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In network control theory, driving all the nodes in the Feedback Vertex Set (FVS) by node-state override forces the

network into one of its attractors (long-term dynamic behaviors). The FVS is often composed of more nodes than can

be realistically manipulated in a system; for example, only up to three nodes can be controlled in intracellular networks,

while their FVS may contain more than 10 nodes. Thus, we developed an approach to rank subsets of the FVS on

Boolean models of intracellular networks using topological, dynamics-independent measures. We investigated the use

of seven topological prediction measures sorted into three categories – centrality measures, propagation measures, and

cycle-based measures. Using each measure every subset was ranked and then evaluated against two dynamics-based

metrics that measure the ability of interventions to drive the system towards or away from its attractors: To Control

and Away Control. After examining an array of biological networks, we found that the FVS subsets that ranked in

the top according to the propagation metrics can most effectively control the network. This result was independently

corroborated on a second array of different Boolean models of biological networks. Consequently, overriding the entire

FVS is not required to drive a biological network to one of its attractors, and this method provides a way to reliably

identify effective FVS subsets without knowledge of the network’s dynamics.

Controlling complex systems is important for many bio-

logical, technological, ecological, and social applications.

Representing complex systems as networks, which incor-

porate the system’s elements as nodes and their interac-

tions as edges, enables the use of network science tools

to understand how best to control these systems. It has

long been thought that choosing an optimal set of nodes

to drive a network to a specific state necessitates a param-

eterized dynamical model of the network. Mochizuki et

al. changed this paradigm by proving that controlling the

Feedback Vertex Set (FVS), a method that utilizes only

the network’s structure, can drive the network’s dynam-

ical system into any of its natural end states (attractors).

Unfortunately, in many applications the FVS is too large

for its control to be practically implemented. In this re-

port, we used seven topological metrics and combinations

of these metrics to quantify the potential of subsets of

the FVS to control networks. We confirmed that metrics

based on information propagation are predictive of a FVS

subset’s control by simulating the dynamics of these net-

works and calculating how well the top-ranking FVS sub-

sets can drive the network’s dynamics into desirable at-

tractors or out of undesirable attractors. We also ana-

lyzed two of these networks in detail and observed that the

top-ranking FVS subsets we identify using our approach

correspond to biomolecules that have experimentally been

shown to drive the system. Thus, in this manuscript, we

provide an approach, dependent only on the structural

information of the network, that identifies small sets of

nodes that control a network.

I. INTRODUCTION

Networks are one of the models used to encode the intri-

cate interactions that underlie complex systems.5,6 A network

representation uses nodes to denote the components of the

system and edges to represent their interactions. In some

contexts, the only information given about a complex sys-

tem is the network representation with its nodes and edges,

which can be studied to gain valuable information.7–9 In other

cases, dynamics are also specified on the network to describe

the processes that take place in the system. These dynamic

processes are described by assigning a time-dependent vari-

able (continuous or discrete) to each node. We can repre-

sent the states of the nodes of our system as the state vector

X(t) = {x1(t), . . . ,xn(t)}. For each node in the network, we

represent its time evolution as xi(t + 1) = Fi(XIi(t)), where Fi

is the node update function for node ni, specifying the state of

the node in the next discrete time step. It is governed by time t

and XIi(t), which is a state vector of of only the nodes that have

edges directed at node ni i.e., they are the inputs Ii of node ni.

The set Ii is empty for source nodes, and the evolution of the

source nodes is fully determined by an independent function.

The set of node update equations are important to grasp how

the system’s state changes in time.

In addition to studying complex systems’ autonomous dy-

namics, understanding how to influence these dynamics to

reach important states is of great interest. Network control

has many theoretical and practical facets to determine the best

course of action for controlling a complex system.11–22 Dif-

ferent control methods are applicable based on the informa-

tion available (e.g., whether dynamic information is available

or not) and on the goal (e.g., which state we want to reach).
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From here, control methods aim to find a set of elements and

the corresponding actions on them required to attain the de-

sired objective and then evaluate the practicality of this set.

We can apply these ideas to biology by representing biolog-

ical systems as networks and modeling biological processes

as dynamic information propagation on these networks. In

biological networks at the cellular level, nodes represent bio-

logical macromolecules and edges represent the interactions

between these macromolecules. These interactions underlie

cell phenotypes and behaviors such as movement, cell di-

vision, and programmed cell death. Dynamical models on

a cellular network are used to describe the signal transduc-

tion, gene regulation and metabolic processes of the biolog-

ical system.23–27 Thus, the models’ dynamics must capture

the long-term steady states – attractors – of the cell (e.g., cell

types).

When attempting to control complex biological systems,

reaching an important attractor is often the main objective. As

an example, the cell network in Fig. 1 represents a simplified

version of the signaling network that underlies T cell large

granular lymphocyte (T-LGL) leukemia.28 There are two at-

tractors, which represent two cell fates: a state of commitment

to cell death (apoptosis) and a state of cell survival, which is

pathological in this case. Understanding how to drive the sys-

tem to the apoptosis attractor leads to predictions of therapeu-

tic interventions.

One method for driving a network to any of its natu-

ral attractors (attractor control) is feedback vertex set (FVS)

control.18,19 In this control method, we assume that we can

override the state of the variables of interest into a target state.

FVS control depends on the connection between the feedback

vertex set (FVS) and the attractors of the system. The FVS

is a set of nodes in the network that contains nodes in every

cycle of the network. Mochizuki et al. proved that, given

a system governed by a general class of nonlinear dynamics

on an underlying network structure, driving the state of every

node in the FVS to its corresponding state in a target attrac-

tor is guaranteed to drive the system to this target attractor.18

Specifically, Mochizuki et al. demonstrated that the minimal

FVS is a minimal set of “determining nodes” and mathemati-

cally proved this result. “Determining nodes” of the network

are a subset of the nodes J ⊆{n1, . . . ,nN} such that the conver-

gence of the nodes in J causes the convergence of every node’s

trajectories. That is, if there are two attractors X(t) and X̃(t)

such that XJ(t)− X̃J(t)→ 0 in the limit t → ∞, i.e. for both at-

tractors every node in J converges to the same trajectory, then

X(t)− X̃(t)→ 0 in the limit t → ∞. Mochizuki et al. consid-

ered networks with no source nodes (nodes that do not receive

any internal regulatory input). Zañudo et al. later showed that

if the source nodes are not uniquely defined they must also be

driven into their corresponding states in the target attractor.19

Source nodes typically signify an environmental signal or a re-

ceptor of that signal, so in a specific environment their states

are uniquely defined and not necessary for driving the system

to its attractors.

For our purposes, we consider the minimal FVS, which is

the smallest set of nodes that accomplishes this task. This set

is not necessarily unique. In Fig. 1(a), we label a possible

FIG. 1. (a) A simplified model of the T-LGL network. A mini-

mal FVS of this network is {S1P, FLIP}, which is highlighted with

dashed outlines. (b) The Boolean update functions for this network

that were described by Saadatpour et al.28 (c) The two attractors of

this model (white represents OFF and dark grey represents ON). The

attractors represent the two cell states of the network, one where the

cell commits to cell death (apoptosis is ON) and another where the

cell survives (apoptosis is OFF). We investigate how fixing only one

of the nodes of the FVS (dash-dotted outline) affects the network’s

dynamics. (d) Fixing S1P to the OFF state drives the system to the

apoptosis attractor, and fixing S1P to the ON state drives the system

to the survival attractor. (e) Conversely, fixing FLIP to its OFF state

or fixing FLIP to its ON state preserves both attractors, thus both

interventions fail to drive the system. The topological difference be-

tween these two intervention targets is of interest to generalize why

any one subset would outperform another subset.

minimal FVS in with dashed outlines; however, Ceramide is

part of the same cycles as S1P, so it could be part of the mini-

mal FVS instead of S1P. Similarly, DISC could replace FLIP

in the minimal FVS. Figure 1 focuses on the minimal FVS of

S1P and FLIP, but all minimal FVSs are probed in our broader

analysis.

To better understand the connection between the FVS and

the attractors of the system, it is useful to relate it to previous

work connecting cycles in the network structure to the multi-

stability in the system. Because the FVS consists of nodes in

every feedback in the network, removing the FVS creates an

acyclic network. As demonstrated by René Thomas the cy-

cles of a network are directly related to its multistability,29,30

so this acyclic network only has one attractor. Driving a node

in a cycle to a specific state will remove the multistability of
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that cycle. Thus, overriding the state of every node in the FVS

into their states in a specific attractor reduces the state space

of the network so there is a single attractor, namely the desired

one.18 In our biological systems, the act of overriding the FVS

nodes can be accomplished through many means, most promi-

nently through gene knockout or gene knock-in. These actions

do not give full control over the state of the nodes, which is a

difficult problem that is still being studied,12 but they do drive

the gene’s concentration to its extremes, which will cause a re-

sponse that reflects the process of overriding the node’s state

in our dynamical models.

Controlling the entire FVS is a sufficient condition to drive

the network into a given attractor, but it is not always neces-

sary. Previous work has shown that control sets smaller than

the FVS can drive the trajectory of a system into a desired

attractor,14,18,19,31 which means that partial control of the FVS

(e.g., control of a subset of the FVS) can be sufficient for at-

tractor control when restricted to a specific attractor or to a par-

ticular model.32 This is important because the size of the FVS

can often be larger than the size of combinatorial interventions

that can be implemented in biological experiments, which is

usually restricted to 1-3 nodes. For example, the gene regula-

tory network in ascidian embryos studied by Kobayashi et al.

has a FVS size of five, and it is near the limit of what can be

currently controlled experimentally.33 Thus, it is of great inter-

est to find FVS subsets that can drive a network to its natural

attractors. At present, it is not known how to most effectively

choose the correct FVS subsets, so in this work we aim to rank

various FVS subsets based on their ability to drive the system

into a desired attractor.

