an explicit form of f*(ay, a2, B1, B2). First, observe thatif o +aoy #
0, then f*(aq, a2, B1, B2) = 400, (wWith z; = 7o = 1,x; = xp = £00). Thus we
assume without loss of generality that a1 + o = 0, let « = o« and use the short
notation f*(«a, B1, B2) and f(«, B1, B2, X1, X2, 21, z2) instead of f*(«, —«, By, B2)
and f(a, —a, B1, B2, X1, X2, 21, 22), respectively.

To compute a maximum of (26), we consider three classes of candidate solutions.

1. Solutions with z; = zo = 0. If x; = x», then f(«, B1, B2, X1, X2, 21,22) = 0.
Otherwise, if x| # x2, then f(«, B1, B2, X1, X2, 21, 22) = —OQ.

2. Solutions with 0 < z1 + z2 < 1. We claim that we can assume without loss of
generality that z; + zo = 1. First, if z; = 0, then the objective is homogeneous
in zo, thus there exists an optimal solution where either zo = 0 (but this case has
already been considered) or zo = 1. The case z» = 0 is identical. Finally, if both
0 < z1,z2 and z1 + z2 < 1, then from the optimality conditions we find that

2 2
X1 — X2 X1 — X2
0=-81+ =—B+|—
b <z1+zz) & <z1+zz>

and in particular this case only happens if §; = B>. In this case the objective is
homogeneous in z; + z2, thus there exists another optimal solution where either
Z1 + z2 — 0 (already considered) or z; + z2 = 1.

Moreover, in the z1 + zp = 1 case,

2
flo, Bi, B, x1, %2, 21, 22) = a(x) — x2) — (x1 — x2)” — B1z1 — Be22
2

o
=7~ Brz1 — Paz2

Ol2
< T min{f, B2}. (equalif x; —x; = /2)

3. Solutions with z1 + zo > 1. In this case, the objective is linear in z, thus in
an optimal solution, z is at its bound. The only case not considered already is
z1 = zp = 1, where

2
fla, Bi, B2, x1,x2, 21, 22) = a(x] —x2) — (x1 — x2)° — Bi1z1 — Poz2
<— =81 - 8. (equal if x; — xp = «/2)

Thus, to compute an upper bound on f*(«, B, B2), it suffices to compare the three

values 0, o /4 — min{B1, B2}, and «?/4 — B1 — B> and choose the largest one. The
result can be summarized as

2
£*(@. Br. B2) < max{0, “Z — min{B1. B2}} — min{max{B,, 2}, 0}.
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Finally, for a given (x, z), we discuss how to choose («, 81, B2) so that inequality
(25) is tight.

e Ifz=0andx; —xp, =0, thenseta = B; = B = 0.

e If z = 0and x; — x» # 0, then set « = p(x; — x2) with p — o0, and set
Bi = po =ca?/4.

e I[f0<z14+20 < 1,thenseta =2(x; —x2) and B1 = Br = (11 —x2)2/(zl + 22).

e If 1 <z1+ zp,thenseta = 2(x; — xp) and B; = B2 = 0.

O

Remark 2 Function f* is defined by pieces, corresponding to a maximum of convex
functions. By analyzing under which cases the maximum is attained, we find that

0 if min {1, B2} > o>/4
e, B, B) = ya?/4— B1 — B2 if max {8, B2} <0

o?/4 —min{B, B>} otherwise.

Indeed:

1. Case min{g1, B2} > a?/4. Since a?/4 — B1 — B2 < a®/4 —min{B1, B2} < 0, we
conclude that f*(a, B1, B2) = 0 with x{, x3, z], 25 = 0.

2. Case max{Bi, B2} < 0. Since 0 < a2/4 — min{B1, B2} < a?/4 — B1 — o, we
conclude that f*(a, B1, B2) = &?/4— B — fo, withx} —x5 = /2, zf = 25 = L.

