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Abstract

Generating paragraphs of diverse contents is
important in many applications. Existing gen-
eration models produce similar contents from
homogenized contexts due to the fixed left-to-
right sentence order. Our idea is permuting the
sentence orders to improve the content diver-
sity of multi-sentence paragraph. We propose
a novel framework PermGen whose objective
is to maximize the expected log-likelihood of
output paragraph distributions with respect to
all possible sentence orders. PermGen uses hi-
erarchical positional embedding and designs
new procedures for both training phase and
inference phase. Experiments on three para-
graph generation benchmarks demonstrate Per-
mGen generates more diverse outputs with a
higher quality than existing models.

1 Introduction

Paragraph generation is an important yet challeng-
ing task. It requires a model to generate informa-
tive and coherent long text that consists of mul-
tiple sentences from free-format sources such as
a topic statement or some keywords (Guo et al.,
2018). Typical paragraph generation tasks include
story generation (Fan et al., 2018), news genera-
tion (Leppänen et al., 2017), scientific paper gener-
ation (Koncel-Kedziorski et al., 2019), etc. Recent
advances in natural language generation models
such as Transformer (Vaswani et al., 2017) and
BART (Lewis et al., 2020) have demonstrated at-
tractive performance of generating text paragraphs.

An important desired property of model-
generated paragraphs is diversity – given the same
source, an intelligent model is expected to create
a variety of paragraphs in terms of content, seman-
tic style, and word variability (Li et al., 2016; Ip-
polito et al., 2019). For example, a story generation

§ Our code and output files are available at https://
github.com/wyu97/permgen.
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Figure 1: Left: Diversity of each generated story sen-
tence at different positions (1 to 5) in ROCStories’ test
set, measured by averaged 1-Self-BLEU (Zhu et al.,
2018). Our PermGen produces contents of higher di-
versity at all positions, while BART (dashed line) pro-
duces diverse outputs only at the end of story. With p-
value<0.01, PermGen has higher diversity than the the
grey line. Right: PermGen outperforms BART in the
accuracy of generated stories measured by BLEU-4.

model should narrate a plot with different story-
lines (Clark et al., 2018); a scientific paper genera-
tion model should suggest diverse contents to spark
new ideas (Wang et al., 2019). In order to create
diversity, controllable methods (Zhao et al., 2017;
Cho et al., 2019; Yu et al., 2020) used additional
inputs (e.g., aspects, styles). Sampling decoding
algorithms (Radford et al., 2019; Holtzman et al.,
2020) searched next tokens widely from a vocab-
ulary. However, existing models struggled to pro-
duce multi-sentence paragraphs of diverse contents,
because they relied on the homogeneity of con-
texts (e.g., similar story beginnings) caused by the
conventional autoregressive framework with fixed
left-to-right sentence order (i.e., S1!S2!S3).

As an example, Figure 1 evaluates the diversity
of each generated sentence at different positions of
the story in ROCStories (Mostafazadeh et al., 2016)
by different models. As shown, BART (dashed
line) tends to generate stories of very similar begin-
ning and middle parts and only produce diverse text
near the end of a story. This phenomenon stems
from the fact that the left-to-right generation leads
to homogeneity of context to the left, reducing the
diversity of the generated paragraph.

https://github.com/wyu97/permgen
https://github.com/wyu97/permgen
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Our idea is permuting the sentence orders in
paragraph generation, while sticking with the left-
to-right scheme to generate tokens in each sentence.
It has two advantages. First, it provides an output
sentence with a variety of contexts (and possibil-
ities) from different orders. For example, creat-
ing the story ending first can probably produce
a completely different story from generating the
beginning first. Second, it retains the benefit of
autoregressive model that originates from the word-
by-word nature of human language production. So
the coherence within sentences can be maintained,
avoiding the harm of incomplete semantics from
token-level permutation (Shen et al., 2020).

In this work, we propose a sentence-permuted
paragraph generation framework called PermGen.
Instead of using the fixed forward order, PermGen
maximizes the expected log-likelihood of the dis-
tribution in output paragraph w.r.t. all possible
sentence orders. The optimization is based on
⇡-SGD (Murphy et al., 2019) which has guaran-
teed convergence property. Furthermore, PermGen
employs a novel hierarchical position encoding
scheme to represent the positions of tokens in per-
muted sentences. PermGen can be initialized with
any Transformer-based models and any decoding
algorithms such as beam search and nucleus sam-
pling (Holtzman et al., 2020).

