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Abstract—Mutation testing has been widely used to assess the fault-detection effectiveness of a test suite, as well as to guide test
case generation or prioritization. Empirical studies have shown that, while mutants are generally representative of real faults, an
effective application of mutation testing requires “traditional” operators designed for programming languages to be augmented with
operators specific to an application domain and/or technology. The case for Android apps is not an exception. Therefore, in this paper
we describe the process we followed to create (i) a taxonomy of mutation operations and, (ii) two tools, MDroid+ and MutAPK for
mutant generation of Android apps. To this end, we systematically devise a taxonomy of 262 types of Android faults grouped in
14 categories by manually analyzing 2,023 software artifacts from different sources (e.g., bug reports, commits). Then, we identified a
set of 38 mutation operators, and implemented them in two tools, the first enabling mutant generation at the source code level, and the
second designed to perform mutations at APK level. The rationale for having a dual-approach is based on the fact that source code is
not always available when conducting mutation testing. Thus, mutation testing for APKs enables new scenarios in which researchers/
practitioners only have access to APK files. The taxonomy, proposed operators, and tools have been evaluated in terms of the number
of non-compilable, trivial, equivalent, and duplicatemutants generated and their capacity to represent real faults in Android apps as
compared to other well-known mutation tools.

Index Terms—Mutation testing, fault taxonomy, mutation operators, android
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1 INTRODUCTION

MOBILE apps play a paramount role in our daily lives.
With millions of mobile apps available for download

on Google Play [1] and the Apple App Store [2], users have
access to an unprecedentedly large set of apps that are not
only intended to provide entertainment but also to support
critical activities such as health monitoring. Given the
increasing relevance and demand for high-quality apps,
industrial practitioners and academic researchers have been
devoting significant effort to improve methods for measur-
ing and assuring the quality of mobile apps. Manifestations

of interest in this topic include the broad portfolio of
mobile testing methods ranging from tools for assisting
record and replay testing [3], [4], to automated approaches
that generate and execute test cases [5], [6], [7], [8], rippers
that systematically explore the apps GUI [9], [10], [11],
and cloud-based services for large-scale multi-device test-
ing [12]. Despite the availability of these tools/approaches,
the field of mobile app testing is still very much under
development, as highlighted by limitations of test data
generation approaches [6], [13], and concerns regarding the
effective assessment of the quality of mobile apps’ test
suites.

One way to evaluate test suites is to seed small faults,
called mutations, into source code and assess the ability of a
suite to detect these faults [14], [15]. Such mutations have
been defined in the literature to reflect the typical errors
developers make when writing source code [16], [17], [18],
[19], [20], [21], [22]. Indeed, the extent to which mutants
reflect typical bugs for a given application/domain can
have an impact on the extent to which mutants can replace
real bugs in software testing, e.g., to evaluate a test suite
effectiveness [23], or even prioritize bugs [24].

However, existing literature lacks a thorough characteri-
zation of bugs exhibited by mobile apps. Therefore, it is
unclear whether such apps exhibit a distribution of faults
similar to other systems, or if there are types of faults that
require special attention. As a consequence, it is unclear
whether the use of traditional mutant taxonomies [16], [17]
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is sufficient to assess test quality and drive test case genera-
tion/selection for mobile apps.

In addition, mutation operators have been thought to be
applied directly to the source code, which requires build-
ing/compiling the generated mutants. Building/compila-
tion time is often more time consuming than injecting the
mutants; in that sense, tools that avoid compilation time are
desired by practitioners and researchers.

Previous tools for Java applications like Jumble, PIT, and
Javalanche generate the mutations directly on the bytecode,
which reduces the total time required to generate executable
mutants, and also avoids generating a potentially-large
number of uncompilable mutants. In the case of Android
apps, there is no existing approach that enables mutation
testing on source code or directly on executable Android
Packages (APKs). Having a tool that enables mutation test-
ing at APK-level will help developers and practitioners to
avoid building approaches/tools for each of the existing
native Android languages (Java, Kotlin, or Dart), because
APK-level mutation is language agnostic.

Moreover, having such an approach could make muta-
tion testing for Android apps more suitable as in the case of
outsourced/crowdsourced testing by third-parties that are
not the app owners. Although mutation testing is not a ser-
vice commonly offered by third parties, it could be used to
evaluate the quality of test suites designed in a context of
outsourced/crowdsourced testing, or to automatically gen-
erate test cases based on potential mutations. In general,
APK-level mutation could help practitioners — that do not
have access to source code of the analyzed apps— to enable
different scenarios that are not widely explored yet by exter-
nal services.

Currently, there does not exist an Android mutation test-
ing framework capable of seeding a large set of realistic,
Android-specific faults into open and closed source Android
apps. In fact, relatively fewAndroid-specificmutation opera-
tors have been proposed by the research community [25], [26]
and as such these do not cover a large range of possible
Android-specific bugs/faults. Mutation tools for Java apps,
such as Pit [27] and Major [28], [29], lack any Android-
specific mutation operator, and present challenges for their
use in this context, resulting in common problems such as
trivial mutants that always crash at runtime or difficulties in
automating mutant compilation into APKs. To provide sup-
port for mutation testing of Android apps both when source
code is available and when it is not, in this paper we explore
mutation testing by following a data-driven approach that
led us to build a taxonomy of real bugs in mobile apps. Then,
we propose a set of specializedmutation operators, and build
tools that allow mutant generation, both at source code-level
and at APK-level, based on the proposed operators.

Paper Contributions. This paper aims to deal with the lack
of (i) an extensive empirical evidence of the distribution of
Android faults, (ii) a thorough catalog of Android-specific
mutants, (iii) an analysis of the applicability of state-of-the-
art mutation tools on Android apps, and (iv) a characteriza-
tion of the pros and cons of conducting mutant generation
at source code or APK level.

As a first step, we produced a taxonomy of Android
faults by analyzing a statistically significant sample of 2,023
candidate faults documented in (i) bug reports from open

source apps; (ii) bug-fixing commits of open source apps;
(iii) Stack Overflow discussions; (iv) the Android exception
hierarchy and APIs potentially triggering such exceptions;
and (v) crashes/bugs described in previous studies on
Android. As a result, we produced a taxonomy of 262 types
of faults grouped in 14 categories, four of which relate to
Android-specific faults, five to Java-related faults, and five
mixed categories (Fig. 1). Then, leveraging this fault taxon-
omy and focusing on Android-specific faults, we devised a
set of 38 Android mutation operators and created their cor-
responding mutation rules for Java code and SMALI inter-
mediate representation (IR).

Based on the proposed operators, we conceived and
implemented two frameworks for mutant generation of
Android apps, MDroid+ and MutAPK. The former injects
mutations at source-code level, while the latter injects the
mutations directly in the APKs. Our rationale for having two
different tools is based on the fact that source code is not
always available (e.g., as in the case of outsourced testing
services). In addition, we wanted to identify the pros and
cons of generating mutants of Android apps at source-code
andAPK levels. Both tools are publicly available [30], [31].

In addition, we conducted a study comparing MDroid+

and MutAPK with other Java and Android-specific mutation
tools. The study results indicate that both MDroid+ and
MutAPK, as compared to existing competitive tools, (i) can
cover a larger number of bug types/instances present in
Android apps; (ii) are highly complementary to the existing
tools in terms of covered bug types; and (iii) generate fewer
trivial, non-compilable, equivalent and duplicate1 mutants.
When comparing source-code versus APK level mutation,
we found that both mutation and compilation/assembling
are performed quicker at APK level than at source code level,
but with a lower quality of generated mutants. Our experi-
ments show an improvement of 93.83 percent (i.e., 4.32 from
4.61 seconds) in the mutation time and 87.05 percent (i.e.,
174.73 from 195 seconds) for compilation/assembling times.
However, the source code-based mutation approach gener-
ates only 2.97 percent (i.e., 263 of 8847 mutants) of non-
compilable or trivial mutants as compared to the 6.8 percent
(i.e., 5105 of 75053 mutants) of the APK-based mutation
approach. It is worth noting that our study does not conduct
mutation testing (i.e., executing test suites), since no test suite
is available for the selected app dataset.

This paper is an extension of a previous paper published
at the 11th Joint Meeting of the European Software Engi-
neering Conference and the ACM SIGSOFT Symposium on
the Foundations of Software Engineering (ESEC/FSE’17)
[33]. The extension includes: (i) a novel approach and pub-
licly available tool for conducting mutant generation for
Android apps at APK level; (ii) a larger study that compares
existing tools with our two tools for mutation testing
(MDroid+ and MutAPK); and (iii) a new research question
focused on the pros and cons of mutation testing for
Android apps at source-code and APK levels.

Paper organization. Section 2 describes previous work on
mutation testing and analysis of closed-source mobile apps.
Then, Section 3 describes the process we followed to create

1. We use the definition provided by Papadakis et al. [32]: two
mutants that are equivalent to each other are called duplicate mutants.
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(empirically) a taxonomy of real crashes/bugs in Android
apps; the taxonomy establishes the foundations for the
mutation operators at source-code and APK levels. Section 4

is devoted to describing the mutation operators and its
detailed implementation at source-code and APK levels. In
Section 5, we describe the design of the study and the

Fig. 1. The defined taxonomy of Android bugs.
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corresponding results, while in Section 6 we discuss some
implications of mutation testing at source-code and APK
levels. In Section 7 we report the threats to the validity of
the results. Finally, Section 8 outlines the conclusions.

2 PREVIOUS WORK

This section describes related literature and publicly avail-
able, state-of-the-art tools and approaches on mutation test-
ing and analysis of mobile apps. We do not discuss the
literature on testing Android apps [5], [6], [7], [8], [9], [13],
[34], [35], [36], since proposing a novel approach for testing
Android apps is not the main goal of this work. For further
details about mobile app testing we refer the reader to pre-
vious surveys and mapping studies [13], [37], [38].

2.1 Mutation Testing
Since the introduction of mutation testing in the 70s [14],
[15], researchers have tried not only to define new mutation
operators for different programming languages and para-
digms (e.g., mutation operators have been defined for Java
[16] and Python [39]) but also for specific types of software
like Web applications [40], NodeJS packages [41], JS applica-
tions [42] and data-intensive applications [43], [44] either to
exercise their GUIs [45] or to alter complex, model-defined
input data [46]. The aim of our research, which we share
with prior work, is to define customized mutation operators
suitable for Android applications, by relying on a solid
empirical foundation. For further details about the concepts,
recent research, and future work in the field of mutation
testing, we refer the reader to previous work by Jia and
Harman [47].

To the best of our knowledge, the closest work to ours is
that of Deng et al., [25], which defined eightmutant operators
aimed at introducing faults in the essential programming
elements of Android apps, i.e., intents, event handlers, activ-
ity lifecycle, and XML files (e.g., GUI or permission files).
While we share with Deng et al. the need for defining specific
operators for the key Android programming elements, our
work builds upon it by (i) empirically analyzing the distribu-
tion of faults in Android apps by manually tagging 2,023
documents, (ii) based on this distribution, defining a mutant
taxonomy—complementing Java mutants—which includes
a total of 38 operators tailored for the Android platform.

Another closely-related work is that by Jabbarvand &
Malek [26] which proposed a mutation analysis framework,
called mDroid, aimed specifically at helping developers
to design tests that identify energy problems in Android
apps based on a set of fifty empirically derived energy anti-
patterns.We view ourwork as complementary to this energy-
aware mutation framework, as our empirically derived
Android mutant taxonomy covers a wide range of both func-
tional and non-functional bugs/faults in Android apps, shar-
ing little overlap with the mutation operators proposed
in [26]. In fact, developers could utilize both frameworks to
help ensure their test cases are effective at exposing both gen-
eral faults and energy-specific problems.

