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Abstract

Based on the popular Caputo fractig®al derivative of order 8 in (0,1),

we define the censored fractional v n the positive half-line R;..
This derivative proves to be the Fel®r ge or of the censored (or resur-
rected) decreasing [-stable proce R,. We provide a series representa-
tion for the inverse of this cenfOM™ ional derivative. We are then able
to prove that this censored p % hits the boundary in a finite time 7,

whose expectation i oM 10 that of the first passage time of the
[-stable subordina alsyshow that the censored relaxation equation
is solved by the LapMge tirsform of 7o,. This relaxation solution proves

one series, with algebraic decay one order faster

to be a complet o)

than its Capu unMfrpart, leading, surprisingly, to a new regime of frac-

tional r 2tion els. Lastly, we discuss how this work identifies a new
pel.

Key Words and Phrases: fractional initial value problem; censored sta-
ble subordinator; fractional relaxation equation; Mittag-Leffler function

1. Introduction

Fractional derivatives, a special class of nonlocal integral and pseudo-
differential operators [15], 22 [47, 28], have been successfully employed to
model heterogeneities and nonlocal interactions in many applications (see,
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e.g., [39, 42 44, 11]). They also enjoy an interesting mathematical the-
ory with deep connections to Lévy processes (see, e.g., [41] [7, [33], 34 [35]).
For example, the Caputo derivative [14] of order 8 € (0,1) on the posi-
tive half-line R™, plays important roles in modelling non-exponential relax-
ation [14} 42] and non-Markovian sub-diffusive dynamics [40, 1, 23]. For a
smooth function u vanishing outside R, the Caputo derivative equals the
Riemann-Liouville (R-L) derivative Dg [14] given by
z -1-8 -B
Dgu(x) = /0 (u(z) — u(z — 7‘))‘; dr + u(:v)xi > 0.

(1.1)

is the de-

Probabilistically, —Dg generates a killed Lévy process
creasing 3-stable process S = {Sl}s>o killed at tjgae
time from Ry [3, 29]. Intuitively, the first sum % describes
the decreasing [-stable jumps landing inside s P /(1 - pB) =
f;o 18 / ‘F(—ﬂ)‘ dr is the killing coefficient %or tae jumps landing out-
side Ry. In this work, we introduce what we e censored fractional
derivative 05 , allowing the represe%ti

T 1-8
8gu(x) = / (u(x) — =) ’F ‘ dr, x>0. (1.2)
It is intuitively clear that —8 N Pws the decreasing (-stable jumps to
land 1n51de R4, and guppeassd Je landing outside R,. Indeed we prove

r of S¢ = {S¢}s>0, the censored decreasing
construct S¢ by repeatedly resurrecting in
situ the killed deggea: Fstable process, following the canonical Ikeda—
Nagasawa—Wajgna ) piecing together procedure [26]. (Cf. [37.
Remarlg3.3| for er notions of “censoring” a process.)

le subordinator, as we now explain. We first prove the well-
the basic initial value problem (IVP)

{8gu(x) =g(z), z€(0,7T],

u(z) =uy, x=0,

posedness
(1.3)
for any T" > 0, up € R and certain g € C(0,7]. Our proof is based on

constructing the candidate solution v = ug + Ig g, where Ig allows a prob-
abilistic series representation and the expected potential representation:

Ig(z) = Jg(x +ZE [Jog } (1.4)
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_E, [/Ow 4(5°) ds} | (1.5)

Here, J(’? is the R-L integral, i.e. the inverse of Dg , given by

Jyg(z) = /Oxg(y)(x;(‘qg)ﬂ_l dy = E, [/On g(Sh ds], (1.6)

where the second identity is the known potential representation for JOB ;
the discrete-time process X | Xo =z is defined as X := z [[]_,
{Bi}ien is an i.i.d. collection of beta-distributed random vggiales with
parameters 1 — 8 and f3; and 7o, is the lifetime of S¢. The éq

(L.4) and (1.5) is due to the equality in law between X; at i% j-th
resurrection time, combined with the second identity in ce [ ®mark

linear R—L

for more details). The way we solve is to refard
IVP Dgu = ku+ g, u(0) = 0 with the coefficj % xP/T(1 - p5).
It turns out that the formula given in [14, Kheorgm 7.10] for bounded
k still converges for this specific unbounded wing us to construct
the solution. (As for more genergl k t may diverge as O(z~?), [38,
Example 3.4] gave a non-construc f the existence result.) As
we show in [16, Section 3.2], this, @plici ution allows us to establish
the (global) well-posedness of ge IVPs 868u = f(x,u), u(0) = up, for
certain Lipschitz data f.

Using the resultsgabo able to solve the linear IVP 85 U = A\u,

u(0) = ug, for any A btain the Mittag-Leffler-type representation
for its solution

x 1+ np) 1\
u(z) = 9@ NH( n5+1—5)_r(1—5)) ’ (1.7)

where a v’ product equals 1 by convention (also, u(x) = ug if A = 0)
and each Nfctor Of the indexed product is positive by . Surpnsmgly, for
plution decays at the fast algebraic rate 2=1=% (Theorem [3. ,
which we believe is a new regime for fractional relaxation models. Indeed
the Caputo fractional relaxation solution uoEg()\xfB ) decays at the rate z =
[14, Theorem 7.3], where Eg(z) = Y 7 jz"/T'(nf+1) is the Mittag-Leffler
function. Moreover, the lagging and leading coupled fractional relaxation
equations in [2, 50] model the decay rate =7 for some vy € (0,1). Our
proof (inspired by [I8, Theorem 3.2]) is based on maximum principle and
turns out to be versatile, albeit elementary. Indeed the same argument
proves the decay rate x~!1=% of the solution to 8gu =X Pu(A<0, a>
0) (see Proposition , which is again one order faster than its Caputo
counterpart (expressed by the Kilbas—Saigo function [43]). Moreover, we
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will show how to adapt this argument to the Caputo setting to give new and
simple proofs of the two-sided uniform bounds of Eg and more generally, a
class of Kilbas—Saigo functions, which are the recent results in [46, Theorem
4] and [10, Proposition 4.12], respectively. This very argument may have
even broader applications, e.g., in general Caputo-type relaxation problems
(corresponding to general killed subordinators), see Remark (iii).

As a special case of (L.5]), we have the identity

B

Ee[Too] = Eg [Tl]m

, where E,[r]| = T

Lévy process never hits the boundary, whether ce
Ry. (Also, censored decreasing compound Poiggo
the barrier in finite time, and our numerical sigfulati suggest neither do
censored gamma subordinators.) We are then o show several more
bilistic aspects of 865 . That is,

generated by o7 , and that

we will prove that 5S¢ is indeed a Fe
the exit problem for 7., is solved

uoEq [exp{ATo}] equals themgie ,forallz >0and A € R. (1.9)

As a consequence of l@b &m ain all the moments of 7, and confirm
the complete monotdi Ny (T We emphasise that (1.9)) is significantly

harder to prove thaljy/#'aMy ounterpart E,[exp{A1}] = Eg(Az”). This
is mainly due to {HeQgapPcability of Laplace transforms to S¢ and the
ts in (1.7) (see [16, Remark 4.14] for more detail).

