
2

Security in Centralized Data Store-based Home Automation
Platforms: A Systematic Analysis of Nest and Hue

KAUSHAL KAFLE, William & Mary, United States of America
KEVIN MORAN, George Mason University, United States of America
SUNIL MANANDHAR, ADWAIT NADKARNI, and DENYS POSHYVANYK,
William & Mary, United States of America

Home automation platforms enable consumers to conveniently automate various physical aspects of their
homes. However, the security !aws in the platforms or integrated third-party products can have serious
security and safety implications for the user’s physical environment. This article describes our systematic
security evaluation of two popular smart home platforms, Google’s Nest platform and Philips Hue, which
implement home automation “routines” (i.e., trigger-action programs involving apps and devices) via ma-
nipulation of state variables in a centralized data store. Our semi-automated analysis examines, among other
things, platform access control enforcement, the rigor of non-system enforcement procedures, and the po-
tential for misuse of routines, and it leads to 11 key "ndings with serious security implications. We combine
several of the vulnerabilities we "nd to demonstrate the "rst end-to-end instance of lateral privilege escalation
in the smart home, wherein we remotely disable the Nest Security Camera via a compromised light switch
app. Finally, we discuss potential defenses, and the impact of the continuous evolution of smart home plat-
forms on the practicality of security analysis. Our "ndings draw attention to the unique security challenges
of smart home platforms and highlight the importance of enforcing security by design.
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1 INTRODUCTION
Internet-connected, embedded computing objects known as smart home products have become ex-
tremely popular with consumers. The utility and practicality a$orded by these devices has spurred
tremendous market interest, with over 20 billion smart home products projected to be in use by
2020 [19]. The diversity of these products is staggering, ranging from small physical devices with
embedded computers such as smart locks and light bulbs, to full !edged appliances such as refrig-
erators and HVAC systems. In the modern computing landscape, smart home devices are unique as
they provide an often imperceptible bridge between the digital and physical worlds by connecting
physical objects to digital services via the Internet, allowing the user to conveniently automate
their home. However, because many of these products are tied to the user’s security or privacy
(e.g., door locks, cameras), it is important to understand the attack surface of such devices and
platforms, to build practical defenses without sacri"cing utility.

As the market for smart home devices has continued to mature, a new software paradigm has
emerged to enable home automation via the interactions between smart home devices and the
apps that control them. These interactions may be expressed as routines, which are sequences of
app and device actions that are executed upon one or more triggers, i.e., an instance of the trigger-
action paradigm in the smart home. Routines are the building block of home automation [14, 46,
57, 58], and hence, it is natural to leverage routines to characterize existing platforms.

If we categorize available platforms based on how routines are facilitated, then we observe two
broad categories: (1) API-based Smart Home Managers such as Yeti [65], Yonomi [66], IFTTT [25],
and Stringify [55] that allow users to chain together a diverse set of devices using APIs exposed
by device vendors, and (2) platforms such as Google’s Works with Nest [37], Samsung Smart-
Things [52], and Philips Hue [44] that leverage centralized data stores to monitor and maintain the
states of IoT devices. We term these platforms as Data Store-based (DSB) Smart Home Platforms.
In DSB platforms, complex routines are executed via reads/writes to state variables in a central
data store.

This article is motivated by a key observation that while routines are supported via centralized
data stores in all DSB platforms, there are di$erences in the manner in which routines are created,
observed, and managed by the user. That is, SmartThings encourages users to take full control of
creating and managing routines involving third-party apps and devices via the SmartThings app.
However, in Nest, users do not have a centralized perspective of routines at all, and instead, manage
routines using third-party apps/devices. This key di$erence may imply unique security challenges
for Nest. Similarly, being a much simpler platform within this category of DSB platforms, Hue
represents another unique and interesting instance of the DSB platform paradigm.
Contributions: This article performs a systematic security analysis of some of the less studied,
but widely popular, data store-based smart home platforms, i.e., Nest and Hue. In particular, we
evaluate (1) the access control enforcement in the platforms themselves, (2) the robustness of other
non-system enforcement (e.g., product reviews in Nest), (3) the use, and more importantly, the
misuse of routines via manipulation of the data store by low-integrity devices,1 and "nally, (4) the
security of applications that integrate into these platforms.

To our knowledge, this article is the "rst to analyze this relatively new class of smart home plat-
forms, in particular the Nest and Hue platforms, and to provide a holistic analysis of routines, their
use, and potential for their misuse in DSB platforms. Moreover, this article is the "rst to analyze
the accuracy of app-de"ned permission descriptions and prompts, which provide highly critical

1In the context of our study, we de"ne a device as high-integrity if it is advertised as security-critical by the device vendor
(e.g., Nest Cam) while those that are not security-critical are referred to as low-integrity (e.g., Philips Hue lamp).
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context to the user. Furthermore, we provide a detailed account of our vulnerability disclosure ex-
perience with four separate vendors, and discover that certain vulnerabilities may not always be
"xable. Finally, we study the rami!cations of platform evolution on the transparency and artifacts
required for security analysis. In doing so, we not only discover concrete problems in DSB plat-
forms but also use empirical analysis to reveal challenges for feasibly performing similar research
studies in the near future. Our novel "ndings (F1→F11) are summarized as follows:

• Misuse of routines—The permission model in Nest is "ne-grained and enforced accord-
ing to speci"cations (F1), giving low-integrity third-party apps/devices (e.g., a switch) little
room for directly modifying the data store variables of high-integrity devices (e.g., security
cameras). However, routines supported by Nest allow low-integrity devices/apps to indi-
rectly modify the state of high-integrity devices, by modifying the shared variables they
rely on (F4).

• Lack of systematic defenses—Nest does not employ transitive access control enforce-
ment to prevent indirect modi"cation of security-sensitive data store variables; instead, it
relies on a product review of application artifacts before allowing API access. We discover
that the product review process is insu%cient and may not prevent malicious exploitation
of routines; i.e., the review mandates that apps prompt the user before modifying certain
variables, but does not validate what the prompt contains, allowing apps to deceive users
into providing consent (F5). Moreover, permission descriptions provided by apps during
authorization are also often incorrect or misleading (F6, F9), which demonstrates that mali-
cious apps may easily "nd ways to gain more privilege than necessary (F7), circumventing
both users and the Nest product review (F8).

• Lateral privilege escalation—We "nd that smart home apps, particularly those that con-
nect to Nest and have permissions to access security-sensitive data store variables, have
a signi"cantly high rate of SSL vulnerabilities (F10). We combine these SSL !aws with the
"ndings discussed previously (speci"cally F4→F9) and demonstrate a novel form of a lateral
privilege escalation attack. That is, we compromise a low-integrity app that has access to the
user’s Nest smart home (e.g., a TP Link Kasa switch), use the compromised app to change
the state of the data store to trigger a security-sensitive routine, and indirectly change the
state of a high-integrity Nest device (e.g., the Nest security camera). This attack can be used
to deceive the Nest Cam into determining that the user is home when they are actually
away, e$ectively disabling it.

• Lack of bare minimum protections—Unlike Nest, the access control enforcement of Hue
is woefully inadequate. Third-party apps that have been added to a user’s Hue platform may
arbitrarily add other apps without user consent, despite an existing policy that the user must
consent to by physically pressing a button (F2). Making matters worse, an app may remove
other apps integrated with the platform by exploiting unprotected data store variables in
Hue (F3). These vulnerabilities may allow an app with seemingly useful functionality (i.e.,
a Trojan [28]) to install malicious add-ons without the user’s knowledge, and replace the
user’s integrated apps with malicious substitutes. While repeating our experiments on a
version of Hue updated to address these issues, we discover that Hue’s mitigation is only
partially successful (F11).

The rest of the article is structured as follows: Section 2 describes the key attributes of DSB
platforms. Section 3 describes our security evaluation of Nest and Hue. Section 4 explores the
signi"cance of our "ndings (i.e., a lateral privilege escalation attack, Section 4.1), the current
status of the vulnerabilities reported to the concerned vendors (Section 4.2), and challenges for
future analysis, in the form of an empirical study of the feasibility of our security analyses with
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Fig. 1. The general architecture of platforms that leverage centralized data stores. Note thatH is the universe
of all home state variables, and Vdevicei is the universe of all state variables specific to devicei .

six additional smart home platforms (Section 4.3). Section 5 describes potential defenses (or
preventative steps) for the attacks and vulnerabilities discussed in this article. Section 6 describes
the related work. Section 7 concludes with lessons learned.

2 HOME AUTOMATION VIA CENTRALIZED DATA STORES
This section describes the general characteristics of data store-based platforms, i.e., smart home
platforms that use a centralized data store to facilitate routines. We provide the background on two
such platforms, namely, (1) Google’s “Works with Nest” [38] platform (henceforth called “Nest”)
and (2) the Philips Hue lighting system [44] (henceforth called “Hue”), which serve as the targets of
our security evaluation. The Android apps for both of the systems have over a million downloads
on Google Play [20, 21], indicating signi"cant adoption and far-reaching impact of our analysis.

2.1 General Characteristics
Figure 1 shows the general architecture of DSB platforms, consisting of 3 main components: apps,
devices, and the centralized data store, which generally communicate over the Internet. Addition-
ally, a physical hub that facilitates local communication via protocols such as Zigbee or Z-wave
may be present (e.g., the Hue Bridge). The apps may either be Web services hosted on the cloud, or
mobile apps communicating via Web services. At this juncture, we generalize apps as third-party
software interacting with the data store, and provide the platform-speci"c descriptions later.