Mutation Testing Effectiveness and Efficiency. Several rese-
archers have proposed approaches to measure the effective-
ness and efficiency of mutation testing [48], [49], [50], [51] to
devise strategies for reducing the effort required to generate

effective mutant sets [52], [53], [54], and to define theoretical
frameworks [47], [55]. Such strategies can complement our
work, since in this paper we aim at defining new mutant
operators for Android, on which effectiveness/efficiency
measures or minimization strategies can be applied.

Existing Tools. Most of the available mutation testing
tools are in the form of research prototypes. Concerning
Java, representative tools are mJava [56], Jester [57],
Major [28], Jumble [58], PIT [27], and Javalanche [59]. Some
of these tools operate on the Java source code, while others
inject mutants in the bytecode. For instance, mJava, Jester,
and Major generate the mutants by modifying the source
code, while Jumble, PIT, and javaLanche perform the muta-
tions in the bytecode. When it comes to Android apps, there
are only three available tools: First, muDroid [60], which
performs the mutations at byte code level by generating one
APK (i.e., one version of the mobile app) for each mutant.
Second, Deng et al. [61], which performs the mutation at
source code level and then compiles it to obtain an APK.
Third, mDroid [26], discussed earlier which performs
energy-aware mutations. The tools for mutation testing can
be also categorized according to the tool’s capabilities (e.g.,
the availability of automatic test selection). A thorough
comparison of these tools is out of the scope of this paper.
The interested reader can find more details on PIT’s website
[62] and in the paper by Madeysky and Radyk [63]. As pre-
viously mentioned, similarly to muDroid [60], we also per-
form a language-agnostic, bytecode level mutation, which
makes the mutation independent of the different program-
ming languages supported by Android.

Empirical Studies onMutation Testing.Daran and Th!evenod-
Fosse [64] were the first to empirically compare mutants and
real faults, finding that the set of errors and failures they pro-
ducedwith a given test suite were similar. Andrews et al. [49],
[65] studied whether mutant-generated faults and faults
seeded by humans can be representative of real faults. The
study showed that carefully-selectedmutants are not easier to
detect than real faults, and can provide a good indication of
test suite adequacy, whereas human-seeded faults can likely
produce underestimates.

Just et al. [23] correlated mutant detection and real fault
detection using automatically and manually generated test
suites. They found that these two variables exhibit a statisti-
cally significant correlation. At the same time, their study
pointed out that traditional Java mutants need to be comple-
mented by further operators, as they found that around 17
percent of faults were not related to mutants. Luo et al. [24]
compared the effect of test case prioritization techniques on
real faults versus mutants, and found that mutants tend to
overestimate the effectiveness of test suites.

Petrovic et al. [66] propose a diff-based probabilistic
mutation approach. Since their work has been conducted in
the context of a company (Google) coping with large-scale
systems, their approach is targeted to systems of such a
scale. They use a heuristic to identify non-interesting
instructions in order to reduce the number of lines analyzed
when generating mutants. The implementation of such a
tool at a company the scale of Google illustrates the growing
practical importance of mutation analysis and highlights the
need for effective mutation testing frameworks for different
software domains.
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In relation to the aforementioned work, our work pro-
poses the use of mutation operators that are as close as pos-
sible to actual faults occurring in Android apps.

2.2 Analysis of Closed-Source Mobile Apps
Most of the approaches that aid in automating or improving
software engineering tasks are designed considering source
code as the main artifact because of its familiarity to develop-
ers and its expressiveness (e.g., possible existence of code
comments). In contrast, intermediate representations (IR)
that are closer to executable files are “finer-grained” in the
sense that “higher-level” source code files are often translated
to several “lower-level” concrete machine-level instructions
represented in different IRs. Because these two representa-
tions encode different types of information, researchers must
investigate the trade-offs of using each information for sup-
porting different software engineering tasks.

Exploring both source-code and IR-based development
tools has several practical implications. While many existing
approaches often rely on source code for supporting auto-
mated software engineering tasks, there are situations in
which solutions are untenable in commercial environments.
For example, when third-party services are used to out-
source software engineering tasks without releasing the
source code (i.e., the services work directly on executable
files), traditional static analysis is often not possible. This is
because, for a variety of different legal and organizational
reasons, app source code is not made available to third-
party contractors or software testers, making it difficult to
enable cloud/crowd-source services that utilize state-of-
the-art static analysis approaches. Furthermore, automated
approaches for SE tasks that operate directly upon execut-
able files are often more convenient for developers to work
with, as they are often faster (due to lack of re-compilation)
and can be more easily integrated into increasingly popular
CI pipelines (as they require fewer files than the entire code
base). However, any type of analysis that relies only on exe-
cutable files (i.e., dynamic analysis) can be limited when
compared to static analysis that can be done directly on the
code. An example of this is presented by Ghanbari et al.
[67], while performing program reparation at Java Byte-
code. They use mutant generation to create a set of suitable
patches that are evaluated by their capacity of passing the
app tests. The reported repair patches generation is 10x
faster than state-of-the-art source-code-based approaches,
while being somewhat limited more limited in scope com-
pared to similar full-fledged static analysis techniques.

Given the lack of source code under certain contexts (e.g.,
app execution on devices), there are previous efforts that
have analyzed or proposed approaches for dealing with
APKs, and in particular for specific security-related tasks. Li
et al. [68] summarize those efforts in a systematic literature
review of approaches for static analysis of Android Pack-
ages. In particular, their work reports 124 papers and classi-
fies them into 8 categories of tasks: (i) Private Data Leaks
(46 papers), (ii) Vulnerabilities (40 papers), (iii) Permission
Misuse (15 papers), (iv) Energy Consumption (9 papers),
(v) Clone Detection (7 papers), (vi) Test Case Generation
(6 papers), (vii) Cryptography Implementation Issues (3
papers) and (vii) Code verification (3 papers). Note that, as
of today, there is no support at APK level for tasks such as

automated documentation or mutation testing. Also, the
support at APK level for automated testing is only provided
by rippers that systematically explore the apps GUI [37].
Concerning the intermediate representations used for the
analyses, Li et al. [68] report that the top intermediate repre-
sentations (IR) used are JIMPLE (38 papers), SMALI (26
papers) and Java Bytecode (22 papers).

In general, state-of-the-art approaches for automated
software engineering can be enabled in local environments
where the source code is available and can be manipulated
by the owners. Conversely, state-of-the-practice approaches
offered by third-parties (e.g., testing) rely on manual analy-
sis of apps, or on automated dynamic analysis that operates
at the APK level. The mobile development community is
quickly moving towards using cloud-services and crowd-
sourced services for software engineering tasks as they can
help to reduce the cost and time devoted to otherwise
expensive activities. However, since these services have
access only to the APKs, they can not take advantage of
state-of-the-art approaches that rely on the existence of
source code for extracting intermediate representations or
models that drive the analysis execution or the artifacts gen-
eration. Therefore, it is clear that mobile app testing and
mutation analysis should move towards supporting APK-
only analyses to better support a wide range of popular
development workflows.

3 A TAXONOMY OF CRASHES/BUGS

IN ANDROID APPS

In this section, we describe our taxonomy of bugs in
Android apps derived from a large manual analysis of (un)
structured sources. Our work is the first large-scale data-
driven effort to design such a taxonomy. Our purpose is to
extend/complement previous studies analyzing bugs/
crashes in Android apps and to provide a large taxonomy
of bugs that can be used to design mutation operators. In all
the cases reported below the manually analyzed sets of
sources—randomly extracted—represent a 95 percent statis-
tically significant sample with a ’ "5 percent confidence
interval.

3.1 Design
To derive such a taxonomy, we manually analyzed six dif-
ferent sources of information described below:

1) Bug Reports of Android Open Source Apps. Bug reports
are the most obvious source to mine to identify typi-
cal bugs affecting Android apps. We mined the issue
trackers of 16,331 open source Android apps hosted
on GitHub. Such apps have been identified by locally
cloning all Java projects (381,161) identified through
GitHub’s API and searching for projects with an
AndroidManifest.xml file (a requirement for Android
apps) in the top-level directory. We then removed
forked projects to avoid duplicated apps and filtered
projects that did not have a single star or watcher to
avoid abandoned apps. We utilized a web crawler to
mine the GitHub issue trackers. To be able to analyze
the bug cause, we only selected closed issues (i.e.,
those having a fix that can be inspected) having
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“Bug” as type. Overall, we collected 2,234 issues
from which we randomly sampled 328 for manual
inspection.

2) Bug-Fixing Commits of Android Open Source Apps.
Android apps are often developed by very small
teams [69], [70]. Thus, it is possible that some bugs
are not documented in issue trackers but quickly dis-
cussed by the developers and then directly fixed.
This might be particularly true for bugs having a
straightforward solution. Thus, we also mined the
versioning system of the same 16,331 Android apps
considered for the bug reports by looking for bug-
fixing commits not related to any of the bugs consid-
ered in the previous point (i.e., the ones documented
in the issue tracker). With the cloned repositories, we
utilized the git command line utility to extract the
commit notes and matched the ones containing lexi-
cal patterns indicating bug fixing activities, e.g., “fix
issue”, “fixed bug”, similarly to the approach pro-
posed by Fischer et al. [71]. Through this procedure,
we collected 26,826 commits, from which we ran-
domly selected a statistically significant sample of
376 commits for manual inspection.

3) Android-Related Stack Overflow (SO) Discussions. It is
not unusual for developers to ask help on SO for
bugs they are experiencing and having difficulty fix-
ing [72], [73], [74], [75]. Thus, mining SO discussions
could provide additional hints on the types of bugs
experienced by Android developers. To this aim, we
collected all 51,829 discussions tagged “Android”
from SO. Then, we randomly extracted a statistically
significant sample of 377 of them for the manual
analysis.

4) The Exception Hierarchy of the Android APIs. Uncaught
exceptions and statements throwing exceptions are a
major source of information about faults/errors that
can happen in Android apps [76], [77]. We automati-
cally crawled the official Android developer JavaDoc
guide to extract the exception hierarchy and API
methods throwing exceptions. We collected 5,414
items from which we sampled 360 of them for man-
ual analysis.

4) Crashes/Bugs Described in Previous Studies on Android
Apps. 43 papers related to Android testing2 were ana-
lyzed by looking for crashes/bugs reported in the
papers. For each identified bug, we kept track of
the following information: app, version, bug id, bug
description, bug URL. When we were not able to
identify some of this information, we contacted the
paper’s authors. In the 43 papers, a total of 365 bugs
were mentioned/reported; however, we were able
(in some cases with the authors’ help) to identify the
app and the bug descriptions for only 182 bugs/
issues (from nine papers [5], [6], [9], [76], [79], [80],
[81], [82], [83]). Given the limited number, in this case
we considered all of them in ourmanual analysis.

5) Reviews Posted by Users of Android Apps on the Google
Play Store. App store reviews have been identified as

a prominent source of bugs and crashes in mobile
apps [74], [84], [85], [86], [87], [88]. However, only a
reduced set of reviews are in fact informative and
useful for developers [87], [89]. Therefore, to auto-
matically detect informative reviews reporting bugs
and crashes, we leverage CLAP, the tool developed
by Villarroel et al. [90], to automatically identify the
bug-reporting reviews. Such a tool has been shown
to have a precision of 88 percent in identifying this
specific type of review. We ran CLAP on the
Android user reviews dataset made available by
Chen et al. [91]. This dataset reports user reviews for
multiple releases of #21K apps, in which CLAP
identified 718,132 reviews as bug-reporting. Our sta-
tistically significant sample included 384 reviews
that we analyzed.