3. Case min{B1, B2} < «?/4 and max{Bi, B2} > 0. Since 0, ?/4 — B1 — o <
a?/4 — min{B1, B2}, we conclude that f*(x, B1, B2) = a>/4 — min{B1, B2} with
xf—xi=a/2,z{+25 =1 [ |

From Proposition 9, it follows that problem (23) can be written as

14
1
. T T
=min max a z+c¢ x+ = 1,
& x,z,0 ap 2];k

+%Z ) |Qij|(°fij(Xiix/')—ﬂij,iZi—ﬂij,jzf'—f*(aij,ﬂij,i,ﬂij,j))

i=1 j=it2
(27a)

st (clte — 1, 1], zlwe — 1, w1 ], 1) € el conv(X (T — 1, gt1))
k=1,...,¢ (27b)
(x,2) € X, 1 € R, (27¢)

where X = {(x,z) € R" x [0, 1]" : —Mz < x < Mz}. Define
def n 1 n 1 i—2
Yv(x,z,ta,B) ;Z a =5 Z |QijlBij,i — §Z|jS|,3ji,i %
Jj=1

i=1 j=i+2
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+Z i+ Z |Qijletij + = Z(iIQ,llap) %+ Zrk

j =i+2

Proposition 10 (Strong duality) Strong duality holds for problem (27), that is,

é‘p = maBX h(av :B)’

where

def

h(e. ) ———Z S 10415 @ Buji- By +min [y@r.z 0 p)] @80)

i=1 j=i42
sito (xlte — 1, ter ] zloe — 1, 1], ) € el conv(X (T — 1, Tt 1))
k=1,...,¢ (28b)

(x,2) € X, 1 e R (28¢)

Proof Problem (28) is obtained from (27) by interchanging min and max. Equality
between the two problems follows from Corollary 3.3 in [49], because f* is convex
(since by definition it is a supremum of affine functions) and X is compact. O

3.3 Subgradient algorithm

Note that for any fixed (o, 8), the inner minimization problem in (28) decom-
poses into independent subproblems, each involving variables (x[tx — 1, tx+1],
zltk — 1, Te411, tx). Moreover, each subproblem corresponds to an optimization prob-
lem over cl conv(X (tx — 1, tk+1)), equivalently, optimization over X (ty — 1, Tx+1).
Therefore, it can be solved in O(n?) time using Algorithm 1. Furthermore, the outer
maximization problem is concave in (¢, 8) since h(«, B) is the sum of the concave
functions — f*(e;;, Bij.i, Bij,j) and an infimum of affine functions, thus it can in prin-
ciple be optimized efficiently. We now discuss how to solve the latter problem via a
subgradient method.

Similar to Lagrangian decomposition methods for mixed-integer linear opti-
mization [55], subgradients of function % can be obtained directly from optimal
solutions of the inner minimization problem. Given any point (&, 81, f2) € R?,
denote by d f*(a, B1, B2)) the subdifferential of f* at that point. In other words,

(@), §(B), £(B2))) € df*(@, B1, B2)) implies

e, Bi, B) = fH(@, Br, Bo) + E@)(a — &) +EBNB1 — B1) +E(B) (B — B2)
(29)

for all (a, B1, B2) € R3. The next proposition shows that subgradients p(a, ) €
RG/D0=D(=2) of function h(a, B) (for maximization) can be obtained from sub-
gradients of f* and optimal solutions (X, z) of the inner minimization problem in
(28), as
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p(aij) §(aij) Xi £ X;
pBiji) | =—&EBij) |+ —z
p(Bij.j) &(Bij.j) —Z;

Later, in Proposition 12, we explicitly describe the subgradients & of f*.

Proposition 11 Given any («, ,5) € RO/D=D®=2) jo1 (x,Z,1) denote an optimal
solution of the associated minimization problem (28), and let

(E@ij), EBij.i), EBij.j) € 3 f*@ij, Bij.i» Bij.j)

forall j > i+ 1. Then for any (a, ) € RG/D=Dn=2)

_ 1 n n
h@, ) < h@ )+ 5> D 10| (—E@i) + 5 £ %)) (oij — &j)

i=1 j=i+2
1 n n B _
+ 5 Z Z 1Qijl (—&Bij.) — Zi) Bij.i — Biji.i)
i=1 j=i+2
1 n n _ _
T35 21: Zz Qi1 (=&(Bij.j) = Zj) Bij.j — Bij.j)-
i=1 j=i+

Proof Given (a, ) € RG/D0=D(n=2) 1gq (x*, y*, t*) be the associated solution of
the inner minimization problem (28). Then we deduce that