The centralized data store facilitates communication among apps and devices via state variables.
The data store exposes two types of state variables: (1) Home state variables that re!ect the general
state of the entire smart home (e.g., if the user is at home/away, the devices attached to the home, the
postal code), and (2) Device-speci!c state variables that re!ect the attributes speci"c to particular
devices (e.g., if the Camera is streaming, the target temperature of the thermostat).

Apps and devices communicate by reading from or writing to the state variables in the data
store. This model allows expressive communication, from simple state updates to indirect trigger-
action routines. For instance, the thermostat may change to its “economy” mode when the home’s
state changes to away, i.e., the thermostat’s app may detect that the user has left the smart home
(e.g., using Geofencing), and write to the home state variable away. The thermostat may then read
this change, and switch to its economy mode. Our preliminary investigation led to the following
key observations that motivate a targeted analysis of the Nest and Hue DSB platforms:
Key observations motivating the analysis of Nest and Hue: We observe that both Nest and
SmartThings execute routines; however, there is a key di$erence in how routines are managed.
SmartThings allows users to create and manage routines from the SmartThings app itself, thereby
providing users with a general view of all the routines executing in the home [53]. In contrast, Nest
routines are generally implemented as decentralized third-party integrations. Third-party products
that facilitate routines provide the user with the ability to view and manage them. As a result, the
Nest platform does not provide the user with a centralized view of the routines that are in place.
Due to this lack of user control, Nest smart homes may face unique security risks and challenges,
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Fig. 2. A simplified view of the centralized data store in Nest.

which motivates its security analysis. Similarly, we analyze Hue as it is an interesting variant of
DSB platforms, and a relatively popular brand [21]. That is, Hue integrates homogeneous devices
related to lighting such as lamps and bulbs, unlike Nest and SmartThings that integrate heteroge-
neous devices, and represents a drastically simpler (and hence unique) variant of home automation
platforms that use centralized data stores. Thus, the analysis of Hue’s attack surface has potential
to draw attention to other similar, homogeneous platforms, which is especially important consid-
ering the fragmentation in the smart home product ecosystem [11].

2.2 Nest Background
The Works with Nest platform integrates a heterogenous set of devices, including devices from
Nest (e.g., Nest thermostat, Nest Cam, Nest Protect) as well as from other brands (e.g., Wemo and
Kasa switches, Google Home, MyQ Chamberlain garage door opener) [38]. This section describes
the key characteristics of Nest, i.e., its data store, its access control model, and routines.
Data store composition: Figure 2 shows a simpli"ed, conceptual view of the centralized data
store in Nest. Note that the "gure shows a small fraction of the true data store, i.e., only enough to
facilitate understanding. Nest implements the data store as a JSON-format document divided into
two main top-level sections: structures and devices. A structure represents an entire smart home
environment such as a user’s home or o%ce, and is de"ned by various state variables that are
global across the smart home (e.g., Away to indicate the presence or absence of the user in the
structure and the postal_code to indicate the home’s physical location). The devices are subdivided
into device types (e.g., thermostats, cameras, smoke detectors), and there can be many devices
of a certain type, as shown in Figure 2. Each device stores its state in variables that are relevant
to its type; e.g., a thermostat has state variables for humidity, and target_temperature_c, whereas
a camera has the variables is_online and is_streaming. Aside from these type-speci"c variables,
devices also have certain variables in common; e.g., the alphanumeric device ID, the structure ID of
the structure in which the device is installed, the device’s user-assigned name, and battery_health.
Access Control in Nest: Nest treats third-party apps, Web services, and devices that want to in-
tegrate with a Nest-based smart home as “products.” Nest de"nes read or read/write permissions
for each of the variables in the data store. A product that wants to register with Nest must "rst
declare the permissions that it needs (e.g., thermostat read/write) in the Nest developer console.
Each Nest user account has a speci"c data store assigned to it, and products gain access to the
data store using OAuth 2.0. That is, users connect products to their account by (1) authenticating
with Nest, and (2) allowing the third-party app/product to use certain Nest permissions that it re-
quests using an install-time permission prompt. Once the user grants the permissions, a revocable
access token is generated that is speci"c to the product, the set of permissions requested, and the
particular smart home. This token is required for subsequent interactions with the data store, and
hence, must be protected from attackers. The attack described in this article (Section 4.1) relies on
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Fig. 3. An overview of the three components of our security evaluation of Nest and Hue.

the attacker’s ability to steal the token; however, we do not tamper with the OAuth authorization
itself, and instead steal the token via other channels (e.g., MiTM attack exploiting SSL misuse).
Accessing the Nest data store: Devices and applications that are connected to a particular smart
home (i.e., the user’s Nest account) can update data store variables to which they have access, and
also subscribe to the changes to the state of the data store. Nest uses the REST approach for these
update communications, as well as for apps/devices to modify the data store. The REST endpoints
can be accessed through HTTPS by any registered Nest products.
Routines in Nest: In Nest, the user cannot create or view routines in a centralized interface
(i.e., unlike SmartThings). Instead, apps may provide routines as opt-in features. For example, the
Nest smoke alarm’s smoke_alarm_state variable has three possible values, “ok,” “warning,” and
“emergency.” When this variable is changed to “warning,” other smart home products (e.g., Somfy
Protect [64]) can be con"gured to trigger and warn the user.

2.3 Hue Background
Hue implements its data store as a JSON document with sections related to (1) physical lighting
devices, (2) semantic groups of these devices, and (3) global con"g variables (such as whitelisted
apps and the linkbutton). To connect a third-party management app to a user’s existing Hue system,
the app identi"es a Hue bridge connected to the local network, and requires the user to press
a physical button on the bridge. Once this action is completed by the user, the app receives a
username token that is stored in the whitelisted section of the Hue data store. Whitelisted apps can
read/modify data store variables as per Hue’s access control policy, which grants all authorized
apps the same access. Our online appendix provides additional details [1].

3 SECURITY EVALUATION OF PLATFORM PERMISSIONS, ROUTINES, AND APPS
As described in Section 2, DSB platforms consist of (1) third-party apps that interact with the smart
home (i.e., centralized data store and devices) by acquiring (2) platform permissions, and execute
a complex set of such interactions as (3) trigger-action routines. Our analysis methodology takes
these three aspects into consideration, as show in Figure 3, and summarized as follows:
A. Analysis of Platform Permissions (Section 3.1): We analyze the enforcement of platform
permissions/access control to discover inconsistencies by automatically building permission maps.
B. Analysis of Routines (Section 3.2): While analyzing permission enforcement shows us what
individual devices can accomplish with a certain set of permissions, we perform an experimen-
tal analysis with real devices to identify the interdependencies among devices and apps through
the shared data model, and the rami"cations of such interdependencies on the user’s security.
Additionally, Nest does not enforce transitive access control to prevent dangerous side-e$ects
of routines, but instead employs a product review process as a defense mechanism. We analyze
the e$ectiveness of this review process using the permission prompts used by existing apps as
evidence.
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C. Analysis of Third-party Apps (Section 3.3): We analyze the permission descriptions pre-
sented by mobile apps compatible with Nest to identify over-privileged apps, or apps whose per-
mission descriptions are inconsistent with the permission requested. We then analyze the apps for
signs of SSL misuse, which we will further leverage to indirectly exploit security critical devices.

We combine the "ndings from these three analyses to demonstrate an instance of a lateral priv-
ilege escalation attack in a smart home (Section 4.1).

3.1 Evaluating Permission Enforcement
The centralized data store described in Section 2 may contain variables whose secrecy or integrity
is crucial; e.g., unprotected write access to the web_url "eld of the camera may allow a malicious
app to launch a phishing attack, by replacing the URL in the "eld with an attacker-controlled one.
To understand if appropriate barriers are in place to protect such sensitive variables, we perform
an analysis of the permission enforcement in Nest and Hue.

Our approach is to generate and analyze the permission map for each platform, i.e., the variables
that can be accessed with each permission, and inversely, the permissions needed to access each
variable of the data store. Note that while this information should ideally be available in the plat-
form documentation, prior analysis of similar systems has demonstrated that the documentation
may not always be complete or correct in this regard [16, 18].

3.1.1 Generating Permission Maps. We generate the permission map using automated testing
as in prior work on Android [16]. We use two separate approaches for Nest and Hue, owing to
their disparate access control models.
Approach for Nest: We "rst created a simulated home environment using the Nest Home Simu-
lator,2 and linked our Nest user account to it. We then created our test Android app, and connected
it to our Nest user account using OAuth, as described in Section 2.2. Note that the simulated smart
home is virtually identical to an end-user’s setup, and using the simulator allows us to investigate
the permission enforcement for Nest devices (e.g., the Smoke/CO detector).

To generate a complete view of the data store, we granted our test app all of the 15 permissions
in Nest, and read all accompanying information. To build the permission map for Nest’s 15 permis-
sions, we created 15 apps, such that each app requested a single unique permission, and registered
these apps to our developer account in the Nest developer console. Note that we do not test the
e$ect of permission combinations, as our goal is to test the enforcement of individual permissions,
and Nest’s simple authorization logic simply provides an app with a union of the privileges of the
individual permissions.