Nonetheless, bt a proof by combining our series solution to the

hu = Au-+g with a simple semigroup theory argument,
following\ 24, ollary 5.1]. We could alternatively try combining our IVP
theory witQ standard potential theory (see, e.g., [13, Chapter 3]) appplied
to the Fey®man—Kac semigroup of —Dg + (A+ k), but it would be more
involved. (We also remark that serves as an efficient alternative to
numerically compute for A <0.)

Lastly, we discuss how this work sets the foundations for the study of a
new time-fractional diffusion equation 85 u = Au/2, solved by the process
{Br @ }e>0. (Here 85 acts on the time variable, B is a Brownian motion
independent of 7o (t) := 7o | S§=t.) This is the censored analogue of the
Caputo time-fractional diffusion equation Dg [u—u(0)] = Au/2, which is
solved by the fractional kinetic process {B;, () }¢+>0 (With B independent of
the inverse stable subordinator 7 (t) := inf{s : t<—S!}), a non-Markovian
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sub-diffusion process arising from several central limit theorems [40], [T}, 23].
As we discuss in Remark [4.5}(i), although both B, and B,  are sub-
diffusion processes (due to (|1.8))), their respective characteristic functions,
Es(\?) and (for some A < 0), display strikingly different decay rates
(due to our results on relaxation solutions).

This work is organized as follows: Section [2] introduces notation, re-
calls basic results on fractional calculus, defines the censored fractional
derivative, and studies the solution kernels; Section [3| focuses on the well-
posedness and series representation of the solution to , then4qddresses
linear censored IVPs; in Section |4] we construct the censorgg degreasing
[-stable process and apply our IVP theory to its study.

2. Preliminary notation and definitio

Throughout this article, we denote by 5 (0 1) order of
fractional derivatives, and by [0,7] (0 < T ) nterval of inter-
est. We denote by N, R and R the sets of po tegers real numbers
and positive numbers, respectively. For gny mt Q2 C R we denote by
C(Q),CHQ) and L'(Q) the real fu ioys ore() that are continuous, contin-
uously dlfferentlable and Lebesg eg e) respectively. We abbreviate
C(Q)NLYQ) to CNLYQ). For pact (¥ we denote by || - [|¢(q) the sup
norm. We denote by F the u ctlon and frequently use w1thout
mention the standard 1dent1t ['(1—-a) for all @ € R\N,

D(B+1)I(1-B) =

= B)<T(14+a)'(1-74) for all a> 0. (2.1)

x
T
/ (z—7r)" W et L)) for all a, v, x > 0.
0 F('Y +a)
We also rely c% he inequality (which we prove in Lemma [2.3))
T

s and fractional function spaces. We present some
basic resus about the R-L fractional derivative. We refer to [14] for a

DEFINITION 2.1. For 3 € (0,1), u € C N L'(0,T), define R-L integral

T (z—r)f1
Jgu(x):/o (F(‘g)u(r)dr, x € (0,7T].

We define the function spaces

C5(0,T] = {u eCnLN0,T): JiPue cl(o,T]},
0500, T) = C[0,T) N C5(0,T),
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and for u € C3(0,T], = € (0,T], we define the R-L derivative

By &g A [T@—r)”
Dyu(z) = @JOI u(z) = d:v/o Wu(r) dr.

REMARK 2.1. Note that C(0,77] is chosen so that the image of Dg is
contained in C(0,T]. Moreover, C3[0, T is chosen to be the solution space,
as we will explain in Remark

(i) Ifu € C N LY(0,T), then Jiu € C N L*(0,T).
(i) If u € C N LY(0,T), then Jou € C3(0,T] and
(iii) Assume g € C N LY(0,T). Then

u= Jg}g if and only if Dgu =
\ i Jé_ﬂu(x) =0.

(iv) If u € C3[0,T] satisfies Dgu 0, then u = 0.

The proof is straightforw given in [16, Appendix A.1].

REMARK 2.2. cQQat emma[2.1}(iv), the condition u € C3[0, T
cannot be weake v P5(0,T], since Dgx5*1 is also 0.
2.2. Censore cf¥nal derivative.

DErFINSAONYZ.2.  Given 8 € (0,1), we define the censored fractional
derivative Bf any u € Cg(0,T] as

agu(:n) = Dgu(x) -

X

mu(gp), for all x € (0,T].

REMARK 2.3.

(i) Like the Caputo derivative, the censored fractional derivative maps
constants to 0, and satisfies the scaling property

Ogv(:c) = C_BGgu(x/c),
where u € C3(0,T], ¢ is a positive constant and v(z) := u(z/c) €
C3(0, 1.
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(ii) For functions of the form z® (o > 0), the censored fractional deriv-
ative equals the R-L derivative up to a constant multiple: 8§ % =
Ca, BDg %, where

F(O[‘l‘l—ﬂ) B a a—p3 F(Oé+1)
D(a+1)I(1-73)’ Doz™ = Ma+1-08)

Ca, =1~

By (2.1)), cq,p is in (0,1). In particular, for « = 3, we have 9yz* =
L(B+1)(Bm—sin(B7))/(B7). While we can talk about the s§migroup
property for D’B and the Caputo derivative [14, Theo, 13 and
Lemma 3.13], we cannot for (9ﬂ For instance,

00 0p & = Ca—p, Ca,8 Dg p

however co—, 8 Ca,y 7 Ca—B,~ Ca, 3 Unless Ngg

(iii) If u € C’l(O T] N LY(0,T), then 00, T'], Jyu allows the represen-
tation , from Wthh it 1 t —85 satisfies the positive
maximum principle [9], and ce itw# dissipative in the sense that

H)\u+8 ullcro,r) = Alull r any A > 0 and u € C1[0, 7).
(iv) The Laplace transform @ce ored fractional derivative is

k) B
L[08u] (k) 5 u —klﬁ x/ x)]u)), k>0,
which differS N W (L[u](k) — k_lu(O)), the Laplace transform of
the Cap tive [41, Chapter 2.4]. One can notice that even in
Lal S &t is unclear if the initial conditions can be imposed on
the 8gu =g.

REMARK 2.4. We will spend the next few pages establishing the well-
posedness of 85 u = g with u(0) = uo, for certain g. With the initial condi-
tion imposed, C[0, T, which equals {u € C[0,T7 : J&fﬁu € C1(0,T]}, now
becomes a natural function space for solutions. A large part of the Caputo
literature (e.g., [14]), however, chose Jg [C N Ll(O,T]], i.e., the image of
Jg over C N L'(0,T], as the solution space. This difference seems not to
matter, at least to our studies. Indeed, the set U consisting of the solutions
to (for those g of interest) is contained in the intersection of those
two spaces, as shown in the diagram below (see [16, Appendix A.3] for the
proof of the diagram)
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where we define U = {u € Cg[0,T] : xﬁ_o‘f)gu € C[0,T) for some o > 0}.
Lastly, let us mention that JOﬁC[O,T] = {ue C0,T]: J(%*’Bu e C'o, T}
[48, Proposition 4.1].

kernels for the convergence study of (1.4)). This leads to
is a crucial bound in this work. The probabilistic igte
kernels under consideration will be presented in Se

DEFINITION 2.3. For0 <r < z, recursivel;{ deﬁ>e e following kernels
(x—r)P~1p=F

ki(z,r) = F(B)F(\

x

Jj=1
(2.2)
ki_1¥s,r)ds, j>2.

