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ABSTRACT
Automatic construction of a taxonomy supports many applications
in e-commerce, web search, and question answering. Existing taxon-
omy expansion or completion methods assume that new concepts
have been accurately extracted and their embedding vectors learned
from the text corpus. However, one critical and fundamental chal-
lenge in �xing the incompleteness of taxonomies is the incomplete-
ness of the extracted concepts, especially for those whose names
have multiple words and consequently low frequency in the corpus.
To resolve the limitations of extraction-based methods, we propose
G��T��� to enhance taxonomy completion by identifying positions
in existing taxonomies that need new concepts and then generating
appropriate concept names. Instead of relying on the corpus for
concept embeddings, G��T��� learns the contextual embeddings
from their surrounding graph-based and language-based relational
information, and leverages the corpus for pre-training a concept
name generator. Experimental results demonstrate that G��T���
improves the completeness of taxonomies over existing methods.
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Frequency of concept in more than 30 million abstracts from the PubMed database

The MeSH Taxonomy:
(Medical Subject Headings, produced
by National Library of Medicine)

Figure 1: A great number of concepts that are desired to be in
the taxonomies (e.g., MeSH) are very rare in even large-scale
text corpus (e.g., 30 million PubMed abstracts). So it is hard
to extract these concepts or learn their embedding vectors.
Concept names need to be generated rather than extracted
to �x the incompleteness of taxonomies.

1 INTRODUCTION
Taxonomies have been widely used to enhance the performance
of many applications such as question answering [33, 34] and per-
sonalized recommendation [10]. With the in�ux of new content in
evolving applications, it is necessary to curate these taxonomies
to include emergent concepts; however, manual curation is labor-
intensive and time-consuming. To this end, many recent studies
aim to automatically expand or complete an existing taxonomy. For
example, given a new concept, Shen et al. measured the likelihood
of each existing concept in the taxonomy being its hypernym and
then added it as a new leaf node [24]. Manzoor et al. extended the
measurement to be taxonomic relatedness with implicit relational
semantics [16]. Zhang et al. predicted the position of the new con-
cept considering hypernyms and hyponyms [40]. In all of these
cases, the distance between concepts was measured using their
embeddings learned from some text corpus, with the underlying
assumption that new concepts could be extracted accurately and
found frequently in the corpus.

We argue that such an assumption is inappropriate in real-world
taxonomies based on the frequency of concepts in Medical Subject
Headings (MeSH), a widely-used taxonomy of approximately 30,000
terms that is updated annually and manually, in a large-scale public
text corpus of 30 million paper abstracts (about 6 billion tokens)
from the PubMed database. We observe that many concepts that
have multiple words appear fewer than 100 times in the corpus
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Figure 2: Existingmethods extracted a concept candidate list
from the corpus and assumed that the top concepts (high fre-
quency or quality) could be added into existing taxonomies.
However, frequent concepts may not be quali�ed and many
quali�ed concepts are very rare.We�nd that though the con-
cept names are not frequent, their tokens are. Our idea is
to generate concept names at candidate positions with rela-
tional contexts to complete taxonomies. Our solution G���
T��� is pre-trained on the corpus and learns to generate the
names token by token on the existing taxonomy.

(as depicted by the red outlined nodes in Figure 1) and around
half of the terms cannot be found in the corpus (see Table 1 in
Section 4). Concept extraction tools [38] often fail to �nd them
at the top of a list of over half a million concept candidates; and
there is insu�cient data to learn their embedding vectors. The
incompleteness of concepts is a critical challenge in taxonomy
completion, and has not yet been properly studied.

Despite the low frequency of many multi-gram concepts in a text
corpus, the frequency of individual words is naturally much higher.
Inspired by recent advances in text generation [19, 35], we propose
a new task, “taxonomy generation”, that identi�es whether a new
concept �ts in a candidate position within an existing taxonomy,
and if it does �t, generates the concept name token by token.

The key challenge lies in the lack of information for accurately
generating the names of new concepts when their full names do not
(frequently) appear in the text corpus. To address this challenge, our
framework for enhancing taxonomy completion, called G��T���,
has the following novel design features (see Figure 2 and 3):

First, G��T��� has an encoder-decoder scheme that learns to
generate any concept in the existing taxonomy in a self-supervised
manner. Suppose an existing concept E is masked. Two types of
encoders are leveraged to fuse both sentence-based and graph-based
representations of the masked position learned from the relational
contexts. One is a sequence encoder that learns the last hidden
states of a group of sentences that describe the relations such as “E?
is a class of” and “E2 is a subclass of”, when E? and E2 are parent and
child concepts of the position, respectively. The other is a graph
encoder that aggregates information from two-hop neighborhoods
in the top-down subgraph (with E at the bottom) and bottom-up

subgraph (with E at the top). The fused representations are fed
into a GRU-based decoder to generate E ’s name token by token
with a special token [EOS] at the end. With the context fusion,
the decoding process can be considered as the completion of a
group of sentences (e.g., “E? is a class of” and “E2 is a subclass
of”) with the same ending term while simultaneously creating a
hyponym/hypernym node in the top-down/bottom-up subgraphs.

Second,G��T��� is pre-trained on a large-scale corpus to predict
tokens in concept names. The pre-training task is very similar to
the popular Mask Token Prediction task [6] except that the masked
token must be a token of a concept that appears in the existing
taxonomy and is found in a sentence of the corpus.

