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STABILITY OF A NONLOCAL TRAFFIC FLOW MODEL FOR
CONNECTED VEHICLES\ast 
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Abstract. The emerging connected and automated vehicle technologies allow vehicles to per-
ceive and process traffic information in a wide spatial range. Modeling nonlocal interactions between
connected vehicles and analyzing their impact on traffic flows become important research questions
to traffic planners. This paper considers a particular nonlocal LWR model that has been studied
in the literature. The model assumes that vehicle velocities are controlled by the traffic density
distribution in a nonlocal spatial neighborhood. By conducting stability analysis of the model, we
obtain that, under suitable assumptions on how the nonlocal information is utilized, the nonlocal
traffic flow is stable around the uniform equilibrium flow and all traffic waves dissipate exponentially.
Meanwhile, improper use of the nonlocal information in the vehicle velocity selection could result in
persistent traffic waves. Such results can shed light on the future design of driving algorithms for
connected and automated vehicles.

Key words. traffic flow, nonlocal LWR, connected vehicles, nonlocal gradient, nonlocal Poin-
care's inequality, global stability

AMS subject classifications. 35L65, 90B20, 35R09, 47G20

DOI. 10.1137/20M1355732

1. Introduction. In transportation research, one of the central problems is to
understand the collective behavior of moving vehicles. With the development of con-
nected vehicle technology, vehicles on the road, such as those traveling on the highway,
can be connected through some vehicle-to-vehicle (V2V) or vehicle-to-infrastructure
(V2I) communication networks [23]. As a result, each vehicle perceives nonlocal infor-
mation on the road. The enhanced access to traffic information brings new opportuni-
ties and challenges to many aspects of traffic flows, ranging from traffic management,
communication infrastructure, and protocols to vehicle design and control. Theoreti-
cal studies and modeling efforts are also of great need [35]. On one hand, new models
are imperative to study how nonlocal information affects traffic flows and to explore
the emergence of new traffic phenomena; on the other hand, car manufacturers will
face the problem of designing driving algorithms to guide connected vehicles. This is
an interactive and iterative process: a good algorithm is expected to utilize nonlocal
information to improve the traffic, and at the same time, a good model can guide the
algorithm design.

On the macroscopic level, traffic flows on highways have been modeled via con-
tinuum descriptions and hyperbolic conservation laws [43, 45, 44, 3] similar to models
of continuum media. Our present study focuses on such continuum descriptions of
the dynamics of vehicle densities on a ring road. The main aim of this work is a
mathematical demonstration of how nonlocal information can be utilized to gain de-
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222 KUANG HUANG AND QIANG DU

sired benefits. By conducting stability analysis of a nonlocal macroscopic traffic flow
model, we offer evidence of traffic wave stabilization with proper usage of nonlocal
vehicle density information in velocity control.

1.1. Background mathematical models. A common block of macroscopic
traffic flow models is the continuity equation,

\partial t\rho (x, t) + \partial x (\rho (x, t)u(x, t)) = 0,(1.1)

which describes the conservation of vehicles, where \rho (x, t) and u(x, t) denote the ag-
gregated traffic density and velocity and x and t are spatial and temporal coordinates.
The Lighthill--Whitham--Richards (LWR) model [43, 45] is the most extensively used
macroscopic traffic flow model. It assumes a fundamental relation,

u(x, t) = U (\rho (x, t)) ,(1.2)

between traffic density and velocity, meaning that the driving speed of a vehicle is
determined only by the instantaneous density at the vehicle's current location. The
function U(\cdot ) is also referred to as the desired speed function. The LWR model follows
from (1.1), (1.2) as a scalar conservation law:

\partial t\rho (x, t) + \partial x (\rho (x, t)U (\rho (x, t))) = 0.(1.3)

The LWR model (1.3) may produce shock wave solutions even with smooth initial
data. Such shock wave solutions qualitatively explain the formation and propagation
of traffic jams.

1.2. Nonlocal LWR model. The main objective of this paper is to consider
the asymptotic stability of a nonlocal extension to the LWR model (1.3), proposed
by [6, 32]. The basic assumption underneath such a nonlocal model is that each
vehicle perceives traffic density information in a road segment of length \delta > 0 ahead
of the vehicle's current location. The driving speed of the vehicle is then based on an
weighted average of density within the road segment:

u(x, t) = U

\Biggl( \int \delta 

0

\rho (x+ s, t)w\delta (s) ds

\Biggr) 
,(1.4)

where the nonlocal kernel w\delta (\cdot ) characterizes the nonlocal effect. Equations (1.1),
(1.4) lead to the following nonlocal LWR model:

\partial t\rho (x, t) + \partial x

\Biggl( 
\rho (x, t)U

\Biggl( \int \delta 

0

\rho (x+ s, t)w\delta (s) ds

\Biggr) \Biggr) 
= 0.(1.5)

In the existing studies, some theoretical and numerical results have been developed
on the scalar nonlocal conservation law (1.5); see section 1.3 for a review. However,
existing studies on the asymptotic stability of the model are still limited. Under some
suitable assumptions, we show that the stability is closely related to the nonlocal
kernel w\delta (\cdot ). In particular, we prove that the solution of the model exponentially
converges to a constant density as t \rightarrow \infty when the kernel w\delta (\cdot ) is nonincreasing and
nonconstant. Meanwhile, a constant kernel may lead to traffic waves that persist in
time.

To interpret the significance of the mathematical findings made in this work, let
us note their connections to issues that are important in a real traffic situation. In the
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STABILITY OF A NONLOCAL TRAFFIC FLOW MODEL 223

traffic research community, it is widely recognized that the presence of traffic waves
could result in elevated risks for traffic safety, an increase in vehicle fuel consumption,
as well as a reduction in total traffic throughput [49]. Thus, the dissipation of traffic
waves and the stability of constant density states are features that can offer benefits
to both drivers of individual vehicles and the whole traffic ecosystem. The particular
mathematical results established here, in plain words, provide further evidence to the
following natural principle when designing driving algorithms for connected vehicles:
it can be beneficial to utilize nonlocal interactions between connected vehicles for traf-
fic decisions, and while doing so, suitable forms and ranges of nonlocality should be
adopted with nearby information deserving more attention.