The dataset collected from the six sources listed above
was manually analyzed by eight taggers following a pro-
cedure inspired by open coding [92]. The taggers were
authors of this paper. In particular, the 2,007 documents (
e.g., bug reports, user reviews, etc.) to manually validate
were equally and randomly distributed among the
authors making sure that each document was classified
by two authors. The goal of the process was to identify
the exact reason behind the bug and to define a tag (e.g.,
null GPS position) describing such a reason. Thus, when
inspecting a bug report, we did not limit our analysis to
the reading of the bug description, but we analyzed
(i) the whole discussion performed by the developers,
(ii) the commit message related to the bug fixing, and
(iii) the patch used to fix the bug (i.e., the source code
diff). The tagging process was supported by a Web appli-
cation that we developed to classify the documents (i.e.,
to describe the reason behind the bug) and to solve con-
flicts between the authors. Each author independently
tagged the documents assigned to him by defining a tag
describing the cause behind a bug. Every time the authors
had to tag a document, the Web application also shows
the list of tags created so far, allowing the tagger to select
one of the already defined tags. Although in principle
this is against the notion of open coding, in a context like
the one encountered in this work, where the number of
possible tags (i.e., causes behind the bug) is extremely
high, such a choice helps using consistent naming and
does not introduce substantial bias.

In the cases for which there was no agreement between
the two evaluators (#43 percent of the classified docu-
ments), the document was automatically assigned to an
additional evaluator. The process was iterated until all the
documents were classified by the absolute majority of the
evaluators with the same tag. When there was no agreement
after all eight authors tagged the same document (e.g., four
of them used the tag t1 and the other four the tag t2), two of
the authors manually analyzed these cases to solve the con-
flict and define the most appropriate tag to assign (this hap-
pened for #22 percent of the classified documents). It is
important to note that the Web application did not consider
documents tagged as false positive (e.g., a bug report that
does not report an actual bug in an Android app) in the
count of the documents manually analyzed. This means
that, for example, to reach the 328 bug reports to manually

2. The complete list of papers is provided in our online appendix
[78].

ESCOBAR-VEL!ASQUEZ ET AL.: ENABLING MUTANT GENERATION FOR OPEN- AND CLOSED-SOURCE ANDROID APPS 191

Authorized licensed use limited to: William & Mary. Downloaded on June 22,2022 at 02:00:29 UTC from IEEE Xplore.  Restrictions apply. 



analyze and tag, we had to analyze 400 bug reports (since 72
were tagged as false positives).

During the tagging, we discovered that for user reviews,
except for very few cases, it was impossible (without inter-
nal knowledge of an app’s source code) to infer the likely
cause of the failure (fault) by only relying on what was
described in the user review. For this reason, we decided to
discard user reviews from our analysis, and this left us with
2,007-384 = 1,623 documents to manually analyze.

After having manually tagged all the documents (overall,
2,023 = 1,623 + 400 additional documents, since 400 false
positives were encountered in the tagging process), all the
authors met online to refine the identified tags by merging
similar ones and splitting generic ones when needed. Also,
to build the fault taxonomy, the identified tags were clus-
tered in cohesive groups at two different levels of abstrac-
tion, i.e., categories and subcategories. Again, the grouping
was performed over multiple iterations, in which tags were
moved across categories, and categories merged/split.

Finally, the output of this step was (i) a taxonomy of rep-
resentative bugs for Android apps, and (ii) the assignment
of the analyzed documents to a specific tag describing the
reason behind the bug reported in the document.

3.2 The Defined Taxonomy
Fig. 1 depicts the taxonomy that we obtained through man-
ual coding. The black rectangle in the bottom-right part of
Fig. 1 reports the number of documents tagged as false posi-
tive or as unclear. The other rectangles—marked with the
Android and/or with the Java logo represent the 14 high-
level categories that we identified. Categories marked with
the Android logo (e.g.,Activities and Intents) group together
Android-specific bugs while those marked with the Java
logo (e.g., Collections and Strings) group bugs that could
affect any Java application. Both symbols together indicate
categories featuring both Android-specific and Java-related
bugs (see e.g., I/O). The number reported in square brackets
indicates the bug instances (from the manually classified
sample) belonging to each category. Inner rectangles, when
present, indicate sub-categories, e.g., Responsiveness/Battery
Drain in Non-functional Requirements. Finally, the most fine-
grained levels, represented as lighter text, describe the spe-
cific type of faults as labeled using our manually-defined
tags, e.g., the Invalid resource ID tag under the sub-category
Resources, in turn, part of the Android programming category.
The analysis of Fig. 1 lets us conclude that:

1) We Were Able to Classify the Faults Reported in 1,230
Documents (e.g., Bug Reports, Commits, etc.). This
number is obtained by subtracting from the 2,023
tagged documents the 400 tagged as false positives
and the 393 tagged as unclear.

2) Of These 1,230, 26 percent (324) are Grouped in Catego-
ries Only Reporting Android-Related Bugs. This means
that more than one fourth of the bugs present in
Android apps are specific of this architecture, and
not shared with other types of Java systems. Also,
this percentage clearly represents an underestima-
tion. Indeed, Android-specific bugs are also present
in the previously mentioned “mixed” categories (e.g.,
inNon-functional requirements 25 out of the 26 instances

present in theResponsiveness/Battery Drain subcategory
are Android-specific all but Performance (unnecessary
computation)). From a more detailed count, after inc-
luding also the Android-specific bugs in the “mixed”
categories, we estimated that 35 percent (430) of the
identified bugs are Android-specific.

3) As Expected, Several Bugs are Related to Simple Java Pro-
gramming. This holds for 800 of the identified bugs
(65 percent).

Take-Away. Over one third (35 percent) of the bugs we
identified with the manual inspection are Android-specific.
This highlights the importance of having testing instru-
ments, such as mutation operators, tailored for such a spe-
cific type of software. At the same time, 65 percent of the
bugs that are typical of any Java application confirm the
importance of also considering standard testing tools devel-
oped for Java, including mutation operators, when perform-
ing verification and validation activities of Android apps.
To this extent, the study that we have conducted allows
us to create mutation tools for Android apps, described in
Section 4, that encompass Android-specific bugs as well as
Java bugs frequently occurring in Android apps.

4 MUTATION TESTING FOR ANDROID APPS

Given the taxonomy of faults in Android apps and the set of
available operators widely used for Java applications, a cat-
alog of Android-specific mutation operators should (i) com-
plement the classic Java operators, (ii) be representative of
the faults exhibited by Android apps, (iii) reduce the rate of
non-compilable and trivial mutants, (iv) have implementa-
tion rules of the operators for both Java and SMALI repre-
sentations, and (v) consider faults that can be simulated by
modifying statements/elements in the app source code and
resources (e.g., the strings.xml file). The last condition is
based on the fact that some faults cannot be simulated by
changing the source code, like in the case of device-specific
bugs, or bugs related to the API and third-party libraries.

Our choice for having implementation rules also in
SMALI is because this intermediate representation is one of
the most used ones for analyzing APK files [68], and
because of the availability of parsers/lexers that are easy to
use and configure. Having access to SMALI code extracted
directly from the APK makes it easier to repackage the app
code in an APK, reducing the compilation/building time
from Java source code to DEX. The availability of SMALI
mutation could be particularly useful in circumstances
where there is a need to generate (and deploy) several
(mutated) APK instances, and therefore SMALI mutation
could be faster than mutating and compiling source code.

To have an implementation of the proposed operators for
both source code and APK, we created two tools, MDroid+
[30] and MutAPK [31]. We describe the details of both tools
for the remainder of this section.

4.1 Mutation Operators
Following the aforementioned conditions, we defined a set
of 38 operators, covering as many fault categories as possi-
ble (10 out of the 14 categories in Fig. 1), and complement-
ing the available classic Java mutation operators. We did
not consider the following categories:
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1) API/Libraries: bugs in this category are related to
API/Library issues and API misuses. The former
will require applying operators to the APIs; the latter
requires a deeper analysis of the specific API usage
patterns inducing the bugs;

2) Collections/Strings: most of the bugs in this category
can be induced with classic Java mutation operators;

3) Device/Emulator: because this type of bug is Device/
Emulator specific, their implementation is out of the
scope of source code mutations;

4) Multi-Threading: the detection of the places for apply-
ing the corresponding mutations is not trivial. There-
fore, this category will be considered in future work.
Previous work by Lin et al. [93] on refactoring work-
ers and threads could be used as a foundation for
defining operators.

The list of defined mutation operators is provided in
Table 1. These operators were implemented in Java (for
source code-based mutations in MDroid+) and SMALI (for
APK-based mutations in MutAPK). The locations for the
mutations are identified by using a Potential Failure Profile
(PFP). The PFP lists code locations that could be modified to
inject a mutation. The locations of the analyzed apps which
can be source code statements, XML tags or locations in
other resource files that can be the source of a potential
fault, given the faults catalog from Section 3.

To extract the PFP, both MDroid+ and MutAPK statically
analyze the targeted mobile app, looking for locations
where the operators from Table 1 can be implemented. The
locations are detected automatically by parsing XML files or
through AST-based analysis for detecting the location of
API calls. Given an automatically derived PFP for an app,
and the catalog of Android-specific operators, MDroid+

and MutAPK generate a mutant for each location in the PFP.
Mutants are initially generated as clones of the original app,
and then the clones are automatically compiled/built/pack-
aged into individual Android Packages (APKs).

Note that each location in the PFP is related to a mutation
operator. Therefore, given a location entry in the PFP, both
tools automatically detect the corresponding mutation oper-
ator and apply the mutation either in the source code (for
MDroid+) or intermediate representation (for MutAPK).
Details of the detection rules and code transformations
applied with each operator are provided in our replication
package [94].

It is worth noting that from our catalog of Android-specific
operators only two operators (DifferentActivityIntentDefinition
and MissingPermissionManifest) overlap with the eight opera-
tors proposed by Deng et al. [25]. Future work will be devoted
to cover a larger number of fault categories and define/imple-
ment a larger number of operators.

4.2 MDroid+ and MutAPK

To ensure that MDroid+ and MutAPK are effective, practi-
cal, and flexible/extensible tools for mutation testing, both
tools take into account the following design considerations:
(i) an empirically derived set of mutation operators; (ii) a
design embracing the open/closed principle (i.e., open to
extension, closed to modification); (iii) visitor and factory
design patterns for deriving the Potential Failure Profile
(PFP) and applying operators; (iv) parallel computation for

efficient mutant seeding. Both tools are written in Java and
are available as open source projects [30], [31].

Fig. 2 presents an overview of the workflow for both
tools. There are four main stages for both tools: First, App
Processing where MutAPK requires the APKTool [95] library
to decode an app to get an intermediate representation of
the compiled code and resources. In this stage, MDroid+
requires the source code and resources folder of a given app
(e.g., the /res/ folder).