Third, G��T��� performs the task of candidate position clas-
si�cation simultaneously with concept name generation. It has a
binary classi�er that uses the �nal state of the generated concept
name to predict whether the concept is needed at the position. We
adopt negative sampling to create “invalid” candidate positions in
the existing taxonomy. The classi�er is attached after the name
generation (not before it) because the quality of the generated name
indicates the need for a new concept at the position.

Furthermore, we develop G��T���++ to enhance extraction-
based methods, when a set of new concepts, though incomplete,
needs to be added to existing taxonomies (as described in existing
studies). In G��T���++, we apply G��T��� to generate concept
names in order to expand the set of new concepts. We then use the
extraction-based methods with the expanded set to improve the
concept/taxonomy completeness.

The main contributions of this work are summarized as follows:

• We propose a new taxonomy completion task that identi�es
valid positions to add new concepts in existing taxonomies
and generates their names token by token.

• We design a novel framework G��T��� that has three novel
designs: (1) an encoder-decoder scheme that fuses sentence-
based and graph-based relational representations and learns
to generate concept names; (2) a pre-training process for
concept token prediction; and (3) a binary classi�er to �nd
valid candidate positions. Furthermore, G��T���++ is devel-
oped to enhance existing extraction-based methods with the
generated concepts, when a set of new concepts are available.

• Experiments on six real-world taxonomy data sets demon-
strate that (1) concept generation can signi�cantly improve
the recall and completeness of taxonomies; (2) even some
concepts that do not appear in the corpus can be accurately
generated token by token at valid positions; and (3) fusing
two types of relational representations is e�ective.

2 PROBLEM DEFINITION
Traditionally, the input of the taxonomy completion task includes
two parts [16, 24, 36, 40]: (1) an existing taxonomy T0 = (V0, E0)
and (2) a set of new concepts C that have been either manually
given or accurately extracted from text corpus D. The overall goal
is completing the existing taxonomy T0 into a larger one T =
(V0 [ C, E0 ).

We argue that existing technologies, which de�ned the task
as described above, could fail when concepts cannot be extracted
due to their low frequency, or cannot be found in the corpus. We
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Figure 3: Architecture of G��T���. Suppose the concept “bacterial outer membrane proteins” is masked. Given the masked
position in the taxonomy, the model learns to generate the name of the concept. It has two types of encoders to represent the
relational contexts of the position. Sequence encoders learn a group of sentences that describe the relations with the masked
concept. Graph encoders learn themasked concept’s embedding by aggregating information from its top-down and bottom-up
subgraphs. The fused sentence- and graph-based hidden states are used to predict whether the masked position is valid (Task
1). They are fed into GRU decoders to generate the concept’s name (Task 2).

aim to mitigate this problem by generating the absent concepts to
achieve better taxonomy completion performance. Suppose E =
(C1, C2, . . . , C)E ), where C8 2 W is the 8-th token in the name of
concept E , )E is the number of E ’s tokens (length of E), W is the
token vocabulary which includes words and punctuation marks
(e.g., comma).

De�nition 2.1 (Taxonomy). We follow the de�nition of taxonomy
in [40]. A taxonomy T = (V, E) is a directed acyclic graph where
each node E 2 V represents a concept (i.e., a word or a phrase)
and each directed edge 〈D, E〉 2 E implies a relation between a
parent-child pair such as “is a type of” or “is a class of”. We expect
the taxonomy to follow a hierarchical structure where concept D is
the most speci�c concept that is more general than concept E . Note
that a taxonomy node may have multiple parents.

In most taxonomies, the parent-child relation can be speci�ed
as a hypernymy relation between concept D and E , where D is the
hypernym (parent) and E is the hyponym (child). We use the terms
“hypernym” and “parent”, “hyponym” and “child” interchangeably
throughout the paper.

De�nition 2.2 (Candidate Position). Given two sets of concepts
V? ,V2 ⇢ V0, if E2 is one of the descendants of E? in the existing
taxonomy for any pair of concepts E? 2 V? and E2 2 V2 , then
a candidate position acts as a placeholder for a new concept E . It
becomes a valid position when E satis�es (1) E? is a parent of E and

(2) E2 is a child of E . When it is a valid position, we add edges 〈E? , E〉
and 〈E, E2〉 and delete redundant edges to update E0 .

We reduce the task of generating concept names for taxonomy
completion as the problem below: Given text corpus D and a can-
didate position on an existing taxonomy T0, predict whether the
position is valid, and if yes, generate the name of the concept E from
the token vocabulary W (extracted from D) to �ll in the position.

3 GENTAXO: GENERATE CONCEPT NAMES
Overall architecture. Figure 3 presents the architecture of G���

T���. The goal is to learn from an existing taxonomy to identify
valid candidate positions and generate concept names at those posi-
tions. Given a taxonomy, it determines valid candidate positions by
masking an existing concept in the taxonomy; it also determines in-
valid candidate positions using negative sampling strategies which
will be discussed in Section 3.2.

Here we focus on the valid positions and masked concepts. As
shown in the left bottom side of Figure 3, suppose the term “bacterial
outer membrane proteins” is masked. G��T��� adopts an encoder-
decoder scheme in which the encoders represent the taxonomic
relations in forms of sentences and subgraphs (see the middle part
of the �gure) and the decoders perform two tasks to achieve the
goal (see the right-hand side of the �gure).
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3.1 Encoders: Representing Taxonomic
Relations

Here we introduce how to represent the taxonomic relations into
sentences and subgraphs, and use sequence and graph encoders to
generate and fuse the relational representations.