We conduct experiments on three paragraph gen-
eration tasks: story generation, news generation,
and paper abstract generation. Results show that
PermGen can significantly improve the diversity of
generated texts and achieve higher accuracy. Par-
ticularly, as shown in Figure 1, PermGen model
can improve diversity for sentences at all positions
while also improving the accuracy. Besides, we
observe consistent improvements on both accuracy
and diversity when PermGen is coupled with vari-
ous pre-trained models and decoding algorithms.

2 Related Work

Paragraph Generation. The source can be ei-
ther structured or unstructured such as database
records (Puduppully et al., 2019), knowledge
graphs (Zhao et al., 2020), images (Ippolito et al.,
2019), and keywords (Yao et al., 2019). The ex-
pected outputs typically are stories (Guan et al.,
2019; Yao et al., 2019), essays (Yang et al., 2019),
news articles (Dong et al., 2021), or scientific pa-
pers (Hua and Wang, 2019; Koncel-Kedziorski
et al., 2019). This task poses unique challenges as it

aims at generating coherent and diverse long-form
texts. Our framework can use various forms of in-
put such as a story title, keywords, and keyphrases,
which can be generalized to broad domains.

Diverse Text Generation. Generating diverse se-
quences is of crucial importance in many text gen-
eration applications that exhibit semantically one-
to-many relationships between source and the tar-
get sequences, such as machine translation (Shen
et al., 2019; Lachaux et al., 2020), summariza-
tion (Cho et al., 2019), question generation (Wang
et al., 2020), and paraphrase generation (Qian et al.,
2019). Methods of improving diversity in text
generation that have been widely explored from
different perspectives in recent years. Sampling-
based decoding is one of the effective solutions
to improve diversity (Fan et al., 2018; Holtzman
et al., 2020), e.g., nucleus sampling (Holtzman
et al., 2020) samples next tokens from the dynamic
nucleus of tokens containing the vast majority of
the probability mass, instead of aiming to decode
text by maximizing the likelihood. Another line of
work focuses on introducing random noise (Gupta
et al., 2018) or changing latent variable (Lachaux
et al., 2020) to produce uncertainty, e.g., Gupta et al.
(2018) employ a variational auto-encoder frame-
work to generate diverse paraphrases according to
the input noise. In addition, Shen et al. (2019)
adopt a deep mixture of experts (MoE) to diversify
machine translation, where a minimum-loss pre-
dictor is assigned to each source input; Shi et al.
(2018) employ inverse reinforcement learning for
unconditional diverse text generation.

Dynamic Order Generation. These methods
have two categories. First, non-autoregressive gen-
eration is an emerging topic and commonly used
in machine translation (Gu et al., 2018; Ren et al.,
2020). They generate all the tokens of a sequence in
parallel, resulting in faster generation speed. How-
ever, they perform poorly for long sentences due
to limited target-side conditional information (Guo
et al., 2019). Second, insertion-based generation is
a partially autoregressive model that maximizes the
entropy over all valid insertions of tokens (Stern
et al., 2019). POINTER (Zhang et al., 2020) inher-
its the advantages from the insertion operation to
generate text in a progressive coarse-to-fine manner.
Blank language model (BLM) (Shen et al., 2020)
provides a formulation for generative modeling that
accommodates insertions of various length.

Different from the above methods, our PermGen
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and Keywords)":
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Joe loved to play basketball . His basketball was torn and old . So he bought a new one in the store . Original story:
Figure 2: The architecture of PermGen. The example story has 3 sentences, leading to 3! = 6 permuted sentence
orders. PermGen minimizes the overall generation loss w.r.t. all possible sentence orders.

permutes the sentence orders for generating a para-
graph, and it follows the left-to-right manner when
producing each sentence.

3 Preliminaries

Problem Definition. Given input X that can be a
topic statement, some keywords, or a paper’s title,
the goal is to produce a paragraph Y consisting
of multiple sentences as a story, a news article, or
a paper’s abstract. Suppose Y has T sentences,
denoted by Y = [Y1, · · · , YT ], where Yt is the t-th
sentence. T can be easily obtained from training
data to create sentence indices. During testing,
models are expected to predict the sentence indices
under maximum T (i.e., 10).