Second, PFP Derivation consisting in two processes: (i)
resource files processing: by taking advantage of the struc-
ture provided in given files (i.e., XML files, resource files), to
identify XML tags that match the different operators either
by its tag name (e.g., WrongStringResource that search for
<string> tags) or tag attributes (i.e., InvalidLabel that
search for android:label in Manifest’s tags), and (ii)
Code-related files: by pattern matching API calls. In
MDroid+ case, the JDT Core DOM Library is used to gener-
ate an AST representation from JAVA code and matches
AST’s nodes with API call templates defined in a file called
target-apis.properties. In contrast, MutAPK uses Antlr, JFlex
and GAP libraries, to generate the AST given it works with
SMALI code. Nevertheless, since SMALI code uses a larger
set of instructions to represent a JAVA instruction, a larger
set of API calls must be matched for each operator.

Third, Mutant Generation is performed based on the
previously-generated PFP and the catalog of implemented
operators (explained in Section 4.2.1). Therefore, using the
mutation rules, for each location in the PFP a copy of the
app processing result is generated and modified. To provide
the most efficient process, both tools allow users to parallel-
ize the generation process, utilizing the multi-core architec-
ture of most modern hardware.

Finally, the fourth stage is the Mutation Process Consolida-
tion: MutAPK generates for each mutant an APK using the
APKTool [95] and signs it with the Uber APK Signer [96];
MDroid+ stores the mutated source code folder. Finally,
both tools generate a log file for the mutation process result.

4.2.1 Implemented Mutation Operators

One of the main components in the mutation process is the
set of mutation operators that define the correct way to rep-
resent a naturally occurring fault in an Android project.
Specifically, in this study we define 38 mutation operators
that belong to 10 of the 14 categories extracted in the previ-
ous taxonomy (i.e., Fig. 1). As it can be seen in Table 1,
MDroid+ implements 35 operators while MutAPK imple-
ments 34. It worth noticing that 32 of these implemented
operators are shared between tools.

For example, aMissing Permission on Manifest file could be
a fault likely to be found in an Android Project. Therefore,
both MDroid+ and MutAPK have an operator called Mis-
singPermissionManifest that, given a permission on the mani-
fest file, remove it from the file by replacing the complete
line with a blank space.

Another mutation operator we defined is DifferentActivi-
tyIntentDefinition where, given an intent declaration (Listing
1), MDroid+ replaces the Activity.class argument in the
intent instantiation with the Activity.class value of another
class belonging to the project (Listing 2).
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TABLE 1
Proposed Mutation Operators

Mutation Operator Det. Cat. Description MDroid+ MutAPK

ActivityNotDefined Text A/I Delete an activity < android:name=“Activity”/> entry
in the Manifest file

@ @

DifferentActivityIntentDefinition AST A/I Replace the Activity.class argument in an Intent
instantiation

@ @

InvalidActivityName Text A/I Randomly insert typos in the path of an activity defined
in the Manifest file

@ @

InvalidKeyIntentPutExtra AST A/I Randomly generate a different key in an Intent.putExtra
(key, value) call

@ @

InvalidLabel Text A/I Replace the attribute “android:label” in the Manifest file
with a random string

@ @

NullIntent AST A/I Replace an Intent instantiation with null @ @
NullValueIntentPutExtra AST A/I Replace the value argument in an Intent.putExtra(key,

value) call with new Parcelable[0]
@ @

WrongMainActivity Text A/I Randomly replace the main activity definition with a
different activity

@ @

MissingPermissionManifest Text AP Select and remove an <uses-permission /> entry in the
Manifest file

@ @

NotParcelable AST AP Select a parcelable class, remove“implements Parcelable”
and the @override annotations

@ x

NullGPSLocation AST AP Inject a Null GPS location in the location services @ @
SDKVersion Text AP Randomly mutate the integer values in the SdkVersion-

related attributes
@ @

WrongStringResource Text AP Select a < string /> entry in /res/values/strings.xml
file and mutate the string value

@ @

NullBackEndServiceReturn AST BES Assign null to a response variable from a back-end service @ @

BluetoothAdapterAlwaysEnabled AST C Replace a BluetoothAdapter.isEnabled() call with“true” @ @
NullBluetoothAdapter AST C Replace a BluetoothAdapter instance with null @ @

InvalidURI AST D If URIs are used internally, randomly mutate the URIs @ @

ClosingNullCursor AST DB Assign a cursor to null before it is closed @ @
InvalidIndexQueryParameter AST DB Randomly modify indexes/order of query parameters @ @
InvalidSQLQuery AST DB Randomly mutate a SQL query @ @

InvalidDate AST GP Set a random Date to a date object @ @
InvalidMethodCallArgument AST GP Randomly mutate a method call argument of a basic type x x
NotSerializable AST GP Select a serializable class, remove “implements

Serializable”
@ x

NullMethodCallArgument AST GP Randomly set null to a method call argument x @

BuggyGUIListener AST GUI Delete action implemented in a GUI listener @ x
FindViewByIdReturnsNull AST GUI Assign a variable (returned by Activity.findViewById) to

null
@ @

InvalidColor Text GUI Randomly change colors in layout files @ @
InvalidIDFindView AST GUI Replace the id argument in an Activitity.findViewById

call
@ @

InvalidViewFocus AST GU Randomly focus a GUI component x @
ViewComponentNotVisible AST GUI Set visible attribute (from a View) to false @ @

InvalidFilePath AST I/O Randomly mutate paths to files @ @
NullInputStream AST I/O Assign an input stream (e.g., reader) to null before it is

closed
@ @

NullOutputStream AST I/O Assign an output stream (e.g.,writer) to null before it is
closed

@ @

LengthyBackEndService AST NFR Inject large delay right-after a call to a back-end service @ @
LengthyGUICreation AST NFR Insert a long delay (i.e., Thread.sleep(..)) in the GUI

creation thread
@ @

LengthyGUIListener AST NFR Insert a long delay (i.e., Thread.sleep(..)) in the GUI
listener thread

@ @

LongConnectionTimeOut AST NFR Increase the time-out of connections to back-end services @ @
OOMLargeImage AST NFR Increase the size of bitmaps by explicitly setting large

dimensions
@ @

footnotesize. The table lists the operator names, detection strategy (AST or TEXTual), the fault category (Activity/Intents, Android Programming, Back-End
Services, Connectivity, Data, DataBase, General Programming, GUI, I/O, Non-Functional Requirements), a brief operator descriptions, and if it is implemented
in MDroid+ and MutAPK.
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Listing 1 Intent instantiation Java

1 Intent intent = new Intent (main.

this,ImportActivity.

class);

Listing 2 MDroid+ operator result

1 Intent intent = new Intent (main.

this, ExportActivity.

class);

MutAPK also provides this operator. However, since it
works at the APK level, the definition of the mutation rule
is in terms of SMALI representation. Therefore, the intent
instantiation seen in Listing 1 is represented in SMALI as it
can be seen in Listing 5.2. Moreover, the mutation result
seen in Listing 2 is represented as it is shown in Listing 4.

Listing 3 SMALI Intent instantiation Java

1 const-class v3, Lcom/fsck/k9/activity/Import

Activity;

2 invoke-direct {v1, v2, v3}, Landroid/content/

Intent;-> <
init>(Landroid/content/Context;Ljava/lang/

Class;)V

Listing 4 MutAPK operator result

1 const-class v1, Lcom/fsck/k9/activity/Export

Activity;

2 invoke-direct {v1, v2, v3}, Landroid/content/

Intent;-> <
init>(Landroid/content/Context;Ljava/lang/

Class;)V

5 EMPIRICAL STUDY: APPLYING MUTATION

TESTING OPERATORS TO ANDROID APPS

The goal of this study is to: (i) understand and compare the
applicability of MDroid+, MutAPK, and other currently avail-
able mutation testing tools; (ii) understand the underlying

reasons for mutants generated by these tools that cannot be
considered useful, i.e., non-compilable mutants, mutants
that cannot be launched, mutants that are equivalent to the
original app, and mutants that are duplicate; and (iii) under-
stand the pros and cons of conducting mutation testing at
source code and APK level. This study is conducted from
the perspective of researchers interested in improving current
tools and approaches for mutation testing of mobile apps.

The study addresses the following research questions:

! RQ1: Are the mutation operators (available for Java and
Android apps) representative of real bugs in Android apps?

! RQ2: What is the rate of non-compilable (e.g., those leading
to failed compilations), trivial (e.g., those leading to crashes
on app launch), equivalent, and duplicate mutants pro-
duced by the studied tools when used with Android apps?

! RQ3: What are the major causes for non-compilable, triv-
ial, equivalent, and duplicate mutants produced by the
mutation testing tools when applied to Android apps?

! RQ4: What are the benefits and trade-offs of performing
mutation testing at APK level vs source code level?

5.1 Study Context and Methodology
To answer RQ1, we analyzed the complete list of 102 muta-
tion operators from seven mutation testing tools (Major
[28], PIT [27], mJava [56], Javalanche [59], muDroid [60],
Deng et al. [25], and MDroid+/MutAPK to investigate their
ability to “cover” bugs described in 726 artifacts3 (103 excep-
tions hierarchy and API methods throwing exceptions, 245
bug-fixing commits from GitHub, 176 closed issues from
GitHub, and 202 questions from SO). Such 726 documents
were randomly selected from the dataset built for the taxon-
omy definition (see Section 3.1) by excluding the ones
already tagged and used in the taxonomy.

The documents were manually analyzed by the eight
authors using the same procedure previously described for
the taxonomy building. In other words, there were two eval-
uators per document having the goal of tagging the type of
bug described in the document; conflictswere solved by using
a majority-rule schema; and the tagging process was sup-
ported by a Web app (details in Section 3.1). We targeted the

Fig. 2. Overview of MDroid+ and MutAPK workflows.

3. With “cover” we mean the ability to generate a mutant simulating
the presence of a given type of bug.
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tagging of #150 documents per evaluator (600 overall docu-
ments considering eight evaluators and two evaluations per
document). However, some of the authors taggedmore docu-
ments, leading to the considered 726 documents. Note that we
did not constrain the tagging of the bug type to the ones
already present in our taxonomy (Fig. 1). The evaluations
were free to include new types of previously unseen bugs.

Upon addressing RQ1 we report (i) the new bug types
we identified in the tagging of the additional 726 documents
(i.e., the ones not present in our original taxonomy), (ii) the
coverage level ensured by each of the seven mutation tools,
measured as the percentage of bug types and bug instances
identified in the 726 documents covered by its operators.
We also analyze the complementarity of our tools with
respect to the existing tools.

Concerning RQ2, RQ3 and RQ4, we compared the tools
based on different mutation testing metrics. In particular,
we compared Major, PIT, muDroid, MDroid+, and MutAPK.
Major and PIT are popular open source mutation testing
tools for Java, that can be tailored for Android apps. The
tool by Deng et al. [25] is a context-specific mutation test-
ing tool for Android available at GitHub. We chose these
tools because of their diversity (in terms of functionality
and mutation operators), their compatibility with Java, and
their representativeness of tools working at different rep-
resentation levels: source code, Java bytecode, and SMALI
(i.e., Android-specific bytecode representation). Jabbarvand
and Malek [26] present a tool called mDroid that generates
mutants to validate the energy usage of apps. However, this
tool is only compatible with Eclipse, precluding it from
being used with the large set of apps collected for our
empirical evaluation.

To compare the applicability of each mutation tool, we
need a set of Android apps that meet certain constraints: (i)
the source code of the apps must be available, (ii), the apps
should be representative of different categories, and (iii) the
apps should be compilable (e.g., including proper versions
of the external libraries they depend upon). For these rea-
sons, we use the Androtest suite of apps [6], which includes
68 Android apps from 18 Google Play categories. These
apps have been previously used to study the design and
implementation of automated testing tools for Android and
met the three above listed constraints. The mutation testing
tools exhibited issues in 13 of the considered 68 apps, i.e.,
the 13 apps did not compile after injecting the faults. Thus,
in the end, we considered 55 subject apps in our study. The
list of considered apps as well as their source code and
APKS is available in our replication package [94].