3.1.1 Representing Taxonomic Relations as Sentences. Given a tax-
onomy T0 = (V0, E0) and a candidate position for masked concept
E , we focus on three types of taxonomic relations between the
masked concept E and some concepts D 2 V0:

(1) Parent or ancestor. Suppose there is a sequence of nodes
(E1, E2, . . . , E; ) where E1 = D, E; = E , and 〈E8 , E8+1〉 2 E0 for
any 8 = 1, . . . , ; � 1. In other words, there is a path from D
to E in T0. When ; = 1, D is a parent of E ; when ; � 2, D
is an ancestor. We denote D = (C1, C2, . . . , C)D ), where )D is
the length of concept D and {C8 })D8=1 are its tokens. Then we
create a sentence with the template below:
“C1 C2 . . . C)D is a class of [MASK]”

And we denote the set of parent or ancestor nodes of E (i.e.,
all possible D as described above) by V? (E).

(2) Child or descendant. Similar as above expect E1 = E and E; = D,
we have a path from E to D. When ; = 1, D is a child of E ;
when ; � 2, D is a descendant. Then we create a sentence:
“C1 C2 . . . C)D is a subclass of [MASK]”

We denote the set of child or descendant nodes of E byV2 (E).
(3) Sibling. If there is a concept ? 2 V0 and two edges 〈?, E〉 and

〈?, D〉, then D is a sibling node of E . We create a sentence:
“C1 C2 . . . C)D is a sibling of [MASK]”

Given the candidate position for concept E , we can collect a set
of sentences from its relational contexts, denoted by S(E). We ap-
ply neural network models that capture sequential patterns in the
sentences and create the hidden states at the masked position. The
hidden states are vectors that encode the related concept node D
and the relational phrase to indicate the masked concept E . The
hidden states support the tasks of concept name generation and can-
didate position classi�cation. We provide three options of sentence
encoders: BiGRU, Transformer, and SciBERT [4].

3.1.2 Representing Taxonomic Relations as Subgraphs. The rela-
tions between the masked concept E and its surrounding nodes can
be represented as two types of subgraphs:

(1) Top-down subgraph: It consists of all parent and ancestor
nodes of E , denoted by ⌧down (E) = {Vdown (E), Edown (E)},
where Vdown (E) = V? (E) and Edown (E) = {〈E8 , E 9 〉 2 E |
E8 , E 9 2 Vdown (E)}. The role of E is the very speci�c con-
cept of any other concepts in this subgraph. So, the vector
representations of this masked position should be aggre-
gated in a top-down direction. The aggregation indicates the
relationship of being from more general to more speci�c.

(2) Bottom-up subgraph: Similarly, it consists of all child and de-
scendant nodes of E , denoted by⌧up (E) = {Vup (E), Eup (E)},
whereVup (E) = V2 (E) and Eup (E) = {〈E8 , E 9 〉 2 E | E8 , E 9 2
Vup (E)}. The representations of this masked position should
be aggregated in a bottom-up direction. The aggregation in-
dicates the relationship of being from speci�c to general.

Graph encoders: We adopt two independent graph neural net-
works (GNNs) to encode the relational contexts in ⌧down (E) and
⌧up (E) separately. Given a subgraph ⌧ , GNN learns the graph-
based hidden state of every node on the �nal layer through the
graph structure, while we will use that of the node E for next steps.
E was speci�cally denoted for the masked concept node. In this

paragraph, we denote any node on ⌧ by E for convenience. We
initialize the vector representations of E randomly, denoted by v(0) .
Then, the  -layered GNN runs the following functions to generate
the representations of E on the :-th layer (: = 1, . . . , ):

a(:�1) = A��������: (
�
(u(:�1) ) : 8D 2 N(E) [⌧

 
),

v(:) = C������: (v(:�1) , a(:�1) ),

where N(E) is the set of neighbors of E in ⌧ .
There are a variety of choices forA��������: (·) andC������: (·).

For example, A��������: (·) can be mean pooling, max pooling,
graph attention, and concatenation [9, 13]. One popular choice for
C������: (·) is graph convolution: v(:) = f

⇣
W(:) (v(:�1) � a(:�1) )

⌘
,

where W(:) is the weight matrix for linear transformation on the
:-th layer and f (·) is a nonlinear function.

For the masked concept E , we �nally return the graph-based
hidden state v⌧ at K-th layer, i.e., v⌧ = v( ) .

3.1.3 Representations Fusion. As aforementioned, we have a set
of sentence-based hidden states {h(B)}B2S(E) from the sentence
encoder; also, we have two graph-based hidden states v⌧down and
v⌧up from the graph encoder. In this section, we present how to
fuse these relational representations for decoding concept names.

Fusing sentence-based hidden states: We use the self-attention
mechanism to fuse the hidden states with a weight matrix Wseq:

hseq =
’

B2S(E)
F (B)·h(B), whereF (B) =

exp(f (Wseqh(B)))Õ
B0 2S(E)

exp(f (Wseqh(B 0)))
.

Fusing graph-based hidden states: We adopt a learnable weighted
sum to fuse v⌧down and v⌧up with weight matricesWdown andWup:

vgraph = V · v⌧down + (1 � V) · v⌧up ,

where V =
exp(f (Wdown ·v⌧down ))

exp(f (Wdown ·v⌧down ))+exp(f (Wup ·v⌧up ))
.