REMARK 2.5. Q ch z > 0, ki(x, -) is a beta distribu-

tion on ) with (1-5,8), and btralghtforward induction
arguments can be & ve that

kj(z,r)
1(

At

DEFINITION 2.4. For ¢ € C[0,T], we define

dr=1 (j>1,2>0)

r
z,s)ki(s,r)ds (7 >2, x>r>0).

/fﬂ ki(z,r)Y(r)dr, x>0,
0
¥(0), =0,

where the explicit dependence of IC on (8 is suppressed to ease notation.

Ky (x) =
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REMARK 2.6. It is easy to see that Ki(x) = Jgj [27P4(2) /T (1 = B)]
for ¢ € C[0,T] and = € (0,T], and that K is a linear operator preserving
positivity (K¢ > 0 if ¢ > 0).

LEMMA 2.2. For any o > 0, we have
Ka® = z°T(a+1-8)/(D(14+ )l (1-B)).

If ¢ € C[0,T) satisfies |1(z)| < Ma® for some M > 0 and all x € (
then Kv € C[0,T], and |IC7,/J | < MKz® for all x € (

P r o o f. The first claim is immediate from the deﬁnl nd by
the assumption on v, we have }lcw )} < K|yl (z rove
that Ct) is continuous on (0, 7. For ¢ € (0, x/2

Ko() = / k(e

Given T € (0,7, for every x € [T1, T| and E , we have

() — Kp(a)| < /klmr\ /_ lm(s:,r)\w(r)!dr
Bla/z — WG + (I B)(w/e — 1) P

L 1¥llero,m
T -pm/e-nF
L e clo.]s

therefore, as ¢ — K+ uniformly on [T1, T|. Because K. is
must be continuous on [T, T, and thus on

continuous on | ) i
(0, 7). In addyon, the continuity of ¥ at z = 0, K¢ (z) — ¥(0) as
r —0, there Y e C0,T). O

(e} tain a crucial bound that will help us adapt [14, Theorem

LEMMA 2.3. For any o > 0, we have

> I(14a)l(1— -t
Zl@:ﬂ:ﬁ( (F(Zﬁl(_ﬁ)ﬁ)o . (2.3)

If ¢ € C[0,T] and |y(z)| < Mz® for some M > 0 and all z € (0,T], then
Z/CW}EC’OT and

Z’W
7j=1

In addition, K74(x) = [ kj(x,r)i(r)dr for all j € N, z € (0,T].

< M) KIz® for all x € (0,T).
j=1
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Proof We first confirm (2.1) using the fact that t* and (1 —¢)~"
strictly increase, so that

1 ! ! [(1+a)T(1-7)
—_— = 1—ta1—t—5dt</ta1—t—5dt: :
a—pB+1 /0( )7 (1=4) 0 (1) 'l+a+1-5)

Applying Lemma.forj times, we get K7z = 2@ (F(H—oz) ( B)/T'(a+
1—6)) 7 . Then, by summing over j, we obtain (2.3)) from (2.1)). Meanwhile,
we have ’IChb ‘ < MKiz® and Kiy € C|0, T SO Z ICJw converges

uniformly to a limit in C[0, T, whose absolute Value is p01ntvv1s ounded
by M Z;}il KJz%. Finally, by induction,

Kip(x) = KKI—1p() = /Ikl(x ) [ ko

//k:l:rr]_
_/oj @ D

REMARK 2.7. In Lemma [2.3] - ﬁrerqul a > 0 (though the last state-

ment there holds for all o > 0 if a =0, let ¢ =1, then

azrdr—

& edness of the censored I'VPs

3.1. Inverse 0 e begin with the basic censored IVP (|1.3) with g €
C(0,T] € R®0ur strategy is to consider the equivalent Caputo/R—L
problem — ug with the unbounded coefficient 2~ /T'(1 — j3),

Bi(z) = F(‘i__mu(x) tg(@), x>0, a0)=0,  (3.1)

and then show that for certain forcing terms g, the formula [14, Theorem
7.10] for bounded coefficients still yields a solution to (3.1)), and thus to
(1.3). (Note that for with g € C[0,T], the solution is already guar-
anteed by [38, Example 3.4] to exist but given no explicit expression. See
[16, Remark 3.1-(ii)] for more detail.)

REMARK 3.1.
(i) We can solve ({3.1)) using Picard iteration, i.e.,

U1 (2) = J5 [27 Pt () /T(1 = B) + g(x)] (m =1,2,---) with @; = 0.
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By Remark E the limit equals Ig g defined in if the iteration
converges.

(i) If one replaces the coefficient in the R-L problem by Cx8/T(1—
B), then the series representation for the solution would be u =

Z?O:O CIKI Joﬁ g, which does not converge for important data (like
g=1)if |C| >T(1+p)I'(1-7p).

We now present a key result concerning IVP (1.3)), which serves as the
fundamental theorem of calculus for ag . Or simply put, Ig is t g as Joﬁ
: B
is to Dy,

THEOREM 3.1. Let up € R and g € C(0,T] such th < @z B
for some M, > 0 and all x € (0,T]. Then there e/*™Rg ue function
u € Cg0, T satisfying (L.3)), and it has the series \% tat

o0
u(z) —ug = Igg(x) = Z Sade), (3.2)

where K° is the identity operator
ug and g continuously in the sense

Theorem is an immedQ uence of Lemmata and

REMARK 3.2. the conditions in Theorem Igg can

be equivalently rep&d a
@ Joe)+ 3 [ byt o, (33)
j=1

=Y KIr(1-B)a’g()] (3.4)
j=1
e 2B g(x

S [’W] (3.5)
§=0

where (3.3)) is due to Lemma while (3.4)) and (3.5)) are due to Remark

From any representation, we can see that I is a linear operator
preserving positivity (IOB g>0ifg>0).

REMARK 3.3. For g € C[0,T], we can prove the continuous dependence
by showing that [|u—uo|cfo,r) < Cllgllcio,r) for some C dependent only on 3
and T'. For a more general g which may diverge at z = 0, C will depend also
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on «, and ||g|lcfo,7] needs to be replaced by ”g”Ga—B(O,T]’ where we define
for any v € R a Banach space G7(0,T] = {h € C(0,T] : ||2]lgvo.1] < oo},
with the norm ||h|gv (0,7 := sup {|z™7h(z)| : € (0,T]}. In particular, if
g € C[0,T] and o = 3, then HgHGD‘*ﬁ(O,T} = |lgllcpo,r)- (Note that G7 is the

same as B defined in [14, Proof of Lemma 5.3].)

LEMMA 3.1. Solutions to problem (1.3 are unique in C3[0,

for every = € (O T] D/B () = T(1 — B) a7 Pu(z), adggr N right-hand
side is in C' N L'(0,T]. Using Lemma [2.1} . (ii) as % o we

obtain Q
x P x P

Dfute) = i 57000) = RS Cime 5719)]| = DiK(o),
where Ku € C3(0,7]. By Lemm ICu is in C[0, T] and so is u — Ku.
Consequently, v —Ku € C3[0 e linearity of D07 we know Dﬁ [u —
ICu} =0. According tg Le , we obtain u = Ku.