1 n n
he ) ==33 D 10411 @) Bijir Bij.j) + V", 2 1% e )
i=1 j=i+2
1 n n _ _ B _
=—3 >y \Qijl(f*(&ij,ﬂij,i,ﬂij,j) +&(@j) (i — aj) +5Bij,i)Bij,i — Bij,i)
i=1j=i+2

+EBij, ) Bij,j — Bij,j)) + Yt 25 %, B)
1 n n B B ~ B
=52 2 \Qij|<f*(5‘ijs Bij.iv Bij.j) +&@ij)eij — aij) +EBij.) Biji — Bij.i)
i=1j=i+2
+EBij, ) Bij,j — 5ij,j)> +Y (&, Z, 5 B)
1 n n ~ ~
=—32 2 \Qij|<f*(5‘ijaﬂij,iaﬁij,j) + (6iy) + % £ %)) (@i — &)
i=1 j=i+2
+ (£(Bij,i) — Zi) Bij,i — Bij.i) + (EBij. ;) —Zj)Bij.j — 5ij,j)> +y@&,z.5a,p),
where the first inequality follows from (29), the second inequality follows since
(x*, z%, r*) is a minimizer of ¥ (-, o, B) whereas (X, Z, 7) may not be, and the last

equality follows since v is linear in (o, B) for fixed (%, Z, 7). The conclusion follows.
O
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Proposition 12 A subgradient of function f* admits a closed form solution as

(§(aij), §(Bij.i), §(Bij. i)
(0,0,0) if Bijis Bij,j > o /4,
(ij/2,—1,0)  ifBiji <ol /4& Bij.;j = 0& Bij.j > Biji,
(ij/2,0,=1) if Bijj < o;; /4 & Biji = 0 & Bij.i > Bij.j
(ij/2, =1, =1) if Bij.i, Bij.j <O.

Proof The result follows since f* is the supremum of affine functions described in
Remark 2. O

Algorithm 2 states the proposed method to solve problem (28). Initially, («, ) is set
to zero (line 1). Then, at each iteration: a primal solution (X, Z, 7) of (28) is obtained
by solving ¢ independent problems of the form (4), using Algorithm 1 (line 4); a
subgradient of function /% is obtained directly from (x, z) using Propositions 11 and
12 (line 5); finally, the dual solution is updated using first order information (line 6).

Algorithm 2 Subgradient ascent
Input: a, c € R", Q > 0 diagonally dominant.

Output: ).

1: (a, B) < (0,0) > Initialize
2:k <1 > Iteration counter
3: repeat

4:  (x,z,0) € argmin, ¥ (x,z,1; @, B) > Algorithm 1
50 p(x,z) € 0h(a, B) > Propositions 11 and 12
6: (o, B) < (o, B) + sk p (X, 2) /1 p(X, 2) |2 > s, =Step size at iteration k
T k< k+1 > Iteration counter

8: until Termination criterion is met
9: return i (o, )

We now discuss some implementation details. First, note that in line 1, (o, B)
can in fact be initialized to an arbitrary point without affecting correctness of the
algorithm. Nonetheless, by initializing at zero, we ensure that the first iteration of
Algorithm 2 corresponds to solving the relaxation obtained by completely dropping
the complicating quadratic terms; see Example 1. Second, each time a primal solution
is obtained (line 4), a lower bound K (e, B) < ¢, < {* can be computed. Moreover,
since the solution (X, 7) is feasible for (19), an upper bound ¢ (x,Z) > ¢* can be
obtained by simply evaluating the objective function (19a). Thus, at each iteration of
Algorithm 2, an estimate of the optimality gap of (x, z) can be computed as gap =
(E()E, z7) — h(a, B))/ E()Z, z). Third, a natural termination criterion (line 8) we use in
our experiments is to terminate if gap < € for some predefined optimality tolerance
¢, if k > k for some iteration limit k, or if a given time limit is exceeded. Note that
under mild conditions [15, 45, 46] (e.g., if sy = 1/k), the objective value returned
by Algorithm 2 converges to ¢, that is, the objective value of the convex relaxation
(23). However, since in general the convex relaxation is not exact (unless matrix Q is
tridiagonal) and ¢, < ¢*, we find that the estimated gap produced by Algorithm 2 may
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Table 1 Algorithm 2 applied to problem (30) with s = I()ﬁ