Note that while Major and PIT are compatible with Java
applications, they cannot be directly applied to Android
apps. Thus, we wrote specific wrapper programs to perform
the mutation, the assembly of files, and the compilation of
the mutated apps into runnable Android application pack-
ages (i.e., APKs). While the procedure used to generate and
compile mutants varies for each tool, the following general
workflow was used in our study: (i) generate mutants by
operating on the original source/byte/SMALI code using
all possible mutation operators; (ii) compile or assemble the
APKs either using the ant, dex2jar, or baksmali tools;
(iii) run all of the apps in a parallel-testing architecture that
utilizes Android Virtual Devices (AVDs); (iv) collect data

about the number of apps that crash on launch and the cor-
responding exceptions of these crashes, which will be uti-
lized for a manual qualitative analysis; and (v) compute the
number of equivalent and duplicate mutants. We refer read-
ers to our replication package for the complete technical
methodology used for each mutation tool [94].

To quantitatively assess the applicability and effective-
ness of the considered mutation tools to Android apps, we
used five metrics: Total Number of Generated Mutants
(TNGM), Non-Compilable Mutants (NCM), Trivial Mutants
(TM), Equivalent Mutants (EM), and duplicate Mutants (DM).
Additionally, we analyzed the time required by both
MutAPK and MDroid+ to: (i) generate a mutated copy of the
app and to (ii) compile/build the copy.

In this paper, we consider Non-Compilable Mutants as
those that are syntactically incorrect to the point that the
APK file cannot be compiled/assembled, and trivial mutants
as those that are exhibited when launching the app. If a
mutant crashes upon launch, we consider it as a trivial
mutant because it could be detected by any test case that
starts the app. Note that we use the term “Non-Compilable
Mutants (NCM)” as a synonym of still-born mutants.

Two other metrics that one might consider to evaluate
the effectiveness of a mutation testing tool is the number of
equivalent and duplicate mutants the tool produces. However,
in past work, the identification of equivalent mutants has
been proven to be an undecidable problem [97], [98], and
both equivalent and duplicate mutants require the existence
of test suites (not always available and sufficiently complete
for this purpose in the case of the Androtest apps).

Papadakis et al. [32] proposed a method to overcome the
lack of test suites and to reduce the computational time
required to detect equivalent and duplicate mutants by rely-
ing on proxies computed at the machine code level. Note
that this idea has also been explored previously by Offutt
et al. [99] and Kintis et al. [100].

In particular, Papadakis et al. [32] propose using “Trivial
Compiler Equivalence (TCE)”, which relies on comparing
compiled machine code to detect equivalence between (i)
mutants and original programs, and (ii) among mutants to
detect duplicated ones. TCE has been shown to detect, on
average, 30 percent of equivalent mutants [32] on a bench-
mark of 18 small/medium C/C+ programs [101].

We used TCE to compute equivalent and duplicate
mutants at APK level. Instead of doing binary comparisons,
we computed hashes, which is also proposed by Papadakis
et al. [32] as an alternative for the comparisons. Because
mutations of Android apps can be applied on source code,
manifest files, or resource files (i.e., XMLs), for each original
APK and generated mutants, we computed four different
hashes. Given and APK file under analysis, we computed:

1) HðAPKÞ: hash of the whole apk file;
2) HðAPKresourcesÞ: hash of the resource files in the APK

file, which is computed as the concatenation of hash
for each resource file;

3) HðAPKmanifestÞ: hash of the manifest file in the APK
file;

4) HðAPKSMALIÞ: hash of the SMALI files extracted
from the APK file, which is computed as the concate-
nation of hash values for each SMALI file.
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To detect equivalent mutants, we compared the four
hashes of an original APK, with the four hashes of each of
the generated mutants. In cases where all of the mutant
hashes are equal to the original ones, the corresponding
mutant is declared as equivalent. Similarly, to detect dupli-
cate mutants, we compared the four hashes, but among the
mutants. Note that in the case of duplicatemutantswe report
only the number of mutants that should be discarded.

5.2 Results
RQ1: Fig. 3 reports (i) the percentage of bug types, identified
during our manual tagging, that are covered by the taxon-
omy of bugs shown in Fig. 1 (top part of Fig. 3), and (ii) the
coverage in terms of bug types as well as of instances of
tagged bugs ensured by each of the considered mutation
tools (bottom part). The data shown in Fig. 3 refers to the
413 bug instances for which we were able to define the exact
reason behind the bug (this excludes the 114 entities tagged
as unclear and the 199 identified as false positives).

87 percent of the bug types are covered in our taxonomy.
In particular, we identified 16 new bug categories that we
did not encounter before in the definition of our taxonomy
(Section 3). Examples of these categories (full list in our rep-
lication package) are: Issues with audio codecs, Improper imple-
mentation of sensors as Activities, and Improper usage of the
static modifier. Note that these categories just represent a
minority of the bugs we analyzed, accounting altogether for
a total of 21 bugs (5 percent of the 413 bugs considered).
Thus, our bug taxonomy covers 95 percent of the bug
instances we found, indicating a very good coverage.

Moving to the bottom part of Fig. 3, our first important
finding highlights the limitations of the experimented muta-
tion tools (including MDroid+/MutAPK) in potentially

unveiling the bugs subject of our study. Indeed, for 60 out
of the 119 bug types (50 percent), none of the considered
tools can generate mutants simulating the bug. This stresses
the need for new and more powerful mutation tools tailored
for mobile platforms. For instance, no tool is currently able
to generate mutants covering the Bug in webViewClient lis-
tener and the Components with wrong dimensions bug types.

When comparing the mutation tools considered in our
study, MDroid+ and MutAPK clearly stand out as the tools
ensuring the highest coverage both in terms of bug types
and bug instances. In particular, mutators generated by
MDroid+/MutAPK have the potential to unveil 38 percent
of the bug types and 62 percent of the bug instances. In com-
parison, the best competitive tool (i.e., the catalog of mutants
proposed by Deng et al. [25]) covers 15 percent of the bug
types (61 percent less as compared to MDroid+/MutAPK)
and 41 percent of the bug instances (34 percent less as
compared to MDroid+/MutAPK). Also, we observe that
MDroid+/MutAPK cover bug categories (and, as a conse-
quence, bug instances) missed by all competitive tools.
Indeed, while the union of the six competitive tools covers
24 percent of the bug types (54 percent of the bug insta-
nces), adding the mutation operators included in MDroid

+/MutAPK increases the percentage of covered bug types to
50 percent (73 percent of the bug instances). Some of the cat-
egories covered by MDroid+/MutAPK and not by the other
tools are: Android app permissions, thanks to the MissingPer-
missionManifest operator, and the FindViewById returns
null, thanks to the FindViewByIdReturnsNull operator.

Finally, we statistically compare the proportion of bug
types and the number of bug instances covered by MDroid

+/MutAPK, by all other techniques, and by their combina-
tion, using Fisher’s exact test and Odds Ratio (OR) [102].
The results indicate that:

1) The odds of covering bug types using MDroid

+/MutAPK are 1.56 times greater than other tech-
niques, although the difference is not statistically
significant (p-value = 0.11). Similarly, the odds of dis-
covering faults with MDroid+ are 1.15 times greater
than other techniques, but the difference is not sig-
nificant (p-value = 0.25);

2) The odds of covering bug types using MDroid

+/MutAPK combined with other techniques are 2.0
times greater than the other techniques alone, with
a statistically significant difference (p-value = 0.008).
Similarly, the odds of discovering bugs using the
combination of MDroid+/MutAPK and other techni-
ques are 1.35 times greater than other techniques
alone, with a significant difference (p-value = 0.008).

Summary of RQ1 Findings: MDroid+and MutAPKoutper-
formed the other mutation tools by achieving the highest
coverage both in terms of bug types and bug instances.
However, the results show that Android-specific mutation
operators should be combined with existing mutation oper-
ators for Java to generate mutants that are representative of
real faults in mobile apps.

RQ2: Fig. 4 depict the total number ofmutants generated by
each tool on each analyzed app, while Figs. 5 and 6 show the
percentage of (a) Non-Compilable Mutants (NCM) and (b)
Trivial Mutants (TM) respectively. As stated in Section 4.2,

Fig. 3. Mutation tools and coverage of analyzed bugs.
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MutAPK was based on MDroid+, therefore, in the following
comparisons we will show the results for both MutAPK and
MutAPK-Shared4 to study the benefits of applying the
MDroid+ operators at APK level.

On average, 167, 207, 1.3k+, 904, 2.6k+, and 1.5k+
mutants were generated by MDroid+, MutAPK-Shared,
MutAPK, Major, PIT, and muDroid, respectively for each
app. The larger number of mutants generated by PIT is due,
in part, to the larger number of mutation operators available
for the tool; note that PIT uses object oriented-based muta-
tors for Java source code. muDroid tends to generate a
larger number of mutants due to its more generic mutation
operators, meaning that there are more potential instances
in the source code for mutants to be seeded. MutAPK gener-
ates significantly more mutants than Major (Wilcoxon
paired signed-rank test adjusted p-value< 0:001 with
Holm’s correction [103]) and significantly fewer mutants
than PIT (Wilcoxon paired signed-rank test adjusted p-value
< 0:001 with Holm’s correction). However, MDroid+ and
MutAPK-Shared generate significantly fewer mutants than
Major, muDroid, and PIT (Wilcoxon paired signed-rank test
adjusted p-value < 0:001).

The average percentage ofNon-CompilableMutants (NCM)
generated by MutAPK, MutAPK-shared, MDroid+, Major
and muDroid over all the apps is 0.04, 0.31, 0.56, 1.8, and
53.9 percent, respectively, while no NCM were generated
by PIT (Fig. 5). MDroid+ produces significantly fewer NCM
than Major (Wilcoxon paired signed rank test adjusted
p-value < 0:001, and large Cliff’s d = 0.59) and thanmuDroid
(adjusted p-value < 0:001, and medium Cliff’s d = 0.35).
MutAPK and MutAPK-Shared produces significantly fewer
NCM than Major and muDroid (Wilcoxon paired signed
rank test adjusted p-value< 0:001)

These differences across the tools are mainly due to the
compilation/assembly process they adopt during the muta-
tion process. PIT works at Java bytecode level and thus can
avoid the NCM problem, at the risk of creating a larger
number of TM. However, PIT is the tool that required the
highest effort to build a wrapper to make it compatible with
Android apps. Major and MDroid+ work at the source code
level and compile the app in a “traditional” manner. Thus,
it is more prone to NCM and requires an overhead in terms
of memory and CPU resources needed for compiling/build-
ing the mutants. Finally, muDroid and MutAPK operate on
APKs and smali code, reducing the computational cost of
mutant generation, but significantly increasing the chances
of NCM; muDroid is the top-one generator of NCM with an
average of 53.9 percent of NCMs per app. However,
MutAPK and MutAPK-Shared are the ones generating the
least amount of NCMwith averages of 0.04 and 0.31 percent
respectively. This due to the process designed to create the
mutation rules, as explained in Section 4.2.