Although the FVS can be found without knowledge of the

dynamics of the system, in this work we focus on Boolean

dynamic models to evaluate the effectiveness of our meth-

ods. Boolean models characterize each node with two val-

ues, usually referred to as OFF (0) and ON (1), so that

each node’s state becomes xi(t) ∈ {0,1}. The update func-

tions then become Fi : {0,1}N → {0,1}, where Fi is usually

based on logical operations [Fig. 1(b)]. We evaluate the

dynamics of these systems using a general asynchronous up-

date scheme, where at each discrete time step, we stochasti-

cally choose a node n j and update its state according to its

update function, which makes the state vector X(t + 1) =
{x1(t), . . . ,Fj(XI j

(t)), . . . ,xN(t)}. In biology, it is conven-

tional that the node name (e.g., the molecule that the node

represents) is used to denote the node’s state. While Boolean

models represent an approximation, they have been shown

to capture the attractors and qualitative dynamics of various

systems.23–25 Boolean models have a larger size (include more

components) than continuous models. Larger networks will

have larger FVSs, which will allow us to study cases in which

a small fraction of the FVS is controlled. Furthermore, be-

cause the state space of Boolean models is finite, it is possible

to comprehensively probe the effects of an intervention on the

state space of the network. Thus, Boolean models provide a

strong test bed for evaluating our methods.

The reduced T-LGL network in Fig. 1(a) was described

with a Boolean model by Saadatpour et al. [Fig. 1(b)]28 The

network’s two fixed-point attractors – apoptosis and survival

– are represented in Fig. 1(c), where white represents a node

that is OFF and dark grey represents a node that is ON. We

know controlling both of the minimal FVS nodes, S1P and

FLIP, can drive the network into either of its attractors, but

how does controlling only one of these two nodes (indicated

by an dash-dotted outline) affect the dynamics? Controlling

S1P alone can still drive the system to either of the two at-

tractors [Fig. 1(d)]. However, controlling FLIP alone does

not fix the state of any other node and both original attractors

are still possible [Fig. 1(e)]. This difference between FVS

members motivated us to search for an answer to the follow-

ing questions: Are there network (topological) measures that

differentiate S1P from FLIP and thus can predict that S1P out-

performs FLIP in driving the system into an attractor? And

in a general network, how can we identify which FVS subsets

are most likely to control the network?

II. KEY CONCEPTS AND MEASURES

We evaluated the ability of seven topological measures to

identify important FVS subsets. These measures capture a

node’s influence on the network, determined by either the lo-

cal or global interactions of the node within the network. This

influence tells us how much we expect the node to control

the other nodes in the network. . The seven metrics are:

out-degree, average inverse distance, PRINCE,34,35 a mod-

ified version of PRINCE, CheiRank,36 involvement in the

strongly connected component (SCC), and involvement in the

network’s positive cycles. These metrics fall into three cate-

gories: centrality measures, propagation measures, and cycle-

based measures.

The centrailty measures, i.e, out-degree (a local measure)

and average inverse distance (a global measure) provide a

baseline of how important each node is [see Methods and Fig.

2(a)]. PRINCE propagates a fixed perturbation of a target

node through the network in a similar way as mass flow; our

modification relaxes this assumption. CheiRank is a measure

of the "source-ness" of each node [see Methods and Fig. 2(b)].

The cycle-based metrics aim to measure how much a subset

contributes to the multistability of the network [see Method

and Fig. 2(c)].

When we introduce an intervention on a subset of the FVS,

we measure the intervention’s effect on the attractors and their

basins to understand how well it controls the system. First,

based on the intervention, we sort the attractors into targets

and non-targets [Fig. 3(b)]. Applying the intervention to

the system restricts the state space of the system [Fig. 3(c)],

which changes the basins of attraction of the system’s original

attractors and may also introduce new attractor(s) [Fig. 3(d)].

When the goal is to drive the system into a target attractor,

a successful intervention increases the basin of attraction of

the target attractor and decreases the basins of the other attrac-

tors. We propose two metrics that measure these two aspects

of control. To Control is the measure of how well control of a

FVS subset drives the network to the target attractor whereas

Away Control measures how well the same subset drives the

network away from non-targeted attractors. The basis of both
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FIG. 2. Illustration of the structure-based influence of the nodes in a network according to each of our seven topological metrics. These

topological metrics are split into three categories: (a) centrality metrics, (b) propagation metrics, and (c) cycle-based metrics. Each metric is

illustrated on a toy network and on the simplified T-LGL network. The shade of grey of each node is the node’s conjectured influence over the

other nodes in the network based on the given metric. For every metric, S1P is predicted to have a larger influence on the network than FLIP,

which is consistent with the effect of these nodes on the attractors, illustrated in Fig. 1.

metrics is the normalized percent change in the relevant basin

of attraction compared to the unperturbed system (see Meth-

ods). These two values may be equal but are not necessarily

the same. For example, if an intervention decreases the basin

of a non-target attractor while driving the system to a new at-

tractor, it will not increase the basin of the target attractor, so

the intervention will have a large Away Control but a small To

Control.

As our aim is to quantify the effectiveness of the FVS sub-

sets identified from each of our topological metrics, we per-

form a systematic evaluation of all interventions, i.e., for a

FVS subset of size L we consider all 2L combinations of fix-

ing each node in the ON or OFF state. For each of these 2L

interventions, we sort the attractors into target and non-target

attractor(s). Each attractor wherein the states of every node

are consistent with the intervention states becomes a member

of the target attractors, while the other attractors are classified

as non-target. Interventions consistent with every attractor are

not informative, that is, an intervention that classifies every

attractor as a target does not give any valuable information.

Similarly, interventions that are not consistent with any attrac-

tors are only partially informative, that is, an intervention that

classifies every attractor as a non-target can only give us in-

formation on how well the intervention can drive the system

away from the attractors of the system (see Methods). We re-

fer to interventions that classify some attractors as targets and

others as non-target attractors (so both sets are non-empty) as

fully informative interventions. For every fully informative in-

tervention, we determine the values of To Control and Away

Control; if the intervention is partially informative, we only

determine the value of Away Control.

For each FVS subset of size L, there are 2L interventions,

each with a value for To Control and Away Control. To sum-

marize the values of all interventions associated with a FVS

subset with a single quantity, we define an aggregate value of

To Control and Away Control for a FVS subset as the maximal

value over all its (partially) informative interventions. Once

calculated, the value of these control metrics (control values)

are compared with the topological metrics to determine how

effective each metric is at identifying subsets that can control

the network. We define a FVS subset as successful if the ag-

gregate value of the control metric of interest (To Control or

Away Control) is larger than a success threshold, which we

choose to be 0.9.

We relate each of the seven topological metrics to the two

control metrics using a logistic regression [Fig. 4(a)]. After

creating the logistic regression, the sorting strength of each

topological metric when classifying successful FVS subsets

is determined based on the area under the precision-recall

curve (AUPRC) metric [see Methods and Fig. 4(b)]. If the

AUPRC value is equal to the fraction of positive data points,

the topological metric cannot sort the FVS subsets better than

randomly sorting subsets. We define the AUPRC predictive

threshold as the AUPRC value that is greater than halfway
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FIG. 3. Conceptual figure demonstrating how interventions affect

the attractors and their basins of attraction. (a) Representation of the

state space of a network; the basins of attraction of the three attractors

are indicated by different shades. (b) The three attractors and their

basins are separated into two categories: Targets (attractor 1) and

Non-targets (attractors 2 and 3). (c) An intervention is applied to the

system, which decreases the state space. This restriction of the state

space disallows both attractors 2 and 3 and creates a new attractor.

(d) The new modified state space is used to determine To Control and

Away Control. To Control measures the increase in the size of the

target basin while Away Control measures the decrease in the size of

the non-target basin.

between the fraction of positive data points and the maximum

AUPRC value of 1. Thus, a regressor variable is predictive if it

sorts the binarized values of a control metric with an AUPRC

value above the AUPRC predictive threshold. For example, if

the fraction of positive data points is 0.75, the AUPRC pre-

dictive threshold is 0.875, so an AUPRC greater than 0.875

would be considered predictive. Calculating these AUPRC

values for each of our topological metrics across different net-

works and subset sizes allows us to determine how well they

can identify successful FVS subsets, or in other words, how

well they predict a FVS subset’s ability to drive the system

into the target attractor(s) or away from the non-target attrac-

tor(s).

III. RESULTS

We investigated an array of four different networks, cor-

responding to well-established Boolean models of biological

systems, namely the T-LGL network,37 NSCLC network,38

an FA/BRCA variant network,39 and a Helper T Cell Differ-

entiation network.40 For each of our networks, we determine

the states of the source nodes. Because the source nodes are

uniquely defined, we are only concerned with overriding the

nodes within the FVS of each network and do not need to

consider the full FC control presented in Zañudo et al.19 This

is done to remove any effect the source nodes have on the

attractor trajectory, so we can study only the FVS node’s ef-

fect on driving the system. For these networks, we need to

identify their minimal FVS, which are not necessarily unique,

but identifying a minimal FVS is an NP-hard problem. In-

stead, and following Zañudo et al.19, we identify near-minimal

FVSs using one of the efficient methods available (the simu-

lated annealing algorithm introduced by Galinier et al.41) We

analyzed all FVS subsets of one to three nodes from multiple

near-minimal FVSs we identified. The size of these networks

range from 28 to 60 nodes, and the size of the near-minimal

FVSs range from 8 to 17 nodes (see Table S4).

A. Propagation metrics are the best at classifying successful
FVS control subsets

To characterize the predictive power of each of the seven

topological metrics, we determined their associated AUPRC

values for each network and FVS subset size and used these

AUPRC values to determine the predictive power of each topo-

logical metric in the task of classifying successful control sub-

sets. We summarize these results in Table I.

The top of Table I shows the percentage of cases (out of 12

total cases, where each case corresponds to a single FVS sub-

set size of one of the networks) in which the indicated metric

was predictive according to the AUPRC. Propagation metrics

had the highest % of cases of all seven metrics for both To Con-

trol and Away Control and cycle-based metrics had the lowest

% of cases for both control metrics. The bottom of Table I

shows the rank of the AUPRC values for each of the seven

metrics averaged over all 12 cases, where a lower rank corre-

sponds to a higher AUPRC value. Consistent with what we

found with the % of cases, propagation metrics had the low-

est average rank of all seven metrics for both control metrics.