Iteration X o Bi B2 &p Gap

1 (0,0,-1.53,6.50) 0 0 0 —24.87 67.93%
2 (0,0,-1.53,6.16) -1.0 0.25 0 -22.44 57.23%
3 (0,0,-1.53,5.83) -1.99 0.25 0 -20.36 46.04%
4 (0,0,-1.53,5.50) -2.97 0.25 0 -18.62 34.78%
5 (0,0,-1.53,5.18) -3.94 0.25 0 -17.21 24.02%
6 (0,0,-1.53,4.86) -4.90 0.25 0 -16.13 14.45%
7 (0,0,-1.53,4.54) -5.85 0.25 0 -15.36 6.84%

8 (0,0,-1.53,4.23) -6.79 0.25 0 -14.90 1.88%

9 (0,0,-1.53,3.92) =7.72 0.25 0 -14.73 < 0.01%

never reach 0, that is, gap > ({* —¢,)/¢p. Thus, it is necessary to have a termination
criterion other than the optimality gap, as otherwise Algorithm 2 may not terminate
for small values of €.

We close this section by revisiting Example 1, demonstrating that Algorithm 2 can
indeed achieve substantially improved optimality gaps.

Example 1 [Continued] The Fenchel dual of (21) is

{p =mz}3x —0.4f*(a, B1, B2) + min { —1.3x1 + (—2.5 4+ 0.4a)xy + 4.6x3 (30a)
«, X,z

— (7.8 4 0.4a)x4 + 3x7 + 5.6x3 + 3x3 + 1.6x7 — 1.5x1x2 (30b)
—xox3+ 2214+ 2 — 04822 + 223 + (2 — 0.4,32)z4} (30c)
stxi(l—z) =0,z €{0,1}, i=1,...,4 (30d)

Table 1 shows the first nine iterations of Algorithm 2.

4 Path Decomposition

In the previous section, we showed that if Q does not possess a tridiagonal structure,
then it is possible to relax its “problematic” elements via their Fenchel duals, and
leverage Algorithm 1 to solve the resulting relaxation. In this section, our goal is
to explain how to select the nonzero elements of Q to be relaxed via our proposed
method. In particular, our goal is to obtain the best permutation matrix P such that
PQP is close to tridiagonal.

To achieve this goal, we propose a path decomposition method over G, where the
problem of finding the best permutation matrix for Q is reformulated as finding a
maximum weight subgraph of G, denoted as G, that is a union of paths. In particular,
define y;; as an indicator variable that takes the value 1 if and only if edge (i, j) is
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included in the subgraph. Therefore, the problem of finding G reduces to:

p* = max Z 1Qijlyij (31a)
@i, ))eE
sty i =2 Vi=1,2,....n (31b)
jes
>y <Is—1 VS C{1,2,...,n) Glo)
i,jes
vij € {0, 1} VG, j) € E, 31d)

where 8 (i) denotes the neighbors of node i in G. Let the objective function evaluated
at a given y be denoted as p(y). Moreover, let y* and p* be an optimal solution
and its corresponding objective value respectively. Constraints (31b) ensure that the
constructed graph is the union of cycles and paths, whereas constraints (31c) are cycle-
breaking constraints [39, 42, 54]. Despite the exponential number of constraints (31c),
it is known that cycle elimination constraints can often be efficiently separated [54].
Nonetheless, our next result shows that problem (31) is indeed NP-hard.

Theorem 1 Problem (31) is NP-hard.

Proof We use a reduction from Hamiltonian path problem: given an arbitrary
(unweighted) graph G, the Hamiltonian path problem asks whether there exists a
simple path that traverses every node in G. It is known that Hamiltonian path problem
is NP-complete [30].

Given an arbitrary graph G(N, E), construct an instance of (31) with |Q;;| =1
if (i,j) € E, and |Q;;| = 0 otherwise. Let us denote the optimal solution to the
constructed problem as y*, and the graph induced by this solution as G*(N, E*). In
other words, (i, j) € E* if and only if yl*l = 1. It is easy to see that Z(i)j)eE yl?kj <
n — 1; otherwise, the graph G* contains a cycle, which is a contradiction. Therefore,
we have p(y*) < n — 1. We show that, we have p(y*) = n — 1 if and only if G
contains a Hamiltonian path. This immediately completes the proof.

