
IEEE TC SPECIAL ISSUE ON HIGHLIGHTS OF COMPUTER ARCHITECTURE 1

Practical Temporal Prefetching With
Compressed On-Chip Metadata

Hao Wu, Krishnendra Nathella, Matthew Pabst, Dam Sunwoo, Akanksha Jain, and Calvin Lin

Abstract—Temporal prefetchers are powerful because they can prefetch irregular sequences of memory accesses, but temporal

prefetchers are commercially infeasible because they store large amounts of metadata in DRAM. This paper presents Triage, the first

temporal data prefetcher that does not require off-chip metadata. Triage builds on two insights: (1) Metadata are not equally useful, so

the less useful metadata need not be saved, and (2) for irregular workloads, it is more profitable to use portions of the LLC to store

metadata than data. We also introduce novel schemes to identify useful metadata, to compress metadata, and to determine the

fraction of the LLC to dedicate for metadata.

Using an industrial-strength simulator running irregular workloads on a single-core system, we show that Triage improves performance

by 41.1% compared to a baseline with no prefetching, whereas BO, a state-of-the-art prefetchers that uses only on-chip metadata,

sees only 10.9% improvement. Compared with MISB, a temporal prefetcher that uses off-chip metadata, Triage provides a design

alternative that reduces memory traffic by an order of magnitude (260.8% extra traffic for MISB vs. 56.9% Triage), while reducing

coverage by 20%.

Index Terms—Memory Systems, Prefetching, Temporal Prefetching

✦

1 INTRODUCTION

Data prefetchers are important mechanisms for hid-
ing the long latency of DRAM accesses. Most commer-
cial prefetchers perform some form of strided or spatial
prefetching, because such prefetchers provide significant
benefits while incurring low implementation costs. By con-
trast, temporal prefetchers are alluring because they can
learn arbitrary sequences of repeated memory references,
so they are effective for workloads with irregular memory
accesses, including those that arise from pointer-based data
structures. But because these arbitrary sequences have to
be memorized, temporal prefetchers require megabytes of
metadata that must be stored in DRAM. Of course, going to
DRAM to retrieve metadata incurs high latency, consumes
DRAM bandwidth, and increases energy consumption, so
the primary challenge has been to effectively manage this
off-chip metadata.

Early solutions amortized the cost of off-chip metadata
accesses across multiple prefetches [1], [2]. In 2013, the
Irregular Stream Buffer (ISB) represented the metadata as an
address mapping, which allowed portions of the metadata
to be cached on chip, with the contents of this metadata
cache synchronized with the contents of the TLB. More
recently, the Managed ISB (MISB) extended the ISB by intro-
ducing a more efficient fine-grained metadata management
scheme that includes a metadata prefetcher.

Unfortunately, all of these solutions still have important
limitations: (1) Even MISB has metadata traffic of 260.8%, so
its performance suffers in bandwidth-constrained environ-
ments, and it incurs high energy costs in any environment;
(2) they add hardware complexity because they require
changes to the memory interface and communication with
the operating system.

In this paper, we present Triage,1 the first temporal
prefetcher that requires no off-chip metadata. Our solution
builds on three observations.

1) For most workloads, the vast majority of prefetches use
just a small fraction of the metadata, so only the most
frequently used metadata needs to be stored.

2) For many workloads, the last-level cache (LLC) typi-
cally has lower utility than an effective prefetcher, so for
irregular workloads, portions of the LLC can be more
profitably used to store temporal prefetcher metadata
instead of storing data. For example, for the irregular
subset of SPEC2006, reducing the LLC by 1 MB reduces
performance by 7.4%, but a state-of-the-art irregular
prefetcher with unlimited resources can improve per-
formance by 34.0%. Therefore, if we can distinguish the
important metadata from the unimportant metadata,
we can profitably use portions of the LLC to store
important prefetcher metadata.

3) For regular accesses, temporal prefetchers store meta-
data highly inefficiently, so further compression is pos-
sible through the use of a novel metadata representa-
tion. For example, a temporal prefetcher would repre-
sent a regular sequence of n addresses as n pairs of
correlated addresses, which could be represented more
compactly as a 3-tuple, (address, stride, length).

Thus, our Triage prefetcher re-purposes a portion of the
LLC as a metadata store, and any metadata that cannot be
kept in the metadata store is simply discarded. To identify
important metadata, Triage uses the Hawkeye replacement
policy [4], which provides significant performance benefits
for small metadata stores, as it identifies frequently accessed
metadata over a long history of time. Of course, the ideal

1. This paper is an extension of our MICRO 2019 paper [3] titled
“Temporal prefetching without the off-chip metadata”

IEEE TC SPECIAL ISSUE ON HIGHLIGHTS OF COMPUTER ARCHITECTURE 2

size of this metadata store varies by workload, so we also
introduce a dynamic cache partitioning scheme that deter-
mines the amount of the LLC cache that should be provi-
sioned for metadata entries. Finally, we introduce a new
metadata representation that compactly represents strided
access patterns to significantly compress the metadata for
regular workloads.

By forsaking off-chip metadata and by intelligently
managing on-chip metadata, Triage offers different trade-
offs than state-of-the-art temporal prefetchers. For example,
Triage reduces off-chip traffic overhead to 59.3% (compared
with 260.8% for MISB), it reduces energy consumption for
metadata accesses by 4-22×, and it offers a much simpler
hardware design. In Section 4, we show that in bandwidth-
rich environments these benefits come at the cost of lower
performance (due to limited metadata), but in bandwidth-
constrained environments, they translate to significantly
better performance.

This paper makes the following contributions:2

• We introduce Triage, the first PC-localized3 temporal
data prefetcher that does not use off-chip metadata.
Triage reuses a portion of the LLC for storing prefetcher
metadata, and it includes an adaptive policy for dy-
namically provisioning the size of the metadata store at
a fine granularity.

• We explore metadata organizations that are best suited
for storing metadata in the LLC, and we find that in
this new setting, tables [5] are the most compact data
structure for tracking correlated addresses. The use of
tables represents a return to simplicity for temporal
prefetchers as recent solutions propose increasingly
complex metadata representations to manage off-chip
metadata. We also introduce a compressed representa-
tion for regular accesses to reduce the metadata tables
footprint.

• We evaluate Triage using a highly accurate proprietary
simulator for single-core simulations and the Champ-
Sim simulator for multi-core simulations.
– On single-core systems running SPEC 2006 work-

loads, Triage significantly outperforms state-of-the-
art prefetchers that use only on-chip metadata (27.3%
speedup for Triage vs. 4.3% for the Best Offset
Prefetcher, 2.2% for SMS).

– Triage’s integrated stream representation results in
a 2.7% performance improvement over Triage at a
prefetch degree of 1 and 4.4% performance improve-
ment at a prefetch degree of 16 (41.1% speedup with
the integrated representation vs. 36.7% without).

– On single-core systems, Triage achieves 80% of the
performance of a state-of-the-art temporal prefetcher
that uses off-chip metadata (27.3% for Triage vs.
34.0% for MISB [6]). On a 16-core system running
multi-programmed irregular SPEC workloads, where

2. This paper improves upon the original Triage design [3] in two
ways. First, it employs a new dynamic partitioning scheme that is
simpler and that allows the LLC to be partitioned between data and at
metadata at a finer granularity. Second, it reduces the metadata table’s
footprint by employing a novel compressed representation for regular
accesses.

3. PC localization is a method of creating more predictable reference
streams by separating streams according to the address of the instruc-
tion that issued the load.

bandwidth is more precious, Triage’s speedup is
6.9%, compared to 4.9% for MISB.

– Triage also works well as part of a hybrid prefetcher
that combines a regular prefetcher with a tempo-
ral prefetchers (27.8% for Triage+BO vs. 4.3% for
BO alone on single-core systems, and 10.9% for
BO+Triage vs. 4.7% for BO alone on 4-core systems).

– On a 4-core system running CloudSuite server bench-
marks, BO+Triage improves performance by 9.7%,
compared to 3.8% for BO alone.

• We outline and analyze the design space for temporal
prefetchers along three dimensions, namely, on-chip
storage, off-chip traffic, and overall performance, and
we show that Triage provides an attractive design point
with previously unexplored tradeoffs.

This paper is organized as follows. Section 2 places our
work in the context of prior work. Section 3 then describes
our solution, and Section 4 then presents our empirical
evaluation. Finally, we conclude in Section 5.

2 RELATED WORK

We now discuss related work in data prefetching. We start
by contrasting our work with other temporal prefetchers
before briefly discussing other classes of prefetchers.

2.1 Temporal Prefetching

Temporal prefetchers are quite general because they learn
address correlations, that is, correlations between consecu-
tive memory accesses. Chilimbi et al., report that temporal
streams, which are sequences of correlated address pairs, are
found extensively in both scientific and commercial work-
loads [7], [8]. Unfortunately, considerable state is required
to memorize correlations among addresses.

