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Abstract In this paper we study a class of risk-sensitive Markovian control prob-
lems in discrete time subject to model uncertainty. We consider a risk-sensitive dis-
counted cost criterion with finite time horizon. The used methodology is the one of
adaptive robust control combined with machine learning.

1 Introduction

The main goal of this work is to study finite time horizon risk-sensitive Marko-
vian control problems subject to model uncertainty in a discrete time setup, and to
develop a methodology to solve such problems efficiently. The proposed approach
hinges on the following main building concepts: incorporating model uncertainty
through the adaptive robust paradigm introduced in [BCC+19] and developing ef-
ficient numerical solutions for the obtained Bellman equations by adopting the ma-
chine learning techniques proposed in [CL19].

There exists a significant body of work on incorporating model uncertainty (or
model misspecification) in stochastic control problems, and among some of the
well-known and prominent methods we would mention the robust control approach
[GS89, HSTW06, HS08], adaptive control [KV15, CG91], and Bayesian adaptive
control [KV15]. A comprehensive literature review on this subject is beyond the
scope of this paper, and we refer the reader to [BCC+19] and references therein.
In [BCC+19] the authors proposed a novel adaptive robust methodology that solves
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time-consistent Markovian control problems in discrete time subject to model un-
certainty - the approach that we take in this study too. The core of this methodology
was to combine a recursive learning mechanism about the unknown model with
the underlying Markovian dynamics, and to demonstrate that the so called adaptive
robust Bellman equations produce an optimal adaptive robust control strategy.

In contrast to [BCC+19], where the considered optimization criterion was of the
terminal reward type, in the present work, we also allow intermediate rewards and
we use the discounted risk sensitive criterion. Accordingly, we derive a new set of
adaptive robust Bellman equations, similar to those used in [BCC+19].

Risk sensitive criterion has been broadly used both in the control oriented lit-
erature, as well as in the game oriented literature. We refer to, e.g., [BP03, DL14,
BR17], and the references therein for insight into risk sensitive control and risk
sensitive games both in discrete time and in continuous time.

The paper is organized as follows. In Section 2 we formulate the finite time hori-
zon risk-sensitive Markovian control problem subject to model uncertainty that is
studied here. Section 3 is devoted to the formulation and to study of the robust adap-
tive control problem that is relevant for the problem formulated in Section 2. This
section presents the main theoretical developments of the present work. In Section 4
we formulate an illustrative example of our theoretical results that is rooted in the
classical linear-quadratic-exponential control problem (see e.g. [HS95]). Next, us-
ing machine learning methods, in Section 5 we provide numerical solutions of the
example presented in Section 4.

Finally, we want to mention that the important case of an infinite time horizon
risk-sensitive Markovian control problem in discrete time subject to model uncer-
tainty will be studies in a follow-up work.

2 Risk-sensitive Markovian discounted control problems with
model uncertainty

In this section we state the underlying discounted risk-sensitive stochastic control
problems. Let (Ω ,F ) be a measurable space, T ∈ N be a finite time horizon, and
let us denote by T := {0,1,2, . . . ,T} and T ′ := {0,1,2, . . . ,T − 1}. We let Θ ⊂
Rd be a non-empty compact set, which will play the role of the parameter space
throughout. We consider a random process Z = {Zt , t = 1,2 . . .} on (Ω ,F ) taking
values in Rm, and we denote by F=(Ft , t = 0,2 . . .) its natural filtration, with F0 =
{ /0,Ω}. We postulate that this process is observed by the controller, but the true law
of Z is unknown to the controller and assumed to be generated by a probability
measure belonging to a (known) parameterized family of probability distributions
on (Ω ,F ), say P(Θ) = {Pθ ,θ ∈Θ}. As usually, EP will denote the expectation
under a probability measure P on (Ω ,F ), and, for simplicity, we will write Eθ

instead of EPθ
. We denote by Pθ∗ the measure generating the true law of Z, and

thus θ ∗ ∈ Θ is the unknown true parameter. The sets Θ and P(Θ) are known to
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the observer. Clearly, the model uncertainty may occur if Θ 6= {θ ∗}, which we will
assume to hold throughout.

We let A ⊂ Rk be a finite set,1 and S : Rn × A×Rm → Rd be a measurable
mapping. An admissible control process ϕ is an F-adapted process, taking values in
A, and we will denote by A the set of all admissible control processes.

We consider an underlying discrete time controlled dynamical system with the
state process X taking values in Rn and control process ϕ taking values in A. Specif-
ically, we let

Xt+1 = S(Xt ,ϕt ,Zt+1), t ∈T ′, X0 = x0 ∈ Rn. (1)

At each time t = 0, . . . ,T − 1, the running reward rt(Xt ,ϕt) is delivered, where,
for every a ∈ A, the function rt(·,a) : Rn → R+ is bounded and continuous. Sim-
ilarly, at the terminal time t = T the terminal reward rT (XT ) is delivered, where
rT : Rn→ R+ is a bounded and continuous function.

Let β ∈ (0,1) be a discount factor, and let γ 6= 0 be the risk sensitivity factor. The
underlying discounted, risk-sensitive control problem is:

sup
ϕ∈A

1
γ

ln
(
Eθ∗eγ(∑

T−1
t=0 β t rt (Xt ,ϕt )+β T rT (XT ))

)
(2)

subject to (1). Clearly, since θ ∗ is not known to the controller, the above problem
can not be solved as it is stated. The main goal of this paper is formulate and solve
the adaptive robust control problem corresponding to (2).

Remark 1 (i) The risk-sensitive criterion in (2) is in fact an example of application
of the entropic risk measure, say ρθ∗,γ , which is defined as

ρθ∗,γ(ξ ) :=
1
γ

lnEθ∗eγξ ,

where ξ is a random variable on (Ω ,F ,Pθ∗) that admits finite moments of all or-
ders.
(ii) It can be verified that

ρθ∗,γ(ξ ) = Eθ∗(ξ )+
γ

2
VARθ∗(ξ )+O(γ2).

Thus, in case when γ < 0 the term γ

2VARθ∗(ξ ) can be interpreted as the risk-
penalizing term. On the contrary, when γ > 0, the term γ

2VARθ∗(ξ ) can be viewed
as the risk-favoring term.
(iii) In the rest of the paper we focus on the case γ > 0. The case γ < 0 can be treated
in an analogous way.