First, suppose that G has a Hamiltonian path. Therefore, there exists a path in G
with exactly n — 1 edges. A solution y defined as y;; = 1 for every edge (i, j) in the
path, and y;; = O otherwise is feasible for the constructed instance of (31), and it has
the objective value p(y) = p(y*) = n — 1. Conversely, suppose that p(y*) =n — 1.
Then, the graph G* has exactly n — 1 edges, and it is a union of paths. It is easy to see
that if G* has at least two components, then |E*| < n — 1, which is a contradiction.
Therefore, G* is a Hamiltonian path. O

Due to hardness of (31), we propose in this section an approximation algorithm
based on the following idea:

1. Find a vertex disjoint path/cycle cover of G, that is, a subset E of the edges of
E such that, in the induced subgraph of G, each connected component is either a
cycle or a path. ~

2. From each cycle, remove the edge (i, j) € E with least value |Q;;].

@ Springer



Sparse convex quadratic optimization with indicators

Fig.4 Graph G); corresponding
to the support graph in Fig. 3
(left). Bold red: Max. cardinality
matching corresponding to the
decomposition shown in Fig. 3
(right). Dashed blue: Alternative
max. cardinality matching
corresponding to using edge

(2, 4) twice, resulting in a length
two cycle

Note that a vertex disjoint cycle cover can be found by solving a bipartite matching
problem [50] on an auxiliary graph, after using a node splitting technique. Specifically,
create graph Gy = (Vy, Ep) with Vyy = N U {1’, 2,..., n’} and E); that is
determined as follows: if (i, j) € E, then (i, j') € Ep and (i’, j) € Ep. Then any
matching on Gy corresponds to a cycle cover in G, with edge (i, j’) in the matching
encoding that “j follows i in a cycle.” Figure 4 illustrates how to obtain cycle covers
via bipartite matchings.

In the resulting decomposition from this method, each connected component is a
cycle, possibly of length two (that is, using the same edge twice). However, in inference
problems with graphical models, graph G is often bipartite (see Figure 1), in which case
we propose an improved method which consists of solving the integer optimization
problem

max Y |Qijlyij (32a)
(i,j)eE

s.t. Z vij <2, Vi=1,2,....n (32b)
jest
yij €1{0, 1}, V@, j) e E. (32¢)

Problem (32) is obtained from (31) after dropping the cycle elimination con-
straints (31c). Note that in any feasible solution of (32) each edge can be used only
once, thus preventing cycles of length two. Moreover, some of the connected compo-
nents may already be paths. Finally, we note that (32) is much simpler than (31), since
it can be solved in polynomial time for certain graph structures.

Proposition 13 For bipartite G, the linear programming relaxation of the problem (32)
is exact.

Proof 1t is easy to verify that the constraint matrix for (32) is totally unimodular if
G is bipartite, and therefore, the linear programming relaxation of (32) has integer
solutions. O
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Let the optimal solution to (32) be denoted as y. Define the weighted graph
G(N.E) € G(N, E) induced by § such that (i, j) € E with weight |Q;;| if and
only if J;; = 1. Suppose that the graph G(N, E) is obtained after eliminating a single
edge with smallest weight from every cycle of G. Finally, define y such that y;; = 1
if (i, j) € E,and y yij =0if (i, j) € E \E Next, we show that the above procedure
leads to a 2/3-approximation of (31) in general, and a 3 /4-approximation for bipartite
graphs.

Q)
p*

2 . .. .
< 5. Moreover, if G is bipartite, then p;* < %.

Proof Recall that G is a union of paths and cycles. Let y and 1 denote the number of
path and cycle components in G, respectively. Moreover, let P = {Py, Py, ..., Py}
andC = {Cq, C3, ..., Cy} denote the set of paths and cycle components in G. Clearly,
we have p(y) < p* < p(¥), since problem (32) is a relaxation of (31), and y is a
feasible solution to (31). On the other hand, we have