One class of irregular prefetchers reduce this metadata
requirement by forgoing address correlation to learn weaker
forms of correlation, such as delta correlation [9], tag correla-
tion [10], or context-address pair correlation [11]. However,
these simplifications limit the scope of memory access pat-
terns that can be learned.

A second class of prefetchers exploit address correlation
by storing metadata in off-chip memory [1], [6], [12]. These
prefetchers use novel ways to reduce the overhead of off-
chip memory accesses, but the use of off-chip metadata has
limited the commercial viability of such prefetchers.

Triage is the first data prefetcher that reaps the benefit of
PC-localized address correlation—the most powerful form
of temporal prefetching [12]—without using any off-chip
metadata. While elements of Triage borrow from temporal
prefetchers that use off-chip metadata, Triage is designed
with a completely different design goal, which is to priori-
tize the efficiency of the on-chip metadata store. Therefore,
Triage rethinks many design decisions for the on-chip set-
ting, removing complexity where possible and adding new
design components where necessary.

We now provide more details about how Triage’s design
differs from temporal prefetchers that use off-chip metadata.
We classify existing temporal prefetchers into three cate-
gories based on their off-chip metadata organization.

IEEE TC SPECIAL ISSUE ON HIGHLIGHTS OF COMPUTER ARCHITECTURE 3

2.1.1 Table-Based Temporal Prefetchers

Joseph and Grunwald introduced the idea of prefetch-
ing correlated addresses in 1997 with their Markov
Prefetcher [5]. The Markov Prefetcher uses a table to record
multiple possible successors for each address, along with
a probability for each successor, but unfortunately, it was
too large to be stored on-chip despite optimizations that
reduced the size of the table [10].

Therefore, early temporal prefetchers explore designs
that reduce the traffic and latency costs of accessing an off-
chip Markov table [13], [14]. For example, Solihin et al.,
redundantly store a chain of successors in each off-chip
table entry, which increases table size but amortizes the
cost of fetching metadata for temporal streams by grouping
them in a single off-chip access. Triage also uses a table-
based organization, but there are two main differences.
First, Triage uses PC-localization, which improves coverage
and accuracy and eliminates the need to track multiple
successors in each table entry, reducing table sizes by 2×
to 4×. Second, Triage uses a customized replacement policy
that identifies the most useful table entries, removing the
need for off-chip metadata.

2.1.2 GHB-Based Temporal Prefetchers

Wenisch et al. find that tables are not ideal for organiz-
ing off-chip metadata because temporal streams can have
highly variable lengths [1], [7]. Their STMS prefetcher [1],
[2] instead uses a global history buffer to record a history
of past memory accesses in an off-chip circular buffer. The
GHB reduces the latency of off-chip metadata accesses by
amortizing the cost of off-chip metadata lookup over long
temporal streams, and it reduces metadata traffic by proba-
bilistically updating the off-chip structures. Somogyi et al.,
build on STMS to combine spatial and temporal streams
with their STeMs prefetcher [15].

While the GHB improves significantly over table-based
solutions, it suffers from three drawbacks that are addressed
by Triage: (1) The GHB makes it infeasible to combine
address correlation with PC-localization, which is a tech-
nique to improve predictability by correlating addresses
that belong to the same PC, (2) its metadata cannot be
cached because it is organized as a FIFO buffer, and (3) it
incurs metadata traffic overhead of 200-400%. Furthermore,
Triage’s integrated stream representation differs from STeMs
as it is more flexible—spatial streams in Triage’s integrated
representation can be of any length, whereas STeMs aligns
them at page boundaries—and it is simpler because it
does not need to maintain timing metadata to orchestrate
prefetches from off-chip metadata.

2.1.3 Irregular Stream Buffer

The Irregular Stream Buffer (ISB) combines address cor-
relation with PC-localization by proposing a new off-chip
metadata organization [6], [12]. In particular, ISB maps
PC-localized correlated address pairs to consecutive ad-
dresses in a new address space, called the structural address
space. Furthermore, ISB caches a portion of the physical-to-
structural address mappings on chip by synchronizing the
contents of the on-chip metadata cache with the TLB and by
hiding the latency of off-chip metadata accesses during TLB

misses. While ISB significantly improves coverage and accu-
racy of temporal prefetchers, it still incurs metadata traffic
overheads of 200-400%, and its metadata cache utilization
is quite poor due to the absence of spatial locality in the
metadata cache.

MISB [6] addresses these issues by divorcing ISB’s meta-
data cache from the TLB. In particular, MISB manages the
metadata cache at a fine granularity, and it hides the latency
of off-chip metadata accesses by employing highly accurate
metadata prefetching. As a result, MISB reduces the traffic
overhead of temporal prefetchers to 260.8%. Like MISB,
Triage uses fine-grained metadata caching, but there are
several differences between MISB and Triage: (1) Triage
uses a space-efficient table-based organization that is more
suited for on-chip metadata (MISB’s metadata footprint is
2× larger than Triage’s metadata footprint because it tracks
each correlation in two entries, a physical to structural
address mapping, and a structural to physical address map-
ping), (2) Triage uses a smart metadata management policy
for its on-chip metadata, and (3) Triage has no metadata
traffic overhead.

Finally, some prefetchers do store their metadata in on-
chip caches [16], [17], [18], but the metadata storage require-
ments for these prefetchers is relatively small (hundreds of
KB), so there was no question that they would be stored
somewhere on chip. By contrast, Triage shows how prefetch-
ers whose metadata are too large to fit on chip can avoid
storing off-chip metadata.

2.2 Non-Temporal Prefetching

Many prefetchers predict sequential [19], [20], [21] and
strided [22], [23], [24], [25], [26], [27], [28] accesses, and while
this class of prefetchers has enjoyed commercial success
due to their extremely compact metadata, their benefits are
limited to regular memory accesses.

Some irregular memory accesses can be prefetched by
exploiting spatial locality [17], [29], [30], [31], [32], such that
recurring spatial patterns can be prefetched across different
regions in memory. For example, the SMS prefetcher [17]
uses on-chip tables to correlate spatial footprints with the
program counter that first accessed a memory region. These
spatial locality-based prefetchers tend to be highly aggres-
sive, issuing prefetches for many lines in a region at once.
More importantly, they are limited to a very special class of
irregular accesses that does not include access to pointer-
based data structures, such as trees and graphs.

Other prefetchers directly target pointers by either using
compiler hints or hardware structures to detect pointers [33],
[34], [35], [36]. For example, Content Directed Prefetch-
ing [35] searches the content of cache lines for pointer
addresses and eagerly issues prefetches for all pointers.
Such prefetchers waste bandwidth as they prefetch many
pointers that will not be used.

3 OUR SOLUTION

Triage repurposes on-chip cache space to store prefetcher
metadata, and each metadata entry records PC-localized
correlated address pairs. To effectively utilize valuable on-
chip cache space, Triage considers the following design
questions:

IEEE TC SPECIAL ISSUE ON HIGHLIGHTS OF COMPUTER ARCHITECTURE 4

• How should metadata be represented to maximize
space efficiency?

• Which metadata entries are likely to be the most useful?
• How much of the last-level cache should be dedicated

to the metadata store?
We now explain how we address these questions.

3.1 Metadata Representation

Triage’s metadata representation has two key features. First,
unlike state-of-the-art temporal prefetchers, it uses a table to
record address pairs. Second, for spatio-temporal streams—
streams which have a mix of spatial and temporal accesses—
we employ an Integrated Stream Representation to compactly
represent the spatial components.

Figure 1 explains Triage’s table-based organization for
a purely temporal stream. In particular, the top side of
Figure 1 shows a stream of memory references that is
segregated into two PC-localized streams, and the bottom
side shows the conceptual organization of metadata where
each entry maps an address to its PC-localized neighbor.

Global

Stream
A X Y B Z C

PC
1

A B C

PC
2

X Y Z

Time

Addr Neighbor

A B

B C

X Y

Y Z

Fig. 1. Triage’s metadata organization.

While tables are a poor choice for organizing off-chip
metadata (see Section 2), their space efficiency makes them
an ideal choice for organizing on-chip metadata. In particu-
lar, compared to other metadata organizations [1], [6], [12],
our table-based organization avoids metadata redundancy
by representing each correlated address pair only once.

For spatio-temporal streams, address pairs are an ineffi-
cient way to represent the spatial components. For example,
the text at the top of Figure 2 shows a spatio-temporal
stream for which a naı̈ve temporal-only representation re-
sults in 6 table entries (one entry for each address pair).
This representation is wasteful for the spatial sub-stream
B,B +1, B +2, B +3, which can be simply represented by
tracking a stride of 1 and a stream length of 3.