1 A will represent the set of control values, and we assume it is finite for simplicity, in order to
avoid technical issues regarding the existence of measurable selectors.
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3 The adaptive robust risk sensitive discounted control problem

We follow here the developments presented in [BCC+19]. The key difference is that
in this work we deal with running and terminal costs.

In what follows, we will be making use of a recursive construction of confidence
regions for the unknown parameter θ ∗ in our model. We refer to [BCC17] for a
general study of recursive constructions of (approximate) confidence regions for
time homogeneous Markov chains. Section 4 provides details of a specific such
recursive construction corresponding to the example presented in that section. Here,
we just postulate that the recursive algorithm for building confidence regions uses
a Θ -valued and observed process, say C = (Ct , t ∈ N0), satisfying the following
abstract dynamics

Ct+1 = R(t,Ct ,Zt+1), t ∈ N0, C0 = c0 ∈Θ , (3)

where R : N0×Rd ×Rm → Θ is a deterministic measurable function. Note that,
given our assumptions about process Z, the process C is F-adapted. This is one of
the key features of our model. Usually Ct is taken to be a consistent estimator of θ ∗.

Now, we fix a confidence level α ∈ (0,1), and for each time t ∈ N0, we assume
that an (1−α)-confidence region, say Θ t ⊂ Rd , for θ ∗, can be represented as

Θ t = τ(t,Ct), (4)

where, for each t ∈ N0, τ(t, ·) : Rd → 2Θ is a deterministic set valued function,
where, as usual, 2Θ denotes the set of all subsets of Θ . Note that in view of (3)
the construction of confidence regions given in (4) is indeed recursive. In our con-
struction of confidence regions, the mapping τ(t, ·) will be a measurable set valued
function, with compact values. It needs to be noted that we will only need to com-
pute Θ t until time T − 1. In addition, we assume that for any t ∈ T ′, the mapping
τ(t, ·) is upper hemi-continuous (u.h.c.). That is, for any c ∈Θ , and any open set
E such that τ(t,c) ⊂ E ⊂Θ , there exists a neighbourhood D of c such that for all
c′ ∈ D, τ(t,c′)⊂ E (cf. [Bor85, Definition 11.3]).

Remark 2 The important property of the recursive confidence regions constructed as
indicated above is that, in many models, limt→∞ Θ t = {θ ∗}, where the convergence
is understood Pθ∗ almost surely, and the limit is in the Hausdorff metric. This is not
always the case though in general. In [BCC17] is shown that the convergence holds
in probability, for the model setup studied there.

The sequence Θ t , t ∈ T ′ represents learning about θ ∗ based on the observation
of the history (Y0,Y1 . . . ,Yt), t ∈ T ′, where Yt = (Xt ,Ct), t ∈ T , is the augmented
state process taking values in the augmented state space

EY = Rn×Θ .

We denote by EY the collection of Borel measurable sets in EY .
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In view of the above, if the control process ϕ is employed then the process Y has
the following dynamics

Yt+1 = G(t,Yt ,ϕt ,Zt+1), t ∈T ′,

where the mapping G : N0×EY ×A×Rm→ EY is defined as

G(t,y,a,z) =
(
S(x,a,z),R(t,c,z)

)
, (5)

with y = (x,c) ∈ EY .
We define the corresponding histories

Ht = (Y0, . . . ,Yt), t ∈T ′, (6)

so that
Ht ∈Ht = EY ×EY × . . .×EY︸ ︷︷ ︸

t+1 times

. (7)

Clearly, for any admissible control process ϕ , the random variable Ht is Ft -
measurable. We denote by

ht = (y0,y1, . . . ,yt) = (x0,c0,x1,c1, . . . ,xt ,ct) (8)

a realization of Ht . Note that h0 = y0 = (x0,c0).
A control process ϕ = (ϕt , t ∈T ′) is called history dependent control process if

(with a slight abuse of notation)

ϕt = ϕt(Ht),

where (on the right hand side) ϕt : Ht → A, is a measurable mapping. Given our
above setup, any history dependent control process is F–adapted, and thus, it is
admissible. For any admissible control process ϕ and for any t ∈ T ′, we denote
by ϕ t = (ϕk, k = t, . . . ,T − 1) the ‘t-tail’ of ϕ . Accordingly, we denote by A t the
collection of ‘t-tails’ of ϕ . In particular, ϕ0 = ϕ and A 0 = A . The superscript
notation applied to processes should not be confused with power function applied
such as β t .

Let ψt : Ht →Θ be a Borel measurable mapping such that ψt(ht) ∈ τ(t,ct), and
let us denote by ψ = (ψt , t ∈T ′) the sequence of such mappings, and by ψ t the t-
tails of the sequence ψ , in analogy to ϕ t . The set of all sequences ψ , and respectively
ψ t , will be denoted by Ψ and Ψ

t , respectively.
Strategies ϕ and ψ are called Markovian strategies or policies if (with some

abuse of notation)
ϕt = ϕt(Yt), ψt = ψt(Yt),

where (on the right hand side) ϕt : EY → A, and is a (Borel) measurable mapping,
and ψt : EY →Θ is a (Borel) measurable mapping satisfying ψt(x,c) ∈ τ(t,c).

In order to simplify all the following argument we limit ourselves to Markovian
policies. In case of Markovian dynamics settings, such as ours, this comes without
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loss of generality, as there typically exist optimal Markovian strategies, if optimal
strategies exist at all. Accordingly, A and Ψ are now sets of Markov strategies.

Next, for each (t,y,a,θ) ∈T ′×EY ×A×Θ , we define a probability measure on
EY , given by

Q(B | t,y,a,θ) = Pθ (Zt+1 ∈ {z : G(t,y,a,z) ∈ B}) = Pθ (G(t,y,a,Zt+1) ∈ B) , (9)

for any B ∈ EY We assume that for every t ∈ T and every a ∈ A, we have that
Q(dy′ | t,y,a,θ) is a Borel measurable stochastic kernel with respect to (y,θ). This
assumption will be strengthened later on.