1.3. Related work. The nonlocal LWR model (1.5) was first proposed in [6,
32], where the existence, uniqueness, and maximum principle of the weak entropy
solution were proved using the Lax--Friedrichs numerical approximation. The entropy
condition is adopted to ensure the solution uniqueness. In subsequent works, [13]
proved the same results for a generalized model of (1.5),

\partial t\rho (x, t) + \partial x

\Biggl( 
g(\rho (x, t))U

\Biggl( \int \delta 

0

\rho (x+ s, t)w\delta (s) ds

\Biggr) \Biggr) 
= 0,(1.6)

and [10] developed high-order numerical schemes to solve (1.6). In a related work,
[37] studied a family of nonlocal balance laws,

\partial t\rho (x, t) + \partial x

\Biggl( 
\rho (x, t)U

\Biggl( \int b(x)

a(x)

w1(x, y, t)\rho (y, t) dy

\Biggr) \Biggr) 
= h(x, t),

which include (1.5) as a special case. The existence and uniqueness of the weak
solution were proved using the method of characteristics and a fixed-point argument.
The latter also leads to solution uniqueness without using the entropy condition.

In the existing studies, some analytic properties of the nonlocal LWR model (1.5)
were discussed. In terms of solution regularity, [8] showed that the solution of (1.5)
has the same regularity as the initial data when (i) the nonlocal kernel w\delta (\cdot ) is C1

smooth and nonincreasing on [0,+\infty ) with the zero extension on [\delta ,+\infty ) and (ii) the
desired speed function U(\cdot ) is C2 smooth and U \prime \leq  - c < 0 for some constant c. In
contrast, the local LWR model (1.3) can develop shock solutions from smooth initial
data whenever the characteristics impinge on each other. In terms of relations between
the local and nonlocal models, one fundamental question is whether the solution of the
nonlocal model (1.5) converges to that of the local model (1.3) when \delta \rightarrow 0, i.e., the
vanishing nonlocality limit. In [18], it was shown that such convergence is in general
false with a demonstration based on an example associated with the desired speed
function U(\rho ) = \rho and discontinuous initial data. Nevertheless, convergence results
were given in [38] when U(\cdot ) is a decreasing function and the initial data is monotone.
[8, 7] considered a special case where the nonlocal interaction range is infinite and the
nonlocal kernel is exponential, which leads to

u(x, t) = U

\biggl( \int \infty 

0

\delta  - 1e - 
s
\delta \rho (x+ s, t) ds

\biggr) 
.

In this case, the nonlocal-to-local convergence as \delta \rightarrow 0 was proved for uniformly
positive initial data and any desired speed function U(\cdot ) that is C2 smooth and U \prime \leq 
 - c < 0 for some constant c. [17] extended the convergence results for exponentially
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224 KUANG HUANG AND QIANG DU

decaying kernels and a family of decreasing desired speed functions, but required the
initial data to be uniformly positive and have no negative jumps. It is still an open
problem what are sufficient and necessary conditions on the desired speed function,
nonlocal kernel, and initial data for the vanishing nonlocality limit to be true. In
terms of asymptotic behavior, [46] gave a class of monotone stationary solutions of
(1.5) on an infinitely long road and showed that those solutions are asymptotic local
attractors of (1.5). [36] studied a generalized model of (1.5) where a nudging (or
``look behind"") term is added to the nonlocal velocity:

u(x, t) = U

\Biggl( \int \delta 

0

\rho (x+ s, t)w\delta (s) ds

\Biggr) 
\~U

\Biggl( \int \~\delta 

0

\rho (x - s, t) \~w\~\delta (s) ds

\Biggr) 
.

Under the assumptions that (i) the model is solved on a ring road, (ii) U(\cdot ) is decreas-
ing and \~U(\cdot ) is increasing, (iii) w\delta (s) = 1/\delta , and (iv) \~\delta is the length of the ring road
and \~w\~\delta (s) = (\~\delta  - s)/\~\delta , the local exponential stability of uniform equilibrium flows as
t \rightarrow \infty was proved.

Let us also briefly mention other relevant studies. The nonlocal LWR model (1.5)
has been generalized to the case for 1-to-1 junctions [12] and of multiclass vehicles
[14, 16]. There are also nonlocal traffic flow models other than (1.5). In [48], a model
based on Arrhenius ``look-ahead"" dynamics was proposed where the nonlocal velocity,

u(x, t) = U (\rho (x, t)) exp

\Biggl( 
 - 
\int \delta 

0

\rho (x+ s, t)w\delta (s) ds

\Biggr) 
,

[40, 41, 42] analyzed shock formation criteria of the model. In [11], a nonlocal exten-
sion to the traditional Aw--Rascle--Zhang model [3] was proposed and the micro-macro
limit was demonstrated. More broadly, nonlocal models have been drawing increasing
attention in our connected world [24]. Nonlocal conservation laws, in particular, have
been studied in many other applications, e.g., pedestrian traffic [19, 9], sedimentation
[5], and material flow on conveyor belts [33, 47]; see [20] for a review. [27, 26, 25]
discussed nonlocal conservation laws inspired by discrete descriptions of local conser-
vation laws. Some more analytical and numerical studies on nonlocal conservation
laws can be found in [1, 2, 21, 31, 15, 4].

1.4. Main results. Before the rigorous statement of the main results of this
paper, let us specify the set-up of the model problem. First, we consider the problem
on a ring road. Mathematically, we use the spatial domain x \in [0, 1] to represent the
ring road and assume the periodic boundary condition for the equation (1.5).

(A1) \rho (0, t) = \rho (1, t) \forall t \geq 0.
The periodicity assumption is common in stability analysis of traffic flow models

and fits the scenarios in field experiments [50, 49]. The nonlocal LWR model (1.5) is
solved with the periodic boundary condition and the following initial condition:

\rho (x, 0) = \rho 0(x), x \in [0, 1],(1.7)

where \rho 0 is a nonnegative density distribution in L\infty ([0, 1]). We denote

\=\rho =

\int 1

0

\rho 0(x) dx,(1.8)
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STABILITY OF A NONLOCAL TRAFFIC FLOW MODEL 225

the average density of all vehicles on the ring road. Given \=\rho , there is a constant
solution of (1.5):

\rho (x, t) \equiv \=\rho .(1.9)

This constant solution, which is an equilibrium of the dynamics described by the
nonlocal LWR model (1.5), represents the uniform flow in traffic where all vehicles
are uniformly distributed and drive at the same speed.

We then make the following assumptions on the desired speed function U(\cdot ) and
the nonlocal kernel w\delta (\cdot ).

(A2) U(\rho ) = 1 - \rho .
The linear desired speed function U(\rho ) = 1 - \rho , usually referred to as the Green-

shields speed-density relationship [34], is widely used in traffic flow modeling. We
make the assumption (A2) to simplify the problem because in this case (1.5) can be
rewritten as

\partial t\rho (x, t) + \partial x (\rho (x, t) (1 - \rho (x, t))) = \nu (\delta )\partial x
\bigl( 
\rho (x, t)\scrD \delta 

x\rho (x, t)
\bigr) 
,(1.10)

where

\scrD \delta 
x\rho (x, t) =

1

\nu (\delta )

\int \delta 

0

[\rho (x+ s, t) - \rho (x, t)]w\delta (s) ds and \nu (\delta ) =

\int \delta 

0

sw\delta (s) ds.