P& =Y > 105+ Y. Y 104

PreP (i, j)€Pr CreC (i,))eCy
> p(y)
=> Y lol+ Y] > 104! —  min_1Qij
PreP (i,j)€Pr CkeC (i,j)eCy
> D 10il+3 Z > 10l
PreP (i,j)ePk CkeC (i,))eCy
2
=2 22 X1+ ). >0 104l
PreP (i,j)€Pr CreC (i,j)eCy
_2 6))
- 3p y ’

where in the second inequality, we used the fact that removing an edge with the smallest
weight from a cycle can reduce the weight of that cycle by at most a factor of § Z This

implies that —p(y) < p(¥) < p* < p(3), and hence, ”Ig” 2 . The last part of the
theorem fgllows since bipartite graphs do not contain cycles of length 3, thus each
cycle of G has length four or more. Therefore, removing an edge with the smallest
weight from a cycle of a bipartite graph reduces the weight by at most a factor of %.
g

Remark 3 1t can be easily shown that the procedure applied to a pure cycle cover of G,
including cycles of length 2, would lead to a 1/2-approximation. Thus the proposed
method indeed delivers in theory higher quality solutions for bipartite graphs, reducing
the optimality gap of the worst-case performance by half. |
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Table 2 Perfomance solving tridiagonal instances

Metric Method n=10 n =50 n =100 n =200
Algorithm 1 3e-4(le-4) 2e-3(4e-4) 7Te-3(9e-4) 4e-2(2e-2)

Time(s) Direct (’)(n3) 3e-3(8e-4) le-1(5e-3) le+0(6e-2) 2e+1(5e+0)
Big-M 4e-2(1e-2) 4e-1(3e-1) Te+2(1e+3) TL

B&B node Big-M le+1(5e+0) 3e+3(4e+3) Te+6(1e+7) 2e+7(5e+5)

Gap Big-M 0.0%(0.0%) 0.0%(0.0%) 0.1%(0.1%) 2.2%(1.0%)

TL: Time Limit (1 hour)

5 Computational Results

We now report illustrative computational experiments showcasing the performance of
the proposed methods. First, in Sect. 5.1, we demonstrate the performance of Algo-
rithm 1 on instances with tridiagonal matrices. Then, in Sect. 5.2, we discuss the
performance of Algorithm 2 on instances inspired by inference with graphical mod-
els.

5.1 Experiments with tridiagonal instances

In this section, we consider instances with tridiagonal matrices. We compare the per-
formance of Algorithm 1, the direct O(n>) method mentioned in the beginning of
Sect. 2.2, and the big-M mixed-integer nonlinear optimization formulation (3), solved
using Gurobi v9.0.2. All experiments are run on a Lenovo laptop with a 1.9GHz
Intel@CoreTM 17-8650U CPU and 16 GB main memory; for Gurobi, we use a single
thread and a time limit of one hour, and stop whenever the optimality gap is 1% or
less.

In the first set of experiments, we construct tridiagonal matrices Q € RM*V
and vectors a,¢ € RN randomly as ¢ = Uniform[—10, 3],a = Uniform[O0, 1],
Q;.i+1 = Uniform[—2, 2], Q;; = |Q;.i—1|+1Qi.i+1|+Uniform[0, 4]. Table 2 reports
the time in seconds required to solve the instances by each method considered, as well
as the gap and the number of branch-and-bound nodes reported by Gurobi, for differ-
ent dimensions n < 200. Each row represents the average (in parenthesis, the standard
deviation) over 10 instances generated with the same parameters.

As expected, mixed-integer optimization approaches struggle in instances withn =
200, whereas the polynomial time methods are much faster. Moreover, as expected,
Algorithm 1, with worst-case complexity of O(n?), is substantially faster than the
direct O(n?) method. To better illustrate the scalability of the proposed methods, we
report in Figure 5 the time used by the polynomial time methods to solve instances
with 10 < n < 10,000. We see that the direct (9(n3) method requires over 10 minutes
to solve instances with n = 500, and over one hour for instances with n > 1000.
In contrast, the faster Algorithm 1 can solve instances with n < 1000 in under one
second, and instances with n = 10,000 in less than one minute. We also see that the
practical performance of both methods matches the theoretical complexity.
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Fig. 5 Time (in seconds) required to solve tridiagonal problems with 10 < n < 10,000, in logarithmic
scale. Lines in the graph are obtained by fitting a least square regression