Fusing the fused sentence- and graph-based hidden states: Given
a masked concept E , there are a variety of strategies to fuse hseq
and vgraph: vfuse = F���(hseq, vgraph), such as mean pooling, max
pooling, attention, and concatenation. Take concatenation as an
example: F���(a, b) = a � b.

3.2 Decoders: Identifying Valid Positions and
Generating Concept Names

Given a masked position E , we now have the fused representa-
tions of its relational contexts vfuse from the above encoders. We
perform two tasks jointly to complete the taxonomy: one is to iden-
tify whether the candidate position is valid or not; the other is to
generate the name of concept for the masked position.
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3.2.1 Task 1: Candidate Position Classification. Given a candidate
position, this task predicts whether it is valid, i.e., a concept is
needed. If the position has a masked concept in the existing tax-
onomy, it is a valid position; otherwise, this invalid position is
produced by negative sampling. We use a three-layer feed forward
neural network (FFNN) to estimate the probability of being a valid
position with the fused representations: ?valid (E) = FFNN(vfuse).
The loss term on the particular position E is based on cross entropy:

!1 (⇥; E) = �(~E · log(?valid (E)) + (1 � ~E) · log(1 � ?valid (E))),

where ~E = 1 when E is valid as observed; otherwise, ~E = 0.

Negative sampling: Suppose a valid position is sampled by mask-
ing an existing concept E 2 V0, whose set of parent/ancestor nodes
is denoted byV? (E) and set of child/descendant nodes is denoted
byV2 (E). We create Aneg negative samples (i.e., invalid positions)
by replacing one concept in eitherV? (E) orV2 (E) by a random con-
cept inVneg (E) = V0 \ (V? (E) [V2 (E) [ {E}). We will investigate
the e�ect of negative sampling ratio Aneg in experiments.

3.2.2 Task 2: Concept Name Generation. We use a Gated Recurrent
Unit (GRU)-based decoder to generate the name of concept token
by token which is a variable-length sequence E = (E1, E2, . . . , E)E ).
As shown at the right of Figure 3, we add a special token [EOS] to
indicate the concept generation is �nished.

We initialize the hidden state of the decoder as v0 = hseq. Then
the conditional language model works as below:

vC = GRU(EC�1, vC�1 � vgraph),
? (EC |EC�1, . . . , E1, vfuse) = R������(EC�1, vC , vfuse),

where R������(·) is a nonlinear multi-layer function that predicts
the probability of token EC . Then this task can be regarded as a
sequential multi-class classi�cation problem. The loss term is:

!2 (⇥; E) = � log(? (E |vfuse)) = �
)E’
C=1

log(? (EC |E<C , vfuse)),

where E is the target sequence (i.e., the concept name) and vfuse is
the fused relational representations of the masked position.

Pre-training: To perform well in Task 2, a model needs the abil-
ity of predicting tokens in a concept’s name. So, we pre-train the
model with the task of predicting masked concept’s tokens (MCT)
in sentences of text corpus D. We �nd all the sentences in D that
contain at least one concept in the existing taxonomy T0. Given a
sentence- = (G1, G2, . . . , G=) where (GB , . . . , G4 ) = E = (E1, . . . , E)E )
is an existing concept. Here a token G< is masked (B  <  4) and
predicted using all past and future tokens. The loss function is:

!MCT (⇥;G<) = � log(? (G< |G1, . . . , G<�1, G<+1, . . . , G=)).

3.2.3 Joint Training. The joint loss function is a weighted sum of
the loss terms of the above two tasks:

! =
’
E2V0

(!1 (⇥; E) + _!2 (⇥; E)) +
Aneg’
8=1
EEneg⇠Vneg (E)!1 (⇥; Eneg),

where _ is introduced as a hyper-parameter to control the impor-
tance of Task 2 concept name generation.

#Concepts #Tokens #Edges Depth
Computer Science domains (Corpus: DBLP)

MAG-CS 29,484 16,398 46,144 6
(found in corpus) 18,338 (62.2%) 13,914 (84.9%)
OSConcepts 984 967 1,041 4
DroneTaxo 263 247 528 4

Biology/Biomedicine domains: (Corpus: PubMed)
MeSH 29,758 22,367 40,186 15
(found in corpus) 14,164 (47.6%) 22,193 (99.2%)
SemEval-Sci 429 573 452 8
SemEval-Env 261 317 261 6

Table 1: Statistics of six taxonomy data sets.

3.3 G��T���++: Enhancing Extraction-based
Methods with G��T���

While G��T��� is designed to replace the process of extracting
new concepts by concept generation, G��T���++ is an alternative
solution when the set of new concepts is given and of high quality.
G��T���++ can use any extraction-based method [16, 22–24, 31, 36,
39, 40] as the main framework and iteratively expand the set of new
concepts using concept generation (i.e., G��T���) to continuously
improve the taxonomy completeness. We choose T���E���� as
the extraction-based method G��T���++ [24].

The details of G��T���++ are as follows. We start with an ex-
isting taxonomy )0 = (V0, E0) and a given set of new concepts ⇠0.
During the 8-th iteration, we �rst use G��T��� to generate a set of
new concepts, and then expand the set of new concepts and use
the extraction-based method to update the taxonomy (8 � 1):

) 08�1 = (V 08�1, E 08�1)  G��T���()8�1),
⇠8 = (⇠8�1 [V 08�1) \ V8�1,
)8  E���������M�����()8�1,⇠8 ) .