Using Ionescu-Tulcea theorem (cf. [BR11, Appendix B]), for every t = 0, . . . ,T−
1, every t-tail ϕ t ∈ A t and every state yt ∈ EY , we define the family Qϕt ,Ψ t

yt ,t =

{Qϕt ,ψt

yt ,t , ψ t ∈Ψ
t} of probability measures on the concatenated canonical space

XT
s=t+1EY , with

Qϕt ,ψt

yt ,t (Bt+1×·· ·×BT )

:=
∫

Bt+1

· · ·
∫

BT

T

∏
u=t+1

Q(dyu | u−1,yu−1,ϕu−1(yu−1),ψu−1(yu−1)). (10)

The discounted, risk-sensitive, adaptive robust control problem corresponding2

to (2) is:
sup

ϕ0∈A 0
inf

Q∈Qϕ0 ,Ψ0
y0 ,0

EQeγ ∑
T
t=0 β t rt (Xt ,ϕt (Yt )), (11)

where, for simplicity of writing, here and everywhere below, with slight abuse of
notations, we set rT (x,a) = rT (x). In next section we will show that a solution to this
problem can be given in terms of the discounted adaptive robust Bellman equations
associated to it.

3.1 Adaptive robust Bellman equation

Towards this end we aim our attention at the following adaptive robust Bellman
equations

WT (y) = eγβ T rT (x), y ∈ EY ,

Wt(y) = max
a∈A

inf
θ∈τ(t,c)

∫
EY

Wt+1(y′)eγβ t rt (x,a)Q(dy′ | t,y,a,θ), (12)

y ∈ EY , t = T −1, . . . ,0,

where we recall that y = (x,c).

2 Since γ > 0, we omit the factor 1/γ .
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Remark 3 Clearly, in (12), the exponent eγβ t rt (x,a) can be factored out, and Wt can be
written as

Wt(y) = max
a∈A

(
eγβ t rt (x,a) · inf

θ∈τ(t,c)

∫
EY

Wt+1(y′)Q(dy′ | t,y,a,θ)
)
.

Nevertheless, in what follows, we will keep similar factors inside of the integrals,
mostly for the convenience of writing as well as to match the visual appearance of
classical Bellman equations.

We will study the solvability of this system. We start with Lemma 1 below, where,
under some additional technical assumptions, we show that the optimal selectors in
(12) exist; namely, for any t ∈T ′, and any y = (x,c)∈ EY , there exists a measurable
mapping ϕ∗t : EY → A, such that

Wt(y) = inf
θ∈τ(t,c)

∫
EY

Wt+1(y′)eγβ t rt (x,ϕ∗t (y))Q(dy′ | t,y,ϕ∗t (y),θ).

In order to proceed, for the sake of simplicity, we will assume that under measure
Pθ , for each t ∈T , the random variable Zt has a density with respect to the Lebesgue
measure, say fZ(z;θ), z ∈ Rm. In this case we have∫

EY

Wt+1(y′)Q(dy′ | t,y,a,θ) =
∫
Rm

Wt+1(G(t,y,a,z)) fZ(z;θ)dz,

where G(t,y,a,z) is given in (5).
Additionally, we take the standing assumptions:

(i) for any a and z, the function S(·,a,z) is continuous;
(ii) for each z, the function fZ(z; ·) is continuous;

(iii) for each t ∈T ′, the function R(t, ·, ·) is continuous.

Then, the following result holds true.

Lemma 1 The functions Wt , t = T,T −1, . . . ,0, are lower semi-continuous (l.s.c.),
and the optimal selectors ϕ∗t , t = T −1, . . . ,0, realizing maxima in (12) exist.

Proof Since rT is continuous and bounded, so is the function WT . Since G(T −
1, ·,a,z) is continuous, then, WT (G(T − 1, ·,a,z)) is continuous. Consequently, re-
calling again that y = (x,c), for each a, the function

wT−1(y,a,θ) :=
∫
R

WT (G(T −1,y,a,z))eγβ T−1rT−1(x,a) fZ(z;θ)dz

= eγβ T−1rT−1(x,a)
∫
R

eγβ T rT (S(x,a,z)) fZ(z;θ)dz

is continuous in (y,θ).
Next, we will apply [BS78, Proposition 7.33] by taking (in the notations of

[BS78])
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X = EY ×A = Rn×Θ ×A, x = (y,a),

Y =Θ , y = θ ,

D =
⋃

(y,a)∈EY×A

{(y,a)}× τ(T −1,c),

f (x,y) = wT−1(y,a,θ).

Note that in view of the prior assumptions, Y is metrizable and compact. Clearly
X is metrizable. From the above, f is continuous, and thus lower semi-continuous.
Since τ(T −1, ·) is compact-valued and u.h.c. on EY ×A, then according to [Bor85,
Proposition 11.9], the set-valued function τ(T − 1, ·) is closed, which implies that
its graph D is closed [Bor85, Definition 11.5]. Also note that the cross section Dx =
D(y,a) = {θ ∈Θ : (y,a,θ) ∈ D} is given by D(y,a)(T −1) = τ(T −1,c). Hence, by
[BS78, Proposition 7.33], the function

w̃T−1(y,a) = inf
θ∈τ(T−1,c)

(wT−1(y,a,θ)), (y,a) ∈ EY ×A,

is l.s.c.. Consequently, the function ŵT−1(y,a)=−w̃T−1(y,a) is upper semi-continuous
(u.s.c). Thus, by [BS78, Proposition 7.34], the function−WT−1(y)=−maxa∈Aw̃T−1(y,a)=
mina∈AŵT−1(y,a) is u.s.c., so that WT−1(y) is l.s.c.. Moreover, since A is finite, there
exists an optimal selector ϕ∗T−1, that is WT−1(y) = w̃T−1(y,ϕ∗T−1(y)).