Although the order of centrality and cycle-based metrics was

not consistent for both control metrics, cycle-based metrics

had the highest average rank of all metrics for the To Con-

trol metric. In summary, we found that propagation metrics

had the highest predictive power out of all metrics (highest

% of cases in which they were predictive and lowest average

AUPRC rank) and that cycle-based metrics had the lowest pre-

dictive power out of all metrics (lowest % of cases in which

they were predictive and highest average AUPRC rank for the

To Control metric.).

B. Intersections of top-ranking FVS subsets for each
topological metric can improve FVS subset identification

The number of FVS subsets that have a high value in a

topological metric but a low control value reflects the met-

ric’s inability to fully capture the dynamics of the system. We

hypothesized that intersections of the FVS subsets predicted

to successfully control the network by each topological met-

ric would reduce the number of FVS subsets that have a high

value in a topological metric but a low control value. To do

this intersection, we set a fixed percentile cutoff, and for each

topological metric, we identified the set of FVS subsets that
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TABLE I. Table summarizing results of the AUPRCs for each topological metric measured across 4 networks with all FVS subsets of size 1,

2, or 3. We measured the percentage of cases where the AUPRC value was greater than the AUPRC predictive threshold (top) and the average

rank of the AUPRC value (a lower rank corresponds to a higher AUPRC value) among the seven metrics (bottom). Propagation metrics sort

FVS subsets the best when compared to the other topological metrics, while the cycle-based metrics sort FVS subsets the worst.

Centrality Propagation Cycle-based

Out-degree AverageDistance PRINCE Modified PRINCE CheiRank Positive Cycles SCC Size

% of cases where AUPRC is above the predictive threshold

To Control 50.00% 41.67% 58.33% 66.67% 58.33% 25.00% 41.67%

Away Control 66.67% 58.33% 66.67% 83.33% 83.33% 58.33% 41.67%

Average rank of AUPRC values

To Control 4.58 4.29 2.83 2.92 3.50 4.33 4.38

Away Control 3.33 4.38 3.08 2.46 2.71 5.04 6.04

was above the percentile cutoff (see Methods and Fig. 5). The

sets of above-cutoff FVS subsets [box in Fig. 5(a)] for each

topological metric of interest were then intersected with each

other resulting in a set of FVS subsets that are hypothesized to

better control the network and contain a lower percentage of

false positives than each metric individually. We use the term

intersection metrics to refer to the metrics defined by intersect-

ing topological metrics, and we denote them according to the

metrics that are included in the intersection. In an intersection

metric, we assign to each FVS subset the highest percentile

cutoff value at which the FVS subset appears in the intersected

topological metrics (see Methods). To evaluate how well an

intersection metric performs as more metrics are included in

the intersection and to determine which combinations of the

most predictive metrics best approximate FVS subsets’ level

of control over the network dynamics, we tested three differ-

ent intersection metrics: 1) an intersection of all seven metrics,

2) an intersection of just the propagation metrics, and 3) an

intersection of the Modified PRINCE and CheiRank metrics.

As an example, Fig. 6(a) shows the percentile cutoff value

and Away Control value for the FVS subsets of the intersec-

tion metric that includes the three propagation metrics.

To analyze each intersection metric, we took a similar ap-

proach to what we did in Section III A. We obtained the

AUPRC values for each intersection metric, the percentage

of AUPRC values above the predictive threshold (Table II

top), and the average rank of the AUPRC values among the

three selected intersection metrics and all seven topological

metrics (Table II bottom). The intersection metrics are pre-

dictive (have an AUPRC above the predictive threshold) in

more cases than the non-propagation metrics, as reflected

by their higher percentage of cases (see Table I for the non-

propagation metrics and Table II for the intersection metrics).

The intersection metrics always have an average rank that is

lower than that of the non-propagation metrics (Table S1), and

they perform similarly to the propagation metrics (Table II),

which performed the best among all individual topological

metrics (Table I). Among the intersection metrics, the Mod-

ified PRINCE and CheiRank intersection metric is predictive

in the highest percentage of cases (75% in both To Control

and Away Control), it has the lowest average rank for Away

Control, and it has the second lowest average rank for To Con-

trol. Notably, and contrary to our expectations, the intersec-

tion metrics do not outperform the Modified PRINCE metric,

which has the first or second highest percentage of cases in

which it is predictive and the lowest average rank of AUPRC

values among all metrics (Table II).

Although the Modified PRINCE and CheiRank intersection

metric performed the best among the intersection metrics and

the propagation intersection metric performed the worst, we

noticed that relying on the AUPRC to rank metrics can mask

a property that is desirable in our setting: the ability of a topo-

logical metric to be predictive in the high precision and low

recall regime. This regime is important because it is where

we expect topological metrics to excel. For each FVS subset

we expect that having a top rank in a predictive topological

metric is sufficient but not necessary to have a high control

metric value; this corresponds to the high precision and low re-

call regime. Note that the reason we do not necessarily expect

topological metrics to fully capture the control metric values

is that the control values depend on the dynamic information

in the model and not solely on the network topology.

For example, in the two-node, Away Control case for the

NSCLC network, the AUPRC for the propagation intersection

metric is 0.669, which is below the AUPRC predictive thresh-

old of 0.698, but on the precision-recall curve [Fig. 6(c)], the

propagation intersection metric has the highest recall before

the precision drops from 1.0, i.e., the propagation intersection

metric identifies the most successful Away Control FVS sub-

sets before encountering an unsuccessful Away Control FVS

subset. Despite performing the worst according to the AUPRC

values, the propagation intersection metric performs the best

among all studied metrics (has the lowest average rank, 2.83)

when comparing metrics according to the number of the suc-

cessful FVS subsets they identify before the precision drops

below 0.95 (Supplementary Material, Table S3). The prop-

agation intersection metric outperforms Modified PRINCE,

which performed the second best (2.96), and the Modified

PRINCE and CheiRank intersection metric, which performed

the third best (3.33). Thus, while the AUPRC is a good indi-

cator of how well every subset is sorted based on its binarized

control value, it can fail to capture how well a metric performs

in the high precision and low recall section of the precision-

recall curve, as with the propagation intersection metric in this

case. To focus on this regime of the precision-recall curve, we

find the percentile cutoff value for which the precision drops

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

00
80

84
3



7

TABLE II. Table summarizing the results of the AUPRCs for each intersection metric. The percentage of cases where the AUPRC is above the

AUPRC predictive threshold (top) and the average rank of the intersection metrics (bottom) are displayed. These AUPRC values are ranked

among the three intersection metrics and the seven topological metrics. The percentage of cases for each intersection metric and their rank are

similar to those of the individual propagation metrics. Note that the ranks range from 1-10 in this table, but they range from 1-7 in the bottom

of Table I, so the ranks between the tables cannot be directly compared. The ranks for the three propagation topological metrics are also shown

in the table as they were the best performing individual topological metrics.

PRINCE Modified PRINCE CheiRank Modified PRINCE and CheiRank Propagation All

% of cases where AUPRC is above predictive threshold

To Control 58.33% 66.67% 58.33% 75.00% 58.33% 58.33%

Away Control 66.67% 83.33% 83.33% 75.00% 66.67% 75.00%

Average rank of AUPRC values

To Control 5.71 4.04 4.83 4.67 5.83 4.38

Away Control 5.71 3.42 3.88 3.71 5.21 4.75

below 0.95, and use this 0.95 precision percentile cutoff value,

which we refer to as the 0.95 precision point, to identify the

high precision and low recall FVS subsets.

To illustrate how the intersection metrics perform in iden-

tifying successful FVS subsets when compared to other inter-

section metrics, we plot the percentile cutoffs of each inter-

section metric against the percentile cutoffs of the CheiRank

in Fig. 6(d-f). Successful FVS subsets are represented by

filled circles and unsuccessful FVS subsets by open shapes.

We use horizontal and vertical dotted lines to mark the 0.95

precision point for CheiRank and the intersection metric re-

spectively. These two lines split each figure panel into four

quadrants, which we can use to evaluate how the FVS sub-

sets identified by the intersection metric differ from those of

CheiRank. The top right quadrant corresponds to the FVS sub-

sets identified by both CheiRank and the intersection metric,

the bottom right quadrant corresponds to the FVS subsets that

CheiRank identifies but are absent from the intersection met-

ric, and the top left quadrant corresponds to the new FVS sub-

sets that the intersection metric identifies that were not iden-

tified with CheiRank alone. As shown in Fig. 6 (d-f), the

number of FVS subsets with high percentile cutoff value and

a binarized control value of one (control value >0.9) increases

as more metrics are added to the intersection (25 for the Mod-

ified PRINCE and CheiRank intersection metric to 42 for the

propagation intersection metric). The reason for this is that

the unsuccessful FVS subsets (open data points) have a larger

decrease in percentile cutoff (shift down farther in the plot)

than the successful FVS subsets (filled data points), so more

FVS subsets are in the top section before the precision drops

below 0.95. Thus, as we increase the number of metrics in

our intersection metric, high percentile cutoff and high con-

trol FVS subsets remain above the 0.95 precision point value

(horizontal line) while high-percentile cutoff and low-control

FVS subsets shift to a lower percentile cutoff value, which

lowers the 0.95 precision point cutoff value and increases the

number of FVS subsets above cutoff, creating a higher recall

before the precision decreases.

As an example of the improvement brought by intersec-

tion metrics, consider the cluster of high CheiRank percentile

cutoff and low control value FVS subsets (open diamonds).

As more metrics are added to the intersection in each subse-

quent panel, these FVS subsets’ percentile cutoffs decrease

(i.e., they are shifted down on the y-axis) farther than the FVS

subsets with a similar percentile cutoff value and successful

control value. Most of the FVS subsets marked with open

diamonds (8 out of 10) contain the node JAK, which is part

of a 2-node negative feedback loop. Negative feedback loops

do not contribute to the multistability of the network, so their

control has a weak contribution to driving the system into or

away from an attractor. Since CheiRank does not consider

edge signs, it assigns JAK the 4th highest value among all

nodes. JAK ranks 15th for PRINCE, which does consider

edge signs, so in Fig. 6c, we see these open diamonds have

much lower percentile cutoff values. As more topological met-

rics are added to the intersection metric, every FVS subset’s

percentile cutoff will decrease or stay the same. In particular,

when a FVS subset is bottom ranking for a newly introduced

topological metric, the decrease in its percentile cutoff will be

larger than that of subsets that are top ranking in the new met-

ric. This also occurs for the other high percentile cutoff FVS

subsets that don’t include JAK (2 out of 10). These subsets

always contain either CTLA4 or TCR, which form an isolated

negative cycle, so when the positive cycles metric is included

in the intersection, these FVS subsets also greatly decrease

their percentile cutoff.