3.1 Sentence-Level Transformer
Transformer (Vaswani et al., 2017) follows the
encoder-decoder architecture (Sutskever et al.,
2014) and uses stacked multi-head self-attention
and fully connected layers for both the encoder and
decoder. For simplicity, we represent the Trans-
former framework at the sentence level by using a
recurrent notation that generates a probability dis-
tribution for sentence prediction by attending to
both input X and previous decoded sentences Y<t.

p(Yt) = Transformer(X,Y<t). (1)

where Yt and Y<t are the t-th sentence and sen-
tences before t-th sentence under the left-to-right
manner in target output. Transformer eschews re-
currence and instead relies on the self-attention
mechanism to draw global dependencies between
the input and output. During the decoding phase,
Transformer can predict each token based on both
the input and previously predicted tokens via atten-
tion masks to improve efficiency. The objective of

Transformer is to maximize the likelihood under
the forward autoregressive factorization:

p(Y |X; ✓) =
TY

t=1

p(Yt|Y<t, X; ✓). (2)

4 Proposed Method: PermGen

In a left-to-right generation scheme such as the
canonical Seq2Seq design, each generated token
is conditioned on left-side tokens only (Sutskever
et al., 2014). It ignores contextual dependencies
from the right side. It also leads to limited diver-
sity of generated text (as shown in Figure 1). To
solve this problem, our PermGen, a novel sentence-
permuted paragraph generation model, produces
sentences not confined to the left-to-right order. In-
stead, PermGen attempts different sentence orders
and selects the best-ranked output candidate.

As shown in Figure 2, PermGen uses the Trans-
former encoder but changes the sentence orders
during the decoding phase. It should be noted that
PermGen follows the left-to-right manner when
generating tokens in each sentence. Thus, we rep-
resent the Transformer decoder as:

Y⇡t = Transformer(X,Y⇡<t ,⇡), (3)

where Y⇡t and Y⇡<t are the t-th sentence and the
sentences before the t-th sentence under the permu-
tation order ⇡ in the target output. Taking the first
permuted order in Figure 2 as an example, we have
⇡ = [2, 1, 3], ⇡1 = 2, ⇡3 = 3, ⇡<3 = [2, 1].

We note that as PermGen is based on the encoder-
decoder Transformer architecture, which can be
initialized either randomly or from a pre-trained
Transformer model with the same structure. There-
fore, in the experiments, we evaluate PermGen
which is i) trained from scratch, and ii) initialized
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with BART (Lewis et al., 2020). Next, we will
introduce three modules of PermGen: (1) hierarchi-
cal positional embedding, (2) sentence-permuted
learning, and (3) sentence-based decoding.

4.1 Hierarchical Positional Embedding
In Transformer, positional embeddings are added
to every token’s embedding. Traditionally, the po-
sitional embedding encodes the absolute position
from 1 to the sequence length to model how a to-
ken at one position attends to tokens at other posi-
tions (Vaswani et al., 2017; Lewis et al., 2020).

We propose the hierarchical positional embed-
ding that consists of a global position and a local
position. Given a token, the global position is the
position (index) of the sentence that contains this
token; the local position is the position of the to-
ken in the sentence (see the two lines of position
numbers in Figure 2). Given a paragraph Y , its
embedding matrix is given below, where rows are
its tokens and columns are embedding dimensions:

Y = Ytoken + Yglobal_position + Ylocal_position, (4)

where Ytoken is the token embedding, Yglobal_position
and Ylocal_position are the global positional embed-
dings and local positional embeddings.

Compared to the absolute positional embedding,
the hierarchical positional embedding has two ad-
vantages. First, the embedding of two-level po-
sitions is more informative about the paragraph
structure than that of the absolute position. Second,
when we permute the sentence orders in paragraph
generation, the absolute positions of tokens might
not be available. For example, if the second sen-
tence is generated earlier than the first sentence,
the absolute positions of its tokens cannot be de-
termined because the length of the first sentence
is unknown. In comparison, hierarchical position
does not have this issue.

In addition, for the t-th sentence in Y , we add
two special tokens (i.e., <B-t> and <E-t>) to indi-
cate the beginning and end of the sentence. Thus,
the decoder can determine the sentence index based
on the predicted special tokens. We also append a
special token <EOP> to the paragraph to indicate
the end of the generation process.