To represent such spatio-temporal streams compactly,
we modify Triage to additionally track a stride and stream
length in each entry. The table at the bottom of Figure 2
shows this new integrated representation: Each table entry
tracks a PC-localized neighbor, a stride, and a stream length.
The spatial sub-stream B,B+1, B+2, B+3 is thus recorded
in the first table entry with a stride of 1 and a stream length
of 3; temporal sub-streams are marked with a stride of 0

PC-localized

Stream
A B B+1 B+2 B+3 C D

Time

Address Neighbor Stride Stream

Length

A B 1 3

B+3 C 0 1

C D 0 1

Fig. 2. Triage-ISR uses an integrated representation for spatio-temporal
streams (spatial components are marked in red and temporal compo-
nents are marked in green).

and stream length of 1. This results in a solution with just
3 table entries to represent the entire stream. We refer to
this version of Triage as Triage-ISR, where ISR stands for
Integrated Stream Representation.

Of course, Triage-ISR’s compression benefits vary with
the amount of spatial locality that the stream exhibits. For
purely spatial streams, Triage-ISR can reduce metadata re-
quirements by an order of magnitude, whereas for purely
temporal streams, Triage-ISR offers no benefits. Section 3.4
provides more details about how this integrated representa-
tion is trained and used for prediction.

3.2 Metadata Replacement

Triage’s metadata replacement policy manages the contents
of its on-chip metadata store. We build Triage’s metadata
replacement policy on three observations. First, most meta-
data reuse can be attributed to a few metadata entries (see
Figure 3). Second, even among the metadata entries that are
frequently reused, fewer still account for prefetches that are
not redundant, that is, prefetch requests that do not hit in the
cache. Finally, metadata should be managed and evicted at
a fine granularity because Triage targets irregular memory
accesses, which exhibit poor spatial locality.

0

100

200

300

400

500

600

1 10001 20001 30001 40001 50001 60001

R
eu

se
 C

o
u

n
t

Metadata Entry

Fig. 3. Metadata reuse distribution for the mcf benchmark: For an
execution with 60K metadata entries, only 15% of metadata entries are
reused more than 15 times.

To accomplish these goals, we modify Hawkeye [4], a
state-of-the-art cache replacement policy, which learns from
the optimal solution for past memory references. To emulate
the optimal policy for past memory references, Hawkeye
examines a long history of past cache accesses (8× the size

IEEE TC SPECIAL ISSUE ON HIGHLIGHTS OF COMPUTER ARCHITECTURE 5

of the cache), and it uses a highly efficient algorithm to
reproduce the optimal solution. Figure 4 shows a high-level
overview of Hawkeye, where OPTgen is used to train a
PC-based predictor; the predictor learns whether loads by
a given load instruction (PC) are likely to hit or miss with
the optimal solution. On new cache accesses, the predictor
informs the cache whether the line should be inserted with
high priority or low priority.

OPTgen
Hawkeye

Predictor
Metadata

Store

Computes the OPT

solution for the past

Remembers past OPT

decisions

Metadata

Accesses

 OPT

 hit/miss

Insertion

Priority

PC

Fig. 4. Triage’s metadata replacement is based on the Hawkeye [4]
cache replacement policy.

Because Hawkeye can capture long-term reuse, it is a
good fit for Triage, where the replacement policy must not
be overwhelmed by the many useless metadata entries. We
modify Hawkeye so that the policy is trained positively
only when the metadata yields a prefetch that misses in the
cache. We accomplish this by delaying Hawkeye’s training
when the prefetch request associated with a metadata entry
is actually issued to memory. If the prefetch request hits in
the cache, then the metadata reuse is ignored and is not seen
by any component of the Hawkeye policy.

In Section 3.5, we explain how Triage is able to manage
metadata at a finer granularity than the line size of the last-
level cache.

3.3 Adjusting the Size of the Metadata Store

To avoid interference between application data and meta-
data, we partition the last-level cache by assigning sepa-
rate ways to data and metadata. Since different applica-
tions require different metadata store sizes, our solution
dynamically determines the number of ways that should
be allocated to metadata. The partitioning is done at a way
granularity, so if the cache has 16 ways, the metadata store
can use 0, 1, 2, 3, 4, 5, 6, 7 or 8 ways.

To determine the number of ways to assign for metadata
storage we employ a Bloom Filter [37]. The Bloom Filter
records all the unique metadata entries encountered. In
particular, when we add a new entry to the metadata store,
we add its trigger address to the Bloom Filter. If the address
is not already present in the Bloom Filter—a Bloom Filter
Miss—we increment a global counter. We then calculate the
number of ways to allocate for metadata storage using the
following simple heuristic:

No. of metadata ways = ceil

(

Global Counter

Number of sets in LLC

)

For example, if there are 32K sets in LLC and the global
counter value is 100K , we assign 4 ways for metadata
storage.

Since Bloom Filters can yield false positives on a query,
this scheme can underestimate the number of unique meta-
data entries. To accommodate false positives, we randomly

increase the global counter on Bloom Filter hits with a
probablity matching the false positive rate of the bloom
filter. The false positive rate can be computed as

fp rate = (1− ekn/m)k

where k is the number of hash functions in the Bloom filter,
n is the number of unique entries and m is the number
of bits in the Bloom filter. On each hit in the Bloom filter,
we generate a random value r. If r < fp rate , we also
increment the global counter. This modification simulates
the false positives in the Bloom filter.

The bloom filter is reset periodically. We find that the re-
set period does not have a major impact on the effectiveness
of this scheme. For our evulation we reset the bloom filter
every 30M instructions.

3.4 Overall Operation

CPUL1L2

 LLC

Training
Unit

Triage
Metadata

Offchip Memory

Prefetch Candidates

PC, Phys Addr of L2

Misses & Prefetch Hits

Metadata
Repl State

Metadata

Update

Data
Read

Metadata Read

Cache Misses

1

2

3

4 Update

Repl State

Update

Partition Size

5

Bloom
Filter

Fig. 5. Overview of Triage.

Figure 5 shows the overall design of Triage, where we
see that a portion of the LLC is re-purposed for Triage’s
metadata store. On every LLC access, the metadata portion
of the LLC is probed with the incoming address to check
for a possible metadata cache hit 1 . If the metadata entry
is found, it is read to generate a prefetch request 2 . Re-
gardless of whether the load resulted in a metadata hit or
miss, the Training Unit is updated (as explained below), and
the newly trained metadata entry is added (or updated) in
the metadata store 3 . The metadata replacement state is
updated on metadata misses and metadata hits that gener-
ate a successful prefetch 4 , and a bloom filter periodically
recomputes the amount of LLC that should be used as a
metadata cache 5 . We now explain these operations in
more detail.

3.4.1 Training

The Training Unit (TU) keeps the most recently accessed ad-
dress for each PC. When a new access B arrives for a given
PC, the Training Unit is queried for the last accessed address
A by the same PC. Addresses A and B are then considered
to be correlated. If subsequent addresses by the same PC ex-
hibit spatial locality—for example, B+1, B+2, B+3—then
the stride and stream lengths are updated appropriately in
the training unit. The Training Unit entry is transferred to

IEEE TC SPECIAL ISSUE ON HIGHLIGHTS OF COMPUTER ARCHITECTURE 6

Triage’s metadata store when the spatial stream ends; the
metadata store is indexed by the first address in the pair (A
in this example).

More concretely, Table 1 shows the actions that are
performed to train Triage, given an entry A,B, stride, len

in the Training Unit. For new entries, stride is initialized
to 0, and len is initialized to 1. If the new address is same
as the last address—B in this case—then no action is taken.
If the new address begins a spatial stream or continues a
previously detected spatial stream, then the len parameter
is incremented by 1. The beginning of a spatial stream is
detected if stride is currently set to 0 and if the stride
between the new address and the last address is less than
a constant (64 in our case). In all other cases, the Training
Unit entry is written out to the metadata store, and it is
re-initialized.

To avoid changing entries due to noisy data, each map-
ping in Triage’s metadata store has an additional 1-bit
confidence counter. If the Training Unit determines that
A’s neighbor differs from the value in the metadata store,
then the confidence counter is decremented. If the Training
Unit determines that A’s neighbor matches the value in the
metadata store, then the confidence counter is incremented.
The neighbor is changed only when the confidence counter
drops to 0. When the neighbor is changed, the correspond-
ing stride and length fields are also updated corresponding
to the new neighbor.

3.4.2 Prediction

Upon arrival of a new address A, Triage indexes the meta-
data by address A to find any available metadata entry. If
an entry (say (A,B, stride, len)) is found, Triage puts all
addresses that belong to the stream (B, stride, len) into a
prefetch queue. Future accesses from the same PC trigger
the issue of a prefetch request from the head of this prefetch
queue. If an entry is not found in the metadata store, nothing
is added to the prefetch queue, but Triage still prefetches
addresses from the prefetch queue until it is empty.

For higher degree prefetching—say a degree of d—Triage
issues d prefetch requests from the prefetch queue, and it
ensures that at least d candidates are appended onto the
prefetch queue. For example, if Triage retrieves the entry
A,B, stride = 1, length = 2 from the metadata store, it
appends, B and B + 1 on the prefetch queue irrespective
of the prefetch degree. However, this entry results in only 2
additions to the prefetch queue, for degrees greater than 2,
Triage further retrieves the entry corresponding o B+1 from
the metadata store to generate additional prefetch requests.