The iterative procedure terminates when⇠8 == ;. In this procedure,
we have two hyperparameters:

(1) Concept quality threshold g : G��T��� predicts the probabil-
ity of being a valid position ?valid (E) which can be considered
as the quality of the generated concept E . We have a con-
straint on adding generated concepts to the set: ?valid (E) � g ,
for any E 2 ⇠8 . When g is bigger, the process is more cautious:
fewer concepts are added each iteration.

(2) Maximum number of iterations<0G iter: An earlier stop is
more cautious but may cause the issue of low recall.

4 EXPERIMENTAL SETTINGS
In this work, we propose G��T��� and G��T���++ to complete
taxonomies through concept generation. We conduct experiments
to answer the following research questions (RQs):

• RQ1: Do the proposed approaches perform better than ex-
isting methods on taxonomy completion?

• RQ2: Given valid positions in an existing taxonomy and a
corresponding large text corpus, which method produce more
accurate concept names, the proposed concept generation or
existing extraction-and-�lling methods?

• RQ3:How do the components and hyperparametersa impact
the performance of G��T���?
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MeSH: Acc Acc-Uni Acc-Multi
H�E���� [25] 9.89 18.28 8.49
T���E���� [24] 16.32 28.35 14.31
G����2T��� [22] 10.35 19.02 8.90
STEAM [36] 17.04 27.61 15.26
ARBORIST [16] 16.01 27.91 14.19
TMN [40] 16.53 27.52 14.85
G��T��� (Aneg = 0) 26.72 28.13 26.29
G��T��� (Aneg = 0.15) 26.93 31.34 26.07

Table 2: Evaluating the quality of generated concepts (RQ2).

4.1 Datasets
Table 1 presents the statistics of six taxonomies from two di�erent
domains we use to evaluate the taxonomy completion methods:

• MAG-CS [26]: The Microsoft Academic Graph (MAG) tax-
onomy has over 660 thousand scienti�c concepts and more
than 700 thousand taxonomic relations. We follow the pro-
cessing inT���E���� [24] to select a partial taxonomy under
the “computer science” (CS) node.

• OSConcepts [21]: It is a taxonomymanually crated in a pop-
ular textbook “Operating System Concepts" for OS courses.

• DroneTaxo:1 is a human-curated hierarchical ontology on
unmanned aerial vehicle (UAV).

• MeSH [14]: It is a taxonomy of medical and biological terms
suggested by the National Library of Medicine (NLM).

• SemEval-Sci and SemEval-Env [5]: They are from the
shared task of taxonomy construction in SemEval2016. We
select two scienti�c-domain taxonomies (“science” and “en-
vironment”). Both datasets have been used in [31, 36].

We use two di�erent corpora for the two di�erent domains of
data: (1) DBLP corpus has about 156K paper abstracts from the
computer science bibliography website; (2) PubMed corpus has
around 30M abstracts on MEDLINE. We observe that on the two
largest taxonomies, around a half of concept names and a much
higher percentage of unique tokens can found at least once in the
corpus, which indicates a chance of generating rare concept names
token by token. The smaller taxonomies show similar patterns.

4.2 Evaluation Methods
We randomly divide the set of concepts of each taxonomy into train-
ing, validation, and test sets at a ratio of 3:1:1. We build “existing”
taxonomies with the training sets following the same method in
[40]. To answer RQ1, we use Precision, Recall, and F1 score to eval-
uate the completeness of taxonomy. The Precision is calculated by
dividing the number of correctly inserted concepts by the number
of total inserted concepts, and Recall is calculated by dividing the
the number of correct inserted concepts by the number of total
concepts. For RQ2, we use accuracy (Acc) to evaluate the quality
of generated concepts. For IE models, we evaluate what percent of
concepts in taxonomy can be correctly extracted/generated when a
position is given. We use Uni-grams (Acc-Uni), and Accuracy on
Multi-grams (Acc-Multi) for scenarios where dataset contains only
Uni-grams and multi-gram concepts.

1http://www.dronetology.net/

Largest MAG-CS MeSH
two: P R F1 P R F1
H�E���� 19.61 8.23 11.59 17.77 5.66 8.59
T���E���� 36.19 20.20 25.92 26.87 11.79 16.39
G����2T��� 23.43 12.97 16.70 26.13 10.35 14.83
STEAM 36.73 23.42 28.60 26.05 11.23 15.69
ARBORIST 29.72 15.90 20.72 26.19 10.76 15.25
TMN 28.82 23.09 25.64 23.73 9.84 13.91
G��T��� 36.15 28.19 31.67 21.47 17.10 19.03
G��T���++ 36.24 28.68 32.01 22.61 17.66 19.83
Computer OSConcepts DroneTaxo
Science: P R F1 P R F1
H�E���� 21.77 13.71 16.82 43.24 30.77 35.95
T���E���� 30.43 21.32 25.07 60.98 48.08 53.77
G����2T��� 22.88 13.71 17.15 44.90 23.31 30.69
STEAM 30.71 19.79 24.07 58.33 53.85 56.00
ARBORIST 31.09 18.78 23.42 52.38 42.31 46.81
TMN 30.65 19.29 23.68 47.72 40.38 43.74
G��T��� 18.32 12.18 14.63 11.63 9.62 10.53
G��T���++ 30.18 25.89 27.87 65.96 59.62 62.63
Biology/ SemEval-Sci SemEval-Env
Biomedicine: P R F1 P R F1
H�E���� 14.63 10.34 12.12 15.79 8.11 10.72
T���E���� 24.14 29.17 26.42 23.07 16.22 19.05
G����2T��� 26.19 18.96 21.99 21.05 10.81 14.28
STEAM 35.56 27.58 31.07 46.43 35.13 39.99
ARBORIST 41.93 22.41 29.21 46.15 32.43 38.09
TMN 34.15 24.14 28.29 37.93 29.73 33.33
G��T��� 11.43 6.90 8.61 16.13 13.51 14.70
G��T���++ 38.78 32.76 35.52 48.28 37.84 42.42