Table 3 Results with one-dimensional graphical models (5), n = 1000. We set @; = p foralli € N, and
choose 1 so that approximately ||x||p = 0.1n in an optimal solution. For comparison, in [7], the authors
report solution times between one and two seconds (in the same instances) when solving a tailored conic
quadratic relaxation of the problem, which is able to prove optimality gaps in the order of 0.5%

o n Algorithm 1 Big-M

Time(s) Time(s) Gap Nodes
0.10 0.01 0.86 (0.04) 2440.16 (1318.63) 1.7% (1.0%) 3.3e6 (1.9¢6)
0.50 0.02 0.84 (0.03) TL 40.9% (4.6%) 4.5e6 (2.3e5)
1.00 0.12 0.86 (0.04) TL 42.1% (4.0%) 4.0e6 (4.3e5)

We also tested Algorithm 1 in inference problems with one-dimensional graphical
models of the form (5), which are naturally tridiagonal. For this setting, we use the
data {y,};_, € R" with n = 1000 used in [7], available online at https://sites.google.
com/usc.edu/gomez/data, corresponding to the distribution of noisy observations of a
GMREF, as discussed in Sect. 1.1. Instances are classified according to a noise parameter
o, corresponding to the standard deviation of the noise €;, see Section 1.1 (all noise
terms have the same variance). The results are reported in Table 3. Each row shows
the average (in parenthesis, the standard deviation) over 10 instances generated with
identical parameters.

Once again, Algorithm 1 is substantially faster than the big-M formulation solved
using Gurobi. More interestingly perhaps are how the results reported here compare
with those of [7]. In that paper, the authors propose a conic quadratic relaxation of prob-
lem! (5), and solve this relaxation using the off-the-shelf solver Mosek. The authors
report that solving this relaxation requires two seconds in these instances. Note that
solution times are not directly comparable due to using different computing environ-
ments. Nonetheless, we see that, using Algorithm 1, the mixed-integer optimization

T

1 They consider a slightly different term, where the sparsity is imposed via a cardinality constrainta ' z < k

instead of a penalization in the objective.
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Table 4 10 x 10 Graphical model, i.e., n = 100. We set a; = p for all i € N, and choose p so that in
an optimal solution, ||x||o approximately matches the number of nonzeros of the underlying signal. In all
cases, the optimality gap of Algorithm 2 is at most 1%

o u Alg2s=101"F Alg2 s, =1/k  BigM

Iter. Time(s) Iter. Time(s) Nodes Time(s) Gap
0.02 0.5 8(7) 0.14(0.11) 9(2) 0.17(0.02) 7.5el (3.9¢el) 0.13(0.02) <1.0%
0.1 0.5 18(21) 0.31(0.34) 7(1) 0.14(0.02) 6.7e2(5.2e2) 0.35(0.18) <1.0%

0.3 0.1 93(56) 1.51(0.90) 11(3) 0.19(0.04) 5.2¢6 (6.1e6) 1012.13 (1242.50) <1.0%
0.5 0.1 192(34) 3.13(0.72) 21 (13) 0.35(0.18) 1.3e7 (6.5e6) 2759.50 (1384.31) 5.8% (4.0%)

problem (5) can be solved o optimality in approximately the same time required to
solve the convex relaxation proposed in [7]. Moreover, Algorithm 1 can be used with
arbitrary tridiagonal matrices Q > 0, whereas the method of [ 7] requires the additional
assumption that Q is a Stieltjes matrix.

5.2 Inference with two-dimensional graphical models

In the previous section, we reported experiments with tridiagonal matrices, where
Algorithm 1 delivers the optimal solution of the mixed-integer problem. In this section,
we report our computational experiments with solving inference problems (1) using
Algorithm 2 (which is not guaranteed to find an optimal solution) and the big-M
formulation. In the considered instances, graph G is given by the two-dimensional
lattice depicted in Figure 1, that is, elements of N are arranged in a grid and there are
edges between horizontally/vertically adjacent vertices. We consider instances with
grid sizes 10 x 10 and 40 x 40, thus resulting in instances with n = 100 and n = 1600,
respectively. The data for y are generated similarly to [36], where o is the standard
deviation of the noise terms ¢;. The data is available online at https://sites.google.com/
usc.edu/gomez/data. In these experiments, we execute Algorithm 2 by first permuting
the variables according to Section 4.