One drawback of our table-based organization is that
higher degree prefetching requires multiple metadata
lookups, but this penalty is significantly lower when the
metadata resides completely on chip (˜20 cycles for access-
ing each LLC-resident metadata entry vs. 150-400 cycles for
accessing each off-chip metadata entry.

3.4.3 Metadata Replacement Updates

Our metadata replacement is based on the Hawkeye pol-
icy [4], and like the Hawkeye policy, our metadata replace-
ment policy is trained on the behavior of a few sampled
sets. The metadata replacement predictors are trained on
all metadata accesses, except those, that result in redundant

prefetches. The replacement predictors are probed on all
metadata accesses, including hits and misses, to update the
per-metadata-entry replacement state. For more details on
how the Hawkeye policy works, we refer the reader to the
original paper [4].

3.4.4 Metadata Partition Updates

Triage partitions the cache between data and metadata
by using way partitioning. The partitions are recomputed
every 50,000 metadata accesses. If Triage decides to increase
the amount of metadata store, dirty lines are flushed and
the newly allocated/deallocated portion of the cache is
marked invalid immediately. If Triage decides to decrease
the amount of metadata store, lines with metadata entries
are marked invalid.

For shared caches, Triage computes the metadata alloca-
tion for each core individually and allots the corresponding
portion for each core’s metadata. For example, if two cores
are sharing a 4MB cache, and if cores 0 and 1 want 768KB
and 256KB of metadata, respectively, then Triage allocates
1MB of the shared LLC for metadata, and it partitions the
metadata store in a 3:1 ratio among the two cores.

3.5 Hardware Design

We now describe the detailed hardware changes required
for Triage. We first discuss the indexing scheme and the
tag lookup logic for the metadata store, and then describe
the minimal changes to the baseline data cache replacement
logic.

3.5.1 Metadata Store Indexing

Triage’s metadata store is addressed by using the first ad-
dress of each correlated pair. To index into Triage’s metadata
store, we could use the middle-order bits in the metadata
address4 to determine the setID because like data addresses,
the middle bits of metadata addresses are likely to be uni-
formly distributed in the address space. However, Triage’s
metadata store does not see such a uniform distribution in
the middle-order bits. Figure 6 explains why.

Fig. 6. Set conflicts in Triage-ISR using middle-order bits as setID.

Each row in Figure 6 represents a metadata entry’s ad-
dress, and different columns represent different portions of
the entry’s address. We see that since the stream length field
is fixed to 6-bits (maximum stream length of 64), long spatial
streams get broken down into small streams, and adjacent
spatial streams, which differ by a multiple of the stream
length, all have identical middle-order bits that map to set
0. Because the middle-order bits of the metadata addresses
are not uniformly distributed, a naive set indexing scheme
results in an unacceptable number of cache conflicts.

4. Middle bits are the bits that precede the bits representing the cache
line offset.

IEEE TC SPECIAL ISSUE ON HIGHLIGHTS OF COMPUTER ARCHITECTURE 7

Existing entry for PC New Address Action
A,B, stride, len B (same as last address) Do nothing

A,B, 0, 1 B + stride (new spatial stream) Update TU entry to A,B, stride, len+ 1
A,B, stride, len B + (stride ∗ k) (within a constant stride from last address) Update TU entry to A,B, stride, len+ 1
A,B, stride, len C (no fixed stride) Move TU entry to on-chip metadata

Re-initialize TU to B + stride ∗ (len− 1)), C, 0, 1)
TABLE 1

Triage’s Training Algorithm

One solution to avoid conflict misses is to determine
setID by using the higher-order bits of the metadata address.
However, this solution is undesirable for workloads with
predominantly irregular accesses because they tend to have
more diversity in middle-order bits than the higher-order
bits of their addresses, resulting in many conflict misses.

To solve this problem, we take inspiration from the
Touche compressed cache design [38]. In particular, we
determine the setID of the metadata store by applying an
XOR between different portions of the address. Figure 7
shows how this indexing scheme works, and we find that
this approach distributes metadata entries uniformly across
sets for a diverse set of workloads.

Fig. 7. Triage’s set indexing scheme avoids conflict misses in the meta-
data store.

3.5.2 Metadata Store Tag Lookup

Each metadata entry in Triage is 42 bits long, but LLC
line sizes are typically 64 to 128 bytes. Therefore, Triage’s
metadata entries within an LLC line must be organized
at a fine granularity because metadata entries for irregular
prefetchers do not exhibit spatial locality. We store multiple
tagged metadata entries within each LLC cache line. For
example, for a 64 byte LLC line, we store 12 metadata
entries within a cache line. The metadata entries within a
cache line are stored in the following format: tag-entry-tag-
entry- · · · -tag-entry. On a metadata lookup, we first choose
a physical LLC cache line from the metadata store, and we
then find the relevant metadata entry by comparing the sub-
tags within each cache line.

To store the metadata within 4 bytes, we use a com-
pressed tag. To understand our compressed tag, realize that
each physical address has a cache line offset of 6 bits and
set id of 16 bits, and the remaining bits are tags. We use a
compression method similar Touche compression cache [38]
to compress the tag to 7 bits. Thus, each metadata entry
records the compressed tag of the trigger address and the
compressed tag and set id of the next address, which re-
quire a total of 30 bits.5 We restrict the maximum stride and

5. The set id of the trigger address is implicit in a set-associative
cache, so it does not need to be stored.

stream length to be both 64, and we need another 12 bits to
store these information, making it total of 42 bits.

To identify the finer-grain metadata entries within a
cache line, we require additional logic in the form of com-
parators and multiplexors. The extra logic is similar to that
used in the Amoeba-Cache [39] and may incur additional
latency or pipeline stages, but only for metadata accesses.
We find that penalizing the LLC access latencies for both
data and metadata by up to 6 cycles results in minimal
performance impact (around 1% lower speedup on average
for the irregular SPEC workloads).

3.5.3 Data Cache Replacement Logic

Since the cache is way-partitioned between data and meta-
data, we only need minor modifications to the data cache
replacement logic to support Triage. Every time the parti-
tions are recomputed by Triage, the outcome is stored in a
status register. The status register holds the number of ways
currently assigned for metadata. During replacement, the
replacement logic simultaneously consults the metadata in
the tag array and the status register to identify a candidate
way for eviction. For example, for a 4-way LLC with SR-
RIP [40] replacement policy (2-3 bits per entry storing RRPV
values), if Triage recently assigned 2 ways for metadata, on
replacement, the status register is consulted to identify that
only ways 0 and 1 store data and only the RRPV values
for these ways are considered to identify the way with the
largest RRPV for eviction.

4 EVALUATION

4.1 Methodology

We evaluate Triage on single-core configurations using
a cycle-level industrial simulator that models ARMv8
AArch64 CPUs and that has been correlated to be highly
accurate against commercial CPU designs. The parameters
of the CPU and memory system model used in the simula-
tion are shown in Table 2. This model uses a simple memory
model with fixed latency, but it models memory bandwidth
constraints accurately.

For multi-core evaluation of Triage, we use Champ-
Sim [41], a trace-based simulator that includes an out-of-
order core model and a detailed memory system. Champ-
Sim’s cache subsystem includes FIFO read and prefetch
queues, with demand requests having higher priority than
prefetch requests. The main memory model simulates data
bus contention, bank contention, and bus turnaround de-
lays; bus contention increases memory latency. Our modeled
processor for ChampSim also uses the configuration shown
in Table 2. We confirm that the performance trends on the
two simulators are the same.

IEEE TC SPECIAL ISSUE ON HIGHLIGHTS OF COMPUTER ARCHITECTURE 8

Core Out-of-order, 2GHz,
4-wide fetch, decode, and dispatch

128 ROB entries
TLB 48-entry fully-assoc L1 I/D-TLB

1024-entry 4-way assoc L2 TLB
L1I 64KB, 4-way assoc, 3-cycle latency
L1D 64KB, 4-way assoc, 3-cycle latency

Stride prefetcher
L2 512KB, private, 8-way assoc

11-cycle load to use latency
L3 2MB/core, shared, 16-way assoc

20-cycle load-to-use latency
Line size 64 bytes

DRAM Single-Core:
85ns latency, 32GB/s bandwidth

Multi-Core:
8B channel width, 800MHz,
tCAS=20, tRP=20, tRCD=20

2 channels, 8 ranks, 8 banks, 32K rows
32GB/s bandwidth
TABLE 2

Machine Configuration

4.1.1 Benchmarks

We present single-core results for a subset of SPEC2006
benchmarks that are memory bound and are known to have
irregular access patterns [12]. For SPEC benchmarks we
use the reference input set. For all single-core benchmarks,
we use SimPoints [42] to find representative regions. Each
SimPoint is warmed up for 200 million instruction and run
for 50 million instructions, and we generate at most 10
SimPoints for each SPEC benchmark.