(1.11)

Equation (1.11) defines the one-sided nonlocal gradient operator \scrD \delta 
x [30, 28]. In

(1.11), the integration is defined with respect to the periodicity of the density function.
The formulation (1.10) reinterprets the nonlocal LWR model (1.5) as the local one
(1.3) with an additional term that may provide some form of nonlocal diffusion for
a suitably chosen kernel w\delta (\cdot ). A sufficient condition is provided in the following
assumption.

(A3) w\delta (\cdot ) is a C1 function defined on [0, \delta ], satisfying

w\delta (s) \geq 0 \forall s \in [0, \delta ] and

\int \delta 

0

w\delta (s) ds = 1.

In addition, w\delta (\cdot ) is nonincreasing and nonconstant on [0, \delta ].
The assumption (A3) is the key to the main findings of this paper. It is the math-

ematical reformulation of the natural design principle that the density information of
nearby vehicles deserves more attention. Under this assumption, we can deduce that
the nonlocal LWR model (1.5) indeed adds an appropriate nonlocal diffusion effect to
the local one (1.3) through a direct spectral analysis (see section 2.1). More precisely,
we will show the following linear stability result.

Theorem 1. Under the assumptions (A1)--(A3), the uniform flow solution de-
fined by (1.9) is linearly asymptotically stable for any \=\rho > 0.

Naturally, for the nonlinear nonlocal system, it is interesting to see if we can
extend the linear stability to get global nonlinear stability. For this, we make one
additional assumption on the initial data.

(A4) There exist 0 < \rho \mathrm{m}\mathrm{i}\mathrm{n} \leq \rho \mathrm{m}\mathrm{a}\mathrm{x} \leq 1 such that

\rho \mathrm{m}\mathrm{i}\mathrm{n} \leq \rho 0(x) \leq \rho \mathrm{m}\mathrm{a}\mathrm{x} \forall x \in [0, 1].
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226 KUANG HUANG AND QIANG DU

With all of the above assumptions, we are ready to state the well-posedness of
the weak solution as defined below.

Definition 1. \rho \in C
\bigl( 
[0,\infty ); L1 ([0, 1])

\bigr) 
\cap L\infty ([0, 1]\times [0,\infty )) is a weak solution

of (1.5) with the initial condition (1.7) and the periodic boundary condition if\int \infty 

0

\int 1

0

\rho (x, t)\partial t\phi (x, t) + \rho (x, t)U

\Biggl( \int \delta 

0

\rho (x+ s, t)w\delta (s) ds

\Biggr) 
\partial x\phi (x, t) dxdt

+

\int 1

0

\rho 0(x)\phi (x, 0) dx = 0

for all \phi \in C1 ([0, 1]\times [0,\infty )) periodic in space and having compact support.

The well-posedness theorem follows from [38]. Even though the spatial domain
considered in that work is set to be the real line \BbbR , the same arguments work with
little modifications for the periodic case.

Theorem 2. Under the assumptions (A1)--(A4), the nonlocal LWR model (1.5)
admits a unique weak solution in the sense of Definition 1, and the solution satisfies

\rho \mathrm{m}\mathrm{i}\mathrm{n} \leq \rho (x, t) \leq \rho \mathrm{m}\mathrm{a}\mathrm{x} \forall x \in [0, 1], t \geq 0.

Although the weak solution always exists, it can be discontinuous. In this paper,
the stability analysis is based upon an energy estimate. To do that, we make a
regularity assumption on the weak solution of (1.5).

(A5) The weak solution \rho \in C1 ([0, 1]\times [0,\infty )).
The assumption (A5) is equivalent to saying that \rho is the classical solution of

(1.5). When the assumptions (A1)--(A4) are true, [8] proved a sufficient condition for
the assumption (A5): the initial data \rho 0 is C1 smooth, and the nonlocal kernel w\delta (\cdot )
is C1 smooth on [0,+\infty ) with the zero extension w\delta (s) = 0 on s \in [\delta ,+\infty ).

Now we are in position to state the main results of this paper.

Theorem 3. Under the assumptions (A1)--(A5), and that \rho (x, t) is the solution
of the nonlocal LWR model (1.5), there exists a constant \lambda > 0 that only depends on
\delta , w\delta (\cdot ), and \rho \mathrm{m}\mathrm{i}\mathrm{n} such that

\| \rho (\cdot , t) - \=\rho \| \bfL 2 \leq e - \lambda t \| \rho 0  - \=\rho \| \bfL 2 \forall t \geq 0,(1.12)

where \=\rho is given by (1.8). As a corollary, \rho (\cdot , t) converges to \=\rho in L2 ([0, 1]) as t \rightarrow \infty .

Remark 1. Theorem 3 says that any classical solution of the nonlocal LWR model
(1.5) converges exponentially to the uniform flow defined by (1.9). In other words,
the uniform flow is a globally asymptotically stable equilibrium attracting all initial
data. In such a traffic system, traffic waves will dissipate and all vehicles will quickly
adjust their moving positions and driving speeds toward the uniform state from any
initial traffic conditions. This conclusion is drawn under the assumptions (A1)--(A5),
which in particular imposes limitations on the nonlocal interactions and other traffic
conditions. More discussions in this regard are given in section 2.4, along with addi-
tional estimates on the exponent \lambda in (1.12) to further illustrate their significance in
real traffic scenarios and the design principle for connected vehicles.

Remark 2. Let us briefly note some possible extensions of Theorem 3. First,
although the regularity assumption (A5) is necessary for the energy estimate, it can
be removed by considering a viscous approximation of the nonlocal LWR model (1.5)
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and passing to a vanishing viscosity limit. Second, the exponential stability result
is also true for the generalized nonlocal LWR model (1.6) with a wide family of
functions g = g(\rho ). We leave more detailed discussions on these extensions and their
interpretations to section 2.4.

The remainder of this paper is organized as follows: section 2 is devoted to stabil-
ity analysis of (1.5) and the proofs of Theorems 1 and 3. Section 3 provides numerical
experiments to illustrate the results. Conclusions and future research directions follow
in section 4.