All the analyzed tools generated trivial mutants (TM) (i.e.,
mutants that crashed simply upon launching the app). These
instances place an unnecessary burden on the developer,
particularly in the context of mobile apps, as they must be
discarded from the analysis. The average of the distribution
of the percentage of TM over all apps for MDroid+, Major,
PIT, MutAPK, muDroid and MutAPK-Shared is 2,42, 5.4, 7.2,
9, 11.8 and 13.62 percent, respectively (Fig. 6). MDroid+ gen-
erates significantly less TM than muDroid (Wilcoxon paired
signed rank test adjusted p-value = 0.04, Cliff’s d = 0.61 -
large) and than PIT (adjusted p-value = 0.004, Cliff’s d = 0.49 -
large), while there is no statistically significant difference
with Major (adjusted p-value = 0.11). MutAPK generates sig-
nificantly more TM than Major (Wilcoxon paired signed
rank test adjusted p-value < 0:001) and MutAPK-Shared
generates significantly more TM than PIT (Wilcoxon paired
signed rank test adjusted p-value < 0:001)

While these percentages may appear small, the raw val-
ues show that the TM can comprise a large set of instances
for tools that can generate thousands of mutants per app.
For example, for the Translate app, 518 out of the 1,877
mutants generated by PIT were TM. For the same app,
muDroid creates 348 TM out of the 1,038 it generates. For
the Blokish app, 340 out of the 3,479 GM by Major were TM.
At the same time, for HNDroid app MutAPK generates 673
trivial mutants out of 1038 generated mutants but also for
Anycut app generates only 2 TM out of 380 GM. Finally,
MDroid+ generates also for HNDroid 94 trivial mutants
from 123 generated. Both MutAPK and MDroid+ generate
the smallest number of NCM with 55 and 37 respectively.

Fig. 4. Distribution of number of mutants generated per app.

Fig. 5. Distribution (%) of non-compilable mutants.

Fig. 6. Distribution (%) of trivial mutants.

4. MutAPK-Shared means MutAPK using only the operators shared
with MDroid+
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However, MDroid+ generates less TM, only 213 in total
across apps due to being also the one generating less
mutants, around 167 per app. At the same time, MutAPK
belongs to the top generators of TM, with around 9 percent
of TM per app.

Following the approach proposed by Papadakis et al. [32],
we found that none of the tools generated equivalent
mutants when comparing the hash values between the origi-
nal APKs and the mutated APKs. As previously mentioned,
the four hash values calculated for both original andmutated
APK should be equal to identify a mutant as an equivalent
mutant. Nevertheless, we used the same approach to find
duplicate mutants by performing a pairwise comparison of
all mutants. As a result, we found that MutAPK, MutAPK-
Shared, PIT, and muDroid generate duplicate mutants. Spe-
cifically, 211, 43, 8, and 2,031 duplicate mutants were gene-
rated, respectively. Note that muDroid generates more
duplicate mutants that other tools, with a percentage of

6.55 percent of the generated mutants; the second one is
MutAPK-Shared with 0.38 percent; the third is MutAPKwith
0.28 percent; and finally PITwith 0.006 percent.

Summary of RQ2 findings: As for the generation of
mutants, all the analyzed tools (Major, Pit, muDroid,
MDroid+, MutAPK) generated a relatively low rate of trivial
mutants, with muDroid being the worst with a 11.8 percent
average rate of trivial mutants. Additionally, no equivalent
mutants were found for any tool, according to a hash-based
comparison between the original APKs and the correspond-
ing mutants. Nevertheless, 4 tools (MutAPK, MutAPK-
Shared, PIT and muDroid) generated duplicate mutants,
with muDroid being the worst with a 6.55 percent of total
duplicate mutants.

RQ3: we found that for Major, the Literal Value Replace-
ment (LVR) operator had the highest number of TM,
whereas the Relational Operator Replacement (ROR) had
the highest number of NCM. It may seem surprising that
ROR generated many NCM, however, we discovered that
the reason was due to improper modifications of loop con-
ditions. For instance, in the A2dp. Vol app, one mutant
changed this loop: for (int i = 0; i < cols; i++) and
replaced the condition “i < cols” with “false”, causing
the compiler to throw an unreachable code error. For PIT,
the Member Variable Mutator (MVM) is the one causing
most of the TM; for muDroid, the Unary Operator Insertion
(UOI) operator has the highest number of NCM (although
all the operators have relatively high failure rates), and the
Relational Value Replacement (RVR) has the highest num-
ber of TM. For MutAPK, the FindViewByIdReturnsNull and
NullValueIntentPutExtra operators had the highest number
of NCM, while the NullMethodCallArgument operator gen-
erates the highest number of TM.

The details of the mutation operators being the source of
duplicate mutants are depicted in Tables 2, 3, and 4. Table 2
presents the results for muDroid. As previously mentioned,
muDroid generates the largest number of duplicate
mutants. One example is ”Relational Operator Replacement”
mutant operator with 1135 duplicate mutants of 28,560 gen-
erated ones, which account for a total of 4 percent of dupli-
cate mutants generated with this operator.

PIT’s results are shown in Table 3; in this case, there are
only 8 duplicate mutants where 6 of them belong to a rela-
tion between mutants having “NegateConditional” and
”RemoveConditional” operators.

Finally, for MutAPK (Table 4) the “NullMethodCallArgument”
is the operator generating more duplicate mutants. Addi-
tionally, it is worth noticing that there are 12 duplicate
mutants in MutAPK and MutAPK-shared that are between

TABLE 2
Number of Duplicate Mutants Created
by muDroid Grouped by Operator

Mutation Operators Amount

Relational Operator Replacement 849

Inline Constant Replacement 228

Arithmetic Operator Replacement 486

Return Value Replacement 34

Logical Connector Replacement 6

Negative Operator Inversion 1

Inline Constant Replacement & Relational Operator
Replacement

180

Inline Constant Replacement & Arithmetic Operator
Replacement

77

Arithmetic Operator Replacement & Relational
Operator Replacement

57

Return Value Replacement & Inline Constant
Replacement

57

Return Value Replacement & Relational Operator
Replacement

24

Return Value Replacement & Arithmetic Operator
Replacement

14

Logical Connector Replacement & Inline Constant
Replacement

4

Relational Operator Replacement & Logical Connector
Replacement

3

Negative Operator Inversion & Inline Constant
Replacement

3

Arithmetic Operator Replacement & Logical
Connector Replacement

2

Negative Operator Inversion & Relational Operator
Replacement

2

Negative Operator Inversion & Arithmetic Operator
Replacement

2

Logical Connector Replacement & Return Value
Replacement

2

Total (MuDroid) 2,031

TABLE 3
Number of Duplicate Mutants Created by PIT Grouped by

Operator

Mutation Operators Amount

NegateConditional 1

RemoveSwitch 1

NegateConditional &
RemoveConditional_ORDER_ELSE

6

Total (PIT) 8
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different pairs of operators; this behavior is further ana-
lyzed later.

To qualitatively investigate the causes behind the
crashes and duplicate generation, four authors manually
analyzed a randomly selected sample of 15 crashed mut-
ants and 10 duplicate mutants per tool. In this analysis, the
authors relied on information about the mutation (i.e.,
applied mutation operator and location), and the generated
stack trace.

Major. The reasons behind the crashingmutants generated
byMajormainly fall into two categories. First, mutants gener-
ated with the LVR operator that changes the value of a literal
causing an app to crash. This was the case for the wikipedia
app when changing the “1” in the invocation setCache-

Mode(params.getString(1)) to “0”. This passed a
wrong asset URL to the method setCacheMode, thus crash-
ing the app. Second, the Statement Deletion (STD) operator
was responsible for app crashes especially when it deleted
needed methods’ invocations. A representative example is
the deletion of invocations to methods of the superclass
when overriding methods, e.g., when removing the super.

onDestroy() invocation from the onDestroy() method
of an Activity. This results in throwing of an android.

util.SuperNotCalledException. Other STDmutations
causing crashes involved the deletion of a statement initia-
lizing the main Activity leading to a NullPointerEx-

ception. No duplicate mutants were identified among the
mutants generated byMajor.

muDroid. This tool is the one exhibiting the highest per-
centage of NCM and TM. The most interesting finding of
our qualitative analysis is that 75 percent of the crashing
mutants lead to the throwing of a java.lang.VerifyEr-

ror. A VerifyError occurs when Android tries to load a
class that, while being syntactically correct, refers to resour-
ces that are not available (e.g., wrong classpaths). In the
remaining 25 percent of the cases, several of the crashes
were due to the Inline Constant Replacement (ICR) opera-
tor. An example is the crash observed in the photostream

app where the “100” value has been replaced with “101”
in bitmap.compress(Bitmap.CompressFormat.PNG,

100, out). Since “100” represents the quality of the com-
pression, its value must be bounded between 0 and 100.

In terms of duplicate mutants, muDroid5 is also the tool
generating the highest amount of DM. As listed in Table 2,
the 6 mutants operators generate duplicate mutants, and
there are 13 combinations of operators that also generate
duplicate mutants. The mutation operator that generates
more duplicate mutants is Relational Operator Replacement
(ROR). This operator generates around 850 mutants that are
duplicate with other ROR mutants. Additionally, there are
around 266 duplicate mutant pairs with one of the mutants
being a result of ROR operator being applied. After manu-
ally analyzing the duplicate mutants, we found that there
are implementation errors in muDroid, since several
mutants generated with the ROR, ICR and AOR operators
have identical mutations in the same app, despite being
reported in the log files as different mutants.

PIT. In this tool, several of the manually analyzed crashes
were due to (i) the RVR operator changing the return value
of a method to null, causing a NullPointerException,
and (ii) removed method invocations causing issues similar
to the ones described for Major. In terms of the duplicate
mutants, PIT generated the lowest rate (8 out of 103k
mutants). The most common duplicate mutant case is
between NegateConditional and RemoveConditional_ORDER_
ELSE. From its definition, the RemoveConditional_ORDER_
ELSE operator is a specialization of the base mutant opera-
tor RemoveConditional, whose objective is to change “a==b”
to “true”. The specialized operator negates the condition to
ensure the ELSE block is executed; however, in some cases,
the effect of both operators is the same. Consider, for exam-
ple, the following source code snippet:

1 if(a < b){

2 // Do something

3 } else {

4 // Do something else

5 }

If we apply NegateConditional operator, PIT will look for
the conditional operator used in the if statement (i.e., < )
and it would negate it, replacing it with a >=. However, if
we apply RemoveConditional_ORDER_ELSE, PIT would
make the necessary change in the if condition so the else
statement is executed. This is represented in replacing the <
condition, with a >= condition. Therefore, both operators

TABLE 4
Number of Duplicate Mutants Created by MutAPK

and MutAPK-Shared Grouped by Operator

Mutation Operators Amount

DifferentActivityIntentDefinition 10

NullValueIntentPutExtra 6

NullIntent 6

WrongStringResource 3

InvalidIDFindView 3

LengthyGUICreation 2

InvalidActivityPATH 1

ActivityNotDefined 1

InvalidFilePath 1

NullValueIntentPutExtra &
NullBackEndServiceReturn

3

NullValueIntentPutExtra &
MissingPermissionManifest

2

WrongStringResource & NullIntent 2

MissingPermissionManifest &
ViewComponentNotVisible

2

LengthyGUICreation & LengthyGUIListener 1

Subtotal (MutAPK-Shared - Common operators) 43

NullMethodCallArgument 165

InvalidViewFocus 1

InvalidActivityPATH & InvalidViewFocus 2

Total (MutAPK) 211

5. For the time of the writing of this article last update of MuDroid’s
source code was done in May 3, 2016
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will give a final result where the < condition was replaced
with a >= condition.