Table 3: Performance on taxonomy completion: Bold for the
highest among all. Underlined for the best baseline. (RQ1)

4.3 Baselines
This work proposes the �rst method that generates concepts for
taxonomy completion. Therefore, We compare G��T��� and G���
T���++ with state-of-the-art extraction-based methods below:

• H�E���� [25] uses textual patterns and distributional sim-
ilarities to capture the “isA” relations and then organize the
extracted concept pairs into a DAG as the output taxonomy.

• T���E���� [24] adopts GNNs to encode the positional
information and uses a linear layer to identify whether the
candidate concept is the parent of the query concept.

• G����2T��� [22] uses cross-domain graph structure and
constraint-based DAG learning for taxonomy construction.

• STEAM [36] models the mini-path information to capture
global structure information to expand the taxonomy.

• ARBORIST [16] is the state-of-the-art method for taxon-
omy expansion. It aims for taxonomies with heterogeneous
edge semantics and adopts a large-margin ranking loss to
guaranteed an upper-bound on the shortest-path distance
between the predicted parents and actual parents.

• TMN [40] is the state-of-the-art method for taxonomy com-
pletion. It uses a triplet matching network to match a query
concept with (hypernym, hyponym)-pairs.
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Figure 4: E�ect of negative sampling ratio Aneg on the quality
of concept name generation.

For RQ1, the extraction-based baselines as well as G��T���++ are
o�ered the concepts from the test set if they can be extracted from
the text corpus butNOT to the pure generation-basedG��T���. For
RQ2, given a valid position in an existing taxonomy, it is considered
as accurate if a baseline can extract the desired concept from text
corpus and assign it to that position or if G��T��� can generate
the concept’s name correctly.

5 EXPERIMENTAL RESULTS
5.1 RQ1: Taxonomy Completion
Table 3 presents the results on taxonomy completion. We have three
main observations. First, T���E���� and STEAM are either the
best or the second best among all the baselines on the six datasets.
When T���E���� is better, the gap between the two methods in
terms of F1 score is no bigger than 0.7% (15.69 vs 16.39 on MeSH);
when STEAM is better, its F1 score is at least 2.2% higher than T���
�E���� (e.g., 28.60 vs 25.92 on MAG-CS). So, STEAM is generally a
stronger baseline. This is because the sequential model that encodes
the mini-paths from the root node to the leaf node learns useful
information. The sequence encoders in our G��T��� learn such
information from the template-based sentences. STEAM loses to
T���E���� on MeSH and OSConcepts due to the over-smoothing
issue of too long mini-paths. We also �nd that ARBORIST and TMN
do not perform better than STEAM. This indicates that GNN-based
encoder in STEAM captures more structural information (e.g., sib-
ling relations) than ARBORIST’s shortest-path distance and TMN’s
scoring function based on hypernym-hyponym pairs.

Second, on the largest two taxonomies MAG-CS and MeSH, G���
T��� outperforms the best extraction-based methods STEAM and
T���E���� in terms of recall and F1 score. This is because with the
module of concept generation, G��T��� can produce more desired
concepts beyond those that are extracted from the corpus. More-
over, G��T��� uses the fused representations of relational contexts.
Compared with STEAM, G��T��� encodes both top-down and
bottom-up subgraphs. When T���E���� considers one-hop ego-
nets of a query concept,G��T��� aggregatesmulti-hop information
into the fused hidden states.

Third, on the smaller taxonomies G��T��� performs extremely
bad due to the insu�cient amount of training data (i.e., fewer than
600 concepts). Note that we assumed the set of new concepts was
given for all the extraction-based methods, while G��T��� was
not given it and had to rely on name generation to “create” the set.

MeSH: PT 1 hop + 2 hops + 3 hops
(F1 score) Sibling Grand-p/c
GRU ⇥ 18.19 18.29 18.92 17.41

X 18.35 19.03 18.40 17.49
Transformer ⇥ 17.89 18.13 17.97 17.04
[27] X 18.02 18.53 18.19 17.07
SciBERT ⇥ 18.05 18.16 18.12 17.29
[4] X 18.11 18.87 18.23 17.41

Table 4: Ablation study on sequence encoders for sentence-
based relational contexts. (PT is for Pre-training. Grand-p/c
is for grandparent/grandchild.)

In a fair setting – when we allow G��T��� to use the set of new
concepts, then we have – G��T���++ performs consistently better
than all the baselines. This is because it takes advantages of both
the concept generation and extraction-and-�ll methodologies.