We then connected each of the 15 apps to our Nest user account using the procedure described
in Section 2.2. We programmed each app to attempt to read and write each variable of the data
store (i.e., the previously derived complete view). We recorded the outcome of each access, i.e., if it
was successful, or an access control denial. In the cases where we experienced non-security errors
writing to data store variables (e.g., writing data with an incorrect type), we revised our apps and
repeated the test. The outcome of this process was a permission map, i.e., the mapping of each
permission to the data store variables that it can read and/or write.
Approach for Hue: We followed the procedure for Hue described in Section 2.3 to get a unique
token that registers our single test app with the data store of our Hue bridge. In Hue, all the
variables of the data store are “readable” (i.e., we veri"ed that all the variables described in the
developer documentation3 can be read by third-party apps). Therefore, to build the permission

2https://developers.nest.com/documentation/cloud/home-simulator.
3https://developers.meethue.com/philips-hue-api.

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 1, Article 2. Publication date: December 2020.

https://developers.nest.com/documentation/cloud/home-simulator
https://developers.meethue.com/philips-hue-api


2:8 K. Kafle et al.

map, we "rst extracted the contents of the entire data store. Then, for each subsection within the
data store, our app made repeated write requests, i.e., PUT calls with the payload consisting of a
dummy value based on the variable type (i.e., String, Boolean and Integer). All the variables that
were successfully written to using this method were assigned as “writable” variables. Similarly,
our app made repeated DELETE calls to the API and the variables that were successfully deleted
were assigned as “writable” variables. This generated permission map applies to all third-party
apps connected to Hue, since the platform provides equal privilege to all third-party apps.

3.1.2 Analyzing Permission Maps. The objective behind obtaining the permission map is to
understand the potential for application overprivilege, by analyzing the granularity as well as
the correctness of the enforcement. We analyze the permission map to identify instances of
(1) coarse-grained permissions, i.e., permissions that give the third-party app access to a set of
security-sensitive resources that must ideally be protected under separate permissions, and (2)
incorrect enforcement, i.e., when an app has access to more resources (i.e., state variables) than it
should have given its permission set, as per the documentation; e.g., apps on SmartThings may
lock/unlock the door lock without the explicit permission required to do so [18].

To perform this analysis, we "rst identi"ed data store variables that may be security or privacy-
sensitive. This identi"cation was performed using an open-coding methodology by one author,
and separately veri"ed by another author, for each platform. We then performed further analy-
sis by separately considering each such variable, and the permission(s) that allow access to it. A
major consideration in our analysis is the security impact of an adversary being allowed read or
read/write access to a particular resource. Moreover, our evaluation of the impact of the access
control enforcement was contextualized to the platform under inspection. That is, when evaluat-
ing Nest, we took into consideration the semantic meaning and purpose of certain permissions in
terms of the data store variables, as described in the documentation (e.g., that the Away read/write
permission should be required to write to the away variable [33]). For Hue, we only considered
the security-impact of an adversary accessing data store variables. Our rationale is that the Hue
platform de"nes the same static policy (i.e., same permissions) for all third-party apps, and hence,
its permission map can be simply said to consist of just one permission that provides access to a
"xed set of data store variables. As a result, we judge application over-privilege in Hue by consid-
ering the impact of an adversarial third-party app reading from or writing to each of the security-
sensitive variables identi"ed in Hue’s permission map.

3.1.3 Permission Enforcement Findings (F1 → F3). Our analysis of platform permission enforce-
ment led to the following three "ndings:
Finding 1: The permission enforcement in Nest is !ne-grained and correctly enforced,
i.e., as per the speci!cation (F1). We observe that the Nest permission map is signi"cantly more
"ne-grained, and permissions are correctly enforced, relative to the observations of prior research
in similar platforms (e.g., the analysis of SmartThings [18]). Some highly sensitive variables are
always read-only (e.g., the web_url where the camera feed is posted), and there are separate read
and read/write permissions to access sensitive variables. Variables that control the state of the
entire smart home are protected by dedicated permissions that control write privilege; e.g., the
away variable can only be written to using the Away read/write permission, the ETA variable has
separate permissions for apps to read and write to it (i.e., ETA read and ETA write), and the Nest
Cam can only be turned on/o$ via the is_streaming variable, using the Camera + Images read/write
permission that controls write access to it. Moreover, since many apps need to respond to the away
variable (i.e., react when the user is home/away), device-speci"c read permissions (e.g., Thermostat
read, Smoke + CO read) also allow apps to read the away variable, eliminating the need for apps
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to ask for higher-privileged Away read permission. The separate read and read/write permissions
are correctly enforced, i.e., our generated permission map provides the same access as is de!ned
in the Nest permission documentation [33]. This is in contrast with "ndings of similar analyses
of permission models in the past (e.g., the Android permission model [16], SmartThings [18]),
and demonstrates that the Nest platform has incorporated lessons from prior work in permission
enforcement.
Finding 2: In Hue, the access control policy allows apps to bypass the user’s explicit con-
sent (F2). We discovered two data store variables that were not write-protected, and which have
a signi"cant part to play in controlling access to the data store and the user’s smart home. First,
any third-party app can write to the linkbutton !ag. Recall from Section 2.3 that the user has to
press the physical button on the Hue bridge device to authorize an app’s addition to the bridge.
The physical button press changes the linkbutton value to “true” and allows the app to be added
to the whitelist of allowed third-party apps. However, we discovered that once installed, an app
can toggle the linkbutton variable at will, enabling third-party apps to add other third-party apps to
the smart home without the user’s consent. This exploitable access control vulnerability can allow
an app with seemingly useful functionality to install malicious add-ons by bypassing the user al-
together. In our tests, we veri"ed this attack with apps that were connected to the local network.
This condition is feasible as a malicious app that needs to be added without the user’s consent may
not even have to pretend to work with Hue; all it needs is to be connected to the local network
(i.e., a game on the mobile device from one of the people present in the smart home). Note that it
is also possible to remotely perform this attack, as we discuss in Section 4.2 (F11).
Finding 3. In Hue, third-party apps can directly modify the list of added apps, adding
and revoking access without user consent (F3). Hue stores the authorization tokens of apps
connected to the particular smart home in a whitelist on the Hue Bridge device. While analyzing
the permission map, we discovered that not only could our third-party test app read from this list,
it could also directly delete tokens from it. We experimentally con"rmed this "nding again, by
removing Alexa and Google Home from the smart home, without the user’s consent. An adversary
could easily combine this vulnerability with (F2), to remove legitimate apps added by the user, add
adversary-controlled apps (i.e., by keeping the linkbutton “true”), all without the user’s consent.
More importantly, users do not get alerts when such changes are made (i.e., since it is assumed
that the enforcement will correctly acquire user consent). Hence, unless the user actually checks
the list of integrated apps using the Hue Web app, the user would not notice these changes.

While the Nest permission model is robust in its mapping of data store variables and permissions
required to access them, Section 3.2 demonstrates how "elds disallowed by permissions may be
indirectly modi"ed via strategic misuse of routines, and describes Nest’s product review guidelines
to prevent the same [35]. Section 3.3 describes how badly written and overprivileged apps escape
these review guidelines, and motivate a technical solution.

3.2 Evaluating Smart Home Routines
Prior work has demonstrated that in platforms that favor application interoperability but lack tran-
sitive access control enforcement, problems such as confused deputy and application collusion may
persist [9, 17, 30, 31]. Smart homes that facilitate routines are no di$erent, but the exploitability
and impact of routines on smart homes is unknown, which motivates this aspect of our study.

Recall that routines are trigger-action programs that are either triggered by a change in some
variable of the data store or whose action modi"es certain variables of the data store. While
both Nest and Hue share this characteristic, routines in Hue are fairly limited in scope, and their
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exploitation is bound to only a$ect the lighting of the smart home. As a result, the security analysis
in this section is focused on the heterogeneous Nest platform that facilitates more diverse routines.

3.2.1 Methodology for the Analysis of Routines. While using the simulator as described in Sec-
tion 3.1 allows us to understand what routines are possible on the platform, i.e., what variables
might be manipulated, and what Nest devices are a$ected as a result, we performed additional
experiments with real apps and devices to study existing routines in the wild. For this experiment,
we extended the smart home setup previously discussed in Section 3.1 with real devices.

We started by collecting a list of devices that integrate with Nest from the Works with Nest
website [38]. Using this initial list and information from the website, we purchased a set of seven
devices that possessed a set of characteristics relevant to this study, i.e., devices that (1) take part
in routines (i.e., as advertised on the website), (2) are important for the user’s security or privacy,
and (3) are widely-known/popular with a large user base (i.e., determined by the number of installs
of the mobile client on Google Play). We obtained a "nal list of devices (seven real and two sim-
ulated) connected to our Nest smart home, namely, the Nest Cam, Hue light bulb, Belkin Wemo
switch, MyQ Chamberlain garage door opener, TP Link Kasa Smart Plug, Google Home, Alexa,
Nest Thermostat (simulated), and the Nest Protect Smoke & CO Alarm (simulated).

We connected these devices to our Nest smart home using the Android apps provided by device
vendors, and connected a small set of smart home managers (e.g., Yeti [65] and Yonomi [66]) to our
Nest smart home as well. For each device, we set up and executed every routine described on the
Works with Nest as well as on the device vendor’s website, and observed the e$ects on the rest of
the smart home (especially, security-sensitive devices). Also, we manipulated data store variables
from our test app, and observed the e$ects on previously con"gured routines and devices.