Let & € argmax i = 0, then v = 0 on [0,7] be-
cause u(0) = sing the fact that u(§) = Ku(§), we have

) = 0, and we still obtain w = 0 on [0,7]. This proves
e done. |

foé ki(& ) (u ) < 0, where u(§) —u(r) never changes sign for all
r € [0, ], acc the deﬁmtlon of £&. So u(§) = u(r) for all r € [0, &,

LEMMA8.2. For g satisfying the conditions in Theorem Ig g is in
Cgl0,T] with Igg(()) = 0 and 85[59 = g. In addition, Igg depends on g
continuously in the sense of Remark 3.3

P r o o f. Using representation (3.4)), we can see IO) = 0 from the

assumptions on g and Definition then from Lemma |2.3|we obtain .75 g€
C10,T] and that for all z € (0,T]

-1
o) < Bl < Ma® (o ST - sy ) - (0)
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Note that in (3.5)), the summation commutes with Joﬁ , by Fubini’s The-
orem and the above bound. So,

IJg(x) ng

/C]xg

= 5 [oe) + 7 g0

x_ﬁ A x
= ot + 105,

with the last equality due to (3.4). Therefore, Ig g= Jg 1 for a C(0,T]
satisfying

(3.7)

Fla+1-8) \7'
>> . for all T],d (3.8)

<Mz F(1-

[¥(@)] < Mz < T(1+a)(1-7

so Lemma (ii) proves that Igg is in C3(0, T @fﬁ [0YF]. Lemma

(ii) also proves that

I 1

L'\

which rewrites as 865 Ig g = g by Dgfhition\W?2|
To see the continuity of Ig M in (3.6) be ”g”Ga—ﬁ(o 1] (G7(0,T]

is defined in Remark , th ain

()

Dg[oﬂg(x) =y(x) =g(z) + , forallz e (0,7,

—1
8 @)
H-[().gHGO‘(O7 1_6) F(l-ﬁ)) HgHGO‘_ﬁ(U,T]'

Since a > 0, e L ollcp < T gllaar) < Clgllga-sor for
some CydependRg of¥ on «, B and 7. O

EXAMLE 3%. Recall that for the Caputo IVP Dg [u—u(0)] = 2 (a >

—1) with ) = uo, the solution is ug + Jyz* [14]. By (3.4) and Lemma
the solution to (1.3)) for g(z) = z® (a > —f3) is
D(a+B+1) 1 -1
. _Ba _ o at+f _
U(IE) uo = Io$ - < F(Oé + 1) F(l _B)> x CaJrﬁ /BJO )

(3.9)
where cqyg,5 is defined in Remark [2.3}(ii). In particular, when o = 0,
C;-l%ﬂ,ﬂ = fBr/(Br —sin(B7)). If a € (—1,—f], we may not be able to
impose the initial condition in ([1.3]), since the solution may explode at 0.

For example, when o = —f, one can verify that a particular solution is
—I'(1—-3)In(z)/H_3, where H_g is the Harmonic number.
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3.2. Inhomogeneous linear IVPs. We now consider the linear IVP

{agu(:r) = Az Pu(z) + g(z), x € (0,T), (3.10)
u(z) = up, x=0. '

Like its counterpart in classical ODEs, such IVP can play important roles
in more general equations. (Using Picard iteration, we can also show the

global well-posedness for general IVPs aﬁu = f(z,u), u(0) = ug. See [16],
Section 3.2] for more detail.) To solve (3.10)), we need the following lemma.

LEMMA 3.3. For z,a >0 and N € N, we have

N, .Na
5 0575. N 2 X
where 1(zx) is the constant function 1, C' is a positj st dependent

only on « and 3, and we denote

(15127 1) V() = I [ a2 Iﬁ@m} .

es

1 - Na
_F(l—ﬁ)) VY (3.11)

HOIGLO)

we have the fi ind§hpproximation

(1+na) P 1
ST ne) (1 o(h)),
I'(na+1-p) (na) +0 n
which indidgtes that there exists n € N such that for all n > 7,

I'(1+ na) 1 S (na)?
Fna+1-68) T(A-8)— 2~
so there exists C > 0 such that Lemma holds for all N € N. O

PROPOSITION 3.1. Let \,up € R, a > 0 and g € C(0,T] such that
‘g(x)‘ < Mxz"=# for some M,y > 0 and all z € (0,T]. Then (3.10)) has a
unique solution in Cg[0,T] given by the following series

u(@) =ug Y AV (IF [0 )V 1)+ Y AV (I[P ) VI (=), (3.12)
N=0 N=0



CENSORED STABLE SUBORDINATORS AND ... 1049

which depends on ug and g continuously (analogous to Theorem .

Proof. From Lemmawe know Igg € C[0,T] and thus for N € N,
(Ioﬁ [z -])ngg € C|[0,T]. By the positivity preserving property of I’B,

a— N a— N P N
(1517 )M o) < (a2 ) V19 < (Iﬁ[w S gl
As by Lemma the series Y %_o AN (I 4 [ a=8.1)N1 converges yniformly
on [0 T, so does > n_o AN (IO[ a=p. }) g So the functioy u Xiven by
is in C[0, 7] and I 4 [z Pu] is well-defined. Therefor
AIB[“5]+Iﬁg—AuOIﬁ[aﬁZANﬂ3 Q
AL [207P Z)\N 159 + g

= Aug i /\\[é%.])]\urll
N=0

_ N+1
N g+ 1 g

e to the continuous dependence in Theorem
Using Theore , we know that u solves . The continuous
dependence of g o and ¢ is clear from the above convergence.

To ghow th®gnifMeness, assume that ui, us € Cz[0,T] solve (3.10),

1> € C3[0,T) satisfies Ogu = Az® Py with u(0) = 0. By

where the second e

Theorem = )\Ig[xa*/gu] =...o= N (Ig[xafﬁ-])Nu. Then, letting
N — oo aiMpusing Lemma we obtain u = 0. O

3.3. Homogeneous linear IVPs with constant coefficients.

COROLLARY 3.1. [of Proposition For any A, ug € R, the IVP

{Ogu(m) = Mu(x), =€ (0,77,

u(x) = ug x=0 (3:13)

has a unique solution in Cg[0,T] given by u(x) = uo Y . n—o )\N(Ig)Nl(x),
which is equivalent to (1.7)) by letting o = /3 in (3.11)).
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Although the series (1.7 looks cumbersome, it surprisingly decays at
the simple algebraic rate z—1=% for A < 0.

THEOREM 3.2. For A < 0 and uy > 0, the solution u to (3.13)) is
completely monotone (i.e., (—=1)"u™ > 0 on R, for n = 0,1,2,...) and
there exists a constant C' > 1 such that

Lemmata [3.5] and [3.6) below, using a maximum principle

REMARK 3.4.