5.2 RQ2: Concept Name Generation
Table 2 presents the results on concept name generation/extraction:
Given a valid position on an existing taxonomy, evaluate the ac-
curacy of the concept names that are (1) extracted and �lled by
baselines or (2) generated by G��T���. Our observations are:

First, among all baselines, STEAM achieves the highest on multi-
gram concepts, and T���E���� achieves the highest accuracy on
uni-gram concepts. This is because the mini-path from root to leaf
may encode the naming system for a multi-gram leaf node.

Second, the accuracy scores of T���E����, STEAM, ARBORIST,
and TMN are not signi�cantly di�erent from each other (within
1.03%). This indicates that these extraction-based methods are un-
fortunately limited by the presence of concepts in corpus.

Third, compared G��T��� (the last two lines in the table) with
STEAM, we �nd G��T��� achieves 9.7% higher accuracy. This is
because G��T��� can assemble frequent tokens into infrequent or
even unseen concepts.

Then, do negative samples help learn to generate concept names?
In Figure 4, we show the accuracy of G��T��� given di�erent
values of negative sampling ratio Aneg.

First, We observe that G��T��� performs consistently better
than the strongest baseline STEAM in this case. And the overall
accuracy achieves the highest when Aneg = 0.15. From our point
of view, the negative samples accelerate the convergence at early
stage by providing a better gradient descending direction for loss
function. However, too many negative samples would weaken the
signal from positive examples, making it di�cult for the model to
learn knowledge from them.

Second, we �nd that the uni-gram and multi-gram concepts
have di�erent kinds of sensitivity to the ratio but comply to the
same trend. Generally uni-grams have higher accuracy because
generating fewer tokens is naturally an easier task; however, they
take a smaller percentage of the data. So the overall performance
is closer to that on multi-grams. And our G��T��� focuses on
generating new multi-gram concepts.

5.3 RQ3: Ablation Studies
In this section, we perform ablation studies to investigate two im-
portant designs of G��T���: (3.1) Sequence encoders for sentence-
based relational contexts; (3.2) Graph encoders for subgraph-based
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MeSH: (F1 score) U/D 1 hop + 2 hops + 3 hops
GAT [30] U 18.17 18.43 17.11

D 18.29 18.94 17.39
GCN [12] U 18.10 18.27 17.09

D 18.21 18.35 17.15
GraphSAGE [9] U 18.12 18.36 17.05

D 18.19 18.66 17.20
GraphTransformer [13] U 18.22 18.79 17.13

D 18.35 19.03 17.49
Table 5: Ablation study on graph encoders for subgraph con-
texts on the taxonomy. (U/D is for undirected/directed sub-
graph settings in GNN-based aggregation.)

contexts. We use MeSH in these studies, so based on Table 3, the
F1 score of G��T��� is 19.03.

5.3.1 Sequence encoders for sentence-based relational contexts. We
consider three types of encoders: GRU, Transformer, and SciBERT,
pre-trained by a general masked language model (MLM) task on
massive scienti�c corpora. We use our proposed task (Masked Con-
cept’s Tokens) to pre-train GRU/Transformer and �ne-tune SciB-
ERT. We add sentences that describe 1-hop relations (i.e., parent or
child), sibling relations, 2-hops relations, and 3-hops relations step
by step. Table 4 presents the results of all the combinations. Our
observations are as follows.

First, the pre-training process on related corpus is useful for
generating a concept’s name at a candidate position in an existing
taxonomy. The pre-training task is predicting a token in an existing
concept, strongly relevant with the target task. We �nd that pre-
training improves the performance of the three sequence encoders.

Second, surprisingly we �nd that GRU performs slightly better
than Transformer and SciBERT (19.03 vs 18.53 and 18.87). The rea-
son may be that the sentence templates that represent relational
contexts of a masked position always place two concepts in a rela-
tion at the beginning or end of the sentence. Because GRU encodes
the sentences from both left-to-right and right-to-left directions, it
probably represents the contexts better than the attention mech-
anisms in Transformer and SciBERT. SciBERT is pre-trained on
MLM and performs better than Transformer.

Third, it is not having all relations in 3-hops neighborhood of
the masked concept that generates the highest F1 score. On all the
three types of sequence encoders, we �nd that the best collection
of constructed sentences are those that describe 1-hop relations
(i.e., parent and child) and sibling relations which is a typical re-
lationship of two hops. Because 1-hop ancestor (parent), 2-hop
ancestor (grandparent), and 3-hop ancestor are all the “class” of the
masked concept, if sentences were created for all these relations,
sequence encoders could not distinguish the levels of speci�city of
the concepts. Similarly, it is good to represent only the closest type
of descendant relationships (i.e., child) as “subclass” of the masked
concept. And sibling relations are very useful for generating con-
cept names. For example, in Figure 2, “nucleic acid denaturation”
and “nucleic acid renaturation” have similar naming patterns when
they are sibling concepts.

5.3.2 Graph encoders for subgraph-based relational contexts. We
consider four types of GNN-based encoders: GAT [30], GCN [12],
GraphSAGE [9], and GraphTransformer [13]. We add 1-hop, 2-hop,

and 3-hop relations step by step in constructing the top-down and
bottom-up subgraphs. The construction forms either undirected or
directed subgraphs in the information aggregation GNN algorithms.
Table 5 presents the results. Our observations are as follows.