3.2.2 Smart Home Routine Findings (F4 → F5). Our analysis of smart home routines led to the
following two "ndings:
Finding 4. Third-party apps that do not have the permission to turn on/o" the Nest Cam
directly, can do so by modifying the away variable (F4). The Nest Cam is a home monitoring
device, and important for the users’ security. The is_streaming variable of the Nest Cam controls
whether the camera is on (i.e., streaming) or o$, and can only be written to by an app with the
permission Camera r/w. The Nest Cam provides a routine as a feature, which allows the camera
to be automatically switched on when the user leaves the home (i.e., when the away variable of
the smart home is set to “away”), and switched o$ when the user returns (i.e., when away is set to
“home”). Leveraging this routine, third-party apps such as the Belkin Wemo switch can manipulate
the away "eld, and indirectly a$ect the Nest Cam, without having explicit permission to do so. We
tested this ability with our test app (see Section 3.1) as well, which could indirectly switch the
camera on and o" at will. This problem has serious consequences; e.g., a malicious test app with
the away r/w permission may set the variable to “home” when the user is away to prevent the
camera from recording a burglary. The key problem here is that a low-integrity device/app can
trigger a change in a high-integrity device indirectly, i.e., by modifying a variable it relies on, which
is an instance of the well-known information !ow integrity problem. Moreover, this is not the
only instance of a high-integrity routine that relies on away; e.g., the Nest x Yale Lock can lock
automatically when the home changes to away mode [63].

Nest has a basic defense to prevent such issues: application design policies that apply to apps
with more than 50 users [35]. App developers are required to submit their app for a product review
to the Nest team once the app reaches 50 users, and a violation of the rather strict and detailed re-
view guidelines can result in the app being rejected from using the Nest API. One of the review poli-
cies (i.e., speci"cally policy 5.8) states that “Products that modify Home/Away state automatically
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Fig. 4. The Keen Home app asks the user to modify the thermostat’s mode, but in reality, this action leads
to the entire smart home being set to “home” mode, which a!ects a number of other devices.

without user con"rmation or direct user action will be rejected” [35]. Nest users may be vulnerable
in spite of this defense, for two reasons. First, as attacking a smart home is an attack on a user’s
personal space, it is feasible to assume that most attacks that exploit routines will be targeted (e.g.,
to perform burglaries). Assuming that the adversary can use social engineering to get the user to
connect a malicious app to their Nest setup, a targeted attack on a speci!c user will succeed in spite
of the policy, as the app would be developed solely for the targeted user and hence will have <50
users, and be exempt from the Nest product review. Second, it is unclear how apps are checked
against this policy; our next "nding demonstrates a signi"cant omission in Nest’s review.
Finding 5. Nest’s product review policies dictate that the apps must prompt users before
modifying away , but there is no o#cial constraint on what the prompt may display
(F5). Consider an example in Figure 4, which shows one such prompt by the Keen Home app [62]
when the user tries to change the temperature of the thermostat. That is, when the user tries to change
the temperature of the thermostat while the away variable is set to “away,” the app requires us to
change it to “home” before the thermostat temperature can be changed. This condition is entirely
unnecessary to change the temperature. More importantly, it presents the prompt to the user in a
way that states that the home/away modes are speci"c to the HVAC alone. This is in contrast to the
actual functionality of these modes, in which a change to the away variable a$ects the entire smart
home; i.e., we con"rmed that the Nest Cam gets turned o$ as well once we agree to the prompt.
It is important to note that the Keen Home app has successfully passed the Nest product review,
and has over 1,000 downloads on Google Play.4 This case demonstrates that the Nest product
review does not consider the contents of the prompt, and a malicious app may easily misinform
the user and make them trigger the away variable to the app’s advantage. Finally, in Section 3.3.1,
we demonstrate that the problem of misinforming the user is not just limited to runtime prompts
described here, but extends to application-de"ned install-time permission descriptions (F6→F9).

3.3 Security Analysis of Nest Apps
In this Section, we investigate the third-party apps integrated with Nest. Unlike prior work [18],
we not only report the permissions requested by apps but also analyze the permission descriptions
displayed to the user at install-time. Additionally, we analyze the rate of SSL misuse by both general
smart home management apps as well as apps integrated with Nest. For this section, we do not
consider the Hue platform as it has a limited ecosystem of apps as compared to Nest.

We derived two datasets for this analysis, the Appsдener al dataset, which contains 650 smart
home management apps extracted from Google Play, and the Appsnest dataset, which includes
39 apps that integrate into the Nest platform (out of the total 130 Works with Nest apps, i.e.,
30%). Thus, while we cannot say that our analysis and "ndings (F6→F9) generalize to all the

4https://play.google.com/store/apps/details?id=com.hipo.keen//.
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apps compatible with Nest, they certainly apply to a signi"cant minority (i.e., 30%). Our online
appendix [1] details our dataset collection methodology.

3.3.1 Application Permission Descriptions. In the Nest platform, developers provide permission
descriptions that explain how an app uses a permission while registering their apps in the Nest
developer console. These developer-provided descriptions are the only direct source of information
available to the user to understand why an app requires a particular permission, i.e., Nest itself only
provides a short and generic permission “title” phrase that is displayed to the user along with the
developer-de"ned description (e.g., for Thermostat read, the Nest phrase is “See the temperature
and settings on your thermostat(s)”). Owing to their signi"cant role in the user’s understanding
of the permission requirements, we analyze the correctness of such developer-de"ned descriptions
relative to the permissions requested.

3.3.2 Analysis Methodology. As described in Section 2, upon registering permissions at the de-
veloper console, developers are granted an OAuth URL that they can direct the user to for obtaining
an access token. As a result, permissions are not encoded in the client mobile app or Web app (i.e.,
unlike Android), which makes the task of extracting permissions di%cult. However, we observe
that the permissions that an app asks for are always displayed to the user for approval (i.e., when
"rst connecting an app to their Nest smart home using OAuth). We leverage this observation to
obtain permissions dynamically, i.e., by executing apps to the point of integrating them with our
Nest smart home, and recording the permission prompt displayed for the user’s approval.

3.3.3 Nest App Findings (F6→F9). The two permissions that dominate the permission count
are Away read/write and Thermostat read/write, requested by 20 and 24 apps, respectively, from the
Appsnest dataset. Our speci"c "ndings from this analysis are as follows:
Finding 6. A signi!cant number of apps provide incorrect permission descriptions, which
may misinform users (F6). As shown in Table 1, we found a total of 15 permission description
violations in 13/39 apps from the Appsnest dataset. We classify these incorrect descriptions into
four violation categories (i.e., VC1→ VC4), based on the speci"c manner in which they misinform
the user, such as requesting more privileges than required for the described need (e.g., read/write
permissions when only reading is required), or misrepresenting the e$ect of the use of the permis-
sion (e.g., stating Away as a$ecting only the thermostat). That is, over 33.33% of the apps we could
integrate have violating permission descriptions.
Finding 7. In most cases of violations, apps request read/write permissions instead of
read (F7). In nine cases, apps request the more privileged read/write version of the permission,
when they should have clearly requested the read version, as per their permission description
(i.e., VC1 in Table 1). For example, consider the “MyQ Chamberlain” app (Table 1, entry 3), which
asks for the thermostat read/write permission, but whose description only suggests the need
for the thermostat read permission, i.e., “Allows Chamberlain to display your Nest Thermostat
temperature in the MyQ app”. More importantly, a majority of the violations of this kind occur
for the Away read/write and Camera+Images read/write permissions, which may have serious con-
sequences if these overprivileged apps are compromised, i.e., as Away read/write regulates control
over indicating whether a user is at home or out of the house, and Camera+Images read/write may
allow apps to turn o$ the Nest cam via the is_streaming variable. These violations exist in spite of
Nest guidelines that mention the following as a Key Point: “Choose ‘read’ permissions when your
product needs to check status. Choose ‘read/write’ permissions to get status checks and to write data
values” [33]. Finally, we found that the Nest documentation may itself have incorrect instructions,
e.g., the Nest’s documentation on OAuth 2.0 authentication [34] shows an example permission
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Table 1. Permission Description Violations Discovered in Works with Nest Apps

Application Incorrect Permission Description
VC1: Requesting Read/Write instead of Read

1. Home alerts “thermostat read/write: Allows Home alerts to notify you when the Nest
temperature exceeds your threshold(s)”

2. Home alerts “away read/write: Allows Home Alerts to notify you when someone is in your
home while in away-mode”

3. MyQ
Chamberlain

“thermostat read/write: Allows Chamberlain to display your Nest Thermostat
temperature in the MyQ app”

4. leakSMART “thermostat read/write: Allows leakSMART to show Nest Thermostat room
temperature and humidity. New HVAC sensor mode will notify you to shut o$
your thermostat if a leak is detected in your HVAC system.”

5. Simplehuman
Mirror

“Camera+Images read/write: Allow your simplehuman sensor mirror pro to
capture and recreate the light your Nest Cam sees”

6. Iris by Lowe’s “structure read/write: View your Nest Structure names so Iris can help you pair
your Nest Structures to the correct Iris Places”

7. Heatworks
model 1

“away read/write: Allows the Heatworks MODEL 1 to be placed into vacation
mode to save on power consumption while you’re away”

8. Feather
Controller

“Camera+Images read/write: Allows Feather to show you your camera and
activity images. Additionally, Feather will allow you to request a snapshot.”