MDroid+. Table 5 lists the mutants generated by MDroid

+ across all the systems (information for the other tools is

provided with our replication package). In MDroid+, the
overall rate of NCM was quite low with the ClosingNull-
Cursor operator having the highest total number of NCM
(across all the apps) with 13. These instances stem from
edge case that trigger compilation errors involving cursors
that have been declared Final, thus causing the reassign-
ment to trigger the compilation error. The small number of
other NCMs are generally other edge cases, and current lim-
itations of MDroid+ can be found in our replication package
with detailed documentation. No duplicate mutants were
identified among the mutants generated by MDroid+.

MutAPK . Table 5 lists the mutants generated by MutAPK

across all the systems (information for the other tools is pro-
vided with our replication package). The overall rate of
NCM is very low in MutAPK, and most failed compilations
pertain to specialized cases that would require a more robust
static analysis approach to inject the mutations. However, it
is worth noting that MutAPK works at APK level, and the
mutation rules require more modifications (when compared
to source code level mutations) to generate a valid mutation.
For example, the FindViewByIdReturnsNull mutation rule
consists of replacing the statements used to find a specific
component with a null value assignment to the register
where the corresponding result is stored. This storage pro-
cess could store the value in a register higher than 16. This
value is the maximum register index normally accepted by
DALVIK instructions. However MutAPK uses the const/4 v#,
0x0 instruction to set the null value. Therefore, if the register
used for the assignment is above 16 the instruction will not
compile. To correctly mutate the app, an extensive search for
an empty register must be done to store the null value. How-
ever, if there is no empty register, MutAPK would need to
save the value from one of the below-16-registers into a tem-
poral above-16-register, use the first selected register to stor-
age the null value while the process uses it and then reassign
its original value. This problem also applies to NullValueIn-
tentPutExtramutation operator.

The operator generating the highest number of TM is
NullMethodCallArgument (84.43 percent, i.e., 4,264 out of
5,050). The main reason for this behavior is due to the nature
of the mutation rule; the NullMethodCallArgument operator
replaces one parameter value in a method call with a null
value. Therefore, all method invocations with the null value
as an argument will throw an exception when the method
does not handle the null value. It is worth noting that
MutAPK generates 63,441 mutants using this operator, there-
fore only 6.72 percent of generated mutants are trivial under
our definition. Future work must be focused on avoiding
mutations of this type in the main activities to avoid the TM
case. There are also 3 other operators that increase the
amount of TM generated by MutAPK. First, FindViewByI-
DReturnsNull, modifies a findViewByID call to return null.
Second, InvalidIDFindView replaces the parameter that
represents the view Id required with a generated randomly,
therefore, the result of the findViewByID call will be a null
value. Third, the NullValueIntentPutExtra operator replaces
the value sent as extra in an intent with a null value. There-
fore, just like what happens with NullMethodCallArgument,
all the method invocations and statements that do not cor-
rectly handle the null values will generate an exception
breaking the app.

TABLE 5
Number of Generated (GM), Non-Compilable (NCM), and Trivial

Mutants (TM) created by MDroid+ and MutAPK

MDroid+ MutAPK

Mutation Operators GM NCM TM GM NCM TM

WrongStringResource 3,394 0 14 3,432 0 10

NullIntent 559 3 41 482 0 37

InvalidKeyIntentPutExtra 459 3 11 477 0 9

NullValueIntentPutExtra 459 0 14 477 22 103

InvalidIDFindView 456 4 30 1,313 0 193

FindViewByIdReturnsNull 413 0 40 1,313 28 190

ActivityNotDefined 384 1 8 385 0 11

InvalidActivityName 382 0 10 383 0 50

DifferentActivityIntentDefinition 358 2 8 482 0 7

ViewComponentNotVisible 347 5 7 398 0 58

MissingPermissionManifest 229 0 8 227 0 7

InvalidFilePath 220 0 1 228 0 36

InvalidLabel 214 0 3 214 0 5

ClosingNullCursor 179 13 5 222 0 14

LengthyGUICreation 129 0 1 336 0 15

LengthyGUIListener 122 0 0 339 0 5

NullInputStream 61 0 4 90 0 4

WrongMainActivity 56 0 0 56 0 8

InvalidColor 52 0 0 47 0 0

NullOuptutStream 45 0 2 59 0 2

InvalidDate 40 0 0 20 0 0

InvalidSQLQuery 33 0 2 82 0 7

NullBluetoothAdapter 9 0 0 9 0 0

LengthyBackEndService 8 0 0 15 15 0

NullBackEndServiceReturn 8 1 0 34 5 2

InvalidIndexQueryParameter 7 1 0 82 0 2

OOMLargeImage 7 4 0 7 0 4

BluetoothAdapterAlwaysEnabled 4 0 0 1 0 0

InvalidURI 2 0 0 2 0 0

NullGPSLocation 1 0 0 2 0 0

LongConnectionTimeOut 0 0 0 0 0 0

SDKVersion 66 0 2 0 0 0

Subtotal (Common operators) 8,703 37 211 11,214 55 779

NotParcelable 7 6 0 - - -

NotSerializable 15 7 0 - - -

BuggyGUIListener 122 0 2 - - -

NullMethodCallArgument - - - 63,441 0 4,264

InvalidViewFocus - - - 398 0 7

Total 8,847 50 213 75,053 55 5,050

ESCOBAR-VEL!ASQUEZ ET AL.: ENABLING MUTANT GENERATION FOR OPEN- AND CLOSED-SOURCE ANDROID APPS 201

Authorized licensed use limited to: William & Mary. Downloaded on June 22,2022 at 02:00:29 UTC from IEEE Xplore.  Restrictions apply. 



In terms of duplicate mutants, MutAPK generates the
largest amount with the NullMethodCallArgument opera-
tor. By definition, this operator changes the value of a
parameter in a method call to null. In source code, it is
possible to find method calls that use the same value
more than once in a call. For example, in the a2dp.Vol
app, the method deleteAll calls the method delete by
providing twice a null value as parameter: this.db.

delete(TABLE_NAME, null, null). This instruction
at APK level also makes the call using two times the
same parameter:

1 invoke-virtual {v0, v1, v2, v2}, Landroid/

database

/sqlite/SQLiteDatabase;->delete(Ljava/

lang/String;

Ljava/lang/String;[Ljava/lang/String;)I

However, MutAPK does not validate the current value of
the parameter before changing it to null; therefore, the value
for v2 was already null before MutAPK injected the null
assignment. This is also an example of an equivalent mutant
that cannot be found by following the TCE approach, since
the SMALI bytecode was modified and the hash values
were not affected by the change.

It is also important to see that there are some mutant
operators shared with MDroid+ that are generating dupli-
cate mutants only at APK level, such as DifferentActivityIn-
tentDefinition that has different implementations in both
tools. This is a good example since this operator requires
finding a new Activity name for making the change. In the
MutAPK case, the operator is not validating that the activity
should not be replaced with the same name (picked ran-
domly from the list of activities in the APK).

Summary of RQ3 Findings: The performed analysis indicate
that the PIT tool outperforms others in terms of ratio between
non-compilable and generated mutants, because it does not
generate any non-compilable mutant. However, MDroid

+and MutAPKprovide Android-specific mutations, which
make the tools (i.e., Pit, MDroid+, MutAPK) complementary
for mutation testing of Android apps. MDroid+and MutA-

PKgenerated the lowest rate of both non-compilable and
trivial mutants (when compared to Major and muDroid),
illustrating its immediate applicability to Android apps.
Major and muDroid generate non-compilable mutants, with
the latter having a critical average rate of 58.7 percent non-
compilable mutants per app. Also, even when PIT generates
duplicate mutants, the number is insignificant when com-
pared to the number of mutants generated; at the same time
MutAPKand MutAPK-Shared also generate a low number of
duplicate mutants; some of them can be fixed by improving
the current implementation.

RQ4: Table 5 presents the results from both MutAPK

and MDroid+ in terms of Generated Mutants (GM), Non-
Compilable Mutants (NCM) and Trivial Mutants (TM) per
mutation operator defined in this study. Note that each tool
has implemented some operators that the other does not.
Therefore, we first study the times required by both tools to
(i) generate a mutated copy of the app and to (ii) compile/
assemble a given mutant into an APK. Then, we analyze the

mutation results taking into account only the operators that
are common in both tools, and finally, we study the impact
of tool-specific operators in the results.

As it was mentioned previously, we ran MutAPK and
MDroid+ over 55 apps. MDroid+’s default behavior gener-
ates mutated copies of the original source code; therefore,
we implemented a wrapper that based on the MDroid+

results builds the corresponding APKs. MutAPK works
directly on APKs; therefore, the APK generation is embed-
ded in the mutation process.

As it can be seen in Table 6, MutAPK takes 6.17 percent of
the time required by MDroid+ to mutate a copy of the app
and 12.95 percent of the time required to compile/assemble
the mutant into an APK. Therefore, MutAPK executes the
complete mutation process (i.e., mutation of app copy plus
compilation/assembling) 87.2 percent faster than MDroid+.

Common operators. Concerning the mutation type metrics
(Table 5), when considering only the common operators,
MDroid+ and MutAPK generated 8,703 and 11,214 mutants
respectively. This shows that at the APK level, the PFP
(Section 3) detects more locations for implementing muta-
tions. MutAPK generates on average 78 more mutants per
operator with a median of 7.5 more than MDroid+. How-
ever, the SDKVersion operator does not find instances in any
app due to latest modifications of the Android building pro-
cess, where all the details for SDK Version must be defined
in the build.gradle file instead of the Manifest file.

The number of NCM is very similar in both cases.
However, the percentage of TMs is larger with MutAPK

(6.94 percent) than with MDroid+ (2.24 percent), and this
happens because of the FindViewByIdReturnsNull, InvalidID-
FindView, and NullValueIntentPutExtra operators that
account for 62,39 percent of the trivial mutants in MutAPK.
Note that MutAPK generates more mutants than MDroid+

for those operators, because SMALI representation of code
statements must express each instruction in a line. There-
fore, as it can be seen in Listing 5 a Java statement can con-
tain several instructions that are solved from inside to
outside. However, a given Java statement in SMALI uses a
line for each instruction as it can be seen in Listing 6. Know-
ing that, MDroid+’s search power is reduced by the Java
capability of chaining instructions. For example, for Find-
ViewByIDReturnsNull operator MDroid+ search for state-
ments where the view is stored in a variable (see Listing 7).
However, if the result of findViewById method is used
directly as parameter (see Listing 5), MDroid+ does not rec-
ognize that statement as part of the PFP.

Listing 5 Java chained instructions

1 highlight(findViewById(R.id.load_data_

button));

TABLE 6
Summary of Time Results: MutAPK Versus MDroid+

Metric Name MutAPK MDroid+

Avg. Mutation Time (secs.) 284.67 x 10 &3 4.61

Avg. Compilation Time (secs.) 25.265 195

Avg. Full Mutant Creation Time (secs.) 25.549 199.61
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Listing 6 SMALI representation of JAVA chained
instructions

1 invoke-virtual {p0, p1}, Lio/github/hidroh/

materialistic/

AboutActivity;->findViewById(I)Landroid/

view/View;

2 move-result-object v0

3 check-cast v0, Landroid/widget/TextView;

4 invoke-virtual {v5, v0}, Lio/github/hidroh/

materialistic/

AboutActivity;->highlight(I)Ljava.awt.