2. Stability analysis. This section aims to establish the main stability results
stated earlier in section 1.4. In section 2.1, we analyze the spectral properties of
the nonlocal gradient operator \scrD \delta 

x and its corresponding nonlocal diffusion operator
\partial x\scrD \delta 

x. The analysis yields the linear stability result and also helps to show the non-
linear stability. The proof of Theorem 3 builds on an energy estimate that utilizes
two ingredients: a nonlocal Poincare inequality and a Hardy--Littlewood rearrange-
ment inequality. Section 2.2 derives the energy estimate, and section 2.3 completes
the proof of Theorem 3 based on the two inequalities. Section 2.4 discusses further
extensions of the theorem and compares the local and nonlocal models. In section 2.5,
a counterexample is shown in which convergence to the uniform flow does not hold
when the assumption (A3) is not satisfied.

2.1. Spectral analysis and linear stability. Given the assumption (A1), we
consider the Fourier series expansion of any real-valued periodic function \rho (x) for
x \in [0, 1]:

\rho (x) =
\sum 
k\in \BbbZ 

\^\rho (k)e2\pi ikx.

For the local gradient operator \partial x and the nonlocal gradient operator \scrD \delta 
x defined by

(1.11), a straightforward calculation gives

\partial x\rho (x) =
\sum 
k\in \BbbZ 

2\pi ik\^\rho (k)e2\pi ikx, and \scrD \delta 
x\rho (x) =

\sum 
k\in \BbbZ 

[ib\delta (k) + c\delta (k)]\^\rho (k)e
2\pi ikx,

where

b\delta (k) =
1

\nu (\delta )

\int \delta 

0

sin(2\pi ks)w\delta (s) ds, and c\delta (k) =
1

\nu (\delta )

\int \delta 

0

[cos(2\pi ks) - 1]w\delta (s) ds.

(2.1)

As a corollary, the spectrum of the nonlocal diffusion operator \partial x\scrD \delta 
x is given by the

discrete set of eigenvalues \{  - 2\pi kb\delta (k)+2\pi ikc\delta (k)\} k\in \BbbZ . The following lemma gives an
estimate on the real parts of the eigenvalues \{  - 2\pi kb\delta (k)\} k\in \BbbZ = \{ 0\} \cup \{  - 2\pi kb\delta (k)\} k\geq 1.

Lemma 3.1. Under the assumption (A3), we have

\alpha \triangleq inf
k\geq 1

2\pi kb\delta (k) > 0.(2.2)

Proof. By [29, Lemma 2], the assumption (A3) yields that b\delta (k) is strictly positive
for any k \geq 1. In fact, since w\delta (\cdot ) is nonincreasing and nonconstant, integration by
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parts gives

2\pi kb\delta (k) =
1

\nu (\delta )

\Biggl[ 
w\delta (0) - w\delta (\delta ) cos(2\pi k\delta ) +

\int \delta 

0

cos(2\pi ks)w\prime 
\delta (s) ds

\Biggr] 

\geq 1

\nu (\delta )

\Biggl[ 
w\delta (0) - w\delta (\delta ) +

\int \delta 

0

cos(2\pi ks)w\prime 
\delta (s) ds

\Biggr] 
> 0(2.3)

for any k \geq 1. Meanwhile, when k \rightarrow \infty , one can apply the Riemann-Lebesgue
Lemma to get

lim inf
k\rightarrow \infty 

2\pi kb\delta (k) \geq 
1

\nu (\delta )
[w\delta (0) - w\delta (\delta )] > 0.

Combining these facts, we get (2.2).

We now present the proof of the linear stability given in Theorem 1.

Proof of Theorem 1. To show the linear stability, we simply need to consider the
linearized equation of (1.5) around the uniform flow \=\rho . The equation is given by

\partial t\~\rho (x, t) + (1 - 2\=\rho )\partial x\~\rho (x, t) = \nu (\delta )\=\rho \partial x\scrD \delta 
x\~\rho (x, t).(2.4)

The perturbative solution \~\rho (x, t) is assumed to have mean zero initially, which remains
true for all time. Hence, for the linear stability, we are concerned with the eigenval-
ues of the nonlocal diffusion operator \partial x\scrD \delta 

x except the single zero eigenvalue with a
constant eigenfunction. The real parts of those eigenvalues, as shown in Lemma 3.1,
are uniformly negative. We thus have the linear stability stated in Theorem 1.

2.2. Energy estimate. Suppose \rho (x, t) is any C1 solution to the nonlocal LWR
model (1.5). The conservation property gives\int 1

0

\rho (x, t) dx =

\int 1

0

\rho 0(x) dx = \=\rho \forall t \geq 0.

We define the following energy function (aka a Lyapunov functional):

E(t) \triangleq 
1

2

\int 1

0

(\rho (x, t) - \=\rho )
2
dx \forall t \geq 0.(2.5)

It is straightforward to get

dE(t)

dt
=

\int 1

0

\rho (x, t)\partial t\rho (x, t) dx.(2.6)

Noting that (1.10) is equivalent to (1.5), substituting (1.10) into (2.6) yields

dE(t)

dt
=  - 

\int 1

0

\rho (x, t)\partial x (\rho (x, t)(1 - \rho (x, t))) dx

+ \nu (\delta )

\int 1

0

\rho (x, t)\partial x
\bigl( 
\rho (x, t)\scrD \delta 

x\rho (x, t)
\bigr) 
dx.

Apply the Newton--Leibniz rule and integration by parts, we obtain

dE(t)

dt
=  - \nu (\delta )

\int 1

0

\rho (x, t)\partial x\rho (x, t)\scrD \delta 
x\rho (x, t) dx.(2.7)

All boundary terms vanish because of the periodic boundary condition.
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STABILITY OF A NONLOCAL TRAFFIC FLOW MODEL 229

2.3. Proof of Theorem 3. We present two lemmas to estimate the right-hand
side of (2.7). Then the conclusion of the theorem follows from the estimate of the
energy function E(t).

Lemma 3.2 (nonlocal Poincare inequality). Suppose that the nonlocal kernel
w\delta (\cdot ) satisfies the assumption (A3). There exists a constant \alpha > 0 such that for any
C1 periodic function \rho (x) defined on [0, 1],\int 1

0

\partial x\rho (x)\scrD \delta 
x\rho (x) dx \geq \alpha 

\int 1

0

(\rho (x) - \=\rho )
2
dx,(2.8)

where \=\rho =
\int 1

0
\rho (x) dx, and \alpha only depends on the nonlocal range \delta and the nonlocal

kernel w\delta (\cdot ).
Proof. We have b\delta ( - k) =  - b\delta (k), c\delta ( - k) = c\delta (k), and \^\rho ( - k) = \^\rho (k) for all k \in \BbbZ .