9. Heatworks
model 1

“thermostat r/w: Allows your Heatworks MODEL 1 water heater to go into
vacation mode when your home is set to away”

VC2: Describing Awayas a property of the thermostat alone, rather than something that a"ects
the entire smart home

10. Gideon “away read/write: Allows Gideon to read and update the Away state of your
thermostat”

11. Muzzley “away read/write: Allows Muzzley to read and update the Away state of your
thermostat”

12. Keen home
smart vent

“away read/write: Allows Smart vent to read the state of your Thermostat and
change the state from Away to Home”

VC3: Both VC1 and VC2
13. WeMo “away read/write: Allows your WeMo products to turn o$ when your Nest

Thermostat is set to Away and on when set to Home.”
14. IFTTT
thermostat service

“thermostat read/write: Now you can turn on Nest Thermostat Applets that
monitor when you’re home, away and when the temperature changes.”
VC4: Descriptions that do not relate to the permission

15. IFTTT
thermostat service

“away read/write: Now you can set your temperature or turn on the fan with Nest
Thermostat Applets on IFTTT”

16. Life360 “away read/write: We need this permission to automatically turn on/o$ your nest
system”

prompt that incorrectly requests the Away read/write permission while only needing read access,
i.e., with the description “FTL Lights turn o$ when the room is empty,” as shown in Figure 5.
Finding 8. The Nest product review is insu#cient when it comes to reviewing the cor-
rectness of permission descriptions and requests by apps (F8). The Nest product review
suggests the following two rules, violating which may cause apps to be rejected: (1) “3.3. Products
with names, descriptions, or permissions not relevant to the functionality of the product” and (2) “3.5.
Products that have permissions that don’t match the functionality o"ered by the products” [35]. Our
"ndings demonstrate that the 16 violations discovered violate either one or both of these rules
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Fig. 5. An example from the Nest documentation on OAuth authorization [34] that displays a permission
description violation (specifically, VC1) for the Away r/w and Camera + images r/w permissions.

(e.g., by requesting read/write permissions, when the app only requires read). The fact that the
apps are still available suggests that the Nest product review may not be rigorously enforced.
Finding 9. Apps often incorrectly describe the Away !eld as a local !eld of the Nest
thermostat, which is misleading (F9). One example of this kind (VC2 in Table 1) is the Keen
Home app described in Section 3.2 (Table 1, entry 12), which states that it needs Away read/write
to “Allow Smart vent to read the state of your Thermostat and change the state from Away to Home.”
As a result, Keen Home misrepresents the e$ect and signi"cance of writing to the Away "eld, by
making it seem like Away is a variable of the thermostat, instead of a "eld that a$ects numerous
devices in the home. Gideon and Muzzley (entries 10 and 11 in Table 1) exhibit a similar anomaly.
Our hypothesis is that such violations occur because Nest originally started as a smart thermostat
that gradually evolved into a smart home platform. Finally, in addition to misleading descriptions
classi"ed as VC1 and VC2, we discovered apps whose permission descriptions did not relate to the
permissions requested (VC4), and apps whose descriptions satis"ed both VC1 and VC2 (VC3).

The accuracy of permission descriptions is important, as the user has no other source of
information upon which to base their decision to trust an app. Nest recognizes this, and hence,
makes permissions and descriptions a part of its product review. The discovery of inaccurate
descriptions not only demonstrates that apps may be overprivileged but also that Nest’s design
review process is incomplete, as it puts all its importance on getting the user’s consent via
permission prompts (e.g., in Findings 5→9), but not on what information is actually shown.

3.3.4 Application SSL Use. The previous section demonstrated that smart home apps may be
overprivileged in spite of a dedicated product review. An adversary may be able to compromise
the smart home by exploiting vulnerabilities in such overprivileged apps. Thus, we decided to
empirically derive an estimate of how vulnerable smart home apps are in terms of their use of SSL.

We used two datasets for this experiment, i.e., the Appsдener al dataset consisting of 650 generic
smart home (Android) apps crawled from Google Play, and an extended version of the Appsnest
dataset, i.e., the Appsnest Ext dataset, which consists of 111 Android apps built for Works with Nest
devices (i.e., including the ones for which we do not possess devices). We analyzed each app from
both the datasets using MalloDroid [15], to discover common SSL !aws.
Finding 10. A signi!cant percentage of general smart home management apps, as well as
apps that connect to Nest have serious SSL vulnerabilities (F10). 20.61% (i.e., 134/650) of the
smart home apps from the Appsдener al dataset, and 19.82% (i.e., 22/111) apps from the Appsnest Ext
dataset, have at least one SSL violation as !agged by MalloDroid. Speci"cally, in the Appsnest Ext
dataset, the most common cause of an SSL vulnerability is a broken TrustManager that accepts
all certi!cates (i.e., 20 violations), followed by a broken HostNameVeri!er that does not verify the
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hostname of a valid certi"cate (i.e., 11 violations). What is particularly worrisome is that apps such
as MyQ Chamberlain and Wemo have multiple SSL vulnerabilities as well as the Away read/write
permission. Next, we demonstrate an end-to-end attack on the Nest security camera, using one of
the SSL vulnerabilities discovered from this analysis, and the Nest Away read/write permission.

4 SIGNIFICANCE OF THE FINDINGS AND CHALLENGES FOR FUTURE RESEARCH
Our "ndings (F1→F10) expose critical gaps in the security of popular data store-based smart home
platforms. Moreover, we demonstrate that these "ndings can also be combined to form an instance
of a lateral privilege escalation attack [45], in the context of smart homes (Section 4.1). Moreover,
we have reported the vulnerabilities that allow us to execute this attack, and summarize the current
status of each of the "ndings (Section 4.2). Finally, given that platforms are becoming increasingly
closed, and that our analysis relies on several key platform and API characteristics, we discuss the
challenges that future research will face in emulating our methods (Section 4.3).

4.1 Lateral Privilege Escalation
While our "ndings from the previous sections are individually signi"cant, we demonstrate that
they can be combined to form an instance of a lateral privilege escalation attack [45], in the con-
text of smart homes. That is, we demonstrate how an adversary can compromise one product (de-
vice/app) integrated into a smart home, and escalate privileges to perform protected operations on
another product, leveraging routines con!gured via the centralized data store.

This attack is interesting in the context of smart homes, because of two core assumptions that
it relies on (1) low-integrity (or non-security) smart home products may be easier to directly com-
promise than high-integrity devices such as the Nest Cam (i.e., none of the SSL vulnerabilities in
F10 were in security-sensitive apps), and (2) while low-integrity devices may not be able to directly
modify the state of high-integrity devices (F1), they may be able to indirectly do so via automated
routines triggered by global smart home variables (F4). (3) Moreover, since the low-integrity de-
vice is not being intentionally malicious, but is compromised, the product review process would
not be useful, even if it was e$ective (which it is not, as demonstrated by F5→F9). This last point
distinguishes a lateral privilege escalation from actions of malicious apps that trigger routines
(e.g., the “fake alarm attack” discussed in prior work [18]). These conditions make lateral privilege
escalation particularly interesting in the context of smart home platforms.
Attack Scenario and Threat Model: We consider a common man-in-the-middle (MiTM) sce-
nario, similar to the SSL-exploitation scenarios that motivate prior work [15, 48]. Consider Alice,
a smart home user who has con"gured a security camera to record when she is away (i.e., using
the away variable in the centralized data store). Bob is an acquaintance (e.g., a disgruntled em-
ployee or an ex-boyfriend) whose motive is to steal a valuable from Alice’s house without being
recorded by the camera. We assume that Bob also knows that Alice uses a smart switch in her
home, and controls it via its app, which is integrated with Alice’s smart home. Bob follows Alice,
and connects to the same public network (e.g., a co$ee shop), sni$s the access token sent by the
switch’s app to its server using a known SSL vulnerability in the app, and then uses the token to
directly control the away variable. Setting the away to “home” confuses the security camera into
thinking that Alice is at home, and it stops recording. Bob can now burglarize the house without
being recorded.
The Attack: The example scenario described previously can be executed on a Nest smart home,
using the Nest Cam and the TP Link Kasa switch (and the accompanying Kasa app). We compro-
mise the SSL connection of Kasa app, which was found to contain a broken SSL TrustManager
in our analysis described in Section 3.3. We choose Kasa app as it requests the sensitive Away
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read/write permission, and has a sizable user base (1M+ downloads on Google Play5). It is inter-
esting to note that the Kasa app has also passed the Nest product review and is advertised on the
Works with Nest website [36]. We use bettercap [4] as a MiTM proxy to intercept and modify unen-
crypted data. Additionally, as described in the attack scenario, we assume that (1) the victim’s Nest
smart home has the Nest Cam and the Kasa switch installed, (2) the popular routine that triggers
the Nest Cam to stop recording when the user is home is enabled, and (3) the user connects her
smartphone to a network to which the attacker has access (e.g., co$ee shop, o%ce).

The attack proceeds as follows: (1) The user utilizes the Kasa app to control the switch, while
the user’s mobile device is connected to public network. (2) The attacker uses a MiTM proxy to
intercept Kasa app’s attempt to contact its own server, and supplies the attacker’s certi"cate to the
app during the SSL handshake, which is accepted by the Kasa app due to the faulty TrustManager.
(3) The Kasa app then sends an authorization token to the MiTM proxy (i.e., assuming it is the
authenticated server), which is stolen by the attacker. This token authorizes a particular client app
to send commands to the TP Link server. (4) Using the stolen token, the attacker instructs the TP
Link server to set the smart home’s away variable to “home”, while the user is actually “away.”
This action is possible as the TP Link server (i.e., Web app) has the -Away read/write permission for
the user’s Nest smart home. (5) This triggers the routine in the Nest Cam, which stops recording.

It should be noted that while this is one veri"ed instance of a lateral privilege escalation attack
on DSB smart home platforms, given the broad attack surface indicated by our "ndings, it is likely
that similar undiscovered attacks exist.