Based on the above results, intersection metrics appear to

be more predictive than the individual metrics in the high pre-

cision and low recall regime, and we attribute this to the ability

of the metrics in the intersection to complement each other’s

weakness. We further support these results with Tables S2

and S3 in the Supporting Material where we indicate the 0.95

precision point for all four networks (Table S2) and the num-

ber of FVS subsets above the 0.95 precision point (Table S3)

for subsets of size 1 to 3 using all three intersection metrics

and CheiRank. Overall, this data indicates that the percentile

cutoff decreases and more FVS subsets are identified as more

metrics are added to the intersection metric. However, it is

possible for the intersection to become too strict if one of the

metrics in the intersection sorts the data poorly. This nega-

tively affects the number of subsets identified, so when using

the all metric intersection fewer FVS subsets are identified

than in the propagation intersection. These results show that

the intersection metrics have higher predictive power than any
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FIG. 4. (a) Logistic regression and data points, and (b) precision-

recall curve for Away Control vs CheiRank obtained from driving all

possible two-node FVS subsets in the T-LGL network. In panel (a),

the x-axis indicates the value of the topological metric, the CheiRank

in this case, for each FVS subset while the y-axis indicates the aggre-

gate Away Control value given by each FVS subset and the probabil-

ity of being a successful FVS subset given by the logistic regression.

To view this as a binary classification problem, we binarize our data

by considering a FVS subset with an aggregate Away Control value

greater than 0.9 to be a successful FVS subset. The AUPRC is the

area under the precision-recall curve in panel (b), which is 0.878 for

this data. The fraction of positive data points is 0.646, so the AUPRC

predictive threshold (the AUPRC value above which we consider the

topological metric effective at sorting) is 0.823. Because the AUPRC

value of 0.878 is higher than this threshold, this indicates that the

CheiRank is capable of sorting FVS subsets according to whether

they are successful FVS subsets or not, and we say this AUPRC is

predictive. Similar data was graphed for FVS subsets of various sizes

(1 to 3) for each observed network, and the results of all of these

graphs are displayed in Table I.

individual topological metric in the high precision and low re-

call regime.

FIG. 5. Intersecting the sets containing the highest-valued FVS sub-

sets of distinct topological metrics identifies FVS subsets hypothe-

sized to have a large level of control over the network dynamics. (a)

Based on a chosen cutoff percentile, we identified the highest-valued

subsets in a distribution of the topological metric. Here, the 70th per-

centile cutoff (pc) gives us the top 30% of subsets according to the

CheiRank. (b) These top-ranking CheiRank subsets were then inter-

sected with the subsets in the top 30% of the other two propagation

metrics (PRINCE and Modified PRINCE) to identify the FVS sub-

sets that perform well for all propagation metrics. (c) The intersec-

tion set of the propagation metrics was intersected with the intersec-

tion set of the other metrics to identify the FVS subsets that perform

well for every topological metric. Intersection sets contain FVS sub-

sets that are hypothesized to better control the network, so they are

expected to contain a lower percentage of false positives than each

topological metric.

TABLE III. The number and precision of the two-node FVS subsets

identified in intersections on the observed networks. The intersec-

tion percentiles were determined using the maximum (93 for To Con-

trol and 90 for Away Control), and third quartile (83 for To Control

and 72.75 for Away Control) of the recorded propagation intersec-

tion metric 0.9 precision crossing points. Subsets were identified

using the propagation intersection metrics at both percentile cutoffs.

The maximum percentile cutoff does normally have better precision

than the third quartile, but less subsets are identified. Furthermore,

when comparing our results to the subsets predicted by a balanced

and unbalanced logistic regression on the control value versus per-

centile cutoff data, we see that both logistic regressions find more

FVS subsets but are less accurate.

Percentile

Cutoff

T-LGL NSCLC
FA/BRCA

Var #1

Helper

T Cells

Size Acc Size Acc Size Acc Size Acc

To Control

Max (93) 2 100% 5 100% 2 0% 3 100%

Q3 (83) 8 62% 16 94% 3 0% 7 100%

LogReg

(Balanced) 18 78% 84 45% 14 21% 26 92%

LogReg

(Unbalanced) 16 75% 38 63% 0 N/A 53 81%

Away Control

Max (90) 5 100% 7 100% 3 100% 4 100%

Q3 (72.75) 30 93% 27 78% 6 100% 15 93%

LogReg

(Balanced) 70 90% 86 51% 20 90% 32 84%

LogReg

(Unbalanced) 82 84% 57 60% 27 85% 63 75%
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FIG. 6. Intersection metrics improve the number of FVS subsets identified in the high precision and low recall regime of the system. (a) Scatter

plot showing the propagation intersection metric percentile cutoff value and the Away Control value of FVS subsets for the T-LGL two-node

intervention case. Each FVS subset’s value on the x-axis represents the maximum percentile cutoff value at which the FVS subset appears in

the propagation intersection metric. (b-c) Precision-recall curves of CheiRank and the intersection metrics for Away Control in the two-node

intervention case of the T-LGL network (panel b) and NSCLC networks (panel c). (d-f) Percentile cutoff value of CheiRank vs percentile

cutoff value of each of the studied intersection metrics. Filled black circles denote successful FVS subsets (based on the binarized value of the

control metric) and open shapes denote unsuccessful FVS subsets. Among the open shapes, diamonds indicate FVS subsets that have a high

percentile cutoff (>50%) for CheiRank. On each plot, we indicate the percentile cutoff where the precision drops below 0.95 for CheiRank

(vertical dotted line) and for the intersection metric (horizontal dotted line). The top right quadrant contains the FVS subsets identified by both

CheiRank and the intersection metric; the top left quadrant contains the FVS subsets identified by the intersection metric but not CheiRank;

the bottom right quadrant contains the FVS subsets identified by CheiRank but not the intersection metric. As more metrics are included in an

intersection metric, the percentile cutoff of the unsuccessful FVS subsets decreases farther than the percentile cutoff of successful FVS subsets.

This shifts the 0.95 precision point of the intersection metric (horizontal line) lower on each successive panel, below the percentile cutoff of

successful FVS subsets, which shift only by a small amount. Because more FVS subsets are above the 0.95 precision point in the intersection

metrics than in CheiRank, the top left quadrant of subsequent panels contains more FVS subsets than the first panel. Using intersection metrics

improves the precision of the top ranking subsets, but including too many metrics in the intersection can make the intersection metric too strict

and can decrease or not benefit its predictive power. This is illustrated by the equal number of identified FVS subsets between the propagation

intersection metric and the all metrics intersection metric.

C. Development and testing of a generalizable percentile
cutoff based on our Boolean networks

Knowing that at certain percentile cutoffs the intersection

metrics can better identify successful subsets than individual

metrics, we used our four networks to determine which per-

centile cutoff was the most appropriate for picking successful

FVS subsets. We aimed to find a percentile cutoff with high

precision while maximizing the number of identified FVS sub-

sets. This involves a trade-off because as the precision in-

creases the number of FVS subsets decreases, as shown in Fig.

7. For the rest of the manuscript, we chose the point where the

precision first crosses 0.9 from below (dashed line on Fig. 7),

which we refer to as the 0.9 precision crossing point. These

crossing points were identified for all four networks on FVS

subsets of size 1, 2, and 3, for the propagation intersection

metric, separately for To Control and Away Control.

Based on the full set of these propagation intersection met-

ric 0.9 precision crossing points for each control measure, two

percentile cutoff values were chosen, which we expect will be

able to identify successful FVS subsets when applied to other

Boolean networks. The maximum of the 0.9 precision cross-

ing points indicates the value that is most likely to achieve a

high precision, but it is possible that it does not detect any

FVS subsets. To increase the likelihood of identifying a FVS

subset, we also evaluated the third quartile percentile cutoff
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FIG. 7. Example graph of the precision and number of interventions

identified for the all metric intersection metric percentile cutoffs. The

two-node, Away Control case of the T-LGL network is shown. Black

dots represent the precision of the FVS subsets identified at each per-

centile cutoff, and grey dots represent the number of FVS subsets

that are identified. At a percentile cutoff of 0, every FVS subset is

included, precision is at a minimum, and the number of subsets is at a

maximum. As the percentile cutoff increases, the precision increases

as subsets are filtered out. Eventually, the precision reaches 1.0, in-

dicating that all the unsuccessful subsets are filtered out. Once the

percentile cutoff gets too restrictive, no FVS subsets are identified,

so the precision drops to 0. The dotted line indicates a precision of

0.9, which is used to determine the 0.9 precision crossing point.

because it is less stringent, but is still expected to have high

precision. For To Control, we found that the 93 percentile was

the maximum cutoff value and the 83 percentile was the third

quartile. For Away Control, these two values were the 90 and

72.75 percentile cutoffs respectively. The Away Control val-

ues are lower because it is easier for a subset to achieve high

Away Control than To Control, so a less stringent percentile

cutoff performs better.