By Parseval's identity,\int 1

0

\partial x\rho (x)\scrD \delta 
x\rho (x) dx =

\sum 
k\in \BbbZ 

 - 2\pi ik[ib\delta (k) + c\delta (k)]| \^\rho (k)| 2 =

\infty \sum 
k=1

4\pi kb\delta (k)| \^\rho (k)| 2.

Meanwhile, \int 1

0

(\rho (x) - \=\rho )
2
dx =

\sum 
k \not =0

| \^\rho (k)| 2 =

\infty \sum 
k=1

2| \^\rho (k)| 2.

Then the inequality (2.8) follows from (2.2).

Remark 3. The nonlocal Poincare inequality (2.8) generalizes the classical one,\int 1

0

(\partial x\rho (x))
2
dx \geq \alpha 

\int 1

0

(\rho (x) - \=\rho )
2
dx,(2.9)

by introducing the nonlocal gradient operator \scrD \delta 
x. [29] proposed another generaliza-

tion of (2.9), \int 1

0

\bigl( 
\scrD \delta 

x\rho (x)
\bigr) 2

dx \geq \alpha 

\int 1

0

(\rho (x) - \=\rho )
2
dx,(2.10)

to analyze nonlocal Dirichlet integrals. There, \scrD \delta 
x uses a symmetric difference quo-

tient, so the eigenvalues of \scrD \delta 
x only have imaginary parts b\delta (k). In that case, the

singularity of the kernel w\delta (\cdot ) at the origin is necessary to bound b\delta (k) from below
when k \rightarrow \infty , which then implies (2.10). This type of nonlocal Poincare inequality
(2.10) is further extended in [39], where a nonsymmetric kernel is used to define the
nonlocal gradient, much like the one studied in this work. Then the eigenvalues of
\scrD \delta 

x have both real and imaginary parts. With the kernel w\delta (\cdot ) having no singularity
at the origin, the imaginary parts b\delta (k) decay to zero as k \rightarrow \infty . However, the real
parts c\delta (k) are bounded from below when k \rightarrow \infty , thus also leading to (2.10).

The inequality (2.8), as far as the authors know, has not been presented before.
Here, we are estimating the L2 inner product of \partial x\rho and \scrD \delta 

x\rho . Although the eigen-
values of \scrD \delta 

x have both real and imaginary parts because of the nonsymmetric kernel,
the real parts c\delta (k) have no contribution to the L2 inner product. We assume the
kernel w\delta (\cdot ) to have no singularity, and thus b\delta (k) \rightarrow 0 when k \rightarrow \infty . But it does
not create any issue since (2.8) only requires that 2\pi kb\delta (k) is bounded from below.
The factor 2\pi k, which corresponds to the eigenvalues of the local gradient operator
\partial x, helps us get the desired result.
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230 KUANG HUANG AND QIANG DU

Remark 4. Let us mention that in some special cases, the nonlocal Poincare in-
equality (2.8) can become an equality. For example, when \delta = 1 and w\delta (s) = 2(1 - s),
we have

\scrD \delta 
x\rho (x) = 6

\int 1

0

(1 - s)[\rho (x+ s) - \rho (x)] ds.

A direct calculation gives that \partial x\scrD \delta 
x\rho (x) =  - 6(\rho (x)  - \=\rho )  - 3\partial x\rho (x). That is, the

nonlocal diffusion is actually a local term. As a corollary,\int 1

0

\partial x\rho (x)\scrD \delta 
x\rho (x) dx =  - 

\int 1

0

(\rho (x) - \=\rho )\partial x\scrD \delta 
x\rho (x) dx = 6

\int 1

0

(\rho (x) - \=\rho )2 dx,

which is a key ingredient used in [36] to study the nonlocal LWR model with nudging.
For more general choices of the nonlocal range \delta and nonlocal kernel w\delta (\cdot ), Lemma 3.2
provides a more effective way to derive global asymptotic stability as demonstrated
in this work.

A special case of Lemma 3.2 is when w\delta (\cdot ) is a rescaled kernel: w\delta (s) = w1(s/\delta )/\delta .
That is, the family of kernels \{ w\delta (\cdot )\} \delta \in (0,1] is generated from the kernel w1(\cdot ) defined
on [0, 1]. In this case, it is worthwhile to mention that the constant \alpha in (2.8) is
independent of the nonlocal range \delta .

Proposition 1. Suppose w\delta (s) = w1(s/\delta )/\delta for all s \in [0, \delta ], \delta \in (0, 1], where
w1(\cdot ) satisfies the assumption (A3) for \delta = 1. Then there exists a constant \alpha > 0
only depending on w1(\cdot ) such that for any \delta \in (0, 1], (2.8) holds for the nonlocal kernel
w\delta (\cdot ) with the constant \alpha .

Proof. It suffices to show \alpha \triangleq infk\geq 1,0<\delta \leq 1 2\pi kb\delta (k) > 0, where b\delta (k) is defined
in (2.1).

We denote a = 2\pi k\delta and \nu 1 =
\int 1

0
sw1(s) ds. Obviously, we have \nu (\delta ) = \delta \nu 1.

Then we can rewrite (2.3) as

2\pi kb\delta (k) \geq 
1

\nu 1\delta 2

\biggl[ 
w1(0) - w1(1) +

\int 1

0

cos(as)w\prime 
1(s) ds

\biggr] 
,

=
1

\nu 1\delta 2

\int 1

0

[cos(as) - 1]w\prime 
1(s) ds.

Noting that w1(1) < w1(0), there exist constants 0 < s1 < s2 < 1 and \eta > 0, which
only depend on w1(\cdot ), such that w\prime 

1(s) \leq  - \eta when s \in [s1, s2]. Hence we have

2\pi kb\delta (k) \geq 
\eta 

\nu 1\delta 2

\int s2

s1

[1 - cos(as)] ds.

When 0 < a < 1, we use the inequality 1  - cos(as) \geq (as)2

2  - (as)4

24 \geq 11
24 (as)

2 to
get

2\pi kb\delta (k) \geq 
\eta a2

\nu 1\delta 2
\cdot 11
72

(s32  - s31) =
11\pi 2k2\eta 

18\nu 1
(s32  - s31) = \alpha 1k

2 \geq \alpha 1 > 0(2.11)

for any k \geq 1, where the constant \alpha 1 only depends on w1(\cdot ).
When a \geq 1, consider the following integral as a function of a:

h(a) \triangleq 
\int s2

s1

[1 - cos(as)] ds, a \in [1,+\infty ).
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STABILITY OF A NONLOCAL TRAFFIC FLOW MODEL 231

Then h(a) is always positive and h(a) \rightarrow s2  - s1 > 0 when a \rightarrow +\infty . Hence h(a) has
a lower bound \alpha 2 > 0 for a \in [1,+\infty ), and \alpha 2 only depends on w1(\cdot ) . In this case,

2\pi kb\delta (k) \geq 
\eta \alpha 2

\nu 1\delta 2
\geq \eta \alpha 2

\nu 1
> 0.(2.12)

The estimates (2.11), (2.12) give the conclusion.