We present multi-core results for CloudSuite [43] and
multi-programmed SPEC benchmarks. For CloudSuite, we
use the traces provided with the 2nd Cache Replacement
Championship. The traces were generated by running
CloudSuite in a full-system simulator to intercept both ap-
plication and OS instructions. Each CloudSuite benchmark
includes 6 samples, where each sample has 100 million
instructions. We warm up for 50 million instructions and
measure performance for the next 50 million instructions.

For multi-programmed SPEC simulations, we simulate
4, 8, and 16 cores, such that each core runs a bench-
mark chosen uniformly randomly from all memory-bound
benchmarks, including both regular and irregular programs.
Overall, we simulate 80 4-core mixes, 80 8-core mixes, and
80 16-core mixes. Of the 80 mixes, 30 mixes include random
mixes of irregular programs only, and the remaining 50
mixes include both regular and irregular programs. For each
mix, we simulate the simultaneous execution of SimPoints
of the constituent benchmarks until each benchmark has
executed at least 30 million instructions. To ensure that
slow-running applications always observe contention, we
restart benchmarks that finish early so that all benchmarks
in the mix run simultaneously throughout the execution. We
warm the cache for 30 million instructions and measure the
behavior of the next 30 million instructions.

4.1.2 Prefetchers

We evaluate Triage against two state-of-the-art on-chip
prefetchers, namely, Spatial Memory Streaming (SMS) [17]
and the Best Offset Prefetcher (BO) [28]. SMS captures
irregular patterns by applying irregular spatial footprints

across memory regions. BO is a regular prefetcher that won
the Second Data Prefetching Championship.

We also evaluate Triage against existing off-chip tempo-
ral prefetchers, namely, Sampled Temporal Memory Stream-
ing (STMS) [1], Domino [44], and MISB [6]. STMS, Domino,
and MISB represent the state-of-the-art in temporal prefetch-
ing. For simplicity, we model idealized versions of STMS
and Domino, such that their off-chip metadata transactions
incur no latency or traffic penalty. Thus, our performance
results for these prefetchers represent the upper bound
performance of these prefetchers. For MISB, we faithfully
model the latency and traffic of all metadata requests.

We evaluate two versions of Triage, denoted as Triage
and Triage-ISR. The former reproduces the design from our
MICRO paper [3] and does not include the integrated stream
representation. It also uses a coarse-grained partitioning
scheme that only permits metadata allocations of 0 ways, 4
ways, or 8 ways. Triage-ISR represents the design discussed
in Section 3, including the integrated stream representation
and the fine-grained partitioning using the Bloom Filter. For
static versions of these designs, we pick a fixed metadata
store size that gives the best average performance, and we
then use this size to statically partition the LLC; we find that
the best static metadata store size for a 2MB LLC is 1MB on
both simulators.

All prefetchers train on the L2 access stream—including
prefetch requests from L1—and prefetches are inserted into
the L2. The metadata is stored in L3. Unless specified, all
prefetchers use a prefetch degree of 1, which means that
they issue at most one prefetch on every trigger access.

4.2 Comparison With Prefetchers That Store Metadata

On Chip

Figure 8 shows that Triage outperforms state-of-the-art
prefetchers that use only on-chip metadata. In particu-
lar, Triage-ISR—the best Triage configuration—achieves a
speedup of 27.3%, whereas BO and SMS see a speedup of
4.3% and 2.2%, respectively.

gcc
_16

6
mcf

sop
lex

_ke
nn

om
ne

tpp

ast
ar_

lak
es

sph
inx

3

xa
lan

cbm
k

av
g

1.0

1.1

1.2

1.3

1.4

1.5

Sp
ee

du
p

Speedup over no L2PF for Irregular Benchmarks

BO
SMS
Triage_Static
Triage
Triage-ISR_Static
Triage-ISR

Fig. 8. Triage outperforms BO and SMS

The comparison among the different configurations of
Triage leads to three observations. First, the integrated
stream representation improves Triage’s performance by
2.7% compared to the baseline version of Triage [3] that
does not distinguish between regular and irregular accesses
(27.3% speedup for Triage-ISR vs. 24.6% speedup for Triage).
Second, Triage-ISR-Dynamic outperforms Triage-ISR-Static,

IEEE TC SPECIAL ISSUE ON HIGHLIGHTS OF COMPUTER ARCHITECTURE 9

which shows that it is beneficial to modulate the meta-
data store size based on a precise estimation of metadata
requirements. Finally, the integrated stream representation
accentuates the benefit of the dynamic scheme because the
benefits of compression vary across benchmarks and the
dynamic scheme is able to adapt to these variations. As we
will see later, the benefit of our dynamic scheme is even
more pronounced in a shared cache setting where there is
significantly more cache contention.

gcc
_16

6
mcf

sop
lex

_ke
nn

om
ne

tpp

ast
ar_

lak
es

sph
inx

3

xa
lan

cbm
k

av
g

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Co
ve

ra
ge

Prefetcher Coverage

NoL2PF
BO
SMS
Triage_Static
Triage
Triage-ISR_Static
Triage-ISR

gcc
_16

6
mcf

sop
lex

_ke
nn

om
ne

tpp

ast
ar_

lak
es

sph
inx

3

xa
lan

cbm
k

av
g

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu
ra
cy

Prefetcher Accuracy

NoL2PF
BO
SMS
Triage_Static
Triage
Triage-ISR_Static
Triage-ISR

Fig. 9. Triage improves coverage and accuracy.

Triage’s superior performance over BO and SMS can be
explained by its higher coverage (33.6% for Triage vs. 4.9%
for BO and 3.4% for SMS) and higher accuracy (77.4% for
Triage vs. 36.2% for BO and 36.5% for SMS) as shown in Fig-
ure 9. Triage-ISR also improves coverage over Triage across
all benchmarks except astar.6 This improvement in coverage
can be attributed to Triage-ISR’s compressed metadata rep-
resentation, which enables storing more metadata given a
smaller metadata store. Figure 10 shows that the integrated
stream representation reduces the metadata requirements by
3% on average and up to 12% for benchmarks with more
regular accesses (sphinx3 and soplex).

4.2.1 Higher Degree Prefetching

Figure 11 shows the performance of our prefetchers at
different prefetch degrees. As we increase degree from 1
to 4, Triage-ISR’s performance grows from 27.3% to 41.1%.
Increasing the degree beyond 4 does not improve Triage-
ISR’s performance. By comparison, BO and SMS achieve
their best performance at degree 8 and 16, respectively,
where they improve performance by 10.9% and 7.9% (over
a baseline with no prefetcher), respectively. We also see
that the gap between Triage and Triage-ISR increases as we
increase degree, and with a degree of 4, Triage-ISR improves
over Triage by 4.4%.

6. For astar, Triage-ISR has lower accuracy, which results in lower
prefetch coverage.

gcc
_16

6
mcf

sop
lex

_ke
nn

om
ne

tpp

ast
ar_

lak
es

sph
inx

3

xa
lan

cbm
k

av
g

0

2

4

6

8

10

12

Co
m

pr
es

si
on

 (%
)

Compression Achieved Using Triage-ISR for Irregular Benchmarks

Fig. 10. Metadata compression achieved by Triage-ISR.

Fig. 11. Sensitivity to Prefetch degree.

4.2.2 Hybrid Prefetchers

Since Triage targets irregular memory accesses, it makes
sense to evaluate it as a hybrid with regular memory
prefetchers, such as BO. Figure 12 shows that a BO+Triage-
ISR hybrid outperforms BO (27.8% speedup for BO+Triage-
ISR vs. 4.3% for BO), which confirms that Triage successfully
prefetches lines that BO cannot. We also see that Triage-ISR
continues to outperform Triage even in this hybrid setting,
which suggests that Triage-ISR’s improvement over Triage
can be attributed to its better coverage for irregular accesses.

gcc
_16

6
mcf

sop
lex

_ke
nn

om
ne

tpp

ast
ar_

lak
es

sph
inx

3

xa
lan

cbm
k

av
g

1.0

1.1

1.2

1.3

1.4

1.5

Sp
ee

du
p

Speedup over no L2PF for Irregular Benchmarks

BO_Triage
BO_Triage-ISR

Fig. 12. Triage performs well as part of a hybrid prefetcher.