4.2 Sentence-permuted Learning
This module learns by varying sentence orders in
paragraph generation and acts as the key compo-
nent in PermGen. For example, given a sentence

order ⇡ = [2, 4, 1, 5, 3], PermGen first generates
the second sentence from the leftmost token to
the rightmost, then generates the fourth sentence,
and so on. Formally, we denote ZT as the set of
all possible sentence orders, i.e., the permutations
of sentence indices of length T . It follows that
|ZT | = T !. Given input X and target output para-
graph Y of T sentences, PermGen maximizes the
following likelihood:

p(Y |X; ✓) =
X

⇡2ZT

p(Y |X,⇡; ✓)

=
X

⇡2ZT

TY

t=1

p(Y⇡t |X,Y⇡<t ; ✓) (5)

However, computing the negative log-likelihood in
Eq. (5) is prohibitive because the back-propagation
computational graph branches out for every permu-
tation in the sum. Therefore, we apply the Jensen’s
inequality to lower-bound the log-likelihood:

log p(Y |X; ✓)= log
P

⇡2ZT

TQ
t=1

p(Y⇡t |X,Y⇡<t ; ✓)

� log(|ZT |) + 1
|ZT |

P
⇡2ZT

TP
t=1

log p(Y⇡t |X,Y⇡<t ; ✓)

By maximizing the lower bound, we do not favor
any particular sentence order, but encourage the
model to generate Y equally well in all orders.

Note that maximizing this lower bound is equiv-
alent to minimizing the following expectation:

J (✓) = E⇡0

h
�

TX

t=1

log p(Y⇡0
t
|X,Y⇡0

<t
; ✓)

i
. (6)

Since computing this expectation is still in-
tractable, we apply the ⇡-SGD (Murphy et al.,
2019) stochastic optimization, which randomly
samples a permutation for gradient computation.

Definition 1 (⇡-SGD): Let B = {(X(1), Y (1)),
· · · , (X(B), Y (B))} be a mini-batch i.i.d. sampled
uniformly from the training data D. At step t, con-
sider the stochastic gradient descent update

✓t = ✓t�1 � ⌘tGt, (7)

where Gt = � 1
B

PB
i=1r✓

PT
t=1 log p(Y

(i)|X(i),
⇡0; ✓) is the gradient, and random permuta-
tions {⇡0

i}Bi=1 are sampled independently: ⇡0
i ⇠

Uniform(Z(i)
T ). Besides, the learning rate is ⌘t 2

(0, 1) s.t. limt!1⌘t = 0, and
P1

t=1 ⌘
2
t <1.



5055

<B-1> <E-1>His basketball was

<B-1> <E-1><E-2>His basketball was <EOP>

Decoder (Sentences permuted)

Sentence 2Sentence 1 Sentence 3

!:

!!": <B-2> torn

torn

and

and

old

old

.

.

<E-2> Joe

Joe

loved

loved

playing

playing

basketball

basketball

.

.

<B-3> <E-3>

<B-3> <E-3>

So

So

he

he

bought

bought

a

a

new

new

one

one

.

.

! = {$}Sample <B-t> ! = {2, (} ! = {2,1, *}

Joe loved playing basketball . basketball was torn and old . So he bought a new one .Final result: 
reorder and delete 
special tokens

Encoder (Title
and Keywords)":

His

Figure 3: The decoding process during inference as described in Section 4.3. Note that the first special token (e.g.,
<B-2>) is sampled from {<B-t>}Tt=1. For simplicity, positional embedding is omitted in the figure.

We note that ⇡-SGD is a Robbins-Monro
stochastic approximation of gradient descent (Rob-
bins and Monro, 1951). When it’s applied to per-
mutation sampling, the optimization almost surely
converges to the optimal ✓, as implied by the fol-
lowing proposition.

Proposition 1 (⇡-SGD Convergence): The opti-
mization of ⇡-SGD converges to the optimal ✓ for
J (✓) in Eq. (6) with probability one.

Proof: We refer to Prop.2.2 in Murphy et al. (2019).

4.3 Sentence-based Decoding

In decoding, PermGen adopts the following steps:
• Step 1: Initialize a set of indices of sentences

that have been generated: I = {};
• Step 2: If I = {}, sample a token from {<B-t>
| t 2 {1, . . . , T}}1; otherwise, predict a token
from {<B-t> | t2 {1, . . . , T}\I}[ {<EOP>}.
If the token is <EOP>, end; otherwise, append
<B-t> to the generated text;

• Step 3: Generate tokens from V [ {<E-t>}
for the t-th sentence in an autoregressive way,
where V is the set of normal text tokens. Stop
when <E-t> is generated;

• Step 4: I  I [ {t}, then go back to Step 2.
As stated in step 2, when <EOP> is generated,

the whole generation ends. Then, the sentences
in the generated paragraph can be reordered ac-
cording to sentence indices I and special tokens.
Note that in step 3, since PermGen adopts autore-
gressive generation, it can employ any decoding
strategy such as beam search or sampling algorithm
(e.g. truncated sampling (Fan et al., 2018), nucleus
sampling (Holtzman et al., 2020)). For example,
truncated sampling samples the next word from the
top k probable choices, instead of aiming to decode
text by maximizing the likelihood.