Proceeding to the next step, note that WT−1(G(T −2,y,a,z))eγβ T−2rT2 (x,a) is l.s.c.
and positive, hence bounded from below. Therefore, according to [BS78, Proposi-
tion 7.31], the function

wT−2(y,a,θ) =
∫
R

WT−1(G(T −2,y,a,z))eγβ T−2rT−2(x,a) fZ(z;θ)dz

is l.s.c.. The rest of the proof follows in the analogous way. �

Next, we will prove an auxiliary result needed to justify the mathematical oper-
ations conducted in the proof of the main result – Theorem 1. Define the functions
Ut and U∗t as follows: for ϕ t ∈A t and y ∈ EY ,

Ut(ϕ
t ,y) = eγβ t rt (x,ϕt (y)) inf

Q∈Qϕt ,Ψ t
y,t

EQeγ ∑
T
k=t+1 β krk(Xk,ϕk(Yk)), t ∈T ′, (13)

U∗t (y) = sup
ϕt∈A t

Ut(ϕ
t ,y), t ∈T ′, (14)

U∗T (y) = eγβ T rT (x). (15)

We now have the following result.

Lemma 2 For any t ∈T ′, and for any ϕ t ∈A t , the function Ut(ϕ
t , ·) is lower semi-

ananlytic (l.s.a.) on EY . Moreover, there exists a sequence of universally measurable
functions ψ∗k , k = t, . . . ,T −1 such that
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Ut(ϕ
t ,y) = eγβ t rt (x,ϕt (y))E

Qϕt ,ψt,∗
y,t

eγ ∑
T
k=t+1 β krk(Xk,ϕk(Yk)). (16)

Proof According to (9), and using the definition of Qϕt ,Ψ t

y,t , we have that

Ut(ϕ
t ,y) = inf

ψt∈Ψ
t

∫
EY

· · ·
∫

EY

eγ ∑
T
k=t β krk(xk,ϕk(yk))

Q(dyT |T −1,yT−1,ϕT−1(yT−1),ψT−1(yT−1)) (17)
· · ·Q(dyt+1|t,y,ϕt(y),ψt(y)).

For a given policy ϕ ∈A , define the following functions on EY

VT (y) = eγβ T rT (x),

Vt(y) = inf
θ∈τ(t,c)

∫
EY

eγβ t rt (x,ϕt (y)Vt+1(y′)Q(dy′|t,y,ϕt(y),θ), t ∈T ′.

We will prove recursively that the functions Vt are l.s.a. in y, and that

Vt(y) =Ut(ϕ
t ,y), t = 0, . . . ,T −1. (18)

Clearly, VT is l.s.a. in y.
Next, we will prove that VT−1(y) is l.s.a.. By our assumptions, the stochastic

kernel Q(·|T −1, ·, ·, ·) is Borel measurable on EY given EY ×A×Θ , in the sense of
[BS78, Definition 7.2]. Then, the integral

∫
EY

VT (y′)Q(dy′|T − 1,y,a,θ) is l.s.a. on
EY ×A×Θ according to [BS78, Proposition 7.48]. Now, we set (in the notations of
[BS78])

X = EY ×A, x = (y,a)

Y =Θ , y = θ ,

D =
⋃

(y,a)∈EY×A

{y,a}× τ(T −1,c),

f (x,y) =
∫

EY

VT (y′)Q(dy′|T −1,y,a,θ).

Note that in view of our assumptions, X and Y are Borel spaces. The set D is closed
(see the proof of Lemma 1) and thus analytic. Moreover, Dx = τ(T −1,c). Hence,
by [BS78, Proposition 7.47], for each a ∈ A the function

inf
θ∈τ(T−1,c)

∫
EY

VT (y′)Q(dy′|T −1,y,a,θ)

is l.s.a. in y. Thus, it is l.s.a. in (y,a). Moreover, in view of [BS78, Proposition 7.50],
for any ε > 0, there exists an analytically measurable function ψε

T−1(y,a) such that
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inf
θ∈τ(T−1,c)

∫
EY

VT (y′)Q(dy′|T −1,y,a,θ) =
∫

EY

VT (y′)Q(dy′|T −1,y,a,ψε
T−1(y,a))

+ ε.

Therefore, for any fixed (y,a), we obtain a sequence {ψ1/n
T−1(y,a),n ∈ N} such that

lim
n→∞

∫
EY

VT (y′)Q(dy′|T −1,y,a,ψ1/n
T−1(y,a))

= inf
θ∈τ(T−1,c)

∫
EY

VT (y′)Q(dy′|T −1,y,a,θ).

Due to the assumption that τ(T −1,c) is compact, there exists a convergent subse-
quence {ψ1/nk

T−1 (y,a),k ∈ N} such that its limit ψ∗T−1(y,a) is universally measurable
and satisfies∫

EY

VT (y′)Q(dy′|T −1,y,a,ψ∗T−1(y,a)) = inf
θ∈τ(T−1,c)

∫
EY

VT (y′)Q(dy′|T −1,y,a,θ).

Clearly, the function eγβ T−1rT−1(x,a) is l.s.a. in (y,a). Thus, since ϕT−1(y) is a Borel
measurable function, using part (3) in [BS78, Lemma 7.30] we conclude that both
eγβ T−1rT−1(x,ϕT−1(y)) and infθ∈τ(T−1,c)

∫
EY

VT (y′)Q(dy′|T −1,y,ϕT−1(y),θ) are l.s.a.
in y. Since both these functions are non-negative then, by part (4) in [BS78, Lemma
7.30], we conclude that VT−1 is l.s.a. in y. The proof that Vt is l.s.a. in y and ψ∗t exists
for t = 0, . . . ,T −2, follows analogously. We also obtain that∫

EY

Vt(y′)Q(dy′|t−1,y,a,ψ∗t−1(y,a)) = inf
θ∈τ(t−1,c)

∫
EY

Vt(y′)Q(dy′|t−1,y,a,θ),

(19)

for any t = 1, . . . ,T −1.
It remains to verify (18). For t = T −1, by (17), we have

UT−1(ϕ
T−1,y) = inf

θ∈τ(T−1,c)

∫
EY

eγβ T−1rT−1(x,ϕT−1(y))VT (y′)

Q(dy′|T −1,y,ϕT−1(y),θ)

=VT−1(y).