For completeness, Figure 13 compares all prefetchers on
the remaining memory-intensive SPEC 2006 benchmarks.7

Because these benchmarks are regular, BO+Triage-ISR does
not significantly improve over BO, but Triage’s dynamic

7. For astar, gcc, and soplex, we show results for the reference inputs
which are more regular.

IEEE TC SPECIAL ISSUE ON HIGHLIGHTS OF COMPUTER ARCHITECTURE 10

partitioning ensures that it causes no harm. As we would
expect, Triage-ISR achieves high metadata compression for
these benchmarks (9.6% on average and 86% for cactus),
but because these benchmarks are highly regular and pre-
dictable, Triage does not benefit from either the extra meta-
data space or the extra cache space.

pe
rlb

en
ch
bzi

p2 gcc

bw
av

es

ga
messmilc

zeu
sm

p

gro
macs

cac
tus

ADM
les

lie3
d
na

md
go

bm
k
de

alII

sop
lex

_ra
il

po
vra

y

cal
cul

ix

hm
mer

sje
ng

Gem
sFD

TD

libq
ua

ntu
m

h2
64

ref
ton

to lbm

ast
ar_

riv
ers wrf av

g
0.9

1.0

1.1

1.2

1.3

1.4

Sp
ee

du
p

Speedup on SPEC2006 Regular Benchmarks

BO
BO_Triage
BO_Triage-ISR

Fig. 13. Results on regular SPEC 2006 benchmarks.

4.2.3 Understanding Triage’s Benefits

We now take a deeper look into the sources of Triage’s
performance benefits. Figure 14 shows that the performance
benefit of irregular prefetching significantly outweighs the
performance loss of reduced LLC capacity. In particular, we
see that an optimistic version of Triage-ISR that is given a
1 MB on-chip metadata store in addition to its usual LLC
capacity achieves a 34.0% speedup. On the other hand, a
system with no Triage and a reduced LLC capacity of 1 MB
lowers performance by only 7.4%. This loss in performance
is easily compensated by Triage’s benefits, as Triage-ISR sees
an overall speedup of 26.3% with a fixed 1 MB metadata
store and a 1 MB LLC.

gcc
_16

6
mcf

sop
lex

_ke
nn

om
ne

tpp

ast
ar_

lak
es

sph
inx

3

xa
lan

cbm
k

av
g

Benchmark

−10

0

10

20

30

40

50

Sp
ee

du
p

(%
)

Speedup over 2MB LLC without L2PF

2MBLLC_1MBTriage-ISR
1MB_LLC_NoL2PF
1MBLLC_1MBTriage-ISR

Fig. 14. Breakdown of Triage’s Performance Improvements

Figure 15 compares the performance of Triage at dif-
ferent metadata store sizes and with different replacement
policies (assuming no loss in LLC capacity). We make
two observations. First, with just 1MB of metadata store,
Triage achieves 75% of the performance of an idealized PC-
localized temporal prefetcher, which is significant because
typical temporal prefetchers consume tens of megabytes of
off-chip storage. This result confirms the main insight of
Triage that most prefetches can be attributed to a small
percentage of metadata entries. Our second observation is
that a smart replacement policy can improve the effective-
ness of Triage at smaller metadata cache sizes, but when the
metadata cache is sufficiently large (1 MB), the gap between

LRU and Hawkeye shrinks. In particular, with a 256 KB
metadata cache, Triage with an LRU policy achieves 11.3%
speedup whereas Triage with the Hawkeye policy sees a
15.2% speedup.

Fig. 15. Sensitivity to metadata store size (assuming no loss in LLC
capacity).

4.3 Comparison With Prefetchers That Use Off-Chip

Metadata

We now show that compared to temporal prefetchers that
use tens of megabytes of off-chip metadata, Triage and
Triage-ISR provide a more desirable tradeoff between per-
formance, energy, and off-chip metadata traffic.

Figure 16 compares Triage and Triage-ISR against overly
optimistic idealized versions of STMS and Domino and
against a realistic version of MISB [6]. We see that Triage-
ISR outperforms idealized STMS and Domino (27.3% for
Triage-ISR vs 13.4% for Domino and 14.0% for STMS).
Triage doesn’t match MISB’s 33.3% performance, but we
see that it incurs much less traffic overhead (bottom graph
in Figure 16). In particular, compared to a baseline with
a 2 MB cache and no prefetching, Triage and Triage-ISR
increase traffic by 53.9% and 56.9%, respectively, whereas
STMS, Domino and MISB increase traffic by 441.8%, 441.1%,
and 260.8%, respectively. While Triage and Triage-ISR incur
some additional traffic due to inaccurate prefetches, we
find that most of their traffic increase can be attributed to
an effectively smaller LLC, which results in more demand
misses. However, this increase in traffic is a good tradeoff as
it facilitates high prefetcher coverage.

To put these results in context, Figure 17 compares all
temporal prefetchers and the Best Offset (BO) prefetcher
along two axes, namely, performance and traffic overhead.
STMS, Domino, and MISB all use off-chip metadata, so they
incur high off-chip traffic overheads and are in general more
complex due to the complications of storing metadata off
chip. Triage outperforms STMS and Domino while elimi-
nating metadata overheads. Triage has lower performance
than MISB, but it reduces traffic by more than half, offering
an attractive design point for temporal prefetching. In fact,
Triage’s traffic overhead of 59.3% is not far from BO’s 21.4%
traffic overhead. BO’s traffic overhead can be attributed
to its large volume of inaccurate prefetches on irregular
programs. By contrast, Triage is more accurate, but it incurs
more traffic due to an effectively smaller LLC.

IEEE TC SPECIAL ISSUE ON HIGHLIGHTS OF COMPUTER ARCHITECTURE 11

gcc
_16

6
mcf

sop
lex

_ke
nn

om
ne

tpp

ast
ar_

lak
es

sph
inx

3

xa
lan

cbm
k

av
g

1.0

1.1

1.2

1.3

1.4

1.5

1.6
Sp

ee
du

p
Speedup over no L2PF

Domino STMS MISB Triage Triage-ISR

gcc
_16

6
mcf

sop
lex

_ke
nn

om
ne

tpp

ast
ar_

lak
es

sph
inx

3

xa
lan

cbm
k

av
g

0

1

2

3

4

5

6

Re
la

tiv
e

Ba
nd

w
id

th

Offchip Bandwidth Over no L2PF
Domino STMS MISB Triage Triage-ISR

Fig. 16. Triage reduces traffic compared to off-chip temporal prefetchers
while offering good performance improvements.

Fig. 17. Design Space of Temporal Prefetchers.

4.3.1 Energy Evaluation

Triage is more energy-efficient than other temporal prefetch-
ers. Figure 18 shows that Triage’s metadata accesses are
4–22× more energy efficient than MISB’s. To estimate the
energy consumption of Triage’s metadata accesses, we count
the number of LLC accesses for metadata, assuming 1 unit
of energy for each LLC access. To estimate the energy
consumption of MISB’s memory accesses, we count the
number of off-chip metadata accesses and multiply it by the
average energy of a DRAM access. Since a DRAM access can
consume anywhere from 10× to 50× more energy than an
LLC access [45], [46], we assume that each DRAM access
consumes 25 units of energy, and we add error bars to
account for the lower bound (10 units of energy per DRAM
access) and upper bound (50 units of energy DRAM access)

of MISB’s overall energy consumption.

1

6

11

16

21

26

31

36

41

46

51

astar gcc mcf omnetpp soplex sphinx3 xalanc Average

E
n

er
g

y
 o

v
er

h
ea

d
 o

f
M

IS
B

's
 m

et
ad

at
a

ac
ce

ss
es

 o
v

er
 T

ri
ag

e
(×

)

Fig. 18. Triage is more energy efficient than MISB.

At higher degrees, Triage’s table-based design requires
multiple LLC lookups, which will increase its overall energy
requirements. In particular, we find that Triage’s energy
consumption doubles at degree 8, which is still much more
energy efficient than MISB.

4.4 Evaluation on Multi-Programmed SPEC Mixes

We now evaluate Triage and Triage-ISR on multi-core sys-
tems and show that (1) the benefits of the dynamic scheme
are greater for shared caches, and that (2) in bandwidth-
constrained 8-core systems, Triage outperforms MISB due
its lower traffic overhead.

Figure 19 shows that for multi-programmed mixes of
irregular SPEC programs sharing an 8 MB last-level cache
on a 4-core system, Triage-ISR-Dynamic is a significant
improvement over Triage-ISR-Static. In fact, in this multi-
core setting, a static version of Triage-ISR that allocates 4 MB
for metadata performs worse than the Best Offset Prefetcher
(3.2% for Triage-ISR-Static vs. 4.8% for BO). By contrast,
Triage-ISR-Dynamic improves performance by 7.3%. At a
prefetch degree of 16, Triage-ISR-Dynamic improves perfor-
mance by 11.1%.

Fig. 19. Triage works well on multi-programmed mixes of irregular pro-
grams running on a 4-core system.

These results can be explained by noting that the LLC
is a more valuable resource in shared systems. Triage-ISR-
Dynamic works well in this setting because (1) it can modu-
late the portion of the LLC dedicated to metadata depending
on the expected benefit of irregular prefetching, and (2) it
can distribute the available metadata store among individ-
ual applications such that the application that benefits the
most from irregular prefetching gets a larger portion of the
metadata store.