1When trying to generate multiple candidates, we use the
sampling without replacement strategy. For example, if we
need to generate 3 candidates each with 5 sentences, their
beginning tokens can be B-1, B-3 and B-4, respectively.

Rank with log-probability. We compute the log-
likelihood of each candidate as the same as in beam
search (Vijayakumar et al., 2016) and sampling
methods (Holtzman et al., 2020):

Sprob(Y ) =
1

L

LX

l=1

log p(yl|y1, · · · , yl�1) (8)

where L is the total number of tokens in Y and yl
is the l-th token in generated paragraph Y .
Complexity reduction. Since the number of pos-
sible sentence orders grows as n! for a n-sentence
paragraph, exact inference is an extremely time
consuming process. To reduce the complexity dur-
ing inference, we employ an approximate inference
by taking advantage of the special token prediction
mentioned in step 2. The special token prediction
happens when a end-of-sentence (i.e., <E-t>) is
generated. Instead of traversing each remaining
possible sentence index, the model only chooses
the most likely sentence index through special to-
ken predictions. It should be noted that we reuse
the classifier in decoder by simply masking tokens
not in {<B-t>}Tt=1, without training any new clas-
sifiers. Therefore, the decoding time is roughly
linear in the number of candidates to be generated.

5 Experiments

We conduct experiments on three text generation
tasks: story generation, news generation, and pa-
per abstract generation. For all tasks, we compare
PermGen with multiple baseline models on diver-
sity and accuracy of their generated texts. We also
perform human evaluation on story generation.

5.1 Tasks and Benchmarks
Task 1: Story generation In this task, models
learn to generate story paragraphs from the ti-
tle and multiple keywords. We use ROCStories
dataset (Mostafazadeh et al., 2016) and follow the
same data preparation as in Yao et al. (2019). ROC-
Stories has 98,162 / 9,817 / 9,803 paragraphs for
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Table 1: Statistics of three datasets. “in/out” stands for
input/output and “sents” stands for sentences.

Dataset ROCStories AGENDA DailyMail

# Train 98,162 38,720 49,102
# Dev. 9,817 1,000 2,000
# Test 9,803 1,000 2,000
Title in input

p p
⇥

Avg.in.words 9.65 16.09 7.91
Avg.out.words 50.16 76.12 95.62
Avg.out.sents 4.92 3.08 3.88
* The DailyMail dataset does not have news title for each
article. We only generate the first paragraph of news in
DailyMail. The average length is 3.88 sentences.

training / development / test sets, respectively. The
stories in the corpus capture causal and temporal
commonsense relations between daily events.

Task 2: Paper abstract generation In this task,
models need to generate paper abstracts from paper
title and a list of keywords. We use the AGENDA
dataset (Koncel-Kedziorski et al., 2019) that con-
sists of 40,720 paper titles and abstracts in the Se-
mantic Scholar Corpus taken from the proceedings
of 12 AI conferences. Each abstract is paired with
several keywords. We follow the settings in Koncel-
Kedziorski et al. (2019) to directly generate paper
abstracts from the keywords. We follow the same
data partition, which has 38,720 / 1,000 / 1,000 for
training / development / test sets, respectively.

Task 3: News generation In this task, models
are trained to generate news articles from a list
of keyphrases. We use DailyMail dataset (See
et al., 2017), a corpus of online news articles. We
randomly sample 53,102 news articles and extract
keyphrases from each sentence using RAKE (Rose
et al., 2010). It contains 49,102 / 2,000 / 2,000
news articles for training / development / test sets.

5.2 Baseline Methods

We compared with three pre-trained Transformer-
based models: BART (Lewis et al., 2020), T5 (Raf-
fel et al., 2020) and BERTGen (Rothe et al., 2020).
These models have demonstrated state-of-the-art
performance in various tasks. We also compare
with GPT-2 (Radford et al., 2019) and two recent
non-autoregressive generation models: BLM (Shen
et al., 2020) and POINTER (Zhang et al., 2020).