Therefore, UT−1(ϕ
T−1, ·) is l.s.a.. Assume that for t = 1, . . . ,T − 1, Ut(ϕ

t ,y) =
Vt(y), and it is l.s.a.. Then, for any yt−1 ∈ EY , with the notation ψ t−1 = (ψt−1,ψ

t),
we get
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Ut−1(ϕ
t−1,yt−1)

= inf
(ψt−1,ψt )∈Ψ

t−1

∫
EY

· · ·
∫

EY

eγ ∑
T−1
k=t−1 β krk(xk,ϕk(yk))+γβ T rT (xT )

T

∏
k=t

Q(dyk|k−1,yk−1,ϕk−1(yk−1),ψk−1(yk−1))

≥ inf
(ψt−1,ψt )∈Ψ

t−1

∫
EY

eγβ t−1rt−1(xt−1,ϕt−1(yt−1))Vt(yt)

Q(dyt |t−1,yt−1,ϕt−1(yt−1),ψt−1(yt−1))

− inf
θ∈τ(t−1,c)

∫
EY

eγβ t−1rt−1(xt−1,ϕt−1(yt−1))Vt(yt)

Q(dyt |t−1,yt−1,ϕt−1(yt−1),ψt−1(yt−1))

=Vt−1(yt−1).

Next, fix ε > 0, and let ψ t,ε denote an ε-optimal selectors sequence starting at time
t, namely

∫
EY

· · ·
∫

EY

eγ ∑
T
k=t β krk(xk,ϕk(yk))

T

∏
k=t+1

Q(dyk|k−1,yk−1,ϕk−1(yk−1),ψ
t,ε
k−1(yk−1))

≤Ut(ϕ
t ,yt)+ ε.

Consequently, for any yt−1 ∈ EY ,

Ut−1(ϕ
t−1,yt−1) = inf

(ψt−1,ψt )∈Ψ
t−1

∫
EY

· · ·
∫

EY

eγ ∑
T
k=t−1 β krk(xk,ϕk(yk))

T

∏
k=t

Q(dyk|k−1,yk−1,ϕk−1(yk−1),ψk−1(yk−1))

≤ inf
ψt−1∈τ(t−1,c)

∫
EY

· · ·
∫

EY

eγ ∑
T
k=t−1 β krk(xk,ϕk(yk))

T

∏
k=t+1

Q(dyk|k−1,yk−1,ϕk−1(yk−1),ψ
t,ε
k−1(yk−1))

· · ·Q(dyt |t−1,yt−1,ϕt−1(yt−1),ψt−1(yt−1))

≤ inf
ϕt−1∈τ(t−1,c)

∫
EY

Ut(ϕ
t ,yt)Q(dyt |t−1,yt−1,ϕt−1(yt−1),ψt−1(yt−1))+ ε

= inf
ϕt−1∈τ(t−1,c)

∫
EY

Vt(yt)Q(dyt |t−1,yt−1,ϕt−1(yt−1),ψt−1(yt−1))+ ε

=Vt−1(yt−1)+ ε.

Since ε is arbitrary, (18) is justified. In particular, Ut(ϕ
t , ·) is l.s.a. for any t ∈ T ′.

Finally, in view of (19), the equality (16) follows immediately. This concludes the
proof. �
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Now we are in the position to prove the main result in this paper.

Theorem 1 For t = 0, . . . ,T , we have that

U∗t ≡Wt . (20)

Moreover, the policy ϕ∗ derived in Lemma 1 is adaptive robust-optimal, that is

U∗t (y) =Ut(ϕ
t,∗,y), t = 0, . . . ,T −1. (21)

Proof We proceed similarly as in the proof of [Iye05, Theorem 2.1], and via back-
ward induction in t = T,T −1, . . . ,1,0.

For t = T , clearly, U∗T (y) = WT (y) = eγβ T rT (x) for all y ∈ EY . For t = T − 1 we
have, for y ∈ EY ,

U∗T−1(y) = sup
ϕT−1=ϕT−1∈A T−1

inf
θ∈τ(T−1,c)

∫
EY

eγβ T−1rT−1(x,ϕT−1(y))WT (y′)

Q(dy′ | T −1,yT−1,ϕT−1(y),θ)

= max
a∈A

inf
θ∈τ(T−1,c)

∫
EY

eγβ T−1rT−1(x,a)WT (y′)Q(dy′ | T −1,y,a,θ)

=WT−1(y).

From the above, using Lemma 1, we obtain that U∗T−1 is l.s.c. and bounded.
For t = T −2, . . . ,1,0, assume that U∗t+1 is l.s.c. and bounded. Recalling the no-

tation ϕ t = (ϕt ,ϕ
t+1), we thus have, y ∈ EY ,

U∗t (y) = sup
(ϕt ,ϕt+1)∈A t

inf
θ∈τ(t,c)

∫
EY

eγβ t rt (x,ϕt (y))Ut+1(ϕ
t+1,y′)Q(dy′ | t,y,ϕt(y),θ)

≤ sup
(ϕt ,ϕt+1)∈A t

inf
θ∈τ(ct ,t)

∫
EY

eγβ t rt (x,ϕt (y))U∗t+1(y
′)Q(dy′ | t,y,ϕt(y),θ)

= max
a∈A

inf
θ∈τ(t,c)

∫
EY

eγβ t rt (x,a)U∗t+1(y
′)Q(dy | t,yt ,a,θ)

= max
a∈A

inf
θ∈τ(t,c)

∫
EY

eγβ t rt (y,a)Wt+1(y′)Q(dy′ | t,y,a,θ)

=Wt(y).

Now, fix ε > 0, and let ϕ t+1,ε denote an ε-optimal control strategy starting at time
t +1, that is

Ut+1(ϕ
t+1,ε ,y)≥U∗t+1(y)− ε, y ∈ Ey.

Then, for y ∈ EY , we have
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U∗t (y) = sup
(ϕt ,ϕt+1)∈A t

inf
θ∈τ(t,c)

∫
EY

eγβ t rt (x,ϕt (y))Ut+1(ϕ
t+1,y′)Q(dy′ | t,y,ϕt(y),θ)

≥ sup
(ϕt ,ϕt+1)∈A t

inf
θ∈τ(t,c)

∫
EY

eγβ t rt (x,ϕt (y))Ut+1(ϕ
t+1,ε ,y′)Q(dy′ | t,y,ϕt(y),θ)

≥max
a∈A

inf
θ∈τ(t,c)

∫
EY

eγβ t rt (x,a)U∗t+1(y
′)Q(dy′ | t,y,a,θ)− ε

= max
a∈A

inf
θ∈τ(t,c)

∫
EY

Wt+1(y′)Q(dy′ | t,y,a,θ)− ε

=Wt(y)− ε.