We test two different step sizes® s = 1/k and s; = (1.01)~* for Algorithm 2. For
both the big-M formulation and Algorithm 2, we stop whenever the proven optimality
gap is less than 1%. Moreover, we also set a time limit of one hour. Tables 4 and
5 report results with n = 100 and n = 1600, respectively. Here, in all the tested
instances, Algorithm 2 yields gaps of less than 1% within the time limit, hence we
omit the gaps from the tables. However, for the big-M formulation, the time limit is
reached in some of the instances, therefore, tables not only show the time and the
number of branch-and-bound nodes explored by Gurobi, but also provide the gaps.
Each row shows the average (in parenthesis, the standard deviation) over ten instances
generated with identical parameters.

We see that the big-M formulation can be solved fast for low noise values, but
struggles in high-noise regimes. For example, if n = 100, problems with o < 0.1 are

2 For step size sy = 1/k, we modify line 6 of Algorithm 2 to (o, B) < («, B) + sgp(X,Zz) (without
normalization), since this version performed better in our computations.

@ Springer


https://sites.google.com/usc.edu/gomez/data
https://sites.google.com/usc.edu/gomez/data

P.Liuetal.

Table 5 40 x 40 Graphical model, i.e., n = 1600.We set a; = p for all i € N, and choose p so that in
an optimal solution, ||x||o approximately matches the number of nonzeros of the underlying signal. In all
cases, the optimality gap of Algorithm 2 is at most 1%

o u  Alg2 s =101"*% Alg2, s = 1/k Big-M
Iter. Time(s) Iter. Time(s) Nodes Time(s) Gap
0.02 0.05 9(2) 28.8 (6.9) 14 (1) 255(173)  5.9e3(3.7e3) 25.5(17.3) <1.0%
0.1 0.05 7(1) 23.5(3.3) 14 (2) 42.8(7.1) 7.1e5 (2.1e4) TL 4.2% (0.7%)
0.3 0.05 53(33) 163.0(994) 18(6) 54.9(16.7) 7.9¢5 (4.1e4) TL 24.2% (0.9%)
0.5 0.05 200(53) 609.4 (158.9) 85(51) 260.0(154.6) 7.2e5 (5.9¢4) TL 30.3% (1.7%)
125 T T T T T 30%
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Relaxation bound 25%
115
2 110&» 20%
g o
O © %
g 105 & 15%
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Fig. 6 The top panel shows, for the instance that requires the most number of iterations, the evolution of
Algorithm 2 for step size s = (1.01)7k, while the bottom panel shows that for step size s = % Left:
Upper and lower bounds found at each iteration of the algorithm. Right: Optimality gap, obtained from best
upper/lower bounds found so far

solved in under one second, while problems with o = 0.5 sometimes cannot be solved
within the time limit. For instances with n = 1600, gaps can be as large as 30% in
high noise regimes. In contrast, Algorithm 2 consistently delivers solutions with low
optimality gaps with running time in seconds on instances with n = 100, and in under
ten minutes on average on instances with n = 1600.

To better understand the evolution of Algorithm 2, we plot the optimality gap as a
function of the iteration number in Figs. 6 and 7. In Fig. 6, we present the case which
yields 1% gap the slowest among the 10 instances with n = 1600,0 = 0.5. The
evolution of integer solution objective values and relaxation bounds are also shown
here. We can see that the integer solution objective values and relaxation bounds
are not guaranteed to improve in each iteration, hence the optimality gap, which is
computed based on the best lower and upper bounds observed, is not guaranteed to
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Fig. 7 Evolution of the average gaps over 10 instances with the iteration number for different noise level
o. Left: Step size s = (1.01)_k. Right: Step size s = %

strictly improve in each iteration. However, in general, Algorithm 2 makes substantial
progress towards a good lower bound. Moreover, Fig. 7 shows the evolution of the
average gap over 10 instances as a function of the iteration number for different noise
levels, c = 0.05,0.1, 0.3, 0.5, and both step sizes. We observe that in general, the
optimality gap decreases faster in lower noise cases.

In summary, for the instances that are not solved to optimality using the big-M
formulation, Algorithm 2 is able to reduce the optimality gaps by at least an order of
magnitude while requiring only a small fraction of the computational time.

Acknowledgements We thank the AE and the referees whose comments improved this paper.
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