BLM (Shen et al., 2020) Blank Language Model
(BLM) generates sequences by dynamically creat-
ing and filling in blanks. The blanks control which

part of the sequence to fill out, making it ideal for
word-to-sequence expansion tasks.

POINTER (Zhang et al., 2020) POINTER oper-
ates by progressively inserting new tokens between
existing tokens in a parallel manner. This pro-
cedure is recursively applied until a sequence is
completed. This coarse-to-fine hierarchy makes
the generation process intuitive and interpretable.

For each task, we also evaluate PermGen with
different sampling methods for decoding, including
beam search, Truncated sampling (Fan et al., 2018)
and Nucleus sampling (Holtzman et al., 2020).

Truncated Sampling (Fan et al., 2018) It ran-
domly samples words from top-k candidates of the
distribution at the decoding step.

Nucleus Sampling (Holtzman et al., 2020) It
avoids text degeneration by truncating the unreli-
able tail of the probability distribution, sampling
from the dynamic nucleus of tokens containing the
vast majority of the probability mass.

5.3 Implementation Details

We use pre-trained parameters from BART-
base (Lewis et al., 2020) to initialized our model,
which takes a maximum 512 input token sequence
and consists of a 6-layer transformer encoders
and another 6-layer transformer decoders (Vaswani
et al., 2017) with 12 attention heads and 768 word
dimensions. For model fine tuning, we use Adam
with learning rate of 3e-5, �1 = 0.9, �2 = 0.999, L2
weight decay of 0.01, learning rate warm up over
the first 10,000 steps, and linear decay of learning
rate. Our models are trained with a 4-card 32GB
memory Tesla V100 GPU, and implemented with
the Huggingface’s Transformer (Wolf et al., 2020).

5.4 Evaluation Metrics

We use metrics introduced in previous work (Ott
et al., 2018; Vijayakumar et al., 2018; Zhu et al.,
2018) to evaluate accuracy and diversity.

5.4.1 Accuracy metrics
Top-1 metric (*). This measures the Top-1 ac-
curacy among the generated hypotheses. The
accuracy is measured using corpus-level met-
rics, including BLEU (Papineni et al., 2002),
METEOR (Banerjee and Lavie, 2005), and
CIDEr (Vedantam et al., 2015).
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Table 2: Diversity (“Dist-2”: Distinct-2(*), “Self-B-4”: Self-BLEU-4(+)) and accuracy (“B-4”: BLEU-4(*)) for
PermGen and baseline methods. Diversity evaluation is calculated by top-k generated candidates from beam search.
We use bold and underline to indicate the best and best baseline performance.

Methods Pre-
Train

ROCStories AGENDA DailyMail
Diversity Accuracy Diversity Accuracy Diversity Accuracy

Dist-2(*) Self-B-4(+) B-4(*) Dist-2(*) Self-B-4(+) B-4(*) Dist-2(*) Self-B-4(+) B-4(*)

POINTER
p

0.0743 0.9405 0.0492 0.1898 0.9267 0.0379 0.1228 0.9619 0.0243
BLM

p
0.0560 0.9573 0.1477 0.1465 0.9396 0.1679 0.0831 0.9889 0.1164

GPT-2
p

0.0915 0.9194 0.0726 0.1665 0.9331 0.1247 0.1577 0.9287 0.1072
BERTGen

p
0.0672 0.9456 0.1576 0.1463 0.9356 0.1462 0.1167 0.9774 0.1728

T5
p

0.0684 0.9403 0.1895 0.1323 0.9421 0.1688 0.1086 0.9779 0.1529
Transformer ⇥ 0.0806 0.9341 0.1809 0.1489 0.9265 0.1540 0.1109 0.9678 0.1496
BART

p
0.0839 0.9330 0.2445 0.1697 0.9278 0.1922 0.1306 0.9720 0.1935

PermGen ⇥ 0.0992 0.8548 0.1848 0.2203 0.5679 0.1678 0.1934 0.7757 0.1592p
0.1059 0.7993 0.2482 0.2492 0.5940 0.2059 0.2065 0.6627 0.1991

Table 3: Ablation study. Hi-BART represents BART with hierarchical positional embeddings.