4.2 Current Status of Vulnerabilities
We reported the discovered vulnerabilities to Philips (F2, F3), Nest/Google (F4→F10), and TP Link
(F10) in mid-2018. Since then, vendors have responded, con"rmed our "ndings, and even deployed
"xes. This section summarizes the current status of the vulnerabilities, backed by additional ex-
perimental analysis where needed. A detailed account of our reporting experience with vendors
can be found in our online appendix [1].

4.2.1 Status of Permission Enforcement Vulnerabilities in Hue. We reported "ndings F2 and F3
to Philips Lighting (i.e., the owner of the Hue brand) along with a proof-of-concept script demon-
strating the attacks. Hue con"rmed our "ndings, and informed us that the latest release version
1931069120 mitigates these vulnerabilities.
Experimental evaluation methodology: We experimentally evaluated Hue’s claim, using two
kinds of third-party apps allowed on Hue, i.e., local and cloud apps. To elaborate, our exploits
demonstrated in Section 3.1 (F2 and F3) can be executed from a local app, i.e., a third-party app
installed on a device connected to the same local network as the Hue bridge. However, Hue sup-
ports another kind of third-party app, a cloud app, which uses the Hue remote API to remotely
issue commands to the lights, and unlike local apps, does not need to be connected to the local
network. Note that the cloud app needs a local app to act as its proxy on the hub, which has to be
registered by using the access token for the remote app to issue a linkbu"on=true command to
the hue endpoint URL,6 simulating the button-press on the Hue bridge.

We "rst used a local app, wmlocalapp (created in Section 3.1), to test whether our exploits for F2
and F3 still worked on the new Hue local API. We then created a cloud app named wmremoteapp in
Hue’s developer portal, to test our exploits for F2 and F3 in a scenario where the attacker controls
a cloud app. Our wmremoteapp was instantly approved after submission to Hue, which indicates

5https://play.google.com/store/apps/details?id=com.tplink.kasa_android.
6https://api.meethue.com/bridge/0/con"g.
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that it may not have undergone a thorough product review. Additionally, we created and registered
wmlocalproxyapp, a local app that would act as a proxy for the cloud app on the Hue bridge.
Key results: We con"rmed that F3 no longer a"ects Hue, i.e., the new version prevents apps from
deleting other apps from the whitelist. Further reverse-engineering revealed that Hue enforces this
policy by obfuscating the application-key of the apps in the whitelist section of the data store. That
is, apps cannot delete what they cannot address. However, this also means that the e$ectiveness
of the mitigation relies on the complexity of the obfuscation; it will be invalid once an adversary
devises a way to generate obfuscated names from arbitrary application metadata. An access control
policy for the whitelist would be a more direct solution to this problem. Further, we discovered that
F2 still holds if the attacker uses a Hue cloud app, and even bypasses Hue’s product review-based
defenses, leading to the following "nding:
Finding 11. Cloud apps can bypass user consent repeatedly (F11). Since a cloud app must
have an accompanying local proxy app to execute commands using the Hue bridge, it is reason-
able to allow cloud apps to modify the linkbutton and add their proxy remotely. However, in our
experiments, we discovered that wmcloudapp could modify linkbutton repeatedly, and thus, regis-
ter multiple local apps. Moreover, local apps are not bound to the remote app that installed them,
and hence, would persist even after the user removed the misbehaving wmcloudapp. The most
important facet of this problem is that our misbehaving wmcloudapp is registered with Hue, and
hence it would have been possible for users to install it.7

4.2.2 SSL Vulnerability in TP Link’s KASA. We reported the details of the SSL vulnerability
exploited in Section 4.1 to TP-Link, who acknowledged the issue and resolved it to a bug in the
Android 4.x compatibility library. While TP Link did not elaborate on the exact part of the library
that was problematic, they stated that future updates of the Kasa app would contain a "x. We
statically and dynamically analyzed the most recent version of the Kasa app (version 2.13.0.858),
and con"rmed that (1) the vulnerable lines of code (i.e., a TrustManager that accepts all certi"cates)
were still present, however, (2) they were not being used for SSL connections, as our dynamic
MiTM attack (Section 4.1) did not work.

4.2.3 Status of Vulnerable Nest Routines, and Misinformation in Third-party Works with Nest
Apps. We reported vulnerabilities in Nest in two distinct sets, (1) Report 1, describing the vulnera-
bility of security-sensitive Nest devices to lateral privilege escalation, via routines (F4), and (2) Re-
port 2, describing the inconsistent prompts, permission descriptions, and SSL misuse in third-party
Works with Nest apps ( F6,F7, F9, F10), as well as the problems in Nest’s product review process
(F5 and F8). As Nest was non-responsive,8 we submitted the two reports to Google through their
bug reporting system.9

Current Status of Report 1: Initially, Google’s position was that the lateral privilege escalation
was purely due to the SSL vulnerability in TP Link’s KASA app. As we explained how routines in
Nest were key for the attack, the engineers assigned to the bug report acknowledged the existence
of a design-level !aw in Nest routines. However, this !aw is extremely hard to "x without disabling
sensitive routines (e.g., the security camera routine in Nest), or employing integrity checks in
the platform’s architecture (see Section 5 for additional discussion), and hence, currently remains

7We ensured that wmcloudapp was clearly marked as a test app, and that no real user installed it during our experiments.
8Nest operated independently from Google from 2015-2018, and hence, reporting to Google was a non-obvious step in
2018.
9https://www.google.com/appserve/security-bugs/m2/new.
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exploitable (although the immediate attack vector, the Kasa app, is "xed). A detailed account of
this discussion is available in our online appendix [1].
Current Status of Report 2: As of today, most of the issues described in this report remain
un-addressed, including the instances of misinformation in the Nest documentation itself (see F7).
Google’s position was that the onus of "xing these issues in apps was on the third-party app
developers to review the permissions that their apps request, and hence, that the "ndings should be
disclosed on developer forums. Note that all the reported apps had undergone direct scrutiny from
Nest through their review process and passed that process before deployment to the end-user. This
exchange brings up a crucial question, for situations where the platform may not be willing to even
address the over-privilege in existing apps when reported by consumers or researchers: Who should
the end-user should deem liable in the instance of a security incidence involving an overprivileged
smart home app; the app developer, or the platform that vetted the app and allowed users to install it?

4.3 The Feasibility of Analyzing Evolving Smart Home Platforms
The market for smart home products and platforms is now reaching a critical mass in terms of
consumer adoption. This has resulted in an ecosystem of rapidly evolving and fragmented plat-
forms. As of now, we do not have a concrete understanding of how platform evolution helps, or
hurts, the applicability of existing security analysis approaches. Acquiring such an understanding
would be instrumental in helping future security researchers recognize the opportunities as well
as challenges posed by evolving characteristics of smart home platforms.

We pose a seemingly simple but nuanced research question: How feasible would the analysis
performed in this article be on smart home platforms in the near future? To address this question,
we (1) identify the essential, platform-independent properties that facilitate the security analyses
explored in this article, and (2) evaluate six additional platforms to understand if they exhibit these
properties. We conclude the section by identifying the foremost challenge for similar research in
the future, drawing from the evidence obtained in our evaluation.

4.3.1 Platform-independent Essential Properties. The security evaluation performed in Section 3
can be categorized into "ve independent analyses: (A1) an analysis of platform permission enforce-
ment, (A2) the accuracy of install-time permission descriptions, (A3) the accuracy of runtime per-
mission prompts, (A4) the security impact of routines, and (A5) SSL misuse by third party mobile
apps. We identify the "ve platform-independent essential properties that facilitate these analyses:
Property 1 (P1): Availability of public API access to test permission enforcement. To test
whether the purported permission enforcement mechanisms that exist in a given platform function
properly in practice, it is necessary to have access to public facing platform APIs that would enable
us to generate permission maps via automated testing (i.e., for A1, Section 3.1).
Property 2 (P2) Platform-mandated third-party-speci!ed permission descriptions. Smart
home platforms generally inform users about the e$ect of platform permissions (e.g., that the
home/away r/w permission can “Set Home and Away”, as seen in Figure 5). However, some plat-
forms (e.g., Nest) may also require developers to provide additional context to the user, via install-
time permission descriptions describing why their app needs a particular permission. The availabil-
ity of such descriptions is critical for understanding how applications may misinform users about
their actual intent, and violate platform design policies (i.e., for A2, Section 3.3.1).
Property 3 (P3) Platform-mandated third-party-speci!ed runtime permission prompts.
In addition to install-time descriptions, platforms may also require applications to use run-time
prompts before performing a sensitive action (e.g., as Nest does for home/away), thereby allowing
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Table 2. Feasibility of Analyses A1→A5 on Various Smart Home Platforms

Analysis Nest v1 Nest v2
SmartThings

Classic
SmartThings

v2 HomeKit
Home

Assistant OpenHAB
A1: Permission
Enforcement ! × ! ! ! ! ×

A2: Permission
Description
Accuracy

! × × × ! × ×

A3: Permission
Prompt Accuracy ! × × × × × ×

A4: Impact of
Routines # # ! # # ! !

A5: SSL Misuse in
Third Party Apps ! # ! # ! ! !