First, we �nd that encoding directed subgraphs can achieved a
better performance than encoding undirected subgraphs for all the
four types of graph encoders. This is because the directed subgraph
can represent asymmetric relations. For example, it can distinguish
parent-child and child-parent relations. In directed subgraphs, the
edges always point from parent to child while such information is
missing in undirected graphs.

Second, the best graph encoder is GraphTransformer and the
second best is Graph Attention Network (GAT). They both have
the attention mechanism which plays a signi�cant role in aggre-
gating information from top-down and bottom-up subgraphs for
generating the name of concept. GraphTransformer adopts the
Transformer architecture (of all attention mechanism) that can cap-
ture the contextual information better and show stronger ability of
generalization than GAT.

Third, we �nd that all the types of graph encoders perform the
best with 2-hops subgraphs. The reason may be that the GNN-based
architectures cannot e�ectively aggregate multi-hop information.
In other words, they su�er from the issue of over smoothing when
they use to encode information from 3-hops neighbors.

6 RELATEDWORK
6.1 Taxonomy Construction
Many methods used a two-step scheme: (1) extracted hypernym-
hyponym pairs from corpus, then (2) organized the extracted re-
lations into hierarchical structures. Pattern-based [20, 32, 37] and
embedding-based methods [11, 15] were widely used in the �rst
step. The second step was often considered as graph optimization
and solved by maximum spanning tree [3], optimal branching [29],
and minimum-cost �ow [8]. Mao et al. used reinforcement learning
to organize the hypernym-hyponym pairs by optimizing a holistic
tree metric as a reward function over the training taxonomies [17].

6.2 Taxonomy Expansion
These methods aimed at collecting emergent terms and placing
them at appropriate positions in an existing taxonomy. Aly et al.
adopted hyperbolic embedding to expand and re�ne an existing
taxonomy [2]. Shen et al. [25] and Vedula et al. [28] applied seman-
tic patterns to determine the position of the new terms. Fauceglia
et al. used a hybrid method to combine lexico-syntactic patterns,
semantic web, and neural networks [7]. Manzoor et al. proposed a
joint-learning framework to simultaneously learn latent representa-
tions for concepts and semantic relations [16]. Shen et al. proposed
a position-enhanced graph neural network to encode the relative
position of each term [24]. Yu et al. applied a mini-path-based clas-
si�er instead of hypernym attachment [36].

6.3 Keypharse Generation
This is the most relevant task with the proposed concept name
generation in taxonomies. Meng et al. [18, 19] applied Seq2Seq to
generate keyphrases from scienti�c articles. Ahmad et al. proposed
a joint learning method to select, extract, and generate keyphrases
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[1]. Our approaches combine textual and taxonomic information
to generate the concept names accurately.

7 CONCLUSIONS
In this work, we proposed G��T��� to enhance taxonomy com-
pletion by identifying the positions in existing taxonomies that
need new concepts and generating the concept names. It learned
position embeddings from both graph-based and language-based
relational contexts. Experimental results demonstrated that G���
T��� improves the completeness of real-world taxonomies over
extraction-based methods.
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A APPENDIX
A.1 Sentence encoders
The descriptions of three sentence encoders we use are as below.

(1) BiGRU: Given a sentence B 2 S(E), we denote = as the length
of B which is also the position index of [MASK]. A three-
layered Bidirectional Gated Recurrent Units (GRU) network
creates the hidden state of the [MASK] token as h(B) =
����!
h= (B) �

 ����
h= (B), where � denotes vector concatenation.

(2) Transformer: It is an encoder-decoder architecture with only
attention mechanisms without any Recurrent Neural Net-
works (e.g., GRU). The attention mechanism looks at an
input sequence and decides at each step which other parts
of the sequence are important. The hidden state is that of
the [MASK] token: h(B) = h= (B).

(3) SciBERT: It is a bidirectional Transformer-based encoder [4]
that leverages unsupervised pretraining on a large corpus
of scienti�c publications (from semanticscholar.org) to im-
prove performance on scienti�c NLP tasks such as sequence
tagging, sentence classi�cation, and dependency parsing.

A.2 Baselines Implementation
H�E����, T���E����, STEAM, and ARBORIST are used for tax-
onomy expansion. Given a subgraph which includes the ancestor,

parent, and sibling nodes as the seed taxonomy, the �nal output
is a taxonomy expanded by the target concepts. For taxonomy
completion methods, we set the threshold for deciding whether to
add the target node to the speci�ed position of taxonomy as 0.5.
For G����2T���, we input the graph-based context within two
hops from the target concept in order to construct the taxonomy
structure. To evaluate G����2T���, we check the parent and child
nodes of the target concept. When both sets matched the ground
truth, the prediction result is marked as correct.

A.3 Hyperparameter Settings
We use stochastic gradient descent (SGD) with momentum as our
optimizer. We applied a scheduler with “warm restarts” that reduces
the learning rate from 0.25 to 0.05 over the course of 5 epochs as a
cyclical regiment. Models are trained for 50 epochs based on the
validation loss. All the dropout layers used in our model had a
default ratio of 0.3. The number of dimensions of hidden states is
200 for sequence encoders and 100 for graph encoders, respectively.
We search for the best loss weight _ in {0.1, 0.2, 0.5, 1, 2, 5} and set
it as 2. We set Aneg = 0.15, g = 0.8, and maxiter = 2 as default. Their
e�ects will be investigated in the experiments.
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