(i) For Caputo’s counterpart of IVP (3.13]), i.fﬁ, Dgiu—u(O)] =Au, u(0) =

ug, the solution is expressed in terms of t tag-Leffler function

N

T T (3.14)

For A < 0 and uy > , 1t
the rate =7 [I4, T

mpletely monotone and decays at
. By contrast, the censored relaxation
new decay regime =7, (See also [50, page

71).)
or A\, ug > 0, obviously both (1.7) and (3.14) in-

than any polynomial. Indeed, for A = 1, the latter

For (#14) with A\ = —1, up = 1, [46, Theorem 4] gave the uniform
estimates with optimal constants: (1 + I'(1— B)xﬁ)_l <wu(z) < (1+
1 +6)_1x5)_1. In [I6], Proposition B.1] we give what we believe to
be a new and simple proof of those bounds, using the same strategy
used for the uniform bounds of (1.7)). Recently [10, Proposition 4.12]
gave another new proof by showing the generalized results for a class of
Kilbas—Saigo functions. Our simple proof can also be applied with few
modifications to prove those generalized results (see [16, Proposition
B.4]). In Section [3.4] we will use it again, to prove the uniform bounds
of , the solution to 8gu = Az Bu.
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(iii) The reason why our proof is both simple and versatile is that it in-
volves only maximum principle (mentioned in Remark [2.3}(iii)) and
some suitable candidate bounds (e.g. (14 cz)~!7#), but no specific
representation of the solution (e.g. (1.7) or ) In fact, we ex-
pect this strategy to have broader applications. As an example, con-
sider a general Caputo-type derivative D*% (so —D*% generates a non-
increasing pure jump Lévy process killed upon leaving R™ [34]) for a
Lévy measure ¢ with [ min{r, 1}4(dr) < oo,

Dlguta) = [ (o)~ ute = 1) (an) + (ue) — u(0)) v g )
0

and its relaxation equation D*%u =M (A<0). T
as an expectation or a series under mild assumpiiga
It is possible for our strategy to prove two-sided 1% S

without those representations of it. Ind as dlready been
done for certain absolutely continuous w<i SO :a(dr) = 9(r)dr). For
instance, for compactly supported v, the on is given an upper
bound of the decay rate ! I8, ark 3.5]. A special case is the
truncated fractional kernel ¢ (r P 5]}7“*1*5 with 6 > 0 (see [18]
Theorem 3.2], which inspire r pro¥). Even if ¢ is not compactly
supported, as long as fooo r < 0o, the same argument applies.
Another instance is wh is continuous on R and bounded
within [C~1, Chfor 1, our strategy (in [I6, Proposition
B.1]) can still pr tTwo-sided bounds, both of =7 decay.

LEMMA 3.4. A XN and v € CH(0,T) N C[0,T) satisties dov > Ao,
then v is non tivlNgf v(0) > 0, and positive if v(0) > 0.

Pro
point of

pt0) > 0 but v is not nonnegative, let xy be a minimum
05 T], then g > 0 and v(xg) < 0. So we have 0 < Av(zg) <

8631)(350). ptvever, since v € C1(0, T, by Remark (iii) we know that
zo T*lfﬁ
8ﬁv(x0) = / v(xo) —v(zo— 7)) =—— dr <0,
’ 0 ( ) IT(-8)]|
which is a contradiction. Similarly, we can prove v > 0 if v(0) > 0. O

LEMMA 3.5. For A < 0 and ug = 1, the solution u to (3.13)) is positive
and can be bounded from above by v(x) = (1 + ¢|\|"/8x)"1=F, where

CcC =

/B _
IT(=5B)] (21+,8_1 g> /8 (3.15)

2 1-5 '3
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P r oo f. We know from Corollary (3.1 that u € C[0,T]. We also know
that u € C1(0,T] from the uniform convergence of the series representation
of its derivative on any closed interval not containing 0. Thus u remains
positive by Lemma

Let v(x) = (14+2/c)~'7% and first assume that there is a constant ¢ > 0
such that v satisfies the condition in Lemma [3.4 Under this assum‘mon

we get 80 (v—u) — Av—u) > 0 with v(0) —u(0) = 0. By Lemma 3
have v > w on [0,T].

Now, given S € (0,1) and A < 0, up to a constant multiple, i remains
to find a constant ¢ > 0 such that v(z) = (z + ¢) 7177 satisfige N > v,
i.e., for all z > 0,
T ,,4—1—/8
/0 (v(m) v(z r)) |F(—5)‘
or equivalently, for all x > 0,

Let y = x + ¢, then the right- handm I 6) cquals

/ch <(y 31:)61% T1+5®& ((1 _ i)1+6 - 1) Sifﬁ' (3.17)

If y < 2¢, then the ri l can be bounded from above by
20 21+6 1

1/2 1 ds
-8 1 <y Bl 2@ =2 -
/ /0 ((1—8)1+ﬁ =7 /0 ( A A
If y > 2¢, we s@\terv&l [0, 1—c/y] into two parts [0,1/2] and [1/2,1—
c/y]. F secom#subinterval,

/1—C/y . ds 21+,8/ —c/y ds _ ol+5 (g)L%
1/2 —s)tth 58 = 12 Q=)= B \c

Therefore the right-hand side of (3.16) can be bounded from above by

289148 1 oUB y\p 289148 _1 4P
yB 1-3 +yﬂﬁ(7) —F 1-p +cﬂﬁ'
Let

- 2 <21+5—1 g>1/ﬁ
G

then (3.16) will be satisfied and we are done. O
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LEMMA 3.6. If A < 0 and uy = 1, then the solution to (3.13) is
bounded from below by w(z) = (1 + dA|YPz)~1(1 + dP|A|z?)~"!, where
d =08 max {4, (1 - B)(1+2%/8) """

The proof is similar to that of Lemma and given in [I6, Appendix
B.2].

3.4. Homogeneous linear IVPs with nonconstant coefficients.

COROLLARY 3.2. [of Proposition For \,ug € R an 0, the
1vpP
8gu(x) = Az Pu(z), =€ (0,T],
3.18)
u(z) = up, x=0.
Iries

has a unique solution in Cg[0,T] given by the fq

u(z) = Z AN (Ig[xo‘*ﬂ . ])Nl(az)
N=0

o) . N A 1 —1
=0 ), (O >N}1( )

Surprisingly, the solution @ as a decay property analogous to what
< 0 and
18))

we see in Section
PrRoPOSITION P ug > 0, there exists a constant
C > 1 such that soNg#ion u to satisfies
C
o < u(z) < —iFa for all z > 1.

The pXof is"similar to that of Theorem and given in [16, Proposition
3.24].

(3.19)

REMARK 3.5.

(i) For Caputo’s counterpart of IVP (13.18)), the solution can be expressed
in terms of the Kilbas—Saigo function

[e’s) N -1
=u xoc N F(l —+ TLCK)
u(z) = ONEO: (Az®) n[:[l (F 1o B)) . (3.20)

For A < 0 and up > 0, the solution (3.20) decays at the rate x=¢
[10, Remark 4.6 (c)] (and is completely monotone [10, Remark 3.1
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(d)] if & < 1). On the other hand, the censored IVP ([3.18)) once again
models a new decay regime z 1=,

As a side note, for A\,ug > 0, both (3.19) and (3.20]) increase in

x faster than any polynomial. Indeed, for A\ = 1, the latter can be
bounded by exp {(g + s)aza/ﬁ} for any € positive and x large enough
[21l, Theorem 5.9], and our numerical results suggest the same for the
former.