Next, we present an inequality similar to (2.8) to deal with the presence of non-
linearity. Actually, Lemma 3.4 stated below bridges between linear and nonlinear
diffusion in the nonlocal setting. Its proof uses the following Hardy--Littlewood re-
arrangement inequality on a periodic domain. A similar inequality is used in [8] to
prove that the local limit of nonlocal solutions of (1.5) satisfies the entropy condition.

Lemma 3.3 (Hardy--Littlewood rearrangement inequality). Suppose \rho (x) is a
continuous periodic function defined on [0, 1]. For any continuous, monotonically
increasing function f(\cdot ) and s \in [0, 1],\int 1

0

f(\rho (x))\rho (x+ s) dx \leq 
\int 1

0

f(\rho (x))\rho (x) dx.(2.13)

Proof. We first assume s \in \BbbQ \cap [0, 1]. Suppose N is a positive integer such that
m = sN is a nonnegative integer. Let us consider the discrete case with

0 = x0 < x1 < \cdot \cdot \cdot < xN = 1, xi = i\Delta x, i = 0, . . . , N,

where \Delta x = 1/N . Denote

\rho i = \rho (xi), fi = f(\rho (xi)), i = 0, . . . , N, with \rho 0 = \rho N , f0 = fN .

Suppose \sigma (1), \sigma (2), . . . , \sigma (N) is a permutation of 1, 2, . . . , N such that:

\rho \sigma (1) \leq \rho \sigma (2) \leq \cdot \cdot \cdot \leq \rho \sigma (N).

The monotonicity of f(\cdot ) yields

f\sigma (1) \leq f\sigma (2) \leq \cdot \cdot \cdot \leq f\sigma (N).

Denote \tau m the shift permutation defined by \tau m(i) = i + m, i = 1, . . . , N (use the
circular extension when i+m > N). The rearrangement inequality gives

N\sum 
i=1

fi\rho i+m =

N\sum 
i=1

f\sigma (i)\rho \tau m\circ \sigma (i) \leq 
N\sum 
i=1

f\sigma (i)\rho \sigma (i) =

N\sum 
i=1

fi\rho i.

The inequality (2.13) can then be derived via a limit process. By the density of
\BbbQ \cap [0, 1] in [0, 1], a further limit process can establish (2.13) for any s \in [0, 1].

Lemma 3.4. Suppose that the nonlocal kernel w\delta (\cdot ) satisfies the assumption (A3).
For any C1 periodic function \rho (x) defined on [0, 1] and satisfying \rho (x) \geq \rho \mathrm{m}\mathrm{i}\mathrm{n} \geq 0,\int 1

0

\rho (x)\partial x\rho (x)\scrD \delta 
x\rho (x) dx \geq \rho \mathrm{m}\mathrm{i}\mathrm{n}

\int 1

0

\partial x\rho (x)\scrD \delta 
x\rho (x) dx.(2.14)
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Proof. Define f(\rho ) = 1
2 (\rho  - \rho \mathrm{m}\mathrm{i}\mathrm{n})

2. Then (2.14) can be rewritten as\int 1

0

\partial xf(\rho (x))\scrD \delta 
x\rho (x) dx \geq 0.

Using integration by parts, it is equivalent to\int 1

0

f(\rho (x))\partial x\scrD \delta 
x\rho (x) dx \leq 0.(2.15)

We only need to show (2.15). A direct calculation gives

\partial x\scrD \delta 
x\rho (x) =

1

\nu (\delta )

\Biggl[ \int \delta 

0

\partial x\rho (x+ s)w\delta (s) ds - \partial x\rho (x)

\Biggr] 
,

=
1

\nu (\delta )

\Biggl[ \int \delta 

0

\partial s\rho (x+ s)w\delta (s) ds - \partial x\rho (x)

\Biggr] 
,

=
1

\nu (\delta )

\Biggl[ 
\rho (x+ \delta )w\delta (\delta ) - \rho (x)w\delta (0) - 

\int \delta 

0

\rho (x+ s)w\prime 
\delta (s) ds - \partial x\rho (x)

\Biggr] 
.(2.16)

We multiply both sides of (2.16) by f(\rho (x)) and integrate them over the domain [0, 1].
The Newton--Leibniz rule gives\int 1

0

f(\rho (x))\partial x\rho (x) dx = 0.

Define

I(s) \triangleq 
\int 1

0

f(\rho (x))\rho (x+ s) dx, s \in [0, \delta ].

Then we have\int 1

0

f(\rho (x))\partial x\scrD \delta 
x\rho (x) dx =

1

\nu (\delta )

\Biggl[ 
I(\delta )w\delta (\delta ) - I(0)w\delta (0) - 

\int \delta 

0

I(s)w\prime 
\delta (s) ds

\Biggr] 

=
1

\nu (\delta )

\Biggl[ 
(I(\delta ) - I(0))w\delta (\delta ) +

\int \delta 

0

(I(0) - I(s))w\prime 
\delta (s) ds

\Biggr] 
.(2.17)

When \rho \geq \rho \mathrm{m}\mathrm{i}\mathrm{n} \geq 0, f(\rho ) is monotonically increasing. Lemma 3.3 yields that I(s) \leq 
I(0) for any 0 \leq s \leq \delta . In addition, the assumption (A3) yields that w\prime 

\delta (s) \leq 0 for
any 0 \leq s \leq \delta . So both terms on the right-hand side of (2.17) are nonpositive, which
gives (2.15).

Naturally, we will be most interested in applying the above lemma to the case
where the density \rho satisfies the assumption (A4) so that \rho \mathrm{m}\mathrm{i}\mathrm{n} > 0.

Now we can prove our main results.

Proof of Theorem 3. Define the energy function E(t) by (2.5). Then the deriva-
tive of E(t) is given by (2.7). By Theorem 2, \rho (x, t) \geq \rho \mathrm{m}\mathrm{i}\mathrm{n} > 0 for all x \in [0, 1] and
t \geq 0. Applying Lemmas 3.2 and 3.4, we get the estimate

dE(t)

dt
\leq  - 2\nu (\delta )\alpha \rho \mathrm{m}\mathrm{i}\mathrm{n}E(t) \forall t \geq 0.