To verify that our method does identify a sufficient number

of successful FVS subsets with high precision, we reapplied

the percentile cutoffs identified by our method to the four net-

works used to derive these percentile cutoffs. For each control

measure, both cutoffs were applied on the propagation inter-

section metric (Table III) and the all metric intersection met-

ric (Table S5). In Table III, the number of identified FVS sub-

sets of size 2 with percentile cutoff higher than these values

was recorded as well as the precision in terms of being suc-

cessful FVS subsets; data for FVS subsets of size 1 or 3 are

presented in Table S5. In Table III, the FVS subsets identified

using the maximum percentile cutoff value have a precision

of 100% in all cases except for the To Control case of the

FA/BRCA variant network, and have a precision higher than

85%/95% in the To Control/Away Control cases respectively

(Table S5). As expected, the third quartile identifies more sub-

sets and has a lower precision than the maximum, but overall

using the third quartile percentiles still identifies FVS subsets

that achieve a precision above 60% for To Control and a pre-

cision above 75% for Away Control. As a point of reference,

we also show the size and precision of the identified FVS sub-

sets for both a balanced and unbalanced logistic regression

(see Methods). When compared to the logistic regressions,

finding the FVS subsets above these percentile cutoffs is more

stringent but also typically more precise because the logistic

regression does not focus on the high precision and low recall

regime.

While using these percentile cutoffs has a higher precision

than the logistic regressions in Table III, this is not true in

the To Control case of this variant of the FA/BRCA network.

This outlier results from the node ICL being crucial for driv-

ing the system to the correct attractor, but of all the single

nodes whose interventions are fully informative, ICL has the

lowest topological values. Thus, if a two- or three-node sub-

set has a high percentile cutoff value, it likely won’t contain

ICL and won’t drive the system to the correct attractor, so

the subsets with percentile cutoffs above our percentile cutoff

values won’t be successful. Logistic regression is still able

to identify some successful FVS subsets because the logistic

fit leverages the observation that lower percentile cutoffs tend

to have higher control values for this model. This observa-

tion cannot be incorporated in our percentile cutoff method,

which assumes that FVS subsets with high percentile cutoffs

are correlated with high control values. This outlier demon-

strates that there are complexities of the dynamics of a net-

work that may not be easily captured by topological metrics.

Nevertheless, because applying the percentile cutoff values to

identify FVS subsets on our networks was able to identify a

sufficient number of FVS subsets that have a precision higher

than 85% when using the maximum percentile cutoff, we hy-

pothesize that the percentile cutoff values identified by our

method would have a similar performance when applied to

other networks.

To test this hypothesis, we applied the percentile cutoffs

identified by our method to identify FVS subsets that are

expected to have high control values in a second array of

Boolean models of biological networks. These networks

were: a geroconversion network,42 two more variants of the

FA/BRCA network, and two variants of a MAPK network43

(see Table S4). We identified and found the precision of

the subsets using our maximum and third quartile percentile

cutoff values (see Table S6). Table IV shows the results of

the propagation intersection metric for two-node FVS subsets.

Many of the top-ranking FVS subsets had a binarized control

value of 1 on their respective networks. However, this second

array of network models had fewer nodes than our original

array, so the most restrictive choice often didn’t result in any

FVS subsets being identified (see Table S6). So when apply-

ing this method to another network, it may be useful to start

with the third quartile percentile values (83 for To Control and

72.75 for Away Control) despite their potentially lower preci-

sion. The results of Table S6 show that the sets of FVS subsets

with percentile cutoffs above the third quartile percentile cut-

off values are of sufficient size and high precision on other

networks too. This shows that our percentile cutoff method

is able to identify FVS subsets in the high precision and low

recall regime using only the structure of the network.
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TABLE IV. Precision of the FVS subsets identified using the previously identified percentile cutoffs the new array of test networks. The third

quartile values (83 for To Control and 72.75 for Away Control) are used to guarantee FVS subsets are identified on these networks because

they have fewer nodes than our original set of networks. Using the propagation intersection metric, the number and precision of the identified

two node FVS subsets was found. On these new networks, many of the predicted FVS subsets were successful in terms of their To Control

values and every predicted FVS subset was successful in terms of their Away Control values, so these percentile cutoff values are expected to

be generally applicable.

Percentile

Cutoff

Geroconversion
FA/BRCA

Var #2
FA/BRCA

Var #3
MAPK
Var #1

MAPK
Var #2

Size Acc Size Acc Size Acc Size Acc Size Acc

To Control (83) 0 N/A 5 80% 4 100% 7 71% 8 75%

Away Control

(72.75) 1 100% 11 100% 7 100% 15 100% 14 100%

D. The identified FVS subsets significantly outperform
random samples of node subsets

To confirm that this method identifies successful FVS sub-

sets with high precision, we compared our results to random

samples of node subsets. Two different random samples were

generated: a random sample of every possible subset and a

random sample of FVS subsets. To approximate the precision

value of all subsets, we use bootstrapping in each random sam-

ple (see Methods).Twenty-five randomly selected single node

subsets were chosen, or every individual FVS node was cho-

sen if there were less than 25 total options. For 2 and 3 node

subsets, 100 random subsets were picked when looking at

all possible subsets and 50 random FVS subsets were picked

when only looking at the FVS subsets. After a random sam-

ple was chosen, each subset’s 2L possible interventions were

simulated to determine their To Control and Away Control val-

ues. We use the random subsets’ binarized control values to

determine their precision and compare it to the FVS subsets

identified using the intersection metrics.

The distribution of precision values from bootstrapping is

plotted as a box-and-whisker plot together with the precisions

obtained when using the maximum percentile cutoff and third

quartile percentile cutoff determined in the previous analysis

of the FVS subsets, shown in Fig. 8 for the original array of

networks and Fig. 9 for the new array of networks. In our

networks, the precisions of the FVS subsets identified using

our method significantly outperformed the random samples’

precisions. This is true for each intersection metric, and even

works partially well for CheiRank. The only exceptions were

the To Control cases of both the first variant of the FA/BRCA

network and geroconversion network cases and when the in-

tersection didn’t identify any subsets (indicated by an open

shape).

E. Network specific results

In the following, we analyze the FVS subsets identified us-

ing our percentile cutoff method and discuss their biological

significance for two of the analyzed networks. We also pro-

vide a similar analysis of the third variant of the FA/BRCA

network in SI Text I.

1. T-LGL network

T-cell large granular lymphocytic (T-LGL) leukemia is a

disease that is caused by activated cytotoxic T-cells surviving

and possibly proliferating instead of undergoing activation in-

duced cell death. Zhang et al. constructed a signal transduc-

tion network of activation induced cell death and its dereg-

ulation in T-LGL leukemia, and modeled it with a Boolean

model of this process.37 Here, we use a modified version of

the model.31 This T-LGL network contains 60 nodes and 141

edges; we identified several near-minimal FVSs, all of size

twelve. The model has three attractors, two survival attrac-

tors with overlapping node states that include the OFF state

of the node Apoptosis, and one apoptosis attractor which in-

cludes the ON state of the node Apoptosis. Using our method,

we identified multiple FVS subsets; in this follow-up analy-

sis we aim to evaluate which of the 2L interventions for each

FVS subset drives the system out of the survival attractors and

into the apoptosis attractor. As a state with Apoptosis=1 re-

flects the biological commitment to apoptosis even if it is not

identical to the system’s apoptosis attractor, we can analyze

a FVS subset’s effectiveness either by the state of Apoptosis

after each simulation or by the To Control and Away Control

values.

The top five single node FVS subsets predicted by the prop-

agation intersection metric were IL2RB, NFKB, RAS, S1P,

and TBET. The intervention expected to be successful in driv-

ing the system into the apoptosis attractor is to set the tar-

get node into its state corresponding to the apoptosis attrac-

tor. This means the OFF state for S1P. Indeed, knockout of

S1P drives the system away from the survival state and into

the apoptosis attractor a majority of the time (Table V). How-

ever, the situation is less clear for the other four nodes in this

list because they are ON in all attractors; these nodes are par-

tially informative when used alone and become fully infor-

mative when used in combination with S1P. After simulating

both the knockout and constitutive expression of each of these

four nodes in the Boolean model, we found that knockouts

of NFKB, IL2RB, or RAS increases the basin of the survival

state to >90%. The resulting attractor is not close to the apop-

tosis attractor but it does have the Apoptosis node in the ON

state (Table V). The effectiveness of S1P, NFKB, and RAS

knockout in a practical setting can be corroborated with exper-
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FIG. 8. Plots of the precision of identifying successful FVS subsets

on the original array of networks using our percentile cutoff method

and box-and-whisker plots created by bootstraps on random samples

of node subsets. There are two random samples, one is generated

from a random sample of every possible subset and the second is

generated from a random sample of only FVS subsets. Each graph

shows To Control on the left and Away Control on the right. The

graphs use four different shades of grey and patterns to differentiate

between the intersection metrics and use two different shapes to dif-

ferentiate between which percentile cutoff was used to generate the

precision. These results indicate that when node subsets are iden-

tified using FVS subsets and our percentile cutoff method, the pre-

cision of these FVS subsets is higher than the precision of a set of

randomly chosen FVS subsets and much higher than the precision of

a set of randomly chosen node sets.

imental evidence.44–46 TBET has a smaller Apoptosis basin of

attraction than the other four identified interventions, however

it did drive the system to new attractors that are reasonably

different from the original survival attractor and have Apopto-

sis oscillating. We also simulated the fully informative single

node intervention with the next highest percentile cutoff, FLIP,

and found that knocking it out does not meaningfully change

the basins compared to the unperturbed (wild-type) system.

This indicates that fully informative FVS subsets might not al-

ways be better options than partially informative ones in terms

FIG. 9. Plots of the precision of identifying successful FVS subsets

on a second array of networks using our percentile cutoff method and

box-and-whisker plots created by bootstraps on random samples of

subsets. These results are similar to Fig. 8, indicating that using only

the structure of a network and the percentile cutoffs identified by our

method, the identified FVS subsets typically have a higher precision

than a set of randomly chosen nodes or FVS subsets.

of their ability to control the network.

We also identified the top 5 two and three node FVS sub-

sets of the propagation intersection metric. We simulated all

four (for two nodes) or eight (for three nodes) combinations

of knockouts and constitutive expressions for each subset. We

identified the intervention that best drove the system to the

apoptosis state and recorded this intervention in Table V. The

two node interventions drive the system to an apoptosis state

more consistently than the single node interventions, but many

of the interventions were not driving the system to the wild-

type apoptosis attractor.