Since ε was arbitrary, the proof of (20) is done. In particular, we have that for any
t ∈T , the function U∗t (·) is l.s.c. as well as bounded.

It remains to justify the validity of equality (21). We will proceed again by (back-
ward) induction in t. For t = T −1, using (20), we have that

U∗T−1(y) =WT−1(y) = eγβ T−1rT−1(x,ϕ∗T−1(y))

inf
θ∈τ(t,c)

∫
EY

eγβ T rT (x′) Q(dy′ | T −1,y,ϕ∗T−1(y),θ)

= eγβ T−1rT−1(x,ϕ∗T−1(y)) inf
Q∈QϕT−1,∗ ,ΨT−1

y,T−1

(
EQeγβ T rT (XT )

)
=UT−1(ϕ

T−1,∗,y).

Moreover, by Lemma 2, we get that

U∗T−1(y) =UT−1(ϕ
T−1,∗,y) = E

QϕT−1,∗ ,ψT−1,∗
y,T−1

eγβ T−1rT−1(x,ϕ∗T−1(y))+γβ T rT (XT ).

For t = T −2, using again (20), Lemma 1, and Lemma 2, we have

U∗T−2(y) =WT−2(y) = eγβ T−2rT−2(x,ϕ∗T−2(y))

×
∫

EY

WT−1(y′)Q(dy′ | T −2,y,ϕ∗T−2(y),ψ
∗
T−2(y,ϕ

∗
T−2(y)))

= eγβ T−2rT−2(x,ϕ∗T−2(y))

×
∫

EY

UT−1(ϕ
T−1,∗,y′)Q(dy′ | T −2,y,ϕ∗T−2(y),ψ

∗
T−2(y,ϕ

∗
T−2(y)))

= eγβ T−2rT−2(x,ϕ∗T−2(y))

×
∫

EY

(
E
QϕT−1,∗ ,ψT−1,∗

y′,T−1

eγβ T−1rT−1(x′),ϕ∗T−1(y
′))+γβ T rT (XT )

)
Q(dy′ | T −2,y,ϕ∗T−2(y),ψ

∗
T−2(y,ϕ

∗
T−2(y)))

= E
QϕT−2,∗ ,ψT−2,∗

y,T−2
eγβ T−2rT−2(x,ϕ∗T−2(y))+γβ T−1rT−1(x′),ϕ∗T−1(y

′))+γβ T rT (XT ).
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Hence, we have that U∗T−2(y) is attained at ϕT−2,∗, and therefore U∗T−2(y) =
UT−2(ϕ

T−2,∗,y). The rest of the proof of (21) proceeds in an analogous way. The
proof is complete. �

4 Exponential Discounted Tamed Quadratic Criterion Example

In this section, we consider a linear quadratic control problem under model uncer-
tainty as a numerical demonstration of the adaptive robust method. To this end, we
consider the 2-dimensional controlled process

Xt+1 = B1Xt +B2ϕt +Zt+1,

where B1 and B2 are two 2×2 matrices and Zt+1 is a 2-dimensional normal random
variable with mean 0 and convariance matrix

Σ
∗ =

(
σ
∗,2
1 σ

∗,2
12

σ
∗,2
12 σ

∗,2
2

)
,

where σ
∗,2
1 , σ

∗,2
12 , and σ

∗,2
2 are unknown. Given observations Z1, . . . ,Zt , we consider

an unbiased estimator, say Σ̂t =

(
σ̂2

1,t σ̂2
12,t

σ̂2
12,t σ̂2

2,t

)
, of the covariance matrix Σ ∗, given

as

Σ̂t =
1

t +1

t

∑
i=1

ZiZ>i ,

which can be updated recursively as

Σ̂t =
t(t +1)Σ̂t−1 + tZtZ>t

(t +1)2 .

With slight abuse of notations, we denote by Σ , Σ ∗, and Σ̂t the column vectors

Σ
> = (σ2

1 ,σ
2
12,σ

2
2 )

Σ
∗,> = (σ∗,21 ,σ∗,212 ,σ∗,22 )

Σ̂
>
t = (σ̂2

1,t , σ̂
2
12,t , σ̂

2
2,t).

The corresponding parameter set is defined as

Θ :=
{

Σ
> = (Σ1,Σ12,Σ2) ∈ R3 : 0≤ Σ1, Σ2 ≤ Σ , Σ

2
12 ≤ Σ1Σ2

}
,

where Σ is some fixed positive constant. Note that the set Θ is a compact subset of
R3.
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Putting the above together and considering the augmented state process Yt =
(Xt , Σ̂t), t ∈T , and some finite control set A⊂R2, we get that the function S defined
in (1) is given by

S(x,a,z) = B1x+B2a+ z, x,z ∈ R2, a ∈ A,

and the function R(t,c,z) showing in (3) satisfies that

R(t,c,z) = (c̄1, c̄2, c̄3)
>,

(
c̄1 c̄3
c̄3 c̄2

)
=

(t +1)(t +2)
(

c1 c3
c3 c2

)
+(t +1)zz>

(t +2)2 ,

where z ∈ R2, t ∈ T ′, c = (c1,c2,c3). Then, function G defined in (5) is specified
accordingly.

It is well-known that
√

t +1(Σ̂t−Σ ∗) converges weakly to 0-mean normal dsitri-
bution with covariance matrix

MΣ =

 2σ
∗,4
1 2σ

∗,2
1 σ

∗,2
12 2σ

∗,4
12

2σ
∗,2
1 σ

∗,2
12 σ

∗,2
1 σ

∗,2
2 +σ

∗,4
12 2σ

∗,2
12 σ

∗,2
2

2σ
∗,4
12 2σ

∗,2
12 σ

∗,2
2 2σ

∗,4
2

 .