By Gronwall's lemma, E(t) \leq e - 2\lambda tE(0), where \lambda = \nu (\delta )\alpha \rho \mathrm{m}\mathrm{i}\mathrm{n}. It immediately yields
the conclusion.
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Remark 5. An alternative approach to show the exponential stability is to define
the Lyapunov functional,

V (t) =

\int 1

0

\rho (x, t) ln
\rho (x, t)

\=\rho 
dx,

which is the Kullback--Leibler divergence from the uniform density to \rho (x, t)/\=\rho . A
calculation similar to that in section 2.2 gives

dV (t)

dt
=  - \nu (\delta )

\int 1

0

\partial x\rho (x, t)\scrD \delta 
x\rho (x, t) dx.

Applying Lemma 3.2, one can get dV (t)/dt \leq  - \nu (\delta )\alpha 
\int 1

0
(\rho (x, t) - \=\rho )2 dx. The Gron-

wall's lemma together with the inequality (see [36]),

1

2\rho \mathrm{m}\mathrm{a}\mathrm{x}

\int 1

0

(\rho (x, t) - \=\rho )2 dx \leq V (t) \leq 1

2\rho \mathrm{m}\mathrm{i}\mathrm{n}

\int 1

0

(\rho (x, t) - \=\rho )2 dx,

gives the exponential convergence in the Kullback--Leibler divergence,

V (t) \leq e - 2\lambda tV (0),

where \lambda = \nu (\delta )\alpha \rho \mathrm{m}\mathrm{i}\mathrm{n} and consequently

\| \rho (\cdot , t) - \=\rho \| \bfL 2 \leq 
\biggl( 
\rho \mathrm{m}\mathrm{a}\mathrm{x}

\rho \mathrm{m}\mathrm{i}\mathrm{n}

\biggr) 1
2

e - \lambda t \| \rho 0  - \=\rho \| \bfL 2 .(2.18)

The estimate on the Kullback--Leibler divergence was proposed in [36] to prove expo-
nential stability for the nonlocal LWR model with nudging. For the case discussed in
this paper, Theorem 3 provides a sharper result, (1.12), than (2.18).

2.4. Further discussions on the main results. The energy estimate pre-
sented so far requires the regularity assumption (A5) on the solution. A natural
question is whether Theorem 3 holds for the general weak solution. To deal with the
weak solution, we consider the following viscous nonlocal LWR model:

\partial t\rho (x, t) + \partial x

\Biggl( 
\rho (x, t)U

\Biggl( \int \delta 

0

\rho (x+ s, t)w\delta (s) ds

\Biggr) \Biggr) 
= \epsilon \partial 2

x\rho (x, t),(2.19)

where \epsilon > 0 is the viscosity parameter. [18] studied (2.19) on the real line and showed
the solution well-posedness using a fixed-point theorem and L\infty estimates. Based on
similar arguments, one can show that (2.19) admits a unique weak solution under
the conditions in Theorem 2. Further, one can show that the weak solution is C\infty 

smooth by a bootstrap argument. Then we can carry out the energy estimate on
(2.19) and obtain E(t) \leq e - 2(\lambda +c\epsilon )tE(0), where c > 0 is a constant. Letting \epsilon \rightarrow 0,
it can be shown that the solution of (2.19) converges to the solution of the original
nonlocal LWR model (1.5) weakly, using similar estimates as in [18]. As a corollary,
we obtain E(t) \leq e - 2\lambda tE(0) since E(t) is a lower semicontinuous functional of \rho (\cdot , t).
The conclusion of Theorem 3 still holds. We only state the extended result, which is
the same as Theorem 3 without the assumption (A5). The detailed proof is skipped.

Theorem 4. Under the assumptions (A1)--(A4), let \rho (x, t) be the weak solution
of the nonlocal LWR model (1.5). Then there exists a constant \lambda > 0 that only
depends on \delta , w\delta (\cdot ), and \rho \mathrm{m}\mathrm{i}\mathrm{n}, such that the estimate (1.12) holds. As a corollary,
\rho (\cdot , t) converges to \=\rho , which is given by (1.8), in L2 ([0, 1]) as t \rightarrow \infty .
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We now make a couple of additional remarks.

Remark 6. Let us first have a discussion on the choice of the speed function. The
assumption U(\rho ) = 1 - \rho allows us to split the local and nonlocal terms in (1.10) and
carry out the energy estimate. It is interesting to consider extensions of Theorem 3
for more general forms of nonlocal velocity selection. For example, we consider the
nonlocal velocity in the following form

u(x, t) = U0(\rho (x, t))

\Biggl( 
1 - 

\int \delta 

0

\rho (x+ s, t)w\delta (s) ds

\Biggr) 
,(2.20)

which leads to the generalized nonlocal LWR model (1.6) with g(\rho ) = \rho U0(\rho ). When
U0 \equiv 1, it reduces to the case in Theorem 3. Based on (2.20), the generalized model
(1.6) can be rewritten as

\partial t\rho (x, t) + \partial x (g(\rho (x, t)) (1 - \rho (x, t))) = \nu (\delta )\partial x
\bigl( 
g(\rho (x, t))\scrD \delta 

x\rho (x, t)
\bigr) 
.

[13] proved the same well-posedness results for (1.6) as those for (1.5) assuming that
g = g(\rho ) is positive and C1 smooth. If g(\rho ) is bounded away from zero when \rho \in 
[\rho \mathrm{m}\mathrm{i}\mathrm{n}, \rho \mathrm{m}\mathrm{a}\mathrm{x}], the Hardy--Littlewood rearrangement inequality allows us to remove the
nonlinear term g(\rho ) and get an estimate similar to (2.14). Thus, the conclusion of
Theorem 3 remains true.