String;

Listing 7 MDroid+mutation rule

1 ImageButton loadButton = (ImageButton) find

ViewById(R.id.load_data_button);

If NCM, TM and DM are removed, we can see that
MDroid+ generated 8,455 mutants versus 10,337 mutants
generated by MutAPK. Therefore, the results suggest that
MDroid+ takes 9.79 more hours to generate 21.9 percent
less functional mutants (i.e., mutants that compile and are
not trivial nor equivalent nor duplicate) than MutAPK.

Whole set of operators. Considering all the operators avail-
able with each tool, MutAPK generates per operator on aver-
age 63 percent more mutants than MDroid+ with a median
of 3.9 percent and a mode of 0 percent. We found that
MutAPK generates a significant amount of extra mutants
because of the NullMethodCallArgument operator. This ope-
rator is capable of generating 63,441 additional mutants
for the 55 apps, which is around 6 times the amount of
mutants generated by the rest of the operators. However,
6.72 percent of those are trivial and 0.26 percent are dupli-
cate. Additionally, on the one hand MutAPK also imple-
ments InvalidViewFocus, that generated 398 mutants (only 7
were trivial and 1 duplicate). On the other hand, MDroid+
has 3 additional operators that add 144 mutants to the list;
13 of them are non-compilable and only 2 are trivial. Even
in this case, MutAPK is able to generate more functional
mutants: 69,742 vs 8,579 generated by MDroid+.

Summary of RQ4 Findings: The clear benefit of performing
APK-level mutation analysis (MutAPK) as opposed to
source code-level mutation analysis (MDroid+) relates pri-
marily to the ease of use of the system, as it only requires a
single file (i.e., an APK file instead of several source files),
and generates mutants with higher compilability ratio in
less time. Moreover, this makes the mutation tool applicable
to apps written with various languages, i.e., Java, Kotlin,
and Dart. However, this ease of use comes with a slight
trade-off in terms of generating a higher number of mutants
(which leads to an extensive execution effort from develop-
ers), and a higher number of trivial and duplicate mutants
for certain operators that are likely to be discarded during
mutant analysis.

6 DISCUSSION & FUTURE WORK

The results of the study show that generating mutants at
APK level has some benefits when compared to mutants
generation at the source code level. With tools like MutAPK

third-parties could improve their services by using muta-
tion testing without the need of having access to the source
code. However, there is a trade-off, because there are pros
and cons on both sides. Therefore, the decision of whether
to use APK-level mutation versus source level should be
made carefully, with consideration for the specific context
and the needs of researchers/practitioners. In the remainder
of this section, we discuss the aforementioned trade-off and
differing usage scenarios as well as promising future work
that builds upon MDroid+ and MutAPK.

Mutant comprehension. APK-level mutation is faster but
with a larger number of NCMs and TMs. Another aspect to
consider with APK-level mutation is related to mutant com-
prehension. Since the mutations are performed at SMALI
level, the locations of the changes are not the same as the
equivalent changes at the source code level. Therefore,
when doing APK-level mutation and reporting killed and
survived mutants, the mutations are presented to develop-
ers/testers as the type of mutation (e.g., InvalidIDFindView),
but also in a location that is not the same when compared to
source code. Therefore, this could require extra effort of the
developer/tester to create a mapping between the mutation
location at SMALI level and the equivalent location at
source code. Future work should be devoted to automati-
cally provide users with the location of the mutations at
source code level when APK-level mutation is used in such
a way that no extra time is required by the users to create
the location mapping.

Opportunistic programming. A recent paper by Petrovic
et al. [66] presents how mutation testing is used at Google
during code-reviewing, in particular, by providing “inline”
feedback at the statement level. This approach could be
extended to provide early feedback to developers while
coding, i.e., providing mutation-based hints directly on the
IDE or during commit operations.

Classic vs Android-Specific operators. Our Android bug tax-
onomy (see Section 3) and the results for RQ1 show that
using only classic operators for mutation of Android apps is
not sufficient. Therefore, classic and Android-specific opera-
tors should be combined. Our MutAPK and MDroid+ tools
do not include classic operators in their catalogs. Therefore,
for a more effective mutation testing process, future work
could be devoted to extend the tools to include classic oper-
ators. However, this would imply redoing work already
done by tools like Pit and Major. Consequently, another
option is to dedicate future efforts to create “meta” tools
that combine mutants generated by different existing tools
according to user preferences.

New languages for Android app development. New program-
ming languages have emerged in the Android ecosystem; on
the one side, there are Kotlin and Flutter/Dart for native
apps, on the other side, there are the hybrid/cross-platform
frameworks. Using source code-level mutation requires spe-
cific frameworks for each language (e.g.,Kotlin), which is not
a problem for APK-level mutation with MutAPK. Therefore,
MutAPK can be used for the Android native languages (i.e.,
Java, Kotlin, Dart) with the limitation ofmutants comprehen-
sion (already mentioned). However, in the case of hybrid
apps there is no current tool for mutation testing. Future
work should be also focused on building bugs taxonomies
for andmutation testing tools for Android hybrid apps.
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More mutants at APK level and mutant selection. Time is an
issue in mutation testing, for both generation and testing
time. Although mutation at APK level drastically reduces
the time required to generate executable mutants, MutAPK
also generates a larger number of mutants (on average 1.3k
per apps) because it is easier to perform more mutations at
SMALI code than at the source code level. This behavior
occurs because SMALI instructions are closer to machine
operations and some syntactic sugar is not allowed at this
level. For example, it is common in Java Android program-
ming to have inline declarations of arguments, like in the
following statement of an Android app:

startActivity(new Intent(FrActivity.this,

ScActivity.class))

In this case, we could think that the DifferentActivityIn-
tentDefinition mutant operator could be applied; however,
the mutant operator at source code looks for an instruction
like the following:

Intent intent=new Intent(FrActivity.this,

ScActivity.class)And since the intent is defined
inside the parameter space, the operator will not identify
this line as a mutable one. However, at APK level, the afore-
mentioned instruction is expressed in multiple lines (See fol-
lowing code snippet): First, the intent is declared (Lines 1-4),
and then, it is used as a parameter in the startActivity
method call (Lines 5-7).

1 new-instance v2, Landroid/content/Intent;

2 const-class v3, Lcom/example/myapplication/

ScActivity;

3 invoke-direct {v2, p0, v3}, Landroid/content/

Intent;

4 -><init>(Landroid/content/Context;Ljava/

lang/Class;)V

5 invoke-virtual {p0, v2},

6 Lcom/example/myapplication/FrActivity;

7 ->startActivity(Landroid/content/Intent;)V

Because of this, even when instructions are concatenated
at source code level, they are separated and are easier to
identify when applying mutation operators at SMALI level.

There are some (trivial) features in the analyzed tools to
deal with large sets of mutants. Both MDroid+ and MutAPK

allow users to select the type of mutants to be generated. In
addition, MutAPK provides a feature to select the total num-
ber of mutants to be generated. Thus, before starting the
mutation process, the user can identify a statistically signifi-
cant sample of mutants to use during mutation analysis. For
example, if MutAPK indicates that 1,174 mutants will be
generated, then with a confidence level of 95 percent and
confidence interval of "5 percent, only 290 mutants are
required to have a significant sample. Anyway, MutAPK,
while generating more mutants and using more mutant
operators than MDroid+, has a generation time that is 5.5
hours less than the time required by MDroid+.

However, practitioners and researchers should consider
usingmutants prioritization/selection techniques [104] during
mutation testing of Android apps; for instance, mutants could
be generated from the most change-/fault-prone code or the
impact set of the last change-set. Mutants selection techniques
formobile apps is still an open topic for future research.

Comprehensive tool for mutation testing of Android apps. As
of today, there is no mutation testing tool for Android apps.
The tools and approaches used in our study are a first step
(mutant generation) towards the goal of having a compre-
hensive tool for mutation testing. However, to achieve this
goal, researchers and practitioners should envision an
approach that is agnostic of the testing framework. Note
that in the case of testing of Android apps, there are a pleth-
ora of available tools widely used. Therefore, to enable
mutation testing, existing tools should be extended to be
able to execute test suites written with any of the available
frameworks for testing Android apps.

7 THREATS TO VALIDITY

This section discusses the threats to validity of the work
related to devising the fault taxonomy, and carrying out the
study reported in Section 5.

Threats to construct validity concern the relationship
between theory and observation. The main threat is related
to how we assess and compare the performance of mutation
tools, i.e., by covering the types, and by their capability to
limit non-compilable, trivial, equivalent and duplicate
mutants. In particular, for detecting equivalent and dupli-
cate, we relied on the TCE approach [32], which was able to
detect (on average) 30 percent of equivalent mutants on a
benchmark of 18 small/medium C/C+ programs [101]. Our
choice for TCE is justified by the fact that the analyzed apps
do not have test suites that can be used for mutation analy-
sis. However, we can not claim that we are not detecting
all the equivalent and duplicate mutants generated by the
analyzed tools.

Threats to internal validity concern factors internal to our
settings that could have influenced our results. This is, in
particular, related to the possible subjectiveness of mistakes
in the tagging of Section 3 and for RQ1. As explained, we
employed multiple taggers to mitigate such a threat

Threats to external validity concern the generalization of
our findings. To maximize the generalizability of the fault
taxonomy, we have considered six different data sources.
However, it is still possible that we could have missed some
fault types available in sources we did not consider, or due
to our sampling methodology. Also, we are aware that in
our study results of RQ1 are based on the new sample of
data sources, and results of RQ2, RQ3, and RQ4, on the set
of 68 apps considered [6]. Also, although we compared the
proposed tools with several state-of-the-art mutation tools
(six tools in RQ1 and three tools in RQ2 and RQ3), our
results may not generalize to tools not included in the study.

8 CONCLUSIONS

Although Android apps rely on the Java language as a pro-
gramming platform, they have specific elements that make
the testing process different than other Java applications. In
particular, the type and distribution of faults exhibited by
Android apps may be very peculiar, requiring, in the con-
text of mutation analysis, specific operators.

In this paper, we presented the first taxonomy of faults
in Android apps, based on a manual analysis of 2,023 soft-
ware artifacts from six different sources. The taxonomy is
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composed of 14 categories containing 262 types. Then, based
on the taxonomy, we have defined a set of 38 Android-
specific mutation operators, implemented in an infrastruc-
ture composed of two mutation testing tools, MDroid+ and
MutAPK, to automatically seedmutations in Android apps at
source code and APK level. To validate the taxonomy and
our tools, we conducted a comparative study with existing
Java and Android mutation tools. The study results show
that the proposed operators are more representative of
Android faults than other catalogs of mutation operators,
including both Java and Android-specific operators previ-
ously proposed. Also, MDroid+ and MutAPK are able (in
general) to outperform state-of-the-art tools in terms of non-
compilable and trivial mutants. Mutating at APK level with
MutAPK is faster and reduces the proportion of non-compil-
ablemutants, but it also requires a higher number ofmutants
thanwhenworking on the source code.

The obtained results make our taxonomy and our tools
ready to be used and possibly extended by other research-
ers/practitioners. To this aim, MDroid+, MutAPK and the
wrappers for using Major and Pit with Android apps are
available as open source projects [30], [31], [105], [106].
Future work will extend MDroid+ and MutAPK by imple-
menting more operators, and creating a framework for
mutation analysis. Also, we plan to experiment with
MDroid+ and MutAPK in the context of test case prioritiza-
tion and mutation-driven test cases generation.
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