We replace every entry in MΣ with the corresponding estimator at time t ∈ T ′ and
denote by M̂t(Σ̂t) the resulting matrix. With probability one, the matrix M̂t(Σ̂t) is
positive-definite. Therefore, we get the confidence region for σ

∗,2
1 , σ

∗,2
12 , and σ

∗,2
2 as

τ(t,c) =
{

Σ ∈Θ : (t +1)(Σ − c)>M̂−1
t (c)(Σ − c)≤ κ

}
,

where κ is the 1−α quantile of χ2 distribution with 3 degrees of freedom for some
confidence level 0 < α < 1.

We further take functions rT (x) = min{b1,max{b2,x>K1x}} and

rt(x,a) = min{b1,max{b2,x>K1x+a>K2a}},

t ∈T ′, where x,a∈R2, b1 > 0, b2 < 0, and K1 and K2 are two fixed 2-by-2 matrices
with negative trace.

For this example, all conditions of the adaptive robust framework of Section 2
are easy to verify, except for the u.h.c. property of set-valued function τ(t, ·), which
we establish in the following lemma.

Lemma 3 For any t ∈T ′, the set valued function τ(t, ·) is upper hemi-continuous.

Proof Fix any t ∈ T ′ and c0 ∈Θ . According to our earlier discussion, the matrix
M̂t(c0) is positive-definite. Hence, its inverse admits the Cholesky decomposition
M̂−1

t (c0) = Lt(c0)L>t (c0). Consider the change of coordinate system via the linear
transformation L c = L>t (c0)c, and we name it system-L . Let E ⊂Θ be open and
such that τ(t,c0) ⊂ E. Note that L τ(t,c0) is a closed ball centered at L c0 in the
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system-L . Also, the mapping L is continuous and one-to-one, hence L E is an
open set and L τ(t,c0)⊂L E. Then, we have that there exists an open ball Br(L c0)
in the system-L centered at L c0 with radius r such that L τ(t,c0) ⊂ Br(L c0) ⊂
L E.

Any ellipsoid centered at c′ in the original coordinate system has representation
(c− c′)>F(c− c′) = 1 which can be written as (L>t c− L>t c′)L−1F(L>)−1(L>c−
L>c′) = 1. Hence, it is still an ellipsoid in the L -system after transformation. To
this end, we define on Θ a function h(c) := ‖L c−L c0‖+max{ri(c), i = 1,2,3},
where ‖ · ‖ is the Euclidean norm in the system-L , and ri(c), i = 1,2,3, are the
lengths of the three semi axes of the ellipsoid L τ(t,c). It is clear that ri(c), i= 1,2,3
are continuous functions.

Next, it is straightforward to check that f is a non-constant continuous function.
Therefore, we consider the set D := {c ∈Θ : h(c)< r} and see that it is an open set
in Θ and non-empty as c0 ∈ D. Moreover, for any c ∈ D, we get that the ellipsoid
L τ(t,c)⊂ Br(L c0). Hence, τ(t,c)⊂ E, and we conclude that τ(t, ·) is u.h.c.. �

Thus, according to Theorem 1, the dynamic risk sensitive optimization problem
under model uncertainty can be reduced to the Bellman equations given in (12):

WT (y) = eγβ T rT (x), (22)

Wt(y) = sup
a∈A

inf
θ∈τ(t,c)

∫
R2

Wt+1(G(t,y,a,z))eγβ t (rt (x,a)) fZ(z;θ)dz, (23)

y = (x,c1,c2,c3) ∈ EY , t = T −1, . . . ,0,

where fZ(·;θ) is the density function for two dimensional normal random variable
with mean 0 and covariance parameter θ . In the next section, using (22)-(23), we
will compute numerically Wt by a machine learning based method. Note that the
dimension of the state space EY is five in the present case, for which the traditional
grid-based numerical method becomes extremely inefficient. Hence, we employ the
new approach introduced in [CL19] to overcome the challenges met in our high
dimensional robust stochastic control problem.

5 Machine Learning Algorithm and Numerical Results

In this section, we describe our machine learning based method and present the nu-
merical results for our example. Similarly to [CL19], we discretize the state space
the relevant state space in the spirit of the regression Monte Carlo method and adap-
tive design by creating a random (non-gridded) mesh for the process Y = (X ,C).
Note that the component X depends on the control process, hence at each time t we
randomly select from the set A a value of ϕt , and we randomly generate a value of
Zt+1, so to simulate the value of Xt+1. Next, for each t, we construct the convex hull
of simulated Yt and uniformly generate in-sample points from the convex hull to
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obtain a random mesh of Yt . Then, we solve the equations (22)–(23), and compute
the optimal trading strategies at all mesh points.

The key idea of our machine learning based method is to utilize a non-parametric
value function approximation strategy called Gaussian process surrogate. For the
purpose of solving the Bellman equations (22)–(23), we build GP regression model
for the value function Wt+1(·) so that we can evaluate∫

R2
Wt+1(G(t,y,a,z))eγαt (rt (x,a)) fZ(z;θ)dz.

We also construct GP regression model for the optimal control ϕ∗. It permits us
to apply the optimal strategy to out-of-sample paths without actual optimization,
which allows for a significant reduction of the computational cost.

As the GP surrogate for the value function Wt we consider a regression model
W̃t(y) such that for any y1, . . . , yN ∈ EY , with yi 6= y j for i 6= j, the random vari-
ables W̃t(y1), . . . , W̃t(yN) are jointly normally distributed. Then, given training data
(yi,Wt(Y i)), i = 1, . . . , N, for any y ∈ EY , the predicted value W̃t(y), providing an
estimate (approximation) of Wt(y) is given by

W̃ (y) =
(
k(y,y1), . . . ,k(y,yN)

)
[K+ ε

2I]−1 (Wt(y1), . . . ,Wt(yN)
)T

,

where ε is a tuning parameter, I is the N×N identity matrix and the matrix K is
defined as Ki, j = k(yi,y j), i, j = 1, . . . , N. The function k is the kernel function for
the GP model, and in this work we choose the kernel as the Matern-5/2. Fitting the
GP surrogate W̃t means to estimate the hyperparameters inside k through the training
data (yi,Wt(yi)), i = 1, . . . , N for which we take ε = 10−5. The GP surrogates for
ϕ∗ is obtained in an analogous way.