IEEE TC SPECIAL ISSUE ON HIGHLIGHTS OF COMPUTER ARCHITECTURE 12

4.4.1 Comparison With Prefetchers That Store Metadata

Off Chip

Figure 20 compares the average speedup of Triage-ISR with
MISB on 2-core, 4-core, 8-core, and 16-core systems where
the cache is shared among different irregular programs.
We see that while MISB outperforms Triage-ISR on a 2-
core system (7.1% for Triage vs. 8.9% for MISB), Triage-
ISR performs better on 8-core and 16-core systems. On a
16-core system, Triage-ISR outperforms MISB significantly
(6.9% for Triage vs. 4.9% for MISB). These trends suggest
that MISB’s performance does not scale well to bandwidth-
constrained environments because of its large metadata
traffic overheads. By contrast, Triage’s performance scales
well with higher core counts.

Fig. 20. Triage outperforms MISB in bandwidth-constrained environ-
ments.

4.4.2 Comparison on Mixes With Regular Benchmarks

For completeness, Figure 21 shows that Triage composes
well with BO when the multi-programmed mixes include
both regular and irregular programs. In particular, for a
4-core system, BO+Triage-ISR improves performance by
14.7%, whereas BO alone improves performance by 11.7%.
Triage-ISR alone does not work well in this setting (3.5%
speedup) because it cannot prefetch compulsory misses for
regular programs.

Fig. 21. Triage-ISR works well on multi-programmed mixes of regular
and irregular programs running on a 4-core system.

The dynamic version of Triage is essential in these
scenarios because the cache is shared among irregu-
lar programs—which benefit from Triage—and regular
programs—which do not benefit from Triage. For regular
programs, a static version of Triage would reduce effective
LLC capacity without providing much prefetching benefit.
Figure 22 shows the number of ways allocated to each

core on this 4-core system, and we see that (1) the total
number of ways allocated to the metadata store varies across
mixes, and (2) each application receives varying amounts of
metadata space depending on a dynamic estimate of the
usefulness of the metadata.

4.5 Evaluation on Server Workloads

We now use the CloudSuite benchmark suite running on
a 4-core system to show that Triage is effective for server
workloads (See Figure 4.5). On the highly irregular Cas-
sandra, Classification, and Cloud9 benchmarks, Triage-ISR
improves performance by 5.3%, whereas BO improves per-
formance by 0.5% and SMS sees no performance gains.
On the more regular Nutch and Streaming benchmarks,
BO does well with 8.9% performance, whereas Triage sees
no performance improvement because temporal prefetchers
cannot prefetch compulsory misses.

In a hybrid setting, BO and Triage compose well, as
Triage works well for the irregular benchmarks and BO
works well for the regular ones. In particular, a BO+Triage-
ISR hybrid outperforms all other prefetchers as it improves
performance by 9.7%, whereas BO alone improves perfor-
mance by only 3.8%.

Figure 4.5 also shows that Triage-ISR-Dynamic provides
benefit over a static version of Triage-ISR in this setting, so
we conclude that our dynamic scheme makes good deci-
sions in trading off cache space for metadata storage. This
benefit is most pronounced for the irregular benchmarks
(Cassandra, Classification, and Cloud9) where the dynamic
version outperforms the static scheme by 2.4% (7.6% for
Triage-ISR-Dynamic vs. 5.3% for Triage-ISR-Static).

5 CONCLUSIONS

In this paper, we have introduced and evaluated the Triage
data prefetcher, which represents a new design point for
temporal prefetchers, one that dramatically reduces mem-
ory traffic at the expense of some coverage. Our empiri-
cal results show that this is a good tradeoff: When com-
pared with state-of-the-art temporal prefetchers that use off-
chip metadata, Triage significantly reduces traffic overhead
(56.9% traffic overhead for Triage vs. 260.8% for MISB)
while modestly reducing performance in bandwidth-rich
environments and improving performance in bandwidth-
constrained environments. When compared with other
(non-temporal) prefetchers that only use on-chip metadata,
Triage provides a significant performance advantage (41.1%
speedup for Triage vs. 10.9% for BO).

We have also shown that by removing the use of off-
chip metadata, temporal prefetchers can use vastly simpler
metadata organizations. In particular, tables are a simpler
and more compact representation in this setting, signifying
a return to simplicity for temporal prefetchers. We have also
introduced a new metadata representation that compactly
stores regular memory accesses, which is beneficial for
irregular workloads, because it allows Triage to store a large
amount of metadata in a limited amount of space.

Finally, this paper has made three larger points. First, we
have made temporal prefetching practical for commercial
deployment by removing the need for maintaining off-chip

IEEE TC SPECIAL ISSUE ON HIGHLIGHTS OF COMPUTER ARCHITECTURE 13

Fig. 22. Dynamic Triage allocates different metadata store sizes to different cores.

metadata, which adds complexity and energy overheads.
Second, we have made temporal prefetching profitable in
bandwidth-constrained environments by significantly re-
ducing its traffic requirements. Indeed, Triage outperforms
MISB in bandwidth-constrained 8-core and 16-core systems
despite maintaining a metadata store that is orders of mag-
nitude smaller. Finally, and more broadly, we show that on-
chip caches can at times be used more profitably for caching
metadata instead of data, which suggests future work that
explores other kinds of metadata that could be usefully
stored in on-chip data caches.

ACKNOWLEDGMENTS

This work was funded in part by a gift from Arm Research,
NSF Grant CCF-1823546, and a gift from Intel Corporation
through the NSF/Intel Partnership on Foundational Mi-
croarchitecture Research.

REFERENCES

[1] T. F. Wenisch, M. Ferdman, A. Ailamaki, B. Falsafi, and
A. Moshovos, “Practical off-chip meta-data for temporal memory
streaming,” in HPCA, 2009, pp. 79–90.

[2] ——, “Making address-correlated prefetching practical,” IEEE Mi-
cro, vol. 30, no. 1, pp. 50–59, 2010.

[3] H. Wu, K. Nathella, J. Pusdesris, D. Sunwoo, A. Jain, and C. Lin,
“Temporal prefetching without the off-chip metadata,” in Pro-
ceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture, 2019, pp. 996–1008.

[4] A. Jain and C. Lin, “Back to the future: Leveraging belady’s
algorithm for improved cache replacement,” in Proceedings of the
International Symposium on Computer Architecture (ISCA), June 2016.

[5] D. Joseph and D. Grunwald, “Prefetching using markov predic-
tors,” in Proceedings of the 24th Annual International Symposium on
Computer Architecture, 1997, pp. 252–263.

[6] H. Wu, K. Nathella, A. Jain, D. Sunwoo, and C. Lin, “Efficient
metadata management for irregular data prefetching,” in the 46th
International Symposium on Computer Architecture (ISCA), 2019.

[7] T. M. Chilimbi, “Efficient representations and abstractions for
quantifying and exploiting data reference locality,” in SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI), 2001, pp. 191–202.

[8] T. F. Wenisch, M. Ferdman, A. Ailamaki, B. Falsafi, and
A. Moshovos, “Temporal streams in commercial server applica-
tions,” in IISWC, 2008, pp. 99–108.

[9] K. J. Nesbit and J. E. Smith, “Data cache prefetching using a global
history buffer,” IEEE Micro, vol. 25, no. 1, pp. 90–97, 2005.

[10] Z. Hu, M. Martonosi, and S. Kaxiras, “TCP: tag correlating
prefetchers,” in HPCA, 2003, pp. 317–326.

[11] L. Peled, S. Mannor, U. Weiser, and Y. Etsion, “Semantic locality
and context-based prefetching using reinforcement learning,” in
2015 ACM/IEEE 42nd Annual International Symposium on Computer
Architecture (ISCA). IEEE, 2015, pp. 285–297.

[12] A. Jain and C. Lin, “Linearizing irregular memory accesses for
improved correlated prefetching,” in 46th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO), December 2013.

[13] Y. Chou, “Low-cost epoch-based correlation prefetching for com-
mercial applications,” in MICRO, 2007, pp. 301–313.

[14] Y. Solihin, J. Lee, and J. Torrellas, “Using a user-level memory
thread for correlation prefetching,” in Proceedings of the 29th Annual
International Symposium on Computer Architecture, 2002, pp. 171–
182.

[15] S. Somogyi, T. F. Wenisch, A. Ailamaki, and B. Falsafi, “Spatio-
temporal memory streaming,” in Proceedings of the International
Symposium on Computer Architecture (ISCA), 2009, pp. 69–80.

[16] I. Burcea, S. Somogyi, A. Moshovos, and B. Falsafi, “Predictor
virtualization,” in Proceedings of the 13th international conference
on Architectural support for programming languages and operating
systems, ser. ASPLOS XIII. ACM, 2008, pp. 157–167.

[17] S. Somogyi, T. F. Wenisch, A. Ailamaki, B. Falsafi, and
A. Moshovos, “Spatial memory streaming,” in ISCA ’06: Pro-
ceedings of the 33th Annual International Symposium on Computer
Architecture, 2006, pp. 252–263.