(ii) For (3.20) with A = —1, up = 1, [10, Proposition 4.12] proved the
uniform bounds

(1+T(1—p)z*)"
As mentioned in Remark [3.4}(ii), our maximum argment
can give a new and simple proof of those bounga
(iii) For a = 1, (3.18) can be seen as a linear equa 0 g Au, where
1

we let o(z) = 2771 so that the rescaled fr frivative ac?g acts

P <u@) < (1+T(1+a-Br(1+a)

like the classical first order derivative on liQear fhnctions. This kind of

rescaling naturally extends to more genera local derivatives, and

we refer to [I5] for a discusis«\)f cal calculus and rescaling.
4. Censored dec ing (-stable process
In this section we first pryg t Yhe hitting time of 0 (or lifetime) for

bilistic representation
that our censored pRes ¢
us to show that thglLa Ztransform of the lifetime equals the series ,
and thus they qre etely monotone. We denote by 14 the indicator
f a se All our stochastic processes are real-valued right-
e [cft limits (cadlag), hence we always assume the canonical
lte?®ed probability space as in [4, Chapter O]. For a stochas-
= {Y;}s>0 and a real-valued integrable function f on the
probability”space of Y, we use the notation E, [f(Y)} = E[f(Y) ! Yo :y],
E[f(Y)] = Eo[f(Y)], and correspondingly P,[A], P[A] when f = 14. We
write Y;— = limgy Ys. By a B-stable subordinator (8 € (0,1)) we mean
the Lévy process —S* = {—S!}¢>0 characterised by the Laplace transform
E[exp{kS!}] = exp{—sk’}, k, s > 0 [4, Chapter III]. We denote by B[0, T
the set of real-valued bounded Borel measurable functions on [0,7] and
define Coo(0,T] = {u € C[0,T] : u(0) = 0}, both understood as Banach
spaces with the sup norm. We extend the domain of any f € B[0,7T] to a
cemetery state d imposing f(9) = 0. As discussed in Section[l] we treat the
censored decreasing stable process in R4 because it is generated by —8g ,
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where 8g is the “left” censored derivative (at 0). However, it should be
clear that all the results in this section translate immediately to the cen-
sored stable subordinator in (—oo, b) when paired with the “right” censored
derivative at b € R.

4.1. Construction and finite lifetime. The starting point of the cen-
sored process is always assumed to be fixed to some z > 0. We define
the censored decreasing (3-stable process S¢ by the INW piecing together
construction, then [26] Theorem 1.1 and Section 5.i] guarantees
strong (sub-)Markov process. The construction is: run x + S} gint\ 71, the

at 0); then kill the process if = + S%, < 0; otherwise pieglf pther un in-
dependent copy of S! started at  + STII, and repeat
for at most countably many times.

With Lemma [4.1] we prove that we can dj

decreasing (-stable process S¢| S§=z as

gja i1 < j 9 ] 3
S¢ = {at ZJ L =4S 750 (4.1)
Y - oo
with
0, ) =0,
~ T+ Sg, j= . ~. ]
S) = < ; : = inf {s>7‘j,1 187 < 0}, 7 €N,
STj—1—+St lim 7, j = o0,

XN i
where {—57}en .. collection of S-stable subordinators. Recall [4]

Chapter III] t xpqfation of the inverse stable subordinator

E[Ei(y)] = y*/T(B+1), (4.2)

where we §efine E;(y) = inf{s >0:y< —Sg} for j € Nand y > 0.

LEMMA 4.1. For any x > 0 and j € N, assuming S§ = x, we have
(i) Eg[rj] < 00, Py [Sﬁj € (0,z)] =1 and S7, has the density kj(z, -), as

defined in (2.2);
(i) S7, > 0, and (4.1) equals the INW construction of the censored de-

creasing [3-stable process;
(iii)

z B
Eo[rj1— 7] = Eo [Ej11(S7)] = /0 %

(iv) Pylreo < 00] =1 and P, [SS__ =0] = 1.

kj(z,y) dy; (4.3)
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P roof. The statement (ii) follows immediately from (i). We now
prove (i) by induction. For j = 1, Eg[r] = E[Ey(z)] = 2P /T(B+1) < o0,
and it is known that S, = x+5}1, is beta-distributed on (0, z) with density
k1(z, -) [4, Chapter III, Proposition 2]. Then we perform induction for each
j > 1: since 7; < 00, S¢, > 0 and S/ is independent of (S%,,7;), we have

Ti+1 — Tj = inf{s > Tj: S% < —Sgt}.]} —Tj
=inf{r>0: 57, < —Sﬁ“}
1 (S5). (1.4)
Combining (4.4) with S7, <z and (4.2)), we obtain
Eolrj1] = Eq [Eg+1(5 )]+ Ealr] < E[Ej(z)l g
By definition and 7 we have

C _ C ]+1 _ c ]-‘rl c
Se., =88+ S =8ty SEM(ST‘; )055) € 0.0)

Therefore for any bounded measurgble p#e have

B [£(55,,)] = > 5k )|
@f Sk (y, » dz) k() dy
([ ko bt ay) az
where the secon & holds because Sﬁj is independent of S7*! and
(
e k

has the densi ; the last equality is due to Fubini’s theorem. By
W that ST | has the density kj41(z, -). The induction

For pXt (iil), by (4.4) we have E, [’7']4_1 7 = Eqg [EJH(S%)], mean-
while, sinc S]‘H is 1ndependent of S - by . we have

x z B
E. [Ejﬂ(sﬁj)} :/0 E[Ejﬂ(y)}kj(l‘ay) dy:/o %kj(%y)dy-

We now prove part (iv). The results obtained so far are enough to derive
Theorem below, which immediately implies that P,[7ec < oo] = 1. To
prove P, [S¢ > 0] = 0, first, observe that

o0

0] <) P [Se  >n""],
n=1

and for each n € N
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Py [SS._ > n_l} :Px[ﬂ {Sﬁj > n_l}] = lim P, [S >n" ],
j=1

]—)OO

where we used {S7 > n~1} D {S¢ T 2 n~t} for each j € N and conver-
gence from above of finite measures. Then, Chebyshev’s inequality and the
above results guarantee that

—P, S5, > 0] <K, S5 ] :/0 kj(z, y)y dy,

and the right-hand side goes to 0 as 7 — oo by Lemma [2.3

We can now prove our main result of this subsection/

THEOREM 4.1. The hitting time of 0 of the \%" stale Lévy pro-
cess (4.1)) is finite in expectation, with E; [Ts] :‘SE:@« [71) —sin(ﬁw)/(ﬁw))fl.

REMARK 4.1. Our key mgredxt ving Theorem is the fol-
lowing closed formula for (4.3) ned e proof of Lemma

/ yﬁkj(x,y) dy = :cﬁ(F(ﬁ@ j, for all j € N and z > 0.
0
On the one hand, by Monotone Conver-

Proof. [of Tyh
gence Theorem, E, =W oo By [7j41]. On the other hand, by (4.2),
(4.3) and Remar éach j € N,

B y
Eqo[741 7| Eelrip1 —7i] = WZ (TB+1)ra-s)
=0

=1 =

AsT(B+1\L(1— ) = pn/sin(B7) > 1, the claim follows letting j — co. O

REMARK 4.2.

(i) Theorem is not obvious. For instance, the censored symmetric
B-stable process for 8 € (0,1) never hits the boundary, whether the
censoring is performed in an interval or Ry [6], Theorem 1.1-(1)].