Furthermore, the best performing combined intervention is

not always a combination of the best performing single inter-

ventions. For example, the intervention set {NFKB = 1, S1P =
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TABLE V. Top five FVS subsets of size 1, 2, and 3 for the T-LGL network using the propagation intersection metric. For each FVS subset,

we identified the interventions that drive the system to the apoptosis state. The success of the interventions is measured by their To Control

value, Away Control value, and by the state of the Apoptosis node averaged over 100 simulations. All one node interventions increase the basin

of the apoptosis attractor when compared to the unperturbed model, but only S1P fully drives the system to the wild-type apoptosis attractor.

The other one node interventions drive the system away from the wild-type attractors to new survival and apoptosis attractors. Combining

the intervention state for two one-node interventions that were successful is not always a successful two-node intervention. For example,

separately fixing NFKB OFF or S1P OFF fully drives the system into the apoptosis state, but the combined intervention {NFKB = 1, S1P = 0}

performs better than combining the best individual interventions as {NFKB = 0, S1P = 0} (indicated using an asterisk). After determining the

intervention states that were the most successful in activating Apoptosis for each subset, we found that the two- and three-node FVS subsets

were able to meaningfully increase the Apoptosis basin of attraction compared to the included single interventions.

Intervention Set

Best
intervention

to induce
apoptosis

To
Control

Away

Control

Size of Basin
w/ Apoptosis

OFF

Size of Basin
w/ Apoptosis

ON

Size of Basin
w/ Apoptosis

oscillating

Wild-Type N/A N/A N/A 44% 56% 0%

S1P 0 0.89 1.00 0% 100% 0%

NFKB 0 0.00 1.00 10% 90% 0%

IL2RB 0 0.00 0.96 0% 100% 0%

RAS 0 0.00 1.00 7% 93% 0%

TBET 0 0.00 1.00 37% 0% 63%

FLIP (next fully informative node) 0 0.08 0.08 44% 56% 0%

NFKB, S1P 10 1.00 1.00 0% 100% 0%

NFKB, S1P* 00 0.00 1.00 16% 84% 0%

NFKB, RAS 10 0.00 1.00 0% 100% 0%

NFKB, GRB2 00 0.00 1.00 13% 87% 0%

NFKB, IL2RB 01 0.00 1.00 0% 100% 0%

JAK, S1P 10 0.93 1.00 0% 100% 0%

NFKB, S1P + one of 101 1.00 1.00 0% 100% 0%

{IL2RB, RAS, BID, TBET, GRB2}

0} is more effective than the set {NFKB = 0, S1P = 0}. Once

NFKB = 1 and S1P = 0 are locked in, the system will almost al-

ways be driven to the wild-type apoptosis attractor. Upon fur-

ther analysis of the Boolean model, we discovered the mech-

anisms that determine which state of NFKB will be more ef-

fective. Depending on the state of NFKB, two different sub-

graphs determine the attractor [Fig. 10(a)]. Certain state con-

figurations of these subgraphs are stable motifs, meaning that

these state configurations can be maintained regardless of the

rest of the network. Stable motifs’ role in driving a Boolean

system to its attractors has been studied in detail.31,47 In the

wild-type system, NFKB naturally turns ON, so the S1P sub-

graph determines the attractor [Fig. 10(b)]. Turning S1P OFF

drives the system into the Apoptosis state. Conversely, when

NFKB is fixed OFF, the TBET subgraph determines the state

of the system [Fig. 10(c)]. Fixing TBET, IL2RB, or JAK ON

drives the system to the Apoptosis state. However, fixing S1P

OFF cannot return the system to the original wild-type apop-

tosis attractor and instead drives to new survival and apoptosis

attractors. This example illustrates why the state of the nodes

in a FVS subset with the highest ability to drive the system

towards or away from an attractor of interest does not always

correspond to the one matching the nodes states of the target

attractor. In cases with nodes whose state is the same in ev-

ery attractor, such as NFKB, either fixing the node in the state

of the attractors or in the state opposite the attractors could

be better at achieving high control values depending on the

model.

In the three node case, setting every node in the FVS sub-

set to its state in the wild-type apoptosis attractor is the most

successful intervention for reaching an attractor with Apopto-

sis ON. The top ranking FVS subsets almost all achieve a To

Control value of 1 and all achieve an Away Control value of

1, and every intervention contains the combination {NFKB =

1, S1P = 0}. Thus, when any node in the subset is distinct

between attractors, such as S1P, the ambiguity in choosing the

states for other nodes in the subset that are not distinct be-

tween attractors, such as NFKB, is no longer an issue.

IV. DISCUSSION

We identified seven topological metrics that had the poten-

tial to sort FVS subsets by their ability to drive the dynamic

trajectory of a biological network. Verifying the effectiveness

of each intervention in multiple Boolean models of biological

networks, we determined the predictive power of each topo-

logical metric. We found that the centrality measures per-

formed adequately. This moderate performance may be be-

cause centrality measures only glean local or path-based in-

formation from the network and ignore the cycles, which are

crucial for understanding the multistability in the network. To

our surprise, we found that the cycle-based metrics performed

poorly. This indicates that only using the cycle structure of

the network does not successfully differentiate between FVS

subsets. This poor predictive power may be because the FVS
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FIG. 10. Illustration of how NFKB, S1P and TBET affect the attrac-

tor of the T-LGL network. (a) The subgraphs of the network that

determine which state the system will be driven to. Depending on

the state of NFKB, the S1P subgraph or the TBET subgraph plays a

key role in determining the attractor. (b) When NFKB is OFF, only

the TBET subgraph determines if the network will enter the Survival

or Apoptosis states. Fixing the S1P subgraph to either state does not

determine if the system will enter either attractor. (c) Conversely,

when NFKB is ON, which is its wild-type state in all the attractors,

the S1P subgraph determines which state the network enters, and the

TBET subgraph cannot determine the final state.

already implements knowledge of the network’s cycle struc-

ture, and reusing the cycle structure in the cycle-based metrics

results in diminishing returns. We demonstrated that the three

propagation metrics, which utilize both path information and

cycle information, are the best at ranking FVS subsets based

on their ability to control the network.

We further demonstrated that taking an intersection of the

top ranking subsets of these three propagation metrics is even

more successful. Using these intersections, we focused on

the high precision and low recall regime because we expect

FVS subsets with high intersection metric values to be suffi-

cient but not necessary for having a high control value. While

an intersection of all seven metrics captures more structural

properties of the network than the propagation metrics, the

all metric intersection metric is often too strict because it in-

cludes topological metrics with little predictive ability. Based

on the analysis of the studied Boolean models, we find that

the propagation intersection metric is less stringent, more pre-

cise, and identifies more intervention FVS subsets than the all

metric intersection metric in the high precision and low recall

regime.

To explore how well the propagation intersection metric

identifies FVS subsets with high control value, we simulate

the top ranking FVS subsets identified by the propagation in-

tersection metric. We found that the top ranking FVS subsets

have high control values for two arrays of Boolean networks:

the array of networks we used to study our topological and

intersection metrics and a second array of networks. We also

verified that these identified FVS subsets perform better than

randomly chosen node subsets on the same two arrays of net-

works. Our in-depth analysis of the interventions predicted

for two specific models led to general insights. Looking at the

T-LGL network, we highlight an ambiguity when trying to

identify the intervention state with the highest control value

for nodes that have the same state in every attractor. We find

that this ambiguity is eliminated when a node whose state is

distinct between attractors is added to the intervention. Look-

ing at the 3rd variant of the FA/BRCA network, we confirm

that if a FVS subset performs well, then supersets of this sub-

set tend to achieve control values that are equal or greater than

the original FVS subset. Using this analysis, we support our

hypothesis that the top ranking FVS subsets identified by the

propagation intersection metric are successful at driving net-

works to and away from their attractors.

In summary, our approach successfully identifies few-node

combinatorial interventions that can drive a network into a de-

sired attractor and away from undesired attractors. For many

of the networks in our study we were able to identify two

or three-node interventions that controlled the network. The

largest benefit of this approach is that it is based solely on

the topology of the system, so it can be used for systems

whose dynamics are poorly characterized or to identify inter-

ventions that are robust to the dynamic details of the system.

Our method has a wide breadth of applications among biolog-

ical as well as non-biological networks. Being able to iden-

tify crucial, attractor-driving nodes in dynamical systems has

practical implications such as identifying targets of restora-

tive or preventative interventions; however, it is important to

note that this approach only identifies which variables would

need to be controlled and assumes we can override the state

of these variables. Overall, our study contributes to the body

of work documenting how certain dynamical behaviors of a

network model, and the methods to elicit them, can be fully

determined given only topological knowledge of the network.
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SUPPLEMENTARY MATERIAL

See supplementary material for expanded data sets and de-

scriptions of the analyzed networks. Table S1 provides the

expanded AUPRC ranks from Table II including the average

rank of the AUPRC values for every intersection metric and

topological metric. Tables S2 and S3 provide the data used

for the analysis in III B. Table S4 includes the key properties

of the two arrays of networks we analyzed. Tables S5 and

S6 are excel files include the full data for the all metric inter-

section metric and propagation intersection metric on the first

array of networks (Table S5) and the second array of networks

(Table S6). Text I includes an analysis of the third variant of

the FA/BRCA network, which also includes Table S7.
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Appendix A: Methods

First, we introduce key notations. The number of nodes in

the network is denoted N, and the number of attractors is de-

noted M. Individual attractors are denoted Ai, where i goes

from 1 to M. Individual nodes are denoted n in the network.

The state of node n in attractor i is represented as sni. A FVS

subset of size L is denoted S ⊆ FV S = {n1,n2, . . .nL}. An in-

tervetion of a FVS subset is denoted P= {p1(n1), . . . , pL(nL)}.

Here p j(n j) denotes an individual intervention on node n j

(e.g, P = {p1(S1P), p2(NFKB)}= {0,1} means S1P is being

driven to its OFF state and NFKB is driven to it’s ON state).

1. Boolean modeling

A Boolean model is a discrete dynamic model that charac-

terizes each node of a network with a state variable that can

take one of two values. These values are 0 and 1, interpreted

as OFF (inactive) and ON (active), respectively. Each node

is characterized with an update function usually expressed by

logical operations. This update function takes as input the

state values of other nodes in the network, and its output deter-

mines the node’s state at the next time step. We use a stochas-

tic asynchronous update scheme in which at every time step a

randomly selected node’s state is updated by evaluating its up-

date function. An asynchronous update scheme updates nodes

individually and in a stochastic manner, as opposed to a syn-

chronous update.