[18] M. Ferdman, T. F. Wenisch, A. Ailamaki, B. Falsafi, and
A. Moshovos, “Temporal instruction fetch streaming,” in Pro-
ceedings of the 41st annual IEEE/ACM International Symposium on
Microarchitecture. IEEE Computer Society, 2008, pp. 1–10.

[19] A. Smith, “Sequential program prefetching in memory hierar-
chies,” IEEE Transactions on Computers, vol. 11, no. 12, pp. 7–12,
December 1978.

IEEE TC SPECIAL ISSUE ON HIGHLIGHTS OF COMPUTER ARCHITECTURE 14

[20] N. P. Jouppi, “Improving direct-mapped cache performance by the
addition of a small fully-associative cache and prefetch buffers,”
in International Symposium on Computer Architecture (ISCA), 1990,
pp. 364–373.

[21] I. Hur and C. Lin, “Memory prefetching using adaptive stream
detection,” in Proceedings of the 39th International Symposium on
Microarchitecture, 2006, pp. 397–408.

[22] S. Palacharla and R. E. Kessler, “Evaluating stream buffers as a
secondary cache replacement,” in Proceedings of the International
Symposium on Computer Architecture (ISCA), April 1994, pp. 24–33.

[23] J.-L. Baer and T.-F. Chen, “Effective hardware-based data prefetch-
ing for high-performance processors,” IEEE Transactions on Com-
puters, vol. 44, no. 5, pp. 609–623, May 1995.

[24] K. I. Farkas, P. Chow, N. P. Jouppi, and Z. Vranesic, “Memory-
system design considerations for dynamically-scheduled proces-
sors,” in ISCA ’97: Proceedings of the 24th Annual International
Symposium on Computer Architecture, 1997, pp. 133–143.

[25] Y. Ishii, M. Inaba, and K. Hiraki, “Access map pattern matching
for high performance data cache prefetch,” in Journal of Instruction-
Level Parallelism, vol. 13, 2011, pp. 1–24.

[26] S. Sair, T. Sherwood, and B. Calder, “A decoupled predictor-
directed stream prefetching architecture,” IEEE Transactions on
Computers, vol. 52, no. 3, pp. 260–276, March 2003.

[27] S. H. Pugsley, Z. Chishti, C. Wilkerson, P.-f. Chuang, R. L. Scott,
A. Jaleel, S.-L. Lu, K. Chow, and R. Balasubramonian, “Sandbox
prefetching: Safe run-time evaluation of aggressive prefetchers,”
in High Performance Computer Architecture (HPCA), 2014 IEEE 20th
International Symposium on. IEEE, 2014.

[28] P. Michaud, “Best-offset hardware prefetching,” in 2016 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), 2016, pp. 469–480.

[29] T. L. Johnson, M. C. Merten, and W.-M. W. Hwu, “Run-time spatial
locality detection and optimization,” in Proceedings of the 30th
Annual ACM/IEEE International Symposium on Microarchitecture,
1997, pp. 57–64.

[30] S. Kumar and C. Wilkerson, “Exploiting spatial locality in data
caches using spatial footprints,” SIGARCH Computer Architecture
News, vol. 26, no. 3, pp. 357–368, April 1998.

[31] D. Burger, T. R. Puzak, W.-F. Lin, and S. K. Reinhardt, “Filtering
superfluous prefetches using density vectors,” in ICCD ’01: Pro-
ceedings of the International Conference on Computer Design: VLSI in
Computers & Processors, 2001, pp. 124–133.

[32] C. F. Chen, S.-H. Yang, B. Falsafi, and A. Moshovos, “Accurate
and complexity-effective spatial pattern prediction,” in Proceedings
of the 10th International Symposium on High Performance Computer
Architecture, ser. HPCA ’04, 2004, pp. 276–288.

[33] J. Collins, S. Sair, B. Calder, and D. M. Tullsen, “Pointer cache
assisted prefetching,” in Proceedings of the 35th Annual ACM/IEEE
International Symposium on Microarchitecture, ser. MICRO 35, 2002,
pp. 62–73.

[34] A. Roth and G. S. Sohi, “Effective jump-pointer prefetching for
linked data structures,” in Proceedings of the 26th Annual Interna-
tional Symposium on Computer Architecture (ISCA), 1999, pp. 111–
121.

[35] R. Cooksey, S. Jourdan, and D. Grunwald, “A stateless, content-
directed data prefetching mechanism,” SIGARCH Computer Archi-
tecture News, vol. 30, no. 5, pp. 279–290, October 2002.

[36] E. Ebrahimi, O. Mutlu, and Y. N. Patt, “Techniques for bandwidth-
efficient prefetching of linked data structures in hybrid prefetching
systems,” in HPCA, 2009, pp. 7–17.

[37] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426,
1970.

[38] S. Hong, B. Abali, A. Buyuktosungolu, M. Healy, and P. Nair,
“Touche: Towards ideal and efficient cache compression by mit-
igating tag area overhead,” in MICRO’19: Proceedings of the 52nd
Annual IEEE/ACM International Symposium on Microarchitecture,
2019, pp. 453–465.

[39] S. Kumar, H. Zhao, A. Shriraman, E. Matthews, S. Dwarkadas,
and L. Shannon, “Amoeba-cache: Adaptive blocks for eliminating
waste in the memory hierarchy,” in Proceedings of the 45th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
2012, pp. 376–388.

[40] A. Jaleel, K. B. Theobald, S. C. Steely Jr, and J. Emer, “High per-
formance cache replacement using re-reference interval prediction
(RRIP),” in Proceedings of the International Symposium on Computer
Architecture (ISCA), 2010, pp. 60–71.

[41] 2nd Cache Replacement Championship, 2017. [Online]. Available:
http://crc2.ece.tamu.edu/

[42] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automat-
ically characterizing large scale program behavior,” ACM SIGOPS
Operating Systems Review, vol. 36, no. 5, pp. 45–57, 2002.

[43] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee,
D. Jevdjic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi,
“Clearing the clouds: a study of emerging scale-out workloads on
modern hardware,” in Proceedings of the seventeenth international
conference on Architectural Support for Programming Languages and
Operating Systems, 2012, pp. 37–48.

[44] M. Bakhshalipour, P. Lotfi-Kamran, and H. Sarbazi-Azad,
“Domino temporal data prefetcher,” in High Performance Computer
Architecture (HPCA), 2018 IEEE 24th International Symposium on,
2018, pp. 131–142.

[45] S. Borkar, “The Exascale Challenge,”
https://parasol.tamu.edu/pact11/ShekarBorkar-
PACT2011-keynote.pdf, October 2011.

[46] B. Jacob, S. Ng, and D. Wang, Memory systems: cache, DRAM, disk.
Morgan Kaufmann, 2010.

Hao Wu is a Software Engineer at Google Platform. He received his
Ph.D. in Computer Science from The University of Texas at Austin in
July 2020. He received B.S. in Computer Science and Technology from
Tsinghua University in July 2010. His works focuses on computer archi-
tecture, especially modeling and improving server performance through
software simulation.

Krishnendra Nathella is a Staff Research Engineer at Arm Research.
He graduated with a Masters in Computer Engineering from the Uni-
versity of Wisconsin at Madison in 2012. In 2010 he received his
B.Tech degree in Electronics and Communication Engineering from
SASTRA University, India. Krishnendra joined Arm Research in 2012
and has since worked on a variety of topics in computer architecture and
currently focuses on resolving the front-end bottlenecks and memory
bottlenecks in modern high-performance processors through developing
better branch prediction, instruction prefetching and data prefetching
techniques.

Matthew Pabst is an undergraduate at The University of Texas at Austin
in the Turing Scholars Honors Program. He has research interests in
architecture, systems, and security.

Dam Sunwoo is a Senior Principal Research Engineer at Arm Re-
search. He received his M.S. and Ph.D. in Electrical and Computer
Engineering at The University of Texas at Austin in 2005 and 2010,
respectively. He received his B.S. degree in Electrical Engineering from
Seoul National University in 2003. He has broad interests in computer
architecture with a focus on microarchitecture for high-performance
processors.

Akanksha Jain is a Research Engineer at Arm Research. She received
her Ph.D. in Computer Science from The University of Texas in August
2016. In 2009, she received the B.Tech and M. Tech degrees in Com-
puter Science and Engineering from the Indian Institute of Technology
Madras. Her research interests are in computer architecture, with a
particular focus on the memory system and on using machine learning
techniques to improve the design of memory system optimizations.

IEEE TC SPECIAL ISSUE ON HIGHLIGHTS OF COMPUTER ARCHITECTURE 15

Calvin Lin is a University Distinguished Teaching Professor at The
University of Texas at Austin, where he is also the Director of the Turing
Scholars Honors Program. He received the B.S.E. in Computer Science
from Princeton University in 1984 and the Ph.D. in Computer Science
from the University of Washington in 1992. He has broad interests in
systems research, including compilers and computer architecture.