Given the mesh points {yi
t , i= 1, . . . , Nt , t ∈T ′}, the overall algorithm proceeds

as follows:
Part A: Time backward recursion for t = T −1, . . . ,0.

1. Assume that Wt+1(yi
t+1), and ϕ∗t+1(y

i
t+1)= (ϕ1,∗

t+1(y
i
t+1),ϕ

2,∗
t+1(y

i
t+1)), i= 1, . . . ,Nt ,

are numerically approximated as W t+1(yi
t+1), ϕ

1,∗
t+1(y

i
t+1) and

ϕ
2,∗
t+1(y

i
t+1), i = 1, . . . ,Nt , respectively. Also suppose that the corresponding GP

surrogates W̃t+1, ϕ̃
1,∗
t+1, and ϕ̃

2,∗
t+1 are fitted through training data (yi

t+1,W t+1(yi
t+1)),

(yi
t+1,ϕ

1,∗
t+1(y

i
t+1)), and (yi

t+1,ϕ
2,∗
t+1(y

i
t+1)), i = 1, . . . ,Nt , respectively.

2. For time t, any a ∈ A, θ ∈ τ(t,c) and each yi
t , i = 1, . . . ,Nt , use one-step Monte

Carlo simulation to estimate the integral

wt(y,a,θ) =
∫
R2

Wt+1(G(t,y,a,z))eγαt (rt (x,a)) fZ(z;θ)dz.

For that, if Z1
t+1, . . . , ZM

t+1 is a sample of Zt+1 drawn from the normal distri-
bution corresponding to parameter θ , where M > 0 is a positive integer, then
estimate the above integral as
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w̃t(y,a,θ) =
1
M

M

∑
i=1

W̃t+1(G(t,y,a,Zi
t+1))e

γαt (rt (x,a)).

3. For each yi
t , i = 1, . . . , Nt , and any a ∈ A, compute

wt(yi
t ,a) = inf

θ∈τ(t,c)
w̃t(yi

t ,a,θ).

4. Compute
W t(yi

t) = max
a∈A

wt(yi
t ,a),

and obtain a maximizer ϕ
∗
t (y

i
t) = (ϕ1,∗

t (yi
t),ϕ

2,∗
t (yi

t)), i = 1, . . . ,Nt .
5. Fit a GP regression model for Vt( ·) using the results from Step 4 above. Fit GP

models for ϕ
1,∗
t ( ·) and ϕ

2,∗
t ( ·) as well; these are needed for obtaining values of

the optimal strategies for out-of-sample paths in Part B of the algorithm.
6. Goto 1: Start the next recursion for t−1.

Part B: Forward simulation to evaluate the performance of the GP surrogates ϕ
1,∗
t ( ·)

and ϕ
2,∗
t ( ·), t = 0, . . . ,T −1, over the out-of-sample paths.

1. Draw K > 0 samples of i.i.d. Z∗,i1 , . . . ,Z∗,iT , i = 1, . . . ,K, from the normal distri-
bution corresponding to the assumed true parameter θ ∗.

2. All paths will start from the initial state y0. The state along each path i is updated
according to G(t,yi

t , ϕ̃
∗
t (y

i
t),Z

∗,i
t+1), where ϕ̃∗t = (ϕ̃1,∗

t , ϕ̃2,∗
t ) is the GP surrogate

fitted in Part A. Also, compute the running reward rt(xi
t , ϕ̃
∗
t (y

i
t)).

3. Obtain the terminal reward rT (xi
T ), generated by ϕ̃∗ along the path correspond-

ing to the sample of Z∗,i1 , . . . , Z∗,iT , i = 1, . . . , K, and compute

W ar :=
1
γ

ln

(
1
K

K

∑
i=1

eγ(∑T−1
t=0 β t rt (xi

t ,ϕ̃
∗
t (y

i
t ))+β T rT (xi

T ))

)
(24)

as an estimate of the performance of the optimal adaptive robust risk sensitive
strategy ϕ∗.

For comparison, we also analyze the optimial risk sensitive strategies of the adap-
tive and strong robust control methods. In (23), if we take τ(t,c) = {c} for any t,
then we obtain the adaptive risk sensitive strategy. On the other hand, by taking
τ(t,c) = Θ for any t and c, we get the strong robust strategy. We will compute
W ad and W sr the risk sensitive criteria of adaptive and strong robust, respectively, in
analogy to (24).

Next, we apply the machine learning algorithm described above by solving (22)–
(23) for a specific set of parameters. In particular, we take: T = 10 with one period
of time corresponding to one-tenth of a year; the discount factor being equal to 0.3
or equivalently β = 0.3; the initial state X>0 = (2,2); the confidence level α = 0.1; in
Part A of our algorithm the number of one-step Monte Carlo simulations is M = 100;
the number of forward simluations in Part B is taken K = 2000; the control set A is
approximated by the compact set [−1,1]2; the relevant matrices are
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B1 = B2 =

(
0.5 −0.1
−0.1 0.5

)
, K1 =

(
0.7 −0.2
−0.2 0.7

)
, K2 =

(
−200 100
100 −200

)
.

The assumed true covariance matrix for Zt , t ∈T , as well as initital guess are

Σ
∗ =

(
0.009 0.006
0.006 0.016

)
, Σ̂0 =

(
0.00625 0.004

0.004 0.02025

)
,

respectively. The parameter set is chosen as Θ = τ(0,c0), where
c>0 = (0.00625,0.004,0.02025). For all three control approaches, we compute W ar,
W ad, and W sr, respectively, for the risk sensitive parameters γ = 0.2 and γ = 1.5.

Finally, we report on the computed values of the optimality criterion correspond-
ing to three different methods: adaptive robust (AR), adaptive (AD) and strong ro-
bust (SR).

W ar W ad W sr

γ = 0.2 -319.81 -323.19 -329.53

γ = 1.5 -427.76 -427.97 -442.97

Table 1 Risk sensitive criteria for AR, AD, and SR.
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[BR11] N. Bäuerle and U. Rieder. Markov decision processes with applications to finance.
Universitext. Springer, Heidelberg, 2011.
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