(ii) Any compound Poisson process in R? censored upon exiting an open
set must have infinite lifetime, and so does a non-increasing compound
Poisson process censored in (0, 77]. This is because the lifetime can be
bounded from below by > >, e, = 0o, where {e,}nen is an infinite
subset of the i.i.d. exponential waiting times of the process.



1058 Q. Du, L. Toniazzi, Z. Xu

(iii) The censored gamma subordinator with Lévy measure ¢ (r) = e~ "/r
[7, Example 5.10] seems to have infinite lifetime, because our nu-
merical simulations indicate pathwise that 7; ~ 21/j/3 and 57 ~

exp{—\/3>j } for x =1 and j > 1. We do not know whether other
censored (driftless) subordinators hit the barrier in finite time. If they
do, it is not clear if our proof strategy can be extended to such cases,
as it relies on the closed formula for the potential kernel, which is only
available for the stable case.

4.2. Probabilistic representations of Ig . Firstly, we pr h\t Ig is
equal to the potential of the semigroup of the censored procg .
we give a representation of Ig in terms of products of i.7. 4 % is

random variables.
PROPOSITION 4.1. If g satisfies the assu Dheo em [3.1] or if

g € B[0,T], 1thold5that['ggEC' (0,T), and Qr alpx € (0,T] we have

1g(x) M % (45)

P roof Forg >0 we justif following equalities

Eja(5%)
/ T s + S”l)ds]
0

J
Qoo r Ej+1(57) .
E, E[/ g(SﬁjJrng)ds’S%H
L 0

7=0
=SB | Aa(s5)| = K Hale) = o). (10)
j=0 L j=0

The first equality is an application of Tonelli’s Theorem and a simple
change of variables; the second follows from (4.4); the third is due to the
law of total expectation; the fourth is due to the independence of S7+!
and S7 along with the known identity (L.6) (which is a straightforward
consequence of [7, Eq. (1.38)]); the fifth follows from Lemmata [4.1}(i) and
the last follows the definition of Ig . If g € B[0,T], recalling that
J5lgl@) < sup{lg(y)| : y € [0,2]}2?/T(B+1) and Jjg € C[0,T], by
Lemma we know that Z]O‘io ICjJOﬁg € C(0,T], and that we can apply
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Fubini’s Theorem to the above equalities. If g satisfies the condition in

Theorem m then Theorem proves Ig g € C(0,T] and justifies the
application of Fubini’s Theorem. O

REMARK 4.3.

(i) The above proof provides the following intuition for how 85 extends

the memory effect of Dg . Rewrite the right-hand side of as
Ei(x Too
E[/ ( )g(a:—l—S;)ds} +E$U g(sg)ds].
0 T

Then the first term in weights the pa;t values of
(:r—l—S}El () x], just like in the Caputo case (n
a slightly different form, just because there we gy starts from
x instead of 0). Meanwhile, the second term olWphe interval
0,z + S}El(x)_] according to the censore his second term
can be simplified further using the the dis§gbujgon of ST and written
in terms of products of i.i.d. betaglistribu random variables, as
we will see in Proposition

(ii) Proposition proves that Jo o8P ds] equals the right-hand
side of (3.9). Ifa > — 8, it i%&n yields Theorem |4.1| (by letting
a=0). If a <-4, thomigi nite by Remark In contrast,
E| OEl(x)(x—i—Sl)a ds all @ > —1.

PROPOSITION 0, 57, | S == equals X; := z[T)_, Bi in
law for each j € Na wMgeyB; }icn is an i.i.d. collection of beta-distributed
random variablgs oM, 1) with parameters (1— (3, 3). Moreover, under the

assumpglon of tion Ig allows the probabilistic series represen-
tation
g(w) = E.[JJg(X))], €01 (4.8)
§=0

The proof is straightforward and given in [16, Proposition 4.8].

4.3. Laplace transform of 7.,. We recall some definitions adapted to
our setting that relate to Feller semigroups [9]. A collection of operators
P = {P,}4>0 is said to be a semigroup on a Banach space X if Ps : X — X
is bounded and linear for any s > 0, PsP; = Psy for all £,s > 0, and Py is
the identity operator. We say that P is strongly continuous on £ C X if for
any f € L, Psf — fin X as s — 0, and that P is strongly continuous if P
is strongly continuous on X. We define the generator of P to be the pair
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(G,D), where D := {f € X : Gf converges in X} with Gf := lims_o(Psf —
f)/s, and we call D the domain of the generator of P. Moreover, P is said
to be a positivity preserving contraction on X C B[0,T]if 0 < Pyf <1 for
any s > 0 and f € X such that 0 < f < 1. Finally, a semigroup P on
X = Cx(0,T] is said to be a Feller semigroup if it is a strongly continuous
positivity preserving contraction on X. We recall [0, Page 15] that there
exists a one-to-one correspondence between Feller semigroups and Markov
processes {Ys}s>0 such that f(-) — Psf(-) :=E[f(Ys)|Yo="], s >0, is
a Feller semigroup [9, Page 15].

ProproOSITION 4.3. For any T > 0, the censored decggasin stable
process S¢ induces a Feller semigroup on Cu(0,T], whogd atorks

(05, 15 Coel0,17) Q

Proof. Let Pff(z) = E,[f(Sf)] for t 26 an?f € B[0,T] (defining
Sf =0 foralt > 0if S§ = 0). Then P¢ >0 1s a positivity
preserving contraction semigroup 0.4, due to S¢ being a Markov
process. We denote by L£¢ the largdst Stubs@t of B[0,7] on which P¢ is
strongly continuous and by D¢ theadlomain 8t the generator of P¢. First we
prove L¢ D C(0,T]. For f € et f(x) = f(max{xz,0}) for any

x € (—00,T], and compute

|Pff(z)—f(2)] <

)= F@N] |+ Ea[Lizm) 1 £(5) — F(@)]
oy (245D = F(@)] |21 £l oo, Pt > Er (2)]
Vo +55) = F@)]| + 31 lopaPlt > Bi(@)],

mand vanishes uniformly in z as t — 0 because S is
ces?on {g € C(—00,T] : limy—, oo g(x) = 0} [9]. Meanwhile
d summand, for any ¢ > 0 we can choose § > 0 so that
e for all x € (0, 4] and then we choose ¢ small so that

where t
a Feller
for the se

Ifllcpo,a) <
P[t> Ey(z)] =Pz + S <0] <P < -S| <e, forallz>dandt<{,

soforall t <t

3¢, 0<x<o,
mummﬂpsza@]g{

4.9
3¢l fllcpry, §<w<T. (4.9)

Therefore we have proved the strong continuity of P¢ on C (0,7 and thus
C(0,T] C L£°. We now prove that Coo(0,77] is invariant under P°. The

. . iy . B
key ingredients are Theorem and Proposition which prove that I



CENSORED STABLE SUBORDINATORS AND ... 1061

equals the potential fooo P¢ds and is a bounded operator from B[0,7] to
Coo(0,T]. Then [19] Theorem 1.1°] implies D¢ = Igﬁc, and we have

100 (0,T) C I £¢ C IJB[0,T) C Cuo(0,T).