! = feasible, × = not feasible, and # = partially feasible.

the user to make a more informed decision. These prompts are necessary to understand if a third-
party application’s actual use of a permission is valid (i.e., for A3, Section 3.2).
Property 4 (P4) Published third-party routines for home automation. Routines or automa-
tions are generally supported by platforms through third-party integrations, i.e., by integrating
devices directly via Zigbee or Z-wave, or indirectly by provisioning API access to third-parties,
or through third-party IoT apps hosted on the platform itself (e.g., SmartThings SmartApps). As
routines may be exploited by attackers, the availability of third-party routines is critical for assess-
ing the presence or prevalence of vulnerabilities that would facilitate attacks such as the lateral
privilege escalation attack explored in this article (i.e., for A4, Sections 3.2 and 4.1).
Property 5 (P5) Availability of third-party mobile applications. Smart home platforms are
inextricably tied to mobile apps that provide users with a convenient means of controlling various
aspects of their smart home, and even facilitate routines (e.g., Yeti [65] and Yonomi [66]). The
availability of mobile apps is not only needed for analyzing the security of the communications
used by the apps themselves (i.e., for A5, Section 3.3.4) but also for understanding the use of
permission descriptions and prompts by third-parties (i.e., for A2→A3, Sections 3.2 and 3.3.1).

4.3.2 Evaluation of 6 Additional Smart Home Platforms. We analyzed six smart home platforms
(in addition to Nest and Hue) for the presence of properties P1→P5, to understand the feasibility
of performing A1→A5 on them. Table 2 summarizes the results of this feasibility analysis. We
now provide a brief overview of our general empirical evaluation methodology, followed by the
results of the feasibility analysis for each platform.
General Evaluation Methodology: We followed a systematic, 4-step methodology for the feasi-
bility analysis: (1) Platform Selection. We selected six platforms from popular publicly available
smart home platforms, based on one foundational trait that precedes P1→P5: allowing the inte-
gration of third-party routines, mobile apps, and devices. (2) Testing for Public APIs. For each
platform, we then determined the availability of public APIs from all available sources (e.g., docu-
mentation, o%cial website). If we could register as a developer with the platform, acquire an API
key, and make API calls to access platform resources, then we considered P1 satis"ed (i.e., con-
versely, platforms that allowed API access to a limited/closed set of partners did not satisfy P1).
(3) Analyzing Permission Models. We examined the provided developer documentation to ex-
tract the permission model, and to determine if developers were required to specify custom install-
time permission descriptions (P2) and runtime prompts (P3) to provide users with more context.
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Moreover, we examined whether the prompts could be programmatically triggered for analysis
through integration of our own test app/device to the platform (i.e., and hence, tested the extent
to which P3 was satis"ed). (4) Mining third-party clients. We tried to acquire artifacts that rep-
resent routines, such as IoT apps published in markets (e.g., the SmartThings public repo [52]),
descriptions of automation in text-form on the platform’s website (e.g., the Works with Nest web-
site [38]), or automations enabled by third-party mobile apps integrated with the platform. Aside
from testing for P4, this step also allowed us to test for P5 (i.e., as we searched for mobile apps as
well).

We carefully considered platform-speci"c nuances when executing Steps 1→4, and experimen-
tally con!rmed our claims for all platforms. The rest of this section provides a brief overview
of each analyzed platform, followed by a summary of our analysis results.
1. Feasibility Evaluation of Nest v2: Google is closing its Works with Nest platform on August 31,
2019 in favor of a more tightly-integrated Works with Google Assistant platform.10 We term this new
platform Nest v2, while the version we analyzed in this work is termed as Nest v1. The transition
from v1 to v2 alters the fundamental nature of Nest, from an open, decentralized, platform to a
relatively closed platform (i.e., with API access to select vendors) built around the Google Assistant.

From our analysis, we conclude that the closed nature of Nest v2 violates most of the properties,
rendering corresponding analyses performed in this article infeasible. For instance, the ability of
researchers to access the API in Nest v2 will be constrained, as the platform is geared towards
helping vendors integrate their devices or products with Google Assistant. At most, researchers
will be able to create their own virtual device and an interface for Google Assistant to access that
device (i.e., unlike Nest v1, which has a general-purpose public API that can be used to access
multiple other devices and resources). Thus, Nest v2 violates P1, making A1 infeasible.

Further, Nest v2 does not require developers to write custom permission descriptions or prompt
the user before using a permission, as permissions are acquired by Google Assistant when integrating
the device with the platform. Hence, Nest v2 loses the context of requiring/using permissions, vio-
lates P2 and P3, and invalidatesA2 andA3. Moreover, routines will only be created and managed
via Google Assistant, which means that no repositories of routines will be available, requiring re-
searchers to analyze potential routines (e.g., from integrations described on the Works with Google
Assistant website). Hence, P4 is partially satis"ed, and it may be somewhat feasible to performA4,
although incredibly di%cult to do so with completeness or at scale. Finally, since the Google Home
mobile app is the only o%cial way for the user to access the platform, we do not foresee the devel-
opment of third-party mobile apps that integrate with Nest v2. However, it is common for vendors
to provide mobile apps as alternate mediums to control their devices, and since some vendors are
being tightly integrated to Nest v2 after a thorough review process,11 Nest v2 may potentially
partially satisfy P5, and hence, A5.
2. Feasibility Evaluation of SmartThings Classic and v2: A particularly interesting aspect of
SmartThings is that it allows developers to publish Groovy-based IoT apps (i.e., called SmartApps)
in a platform-provided market. This existing SmartThings “Classic” platform is now being phased
out in favor of the new SmartThings v2 platform12 launched on March 18, 2018 that drastically
deviates from this characteristic, i.e., SmartThings v2 has eliminated Groovy-based SmartApps. In-
stead, SmartApps are now manifested as Web hook endpoints [51] or AWS Lambda functions [50].

10https://blog.google/products/google-nest/helpful-home/.
11https://www.blog.google/products/google-nest/updates-works-with-nest/.
12https://blog.smartthings.com/news/smartthings-updates/the-new-smartthings-app-is-here/.
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Our analysis con"rms that all properties except P2 and P3 hold for SmartThings Classic (i.e., as
SmartThings does not mandate developer-speci"ed permission descriptions or prompts). Hence,
a majority of our analyses are feasible on the classic version (i.e., A1, A4, and A5). However, the
changes in SmartThings v2 makeA4 andA5 partially infeasible. Speci"cally, P4 is a$ected due to
the lack of centrally published and hosted SmartApps in SmartThings v2. That is, as SmartApps
will be reduced to remote endpoints, researchers will only have text descriptions of routines from
vendor websites to analyze, rendering A4 partially feasible. Similarly, while third-party mobile
app integration is technically possible, it is currently unavailable, which means that P5 does not
fully hold, and performing A5 would be infeasible at least in the near future.
3. Feasibility Evaluation of HomeKit: Apple HomeKit [24] is a proprietary framework that
allows interaction among di$erent devices (called accessories) in the home through iOS apps. Once
accessories are integrated into the framework, users can remotely automate them via iOS apps.

While HomeKit is a closed platform similar to Nest v2, it does provide hobbyists with API-
support to explore/test the platform. This access would allow researchers to create their own
accessories (i.e., devices), while the typical iOS testing and development tools may be used for
analyzing the permission enforcement, and access to these devices (i.e., fully satisfying P1 and
facilitatingA1). Further, developers are required to specify “usage descriptions,” which is why P2
holds, facilitatingA2. However,A3 is not applicable as there are no mandated prompts. Routines
are not available in one place, but can be acquired by analyzing the Home app, i.e., P4 partially
holds, and hence A4 is partially feasible. Finally, as mobile apps are integral to this model, A5 is
feasible.
4. Feasibility Evaluation of Home Assistant: Home Assistant [22] is an open-source framework
for smart home management. Unlike other proprietary platforms that rely on the cloud, Home
Assistant provides the option of hosting the automation server locally.

Home Assistant’s open nature provides valuable opportunities for analysis. For instance, it is
open source, allowing researchers to build it locally and automate the creation of the permission
map as we discovered in our initial exploration (i.e., A1 is feasible). Note that Home Assistant
does not enforce device-level permissions, but instead, enforces access control among multiple
users (i.e., hence, the scope of the permission map changes). Publicly available automations [23]
satisfy P4 and facilitateA4. Similarly, third-party apps for Home Assistant are not numerous, but
exist, satisfying P5 and facilitatingA5. However, Home Assistant does not exhibit P2 and P3 due
to its unique permission model, i.e., the user can directly de"ne centrally managed groups that
have a speci"c access to certain smart home resources, which precludes permission descriptions
or prompts.
5. Feasibility Evaluation of OpenHAB: OpenHAB is an open-source framework that users can
host locally or on the OpenHAB cloud service. Devices (i.e., things) are integrated with Open-
HAB via bindings (i.e., similar to device handlers in SmartThings). Users can then leverage these
integrated things to create routines (called rules).

While OpenHAB provides bindings for various communication protocols, there is no permission
system in place to connect third-party services. Thus, P1→P3 do not hold for OpenHAB, and
A1→A3 are not applicable. However, as a signi"cant number of OpenHAB rules (i.e., routines)
can be found in dedicated forums,13 P4 holds, andA4 is feasible. Similarly, because there are third
party apps that interface with this platform (P5) an app-based analysis (A5) is possible.