2. Attractors

Attractors are sections of the state space that the system

can enter but cannot exit. They can be either simple attractors

(e.g., fixed points) or complex attractors (e.g., stable oscilla-

tions). Along with each attractor, it is valuable to identify the

attractor’s basin of attraction – the region of state space from

which every initial state will lead to that specific attractor.

3. Identification of FVS subsets using topological metrics

Given that minimal and near-minimal FVS are non-

unique,18,19,41 we identify multiple near-minimal FVS, obtain-

ing a superset of every node that could be in any of the near-

minimal FVS. When finding multi-node subsets, we only an-

alyze subsets that are part of the same near-minimal FVS. In

other words, we ignore subsets that contain nodes that appear

in separate near-minimal FVSs.

In the following we describe each topological metric. Of

note, the computational complexity of the propagation met-

rics is higher than that of the centrality metrics, but their slight

computational disadvantage in our models is much less than

the informational advantage we observe when using the prop-

agation metrics.
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a. Sum of out-degrees

The sum of the out-degrees is a local measure that measures

the number of nodes the subset is directly connected to.

OutDegree(S) =
L

∑
i=1

OutDegree(ni) (A1)

b. Distance

The distance from node ni to node n j (li j) is a measure of

how close these nodes are to each other, but to account for un-

reachable nodes the inverse distance 1/(1+ li j) is used. The

average of these inverse distances from a node to every other

node in the network defines the distance metric. When work-

ing with a subset of more than one node (L > 1), the distance

li j used in the equation is the distance to the closest node in

the subset, so it is defined as:

AverageInverseDistance(S) =
1

N

N

∑
i=1

min
n j∈S

1

1+ li j

(A2)

Edge sign is not incorporated into the distance metric, thus it

cannot distinguish between positive and negative paths.

c. PRINCE propagation

The PRINCE Propagation metric reflects how much infor-

mation from a node propagates through the system. It is for-

mulated by applying a constant perturbation on the specified

node subset and then allowing the perturbation’s information

to be distributed to the node’s neighbors according to a dis-

crete time dynamic process. This initial perturbation vector
−→
Y is a discrete value vector of size N, where the value corre-

sponding to each node is either 1 (fixing the node ON), 0 (no

effect on the node), or -1 (fixing the node OFF).

The value propagated through an edge depends on the

edge’s sign, i.e., a negative edge propagates a negative value.

This dynamic process attributes every node a value between -1

and 1. The value is the node’s information score, which repre-

sents how much information from the perturbation is received.

An absolute value of 1 means we have full information about

the node, while a value of 0 means that we do not know any-

thing about the given node.

The information scores of every node in the system are

based on a normalization scheme and a propagation dropoff

value α . The normalization scheme mimics mass flow. The

out-going edges split the information evenly between every

successor. The amount of intake is also distributed evenly to

every predecessor. The propagation dropoff value causes the

information from an input node to decrease the farther it trav-

els. The propagation is calculated based on the algorithm:

π(t + 1) = αW′T π(t)+ (1−α)
−→
Y (A3)

where π(t) is the propagation vector at time t, W′ =

D
−1/2

1 WD
−1/2

2 is the normalized adjacency matrix, in which

D1 is a diagonal matrix where element D1(i, i) is the out-

degree of node i, D2 is a diagonal matrix where element

D2(i, i) is the in-degree of node i, and W is the signed adja-

cency matrix where element Wi j is 1 if there is a positive edge

from node i to node j, -1 if the edge is negative, and 0 if there

is no edge between nodes i and j. The propagation dropoff

value is denoted α , which we set to α = 0.9 for our calcula-

tions following the value used by Santolini et al.35

The long term behavior of the system can be characterized

by its steady state π∗, which is such that π∗ = αW′T π∗+(1−

α)
−→
Y . To calculate π∗, we follow35 which shows π∗ = (1−

α)
−→
Y (I−αW

′T )−1. To measure how much information we

have on every node, the absolute value of π∗ is taken. The

PRINCE Propagation value for a specific subset is the average

of these absolute values of the information scores taken over

every node in the network (π∗).
Because the absolute values of the information scores are

taken, an intervention of 1 and -1 return the same value in

a one-node intervention, so only the inputs of 1 are tested.

When considering a multi-node perturbation, some further

modifications need to be used. Instead of a constant input

of 1 to every node in the subset, all combinations of inputs of

1 and -1 are taken, and the maximum of these results is used

as the PRINCE value for this subset.

d. Modified PRINCE propagation

We propose a variant of the PRINCE Propagation algorithm

that only normalizes the propagation by the in-degree of each

node. This better treats the initial perturbation as information

instead of mass, so it can fully spread to all successors instead

of being split among them. To keep the system convergent,

the adjacency matrix is changed to W′ = WD−1
2 . Other than

adjusting the adjacency matrix, the values for this metric are

obtained the same way as in the original PRINCE propagation.

It still accounts for edge signs by allowing for the propagation

value to be negative, and it also still treats multi-node inter-

ventions by considering every combination of input values.

e. CheiRank

CheiRank is an extension of PageRank, which consists of a

modified random walk over the nodes of a network. CheiRank

follows the same algorithm as PageRank but traverses the net-

work’s edges in reverse. The random walk is augmented with

a probability α , where there is a probability of 1−α that the

walker jumps to a random node instead of following an edge.

The probability vector π(t) of the random walk follows:

π(t + 1) = αAT π(t)+ (1−α)
E

Nn

π(t) (A4)

where A is the adjacency matrix of the network with each row

normalized so it sums to 1, so there is an equal probability to

travel to any neighbor nodes, and E is an all 1 matrix.

In the long-time limit, the system will reach a unique steady

state π∗, that satisfies π∗ = [αAT +(1−α)E/Nn]π
∗, where
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each value in π∗ is the CheiRank of that node and it is the

probability that the random walker is found in this specific

node. Because CheiRank denotes a probability, when the sub-

set has multiple nodes in it, the probabilities are combined

multiplicatively in the following way: CheiRank(n0, . . .nL) =
1− (1−CheiRank(n0))∗ · · · ∗ (1−CheiRank(nL))

f. Cycle-based metrics

The cycle-based metrics estimate the multistability reintro-

duced into the system after the FVS is removed and a subset

of it is reintroduced. We used two topological measures as

an estimate of multi-stability: the number of positive cycles

(cycles with an even number of negative edges), and the size

of the strongly connected component. Both measures return 0

for subsets containing nodes that are not in the FVS.

a. Number of Positive Cycles The number of positive cy-

cles of a FVS subset S is defined as the number of positive

cycles left in the network after the FVS has been removed and

the subset has been reintroduced:

#Cycles(S) = #PositiveCycles(G\FVS+ S) (A5)

b. Size of the Strongly Connected Component The SCC

of a FVS subset S is defined as the size of the largest SCC

after the FVS has been removed and the subset has been rein-

troduced:

SCCSize(S) = Size o f Largest SCC(G\FVS+ S) (A6)

Unlike the cycles, the signs of the edges aren’t incorporated

in this metric.

4. Calculating the basin of attraction of the wild-type
attractors with or without interventions

To determine the attractors of the wild-type (unperturbed)

system, we use the trapspace method in the BioLQM toolkit.48

Technically, the objects identified by this method are the min-

imal trap spaces (subsets of the state space specified by fix-

ing the value of a set of nodes which if entered cannot be

exited), not the attractors, but there is often a one-to-one cor-

respondence between them, and trap spaces can be identified

efficiently.49 The attractors include fixed points (steady states)

in which the state of all the nodes is fixed and complex attrac-

tors, in which the system keeps revisiting a finite set of states.

We calculate each attractor’s basin of attraction by performing

1000 simulations starting from random initial conditions and

using a general asynchronous update. The simulation contin-

ues until an attractor is reached, and we count how many of

the simulations reach each of the system’s attractors to deter-

mine the basins of attraction.

For each intervention, we perform 100 simulations from

random initial conditions using a general asynchronous up-

date. After each simulated intervention, we measure how

close the final state of the system, Sim(
−→
P ), is to the attractors

of the wild-type system, Ai. We measure the closeness to each

attractor through a normalized Hamming distance. The Ham-

ming distance h(S1,S2) measures the fraction of nodes with

different values between two different states S1 and S2. The

normalized Hamming distance between the final state and ev-

ery wild-type attractor is used to generate an attractor control

value C for each attractor defined as:

C(h(Ai,Sim(P));F) =
{

1− h(Ai,Sim(P))
F

if h(Ai,Sim(P))≤ F

0 if h(Ai,Sim(P)> F
(A7)

The attractor control value is a linearly decreasing func-

tion with a cutoff F , which indicates when the state is too

far away from our attractor. The F parameter is defined to

be halfway between the two closest attractors in the network,

F = mini, j h(Ai,A j)/2. This ensures that each final state in a

simulation is attributed to one attractor and the other attractors

get a value of 0 for that specific simulation.

For each simulation, we get an attractor control value for

every attractor, but only one is nonzero. These values are av-

eraged over the 100 simulations with different, random ini-

tial conditions. The average for each attractor is considered

the basin of attraction for that attractor in the perturbed sys-

tem, B(Ai|P) = C(h(Ai,Sim(P));F). The intervention basin

vector is defined as
−−→
B(P) = (B(A1|P),B(A2|P), . . . ,B(AM|P)).

As a point of comparison, we consolidated the wild-type

basin values into the wild-type basin vector,
−−−→
W TB =

(WT B(A1),W T B(A2), . . . ,W TB(AM)), where W TB(Ai) =

B(Ai|0) = C(h(Ai,Sim(0));F) is the wild-type basin of each

attractor, which is averaged over 1000 simulations.