Methods Pre-
Train

ROCStories AGENDA DailyMail
Diversity Accuracy Diversity Accuracy Diversity Accuracy

Dist-2(*) Self-B-4(+) B-4(*) Dist-2(*) Self-B-4(+) B-4(*) Dist-2(*) Self-B-4(+) B-4(*)

BART
p

0.0839 0.9330 0.2445 0.1697 0.9278 0.1922 0.1306 0.9720 0.1935
Hi-BART

p
0.0812 0.9356 0.2349 0.1673 0.9265 0.1880 0.1289 0.9705 0.1899

PermGen
p

0.1059 0.7993 0.2482 0.2492 0.5940 0.2059 0.2065 0.6627 0.1991

Oracle metric (*). This measures the highest ac-
curacy comparing the best hypothesis among the
top-K with the target (Vijayakumar et al., 2018).

5.4.2 Diversity metrics
Corpus diversity (*). Distinct-k (Li et al., 2016)
measures the total number of unique k-grams nor-
malized by the total number of generated k-gram
tokens to avoid favoring long sentences. Entropy-
k (Zhang et al., 2018) reflects how evenly the em-
pirical k-gram distribution is for a given sentence
when word frequency is taken into account (i.e. low
weights for high-frequency words).

Pairwise diversity (+). Referred as “self-” (e.g.,
self-BLEU) (Zhu et al., 2018), it measures the
within-distribution similarity. This metric com-
putes the average of sentence-level metrics be-
tween all pairwise combinations of hypotheses
{Y (1), · · · , Y (K)} generated from each source se-
quence X . Lower pairwise metric indicates high
diversity between generated hypotheses.

5.5 Experimental results
5.5.1 PermGen v.s. Transformers
As shown in Table 2, PermGen can improve both
the diversity and the accuracy of generated text
when initialized with either non-pretrained (Trans-

former) or pre-trained (BART) Transformers. For
example, compared with BART which has the best
performance among baselines, PermGen reduced
Self-BLEU-4 by 43.2% and improved BLEU-4
by +1.5% on AGENDA. And we observe simi-
lar improvement on all other paragraph generation
tasks. More evaluation results are in Table ?? in
Appendix.

POINTER achieves the lowest performance in
paragraph generation tasks. This is because its
insertion operation ignores dependency between
generated words so it cannot well capture the inter-
sentence coherence during long-text generation.

It should be noted that since BART performed
the best among all baseline methods, we apply Per-
mGen on BART in the following evaluations.

5.5.2 Ablation Study
As we mentioned, the absolute positions in Trans-
former (Vaswani et al., 2017) of tokens might not
be available when we permute the sentence orders
in paragraph generation. So, we propose the hi-
erarchical positional embedding that consists of a
global position and a local position. In this section,
we conduct ablation study to show the adding hi-
erarchical position embedding to BART (short as
Hi-BART) does not improve diversity, compared
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PermGen BART                   AGENDA                  DailyMail ROCStories

Pairwise diversity Corpus diversity Accuracy
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Figure 4: PermGen demonstrates superior performance on both diversity and accuracy compared with different
diversity-promoting methods. The specific values involved in the figure are shown in Table ?? in Appendix.
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Figure 5: PermGen generates more diverse paragraphs over different number of sampled candidates. The diversity
measured at each point is the mean value of Dist-2 and Ent-4 when k = 10, k = 50, p = .75, and p = .95.

to the original BART model. Hi-BART even under-
performs than original BART (see Table 3). This is
mainly because the newly added hierarchical posi-
tion embeddings are randomly initialized, without
any pre-training on large corpora.

5.5.3 PermGen v.s. Decoding Methods

We investigate the quality of text generated by Per-
mGen (built on BART) when coupled with beam
search, truncated sampling and nucleus sampling.
Figure 4 shows that on average, PermGen can sig-
nificantly boost diversity by 5.81% in Self-BLEU-3
and 6.83% in Self-BLEU-4, respectively, and im-
prove accuracy by +1.2% and +1.5% in terms of
Top1-BLEU-4 and Oracle-BLEU-4.

As the diversity of generated text depends on the

number of produced candidates, we compare the di-
versity of generation between BART and PermGen
with various number of output candidates, K. Fig-
ure 5 shows that as K increases, PermGen can con-
sistently generate more diverse content, measured
by the ratio of distinct 2-grams, Distinct-2 (dashed
line). Meanwhile, measured by Entropy-4 (solid
line), the proportion of novel words in generated
candidates from PermGen is rising as K increases,
while BART shows a flat or even falling trend.

5.5.4 Human Evaluations

We sample 100 inputs from ROCStories test set
and each evaluated method generates top-3 stories.
Every story is assigned to five annotators with NLP
background. For diversity, the annotators are given
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Table 4: Case study. PermGen produces more diverse stories than beam search and nucleus sampling. We shade
parts of the generated text which are distinct from other candidates. We provide more case studies in Appendix.