13https://community.openhab.org/c/tutorials-examples.
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4.4 The Challenge for Future Security Research
Our feasibility evaluation reveals several interesting aspects of the smart home ecosystem. For
example, some platforms such as Apple HomeKit, Home Assistant, and OpenHAB do not imple-
ment permissions at the granularity of a device (i.e., instead, only implement multi-user separa-
tion, which is further absent in OpenHAB), a coarse-grained model that would be trivial to exploit
once an authorization token is stolen (i.e., even without a transitive exploit such as a lateral priv-
ilege escalation). More importantly, it demonstrates alarming trends for future research in this
area. That is, none of the platforms are amenable to all of A1→A5, even partially (i.e., except
Nest v1, which was the initial focus of this article). More importantly, we see that as platforms
evolve, they become less open and transparent to introspection by security researchers. For in-
stance, SmartApps in SmartThings v2 are hidden behind endpoints on the Web, and no longer as
open to scrutiny as those in SmartThings v1. Similarly, Nest v2 abstracts platform API, routines,
and most functionality behind the Google Assistant API, which is not public and only available to
certain certi"ed partners. This is in complete contrast with the publicly accessible API of Nest v1
that enabled the analysis in this article. To continue investigating the security of smart home plat-
forms, researchers must overcome the overwhelming challenge of(1)identifying and mining
novel sources of routines and apps at scale and(2)developing alternate methods of accessing
platform APIs, which includes engaging platform vendors to acquire o"cial API access.

5 POTENTIAL DEFENSES
Of the 11 "ndings of this study, several could be individually prevented through well-known
system-level defenses, application analysis techniques, or best-practices for developing secure soft-
ware. However, the combination of these "ndings, in a lateral privilege escalation attack, would
be hard to defend against, given the lack of integrity guarantees on smart home platforms. This
section discusses the following potential defenses, as well as the challenge of securing the system
against privilege escalation:
1. Automated testing for permission enforcement: Findings F2, F3, and F11 demonstrate the
fundamental lack of correctness in permission enforcement in Hue. This gap can be mitigated
using systematic approaches that test the platform-level permission enforcement by building and
validating permission maps before system deployment [16].
2. Bolstering platform reviews with text analytics: While platforms often review third-party
applications as the "rst line of defense, the coarse-grained review performed by Nest is suscep-
tible to abuse by apps. That is, while Nest mandates both install-time permission descriptions
as well as runtime prompts for sensitive actions, it does not regulate the correctness of the text
in the prompts/descriptions (F5→F9). To address this gap, platforms could augment their product
reviews with natural language processing techniques to analyze the consistency of application-
provided permission descriptions with the actual permissions requested (e.g., Whyper [43] and
SmartAuth [59]), and in turn, enable the user to provide informed consent.
3. Enabling security best-practices at the application design stage: SSL misuse by Android
applications was "rst documented by Fahl et al. [15] in 2012, and has been heavily studied since
then [2, 13, 27, 54]. However, Android applications are still susceptible to SSL misuse (F10), which
weakens the security of the smart home. To conclusively address SSL misuse in applications, plat-
forms must encourage (and sometimes even mandate) developers to use safe defaults, and provide
API support for even safer use cases (e.g., SSL Pinning). In parallel, platforms must also deploy
static and dynamic techniques that detect cryptographic misuse in applications [2, 13, 15, 27, 41,
47, 54], for preventing !aws in current applications from a$ecting the smart home.
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4. Providing integrity guarantees: Our lateral privilege escalation attack in Section 4.1 was
possible because in DSB platforms, applications can use variables such as home/away as gadgets
to modify high-integrity devices (e.g., the security camera). Thus, this is an integrity problem,
wherein the platform allows low-integrity and high-integrity applications/devices to share the
same object. Transitive integrity enforcement, i.e., where the platform implements an integrity
lattice, and only allows interactions among devices/apps if the said interactions do not violate the
lattice, would theoretically address this problem. However, in practice, enforcing integrity policies
is challenging, given that variables such as home/away are used for both security and non-security
purposes (e.g., to manipulate lights, as well as the camera). As a result, enforcing integrity without
breaking functionality is an open research problem on platforms such as Nest.

6 RELATED WORK
Smart home platforms are an extension of the new modern OS paradigm, the security problems in
smart home platforms are similar to prior modern OSes (e.g., application over-privilege, incorrect
enforcement). As a result, some of the same techniques may be applied in detecting such problems,
as Alrawi et al. demonstrated in their analysis of network-facing smart home devices [3]. For
example, our work uses automated testing to derive permission maps in a manner similar to Felt
et al.’s seminal evaluation of Android permission enforcement [16]. We also leverage lessons from
prior work on SSL misuse [15, 41, 48, 54] to perform the SSL Analysis (Section 3.3.4) and the MiTM
exploit (Section 4.1). The lack of transitivity in access control that we observe is similar to prior
observations on Android [9, 17, 30, 31]; however, the implications are di$erent in the smart home.
The novelty of this article is rooted in using lessons learned from prior research in modern OS and
application security to identify problems in popular but under-evaluated platforms such as Nest
and Hue, and moreover, in demonstrating the potential misuse of home automation routines for
performing lateral privilege escalation.

While prior work analyzes IoT apps to study the potential for misuse [12], this article is the "rst
to demonstrate an end-to-end lateral privilege escalation attack involving routines (Section 4.1).
Our focus on adversarial misuse and a demonstrated end-to-end attack distinguishes this article
from closely-related work in smart home security, such as the evaluation of the SmartThings
platform and its apps by Fernandez et al. [18], and systems such as IoTSAN [39], Soteria [7],
IoTGuard [8], and iRuler [60] that detect the side-e$ects of the concurrent execution of Samsung’s
SmartApps. Aside from our 11 novel "ndings (F1→F11), the value of this article is in its holistic
evaluation of home automation security, which accounts for permission text artifacts, product
review-based defenses, and the detrimental impact of platform evolution on the feasibility of
analysis.

In a similar vein as this work, prior work by Surbatovich et al. [56] analyzed the security and
privacy risks associated with IFTTT recipes, which are trigger-action programs similar to routines.
The key di$erence is that Surbatovich et al. examines the safety of individual recipes, while our
work explores routines that may be safe on their own (e.g., when home, turn o$ the Nest Cam), but
which may be used as gadgets by attackers to attack a high-integrity device from a low-integrity
device. Our holistic analysis is complementary to such per-routine analysis. Similarly, our work
is complementary to prior work that analyzes the security of individual devices [40, 49], or the
correctness of routines in terms of representing the user’s requirements [6, 10, 32, 42, 67].

Finally, prior work has proposed novel access control enhancements for smart home platforms,
such as provenance systems (e.g., ProvThings [61]), systems such as ContexIoT [26] that enable
highly-contextual runtime prompts, or systems such as SmartAuth [59] that analyze the consis-
tency of an app’s text description with its code, which may alleviate the concerns raised in this
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article. However, such systems will also become exceedingly di%cult to design, evaluate, and de-
ploy, due to the evolutionary trends in smart home platforms (Section 4.3).

7 LESSONS AND CONCLUSION
Our "ndings (F1)→(F11) demonstrate numerous gaps in the security of DSB platforms. We now
distill the core lessons from our security "ndings from Nest and Hue, as well as the feasibility
analysis with 6 additional platforms.
Lesson 1: Seamless automation must be accompanied by strong integrity guarantees. It is important
to note that the attack described in Section 4.1 can not be addressed by reducing overprivilege or
via product reviews, since none of the components of the attack are overprivileged (i.e., including
TP Link Kasa), and our "ndings demonstrate that the Nest product review is insu%cient (F5→F9).
The attack was possible due to the integrity-agnostic execution of routines in Nest (F4). To mitigate
such attacks, platforms need information !ow control enforcement that ensures strong integrity
guarantees [5], and future work may explore the complex challenges of (1) specifying integrity
labels for diverse devices and (2) enforcing integrity constraints without sacri"cing automation.
Lesson 2: Nest Product Reviews would bene!t from at least light-weight static analysis. Our "ndings
demonstrate numerous violations of the Nest design policies that should have been discovered
during the product review. Moreover, the review guidelines also state that products that do not
securely transmit tokens will be rejected [35], but our simple static analysis using MalloDroid
discovered numerous SSL vulnerabilities in Nest apps (F10), of which one can be exploited (Sec-
tion 4.1). We recommend the integration of light-weight tools such as MalloDroid in the review
process.
Lesson 3: The security of the smart home indirectly depends on the smart phone (apps). Smartphone
apps have been known to be susceptible to SSL misuse [15], among other security issues (e.g.,
unprotected interfaces [9]). Thus, unprotected smartphone clients for smart home devices may
enable the attacker to gain access to the smart home, and launch further attacks, as demonstrated
in Section 4.1. Ensuring the security of smart phone apps is a hard problem, but future work may
triage smartphone apps for security analyses based on the volume of smart home devices/platforms
they integrate with, thereby, improving the apps that o$er the widest possible attack surface.
Lesson 4: Popular but simpler platforms need urgent attention. The startling gaps in the access
control of Hue demonstrate that the access control of other simple (i.e., homogeneous) platforms
may bene"t from a similar holistic security analysis (F2, F3, F11).
Lesson 5: New Analysis Methods are required as smart home platforms become more restrictive to in-
tegrations. Our feasibility analysis in Section 4.3 demonstrates how popular smart home platforms
are becoming less transparent, and more amenable to security analysis. While this tighter control
can help to alleviate certain security problems such as public API misuse, or side-stepping review
protocols, it also shifts more control into the hands of the platforms, making them more di%cult
to examine. Thus, new methods of analysis that work within the boundaries of modern platform
restrictions are needed. For instance, acquiring and studying the security implications of the in-
creasingly common user-driven routines [29] o$ers a potentially viable alternative to studying
developer-provided IoT apps.
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