5. Calculation of To Control and Away Control

To study the effects of an individual intervention, we sep-

arated the wild-type system’s attractors into two categories:

Target attractors and Non-Target attractors. These two cate-

gories are uniquely determined based on each specific inter-

vention. A Target attractor is an attractor wherein the interven-

tion state of each node is the same as the node’s state in the

attractor, and a Non-Target attractor is an attractor wherein the

intervention state of any node is not in the attractor’s state.

We describe this using indicator functions. The indicator

function I(sn j i, p j(n j)) compares the state of node n j in a spe-

cific attractor, sn j i, to the state the node is fixed into through

the intervention, p j(n j). If they are the same, the function re-

turns 1 and if they are different the function returns 0, so it is

defined as:

I(sn j i, p j(n j)) =

{
1 if sn j i = p j(n j)
0 if sn j i 6= p j(n j)

(A8)

To extend this to multiple nodes, the indicator functions for

every node in the intervention are multiplied together. These

products are merged into a single identification vector of size

M,
−−→
I(P) = {∏

L
j=1[I(sn j1, p j(n j))], . . . ,∏

L
j=1[I(sn jM, p j(n j))]}.
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The attractors for which the corresponding elements of the

identification vector are 1 are the Target attractors and the at-

tractors for which the elements are 0 are the Non-Target attrac-

tors.

After labeling each attractor as a Target or Non-Target, we

filter out interventions that are considered uninformative. In-

terventions where every attractor is a Target attractor are un-

informative because we cannot attribute changes in an attrac-

tor’s basin to the intervention. Similarly, the To Control metric

for an intervention is uninformative if every attractor is consid-

ered a Non-Target. Because we are not driving to any attractor,

we cannot measure how often we reach a Target attractor, but

we can still measure if the intervention drives the system away

from the attractors of the system, so we denote these interven-

tions as partially informative. We denote an intervention as

fully informative if the intervention has attractors that are Tar-

gets and attractors that are Non-Targets.

For every (fully or partially) informative intervention, we

sum the wild-type basins of every Target attractor into one

wild-type Target basin WT TB(P) =
−−→
I(P)•

−−−→
WTB and sum the

basins for every Non-target attractor into one wild-type Non-

Target basin WT NT B(P) = 1 −WT T B(P) = (
−→
1 −

−−→
I(P)) •

−−−→
WT B. Similarly, we combine the intervention attractor’s

basins into an intervention Target basin TB(P) =
−−→
I(P) •

−−→
B(P)

and an intervention Non-Target basin NT B(P) = 1−T B(P) =

(
−→
1 −

−−→
I(P))•

−−→
B(P).

We then find the percent difference between these basins to

understand how the intervention affects the system. The differ-

ence between the intervention Target basin and wild-type Tar-

get basin is the intervention-specific To Control, and the dif-

ference between the intervention Non-Target basin and wild-

type Non-Target basin is the intervention-specific Away Con-

trol. Correspondingly, the To Control and Away Control val-

ues range between -1 and 1.

TC(P) =
{

T B(P)−WT TB(P)
1−W T TB(P) if T B(P)≥W TT B(P))

T B(P)−WT TB(P)
WT T B(P)

if T B(P)<W TT B(P)
(A9)

AC(P) =
{

WT NT B(P)−NTB(P)
1−WT NT B(P) if NT B(P)≥W TNT B(P))

WT NT B(P)−NTB(P)
W T NT B(P) if NT B(P)<W TNT B(P)

(A10)

Once all 2L possible interventions are tested or filtered out

for a subset, we aggregate the values into a singular aggregate

To Control and Away Control values for the entire subset by

taking the maximum of all available values. Taking a maxi-

mum of all the 2L interventions ensures that the aggregate To

Control and Away Control values of the entire FVS is 1, indi-

cating full control over the network.

TC = max
P

TC(P) (A11)

AC = max
P

AC(P) (A12)

6. Logistic regression and AUPRC

Logistic regressions are a type of binary classifiers. To con-

vert our continuous FVS subset control values to a binarized

value of a successful versus unsuccessful FVS subset we im-

pose a threshold. We used a threshold of 0.9 to binarize the

control values and found there were no major changes in our

results using thresholds in the range 0.5-0.95. The logistic

regression fits a logistic function to the binarized data and re-

sults in a curve in which the x-values of the fit are the values

of the topological metrics and the y-values indicate the proba-

bility of that topological value resulting in successful control

(i.e., control above 0.9). Therefore, the y-value for the logistic

function is between 0 and 1, and in an ideal situation, it starts

at 0 for low x-values, increases to 1 as the x-value increases,

reflecting how we expect topological values to be positively

correlated with control.

This regression can be modified by applying weights to

the negative and positive data points. By default, we cre-

ate an unbalanced regression which weights every data point

equally. We also test a balanced regression where data points

are weighted by the number of points in their data set, i.e.,

positive data points are weighted by the relative number of

positive data points and negative data points are weighted by

the relative number of negative data points. This means the

positive data set and negative data set are weighted to correct

for differences in their relative sizes.

We use the precision-recall curve and the area under the

precision-recall curve (AUPRC) to evaluate the strength of the

fit. We choose the AUPRC over the more common receiver

operating characteristic (ROC) curve because there is often a

large imbalance in the binarized control values, which limits

the usefulness of the ROC curve for our analysis.50 To gener-

ate a precision-recall curve, the entire range of a topological

value is scanned. As each value is scanned over, the value

of the logistic regression function is used to sort the data into

four categories: true positives T P, false positives FP, false

negatives FN, and true negatives TN. Then based on these

values, a precision T P/(TP+FP) and recall TP/(TP+FN)
value can be calculated. As the precision and recall are cal-

culated, they are plotted on a curve, so when the entire x-axis

is scanned, the precision-recall curve is formed. The AUPRC

is calculated from the precision-recall curve and consolidates

the curve into a single value that can indicate how well the

topological metric sorts the data.

The AUPRC is a positive value less than or equal to 1,

where 1 indicates that the topological metric perfectly sorts

between positive and negative binarized control values. When

the AUPRC value is equal to the fraction of positive data

points, it indicates that the topological metric does not sort

the FVS subsets better than random. As performing better

than random is not sufficient to confirm that the topological

metric can predict which FVS subsets are successful, we in-
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troduced an AURPC predictive threshold which is halfway be-

tween the random expectation and the maximum score of 1

[1− (1−PositiveFraction)/2]

7. Intersections

For each topological metric, the FVS subsets are ordered

in increasing order of the value of the metric. Then, this or-

dered list is converted into percentile values f (S,m) for each

FVS subset S. For a set of topological metrics of interest, the

sets of FVS subsets above a fixed threshold percentile pc are

intersected. We refer to metrics that intersect the top ranking

FVS subsets of a set of topological metrics as an intersection

metric, where each intersection metric is denoted by their set

of topological metrics.

IM(pc|TopologicalMetrics) =
⋃

m∈TopologicalMetrics

f (S,m)≥ pc (A13)

We investigated three different intersection metrics: an in-

tersection of all seven metrics, an intersection of only the prop-

agation metrics, and an intersection of the CheiRank and Mod-

ified PRINCE metrics.

In an intersection metric, we assign to each FVS sub-

set a percentile cutoff value IP(S,Metrics) that is equal

to the minimal percentile cutoff value of the FVS subset

among the metrics being intersected. This is equivalent to

choosing the maximal pc value for which S is found in

IM(pc|TopologicalMetrics) given the chosen metrics.

IP(S,TopologicalMetrics)

= min
m∈TopologicalMetrics

f (S,m)

= max
pc

[S ∈ IM(pc|TopologicalMetrics)]

(A14)

8. Computational implementation

The methods were implemented in python using var-

ious libraries and modules. The code is available at

https://github.com/EliNewby/FVSSubsets. This code

consists of two python files: FindBestSubsets.py and

RunSimulations.py. FindBestSubsets.pyfinds the topo-

logical metric values and intersection metric values for the

FVS subsets of a network topology and uses these values to

rank the FVS subsets. RunSimulations takes a list of node

sets and a Boolean model for a network and calculates the To

Control and Away Control values for each node set. We also

include a Jupyter notebook that includes an example showing

the output of these two functions on the T-LGL network and

that also reproduces the plots included in the figures of this

manuscript.

To identify the near-minimal FVS and its subsets,

a python code developed by Gang Yang was used,19

which utilizes the simulated annealing algorithm pre-

sented by Galinier et al.41 This code is available at

https://github.com/jgtz/FVS_python3. NetworkX

was used to analyze the structure of the networks and to cal-

culate the values of the topological metrics. NetworkX im-

plemented some of the topological metrics we used. Custom

Python code and NetworkX functions were used for the ones

that were not implemented.

The simulations used to calculate control values were

implemented using the bioLQM toolkit developed by the

CoLoMoTo Consortium.48 Using bioLQM, we implement our

Boolean models of the networks, find their attractors, and sim-

ulate the system’s trajectories using the random asynchronous

update mode.

The logistic regressions were created and analyzed using

the scikit-learn module. From the linear_model submodule,

the LogisticRegression function is used to generate a fit of

the data. This function is implemented using the liblinear

solver and a regularization strength of 100. The scikit-learn

module was also used to obtain the precision-recall curve

(metrics.precision_recall_curve) and to calculate the

AUPRC (metrics.average_precision_score).

Bootstrapping was used to approximate the precision of the

set of all node subsets from random samples of these subsets.

Bootstrapping is a resampling method that generates a distri-

bution from a sample set of subsets to make inferences about

the value of an observable (precision in our case) in the set of

all node subsets. The sample sets were randomly chosen sam-

ples of subsets. We tested two separate sets: the set of every

node subset and the set of FVS subsets. For 1 node subsets,

the random samples chosen are of size 25 or include all 1 node

subsets if there are less than 25 total node subsets. For 2 and

3 node subsets, 100 subsets are chosen for the random sample

of all node subsets, and 50 subsets are chosen for the random

sample of FVS subsets. After picking a random sample, every

subset in the sample was simulated to determine its To Con-

trol and Away Control value. For each random sample, we

resample with replacement a resampled set of the same size.

We resample 1000 times and calculate the precision of each

resampled set. From this distribution of these 1000 precision

values, we can approximate the precision value of the entire

set of node subsets or FVS subsets depending on the original

set that the random sample is generated from.
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