• Inputs: (Title) Mounting popularity ; (Keywords) started, company, friends, hard, year, slogging, reward, traction, excited

• Beam search-1: I started a new company with some friends . It was hard at first . After a year of slogging , I got a reward . The
reward was a lot of traction . Now we are all excited to start working together .
• Beam search-2: I started a new company with some friends . It was hard at first . After a year of slogging , I got a reward . The
reward was a lot of traction . Now we are all excited .
• Beam search-3: I started a new company with some friends . It was hard at first . After a year of slogging , I got a reward . The
reward was a lot of traction . We are excited to keep doing this .

• Nucleus sampling-1: I started a new company with some friends . It was hard at first . After a year of slogging , the reward
was a lot of traction . Now we are doing really well . I am excited to start working with my friends .
• Nucleus sampling-2: I started a new company with some friends . It was hard at first . After a year of slogging , I got a lot of
reward . The reward was a lot of traction . Now we are all excited to start working together .
• Nucleus sampling-3: I started a new company with my friends . It was hard at first . After a year of slogging , we got a lot of
reward . We got traction and are doing really well . We are excited to keep doing this .

• PermGen-1 (reordered from [2, 1, 3, 5, 4]*): I started a new company with some friends . I tried really hard for almost a year
. It took a lot of slogging , but as a reward I got traction . Now we are all doing it together . I ’m excited to be doing it again .
• PermGen-2 (reordered from [3, 1, 2, 5, 4]): I started a new company with some friends . It ’s been hard . I ’ve been slogging
through it as a reward for getting traction . My friends are really excited . I ’m excited to see what it ’s all about .
• PermGen-3 (reordered from [5, 1, 2, 3, 4]): I started a new company with some of my friends . It was hard at first . After a
year of slogging , I got a lot of reward . I have many traction on social media . I am excited to start working with my friends .
* “Reordered from [2, 1, 3, 5, 4]” means that PermGen first generates the 2nd sentence, and then generates the 1st sentence, and so
on. Finally, we reorder the generated story according to the ascending order of sentence index as shown in Figure 3.

Table 5: Human Evaluations on ROCStories: PermGen
(ours) v.s. three baseline methods based on diversity.

Win Lose Tie

PermGen 64.00% 14.00% 22.00%
v.s. Beam (±12.71%) (±7.70%) (±10.73%)

PermGen 54.80% 8.80% 36.40%
v.s. Truncated (±4.10%) (±5.31%) (±5.43%)

PermGen 56.00% 11.60% 32.40%
v.s. Nucleus (±8.67%) (±4.27%) (±5.57%)

Table 6: Human Evaluations of PermGen and BART
on ROCStories. Decoding algorithm is beam search.
Minimum score is 1.0, and maximum score is 5.0.

Accuracy Fluency Coherency

BART 3.34 3.93 3.85
PermGen 3.42 3.97 3.88

two sets of top-3 stories from two methods each
time and instructed to pick the set that is more
diverse. The choices are “win,” “lose,” or “tie.”
Then, the annotators give an accuracy score from 1
to 5 to measure semantic similarity between the top-
1 generated story and ground truth story. Finally,
the annotators need to give a fluency and coherency
score from 1 to 5 for each generated story.

Table 5-6 demonstrate that PermGen outper-
forms beam search in both accuracy and fluency,
while significantly improving generation diversity
compared with other diversity-promoting methods.

5.5.5 Case Study
Table 4 demonstrates generated stories from differ-
ent diversity-promoting methods, including beam
search, nucleus sampling and our PermGen. Over-
all, we observe that PermGen can generate more
diverse stories than the other two methods. We
notice that stories generated by beam search often
differ only by punctuation and minor morphologi-
cal variations, and typically only the last sentence
(or last several words) is different from others. Nu-
cleus sampling achieves better diversity than beam
search, but the stories are still following similar
storylines. In comparison, PermGen can generate
semantically richer and more diverse contents.

6 Conclusions

In this paper, we proposed a novel sentence-
permuted paragraph generation model, PermGen.
PermGen maximizes the expected log likelihood of
output paragraph w.r.t. all possible sentence orders.
Experiments on three paragraph generation tasks
demonstrated that PermGen outperformed origi-
nal Transformer by generating more accurate and
diverse text. The result is consistent on various
Transformer models and decoding methods.
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