Since Stone-Weierstrass Theorem and Example (3.1 prove that Ig Coo(0,T]
is dense in Co (0,77, by [19, Property 1.3.B] and the above inclusions we
obtain £¢ = C(0,T]. Because P°L¢ C L€ [19, Property 1.3.A], we have
proved that P¢ is a Feller semigroup on Cs(0,7]. Since its potential is
Ig and a bounded potential determines the generator [19, Thedym 1.17],

Theorem implies that the generator of P¢ is (— 80’8 , ]g C e O
We are now ready to prove a Mittag-Leffler-type A§ ntatidn for
E, [e/\TOO] , whose analogue in the Caputo setting is th MyLltic identity
oo o
M Pi
E,[e*] = : : 4.10
A= 2 G 10

to . This approach allows on®go xit problems by computing
the Laplace transform of the lifetin® of a YgHed Markov process when one
knows the analytical solution to resolvent equation —Gu = Au+ g (G
being the generator of the pr ! our case, the analytical solution is
given by Proposition

first proved in [5]. Our proof follows t@;ppmach of [24, Corollary 5.1]

THEOREM 4.2. <0,T>0and g€ C[0,T],
Tw 0 . .
E, / = Z)\J(Ig)3+1g(x), z € (0,7). (4.11)
0
7=0
Moreov ittag-Leffler-type series (1.7) (uo = 1) equals E,[e*™=] for

all A € ReAd Y5 0.

P r o o’f. For the first claim, if g € Cy(0,T], recalling [19, Theorem

1.1], the equality (4.11)) holds by Propositions and as both sides of
it are the unique solution in Cg[0,T] to the resolvent equation

Bgu:/\u—i—g, u(0) =0, ge€ Cx(0,T],

where we used Ig Cx(0,T] C Cg[0,T] given by Lemma Now, for any

g € C[0,T], take g, € C(0,T] so that g, — ¢ uniformly on every compact

subset of (0,7] and sup ||gn||lcjo,r) < 0o. Fix @ € (0,T], then for any s > 0,
n

Ez[gn(SS)] = Ex[9(S9)], asn — oo,
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by Dominated Convergence Theorem. Applying Dominated Convergence
Theorem again, with the dominating function sup || gan[o,T]e’\S7 we obtain
n

/ eME, (9 (SS)] ds — / eME, [9(59)] ds, as n — .
0 0

On the other hand, by the continuous dependence in Proposition (let
the (a, ) there be (5, 3/2), for example),

SN Y ga(x) = Y N(I5) H g(), asn — .
7=0

§=0
Therefore we have proved (4.11]) for all g € C[0,T].
To prove the second claim for A < 0, in (4.11]) let g 5 that §n the

left-hand side

E, [/Too e’\s)\ds] e ok E
0 A ‘
and on the right-hand side < )
Z /\j+1<105)j+11(1§ %f?)ﬂ(m) —1.
J=0 Jj=
Hence by (with o = ) w ve proved the second claim for A < 0

(with A = 0 being a trivial cgpe combined with Lemma allows
us to compute the moments w efentiating E, [e*™] in A (A < 0) for

n € N times, i.e.
I'(1+j 1 \!
LGg+1-p) T(1-p)
Those momenjqain allow us to prove the second claim also for A > 0,
since waghave

j=1

AToo . )‘j j
0] =3 MR ], Ao
7=0

where the deries in the right-hand side converges to (1.7)) by Lemma 0

COROLLARY 4.1. For any A < 0, the Mittag-Leffler-type series (1.7))
is completely monotone. More generally, for any Bernstein function f the
series (1.7) composed with f1/7 is completely monotone.

P roof Denote by p the law of 7o for S§ = 1 and by My(x) the
series (1.7) (up =1). Then

My(z) = My,5(1) = E; [e(mﬂ)ﬂ”] = /[ )emﬁyul(dy),
0,00



CENSORED STABLE SUBORDINATORS AND ... 1063

where the second equality is due to Theorem The second claim now
follows from [45, Theorem 3.7] because M) composed with f /8 equals

v [ M@ (ay),
[0,00)
the composition of z +— f[o 00) e Y1y (dy) (which is completely monotone

[45, Theorem 1.4]) with the Bernstein function f. The first claim corre-
sponds to the Bernstein function f(z) = z”. O

REMARK 4.4. The proof of in Theorem suits
theory, but is rather indirect, especially when compared
proofs of . However, we cannot adapt those standagd
Caputo setting to our censored setting (see [16, Re Uy Y

REMARK 4.5.
(i) Let 71(t), Too(t) and B denote F(t) (i.e.@verse stable subordi-

nator), 7o | S§=t and an independeyt Bro motion, respectively.
It is known (e.g. [40]) that th\Ca utagtime-fractional diffusion equa-

tion Dg [u—u(0)] = Au/2 is gglve he fractional kinetic process
{B7, (1) }t>0. This process is yl-known as sub-diffusion since im-
plies E[| B, [*] = E[n1 (B+1), which is slower than normal
diffusion E[|Bt|2] =1t. rk suggests that the censored counter-

part Bg u = Au
Indeed, Theo

expect the ti
to have

a new sub-diffusion process {B.__ ) }+>0-
s that E[|B,_|*] = ct? (¢ > 0), and we
e- ibnal evolution equation 8€u =Gu+g,u(0)=¢
generalised) solution

Too

00) + [ 9085, X ds (55,Xo>:<t,x>],

wher§ (t,z) € (0,T]xR?, ¢ € Dom(G), g € C([0,T]xR?), and (G,
Dom( )) is the generator of any Feller process X on R? independent
of S¢. (We think the last claim can be proved using the techniques
from [17, 25], in the light of Proposition [4.3]) Let us also mention
that to find strong solutions to Gg u = Au/2, Theorem ﬂ opens up
the possibility of applying the spectral decomposition method of [12].
(ii) Although both B;, and B, _ spread like t?, their respective Fourier
modes model entirely different relaxation regimes. Namely, we have

E[exp {i\- Bn(t)}] = E[exp{—|)\|271(t)/2}] =tP,
E[exp {iX- B, ) }] =E[exp {—|)\|2Too(t)/2}] =718,
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for any A € R? by (4.10), Theorem and Remark (1) Here
f = g means C~1g < f < Cg for some constant C' > 1.

(iii) There are several interesting questions revolving around B,_, a new

example of anomalous diffusion. For instance, it is natural to ask if
there is a continuous-time-random-walk-type framework which scales
to Br_, as is the case for B, [I, 40] and several other anomalous
diffusion processes [2, 50] related to Caputo derivatives. Moreover,
it is challenging and interesting to study the difference in path regu-
larity between B, _ and B, , in particular because the lat{g can be

“trapped” [40].

We mention that sub-diffusion and fractional relaxatigog’e ns are

widely used to model anomalous (non-Debye) relaxg dieléytrics,

see [30, 49, B2, 50] and references therein. pro-

vide a probabilistic theoretic explanation of t Havriliak—
Ectric field’s

Negami) formula x(w) = (1 + (iw)®)”". (Lege

frequency and x is the electric susceptib{lity. 1s formula fits well
a majority of experimental data.) A typb;mple (Cole—Cole) is
a = € (0,1) and v = 1, ghic modelled by the sub-diffusion
B;, [49] page 3]. On the othe expect B, to model a new
regime Wlthoz—1+6€ an = 5/( 1+ﬁ (by [49, Eq. (1)
and (5)]), although in the 1 ture e.g. [32, 49]) we have not seen
the parameter range «
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