Remark 7. Let us now discuss the exponent \lambda in the exponential decay estimate
(1.12). For a rescaled kernel w\delta (s) = w1(s/\delta )/\delta as discussed in Proposition 1, one
can examine how \lambda depends on the kernel w1(s), the nonlocal range \delta , and the initial
data. The theoretical analysis in the proof of Theorem 3 gives a lower bound for the
exponent \lambda as \lambda = \nu (\delta )\alpha \rho \mathrm{m}\mathrm{i}\mathrm{n} = \delta \nu 1\alpha \rho \mathrm{m}\mathrm{i}\mathrm{n}, where \alpha and \nu 1 are determined by the
kernel w1(s) and \rho \mathrm{m}\mathrm{i}\mathrm{n} is the minimum of initial data. Moreover, a sharper estimate
can be derived for some special cases. For example, with the solution (or initial data)
sufficiently close to the uniform flow density \=\rho , one may replace \rho \mathrm{m}\mathrm{i}\mathrm{n} by \=\rho . Then,
for the linear decreasing kernel w1(s) = 2(1 - s), similar to calculations carried out
earlier, we can get

\lambda =
2

\delta 

\biggl( 
1 - sin(2\pi \delta )

2\pi \delta 

\biggr) 
\=\rho for \delta \in (0, 1].(2.21)

For sufficiently small \delta > 0, the above leads to

\lambda =
4\pi 2

3
\delta \=\rho .(2.22)

For numerical validation of these estimates, we refer to section 3. Based on both
theoretical estimates and numerical observations, one may consider accelerating the
convergence to the uniform flow by increasing the nonlocal range \delta , at least in a proper
range. In traffic terms, this serves to supplement the design principle presented earlier:
while nearby information should be given more attention, within a proper nonlocal
range, utilizing information gathered over a wider domain could bring more benefits.
However, as \lambda may not stay monotonically increasing for all \delta , the acceleration might
become less effective if \delta gets too large. Thus, one should choose suitably the range of
nonlocal information to be utilized. Meanwhile, it should be noted that the value of \delta 
should also be properly confined in practice to avoid any significant deviation of each
vehicle's driving speed from its desired local speed in consideration of driving safety.
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STABILITY OF A NONLOCAL TRAFFIC FLOW MODEL 235

Likewise, we can also see from the above estimates that the convergence gets faster
with larger values of \=\rho . We can attribute this property to the nonlinear dependence
of the diffusion introduced to the system (1.10) on the traffic density.

Finally, let us make some comparisons between the nonlocal LWR model (1.5)
and the local one (1.3). In particular, in terms of the practical implication on traffic
flows, it is interesting to examine the rate at which the traffic density would get back
to the uniform state. On one hand, as shown in Theorem 3, the solution of (1.5) has
an exponential convergence toward the uniform flow. On the other hand, [22] showed
that every solution of (1.3) with the periodic boundary condition converges to the
uniform flow \=\rho given by (1.8) as t \rightarrow \infty , except the case \=\rho = 0.5 in which the local
flux f(\rho ) = \rho (1  - \rho ) in (1.3) is degenerate. However, the convergence will be much
slower than the exponential convergence of the nonlocal LWR model (1.5). We will
demonstrate the asymptotic convergence speed of the local LWR model (1.3) in the
following example.

Consider the local LWR model (1.3) with the following linear initial data:

\rho 0(x) = \beta x, x \in [0, 1],(2.23)

where \beta \in [0, 1] is a constant. In this case, (1.3) can be solved explicitly and the
solution is a piecewise linear function. When 0 \leq t \leq 1

2\beta , there is a moving rarefaction
wave and the solution given by

\rho (x, t) =

\left\{       
t - x

2t
, (1 - 2\beta )t \leq x < t;

\beta (x - t)

1 - 2\beta t
, t \leq x < (1 - 2\beta )t+ 1.

When t > 1
2\beta , the solution develops a shock wave. The shock wave moves at a constant

speed 1 - \beta and has a jump from \rho l(t) =
\beta 
2  - 1

4t to \rho r(t) =
\beta 
2 + 1

4t . Before the shock
formation (t \leq 1

2\beta ), the L2 error \| \rho (\cdot , t) - \=\rho \| \bfL 2 between the solution and the uniform

flow is constant; after the shock formation (t > 1
2\beta ), a direct calculation gives

\| \rho (\cdot , t) - \=\rho \| \bfL 2 =
1

2
\surd 
12t

.(2.24)

That is, the solution converges to the uniform flow when t \rightarrow \infty with algebraic decay
rate, which means that it would take much more time in the local case for the traffic
to get to the uniform flow than that predicted in the nonlocal case.

2.5. A counterexample with the constant kernel. Suppose \delta = 1/m, where
m is a positive integer. We pick the constant kernel:

w\delta (s) =
1

\delta 
, s \in [0, \delta ].(2.25)

Supposing that the initial data \rho 0(x) is periodic with period \delta , the solution of the
nonlocal LWR model (1.5) can be explicitly given by \rho (x, t) = \rho 0(x  - \=ut), where
\=u = 1 - \=\rho . Note that, at any time t, the density \rho (\cdot , t) is a translation of \rho 0 and hence
periodic with period \delta . Consequently, the velocity

u(x, t) = 1 - 
\int \delta 

0

\rho (x+ s, t)w\delta (s) ds = 1 - 1

\delta 

\int \delta 

0

\rho (x+ s, t) ds = 1 - \=\rho = \=u
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is a fixed constant. The nonlocal LWR model (1.5) then becomes a scalar transport
equation:

\rho t + \=u\rho x = 0,

whose solution is the traveling wave \rho (x, t) = \rho 0(x - \=ut). The traveling wave solution
never converges to the uniform flow as t \rightarrow \infty unless \rho 0(x) is constant. The same
form of counterexample was also proposed in [36] with \delta \in \BbbQ and \rho 0(x - \=ut) being a
sine-wave.

This counterexample justifies the key role of the assumption (A3). When \rho 0(x)
is C1 smooth and bounded between \rho \mathrm{m}\mathrm{i}\mathrm{n} > 0 and \rho \mathrm{m}\mathrm{a}\mathrm{x} \leq 1, so is the solution. All
assumptions in Theorem 3 are satisfied except (A3). However, the conclusion of the
theorem fails to be true because we no longer have the nonlocal Poincare inequality
(2.8) for the constant kernel. To wit, we calculate eigenvalues of the nonlocal gradient
operator \scrD \delta 

x with the constant kernel defined in (2.25). For the eigenfunction e2\pi imx

with frequency m = 1/\delta , the real part of the corresponding eigenvalue is

b\delta (m) =
1

\delta \nu (\delta )

\int \delta 

0

sin(2\pi ms) ds = 0,

which makes \alpha = 0 in (2.2). In other words, the properties of the nonlocal kernel
w\delta (\cdot ) are essential to guarantee that the nonlocal term in (1.10) adds the appropriate
diffusion effect to dissipate traffic waves.

3. Numerical experiments. In this section, we present results of numerical
experiments to further illustrate the established findings and to explore cases not
covered by the theoretical results. The following models are considered:

\bullet the local LWR (1.3);
\bullet the nonlocal LWR (1.5) with the linear decreasing kernel w\delta (s) = 2(\delta  - s)/\delta 2;
\bullet the nonlocal LWR (1.5) with the constant kernel w\delta (s) = 1/\delta .

All three models are solved by the Lax--Friedrichs scheme with spatial mesh size
\Delta x = 2\times 10 - 4. For more details about this numerical scheme applying to the nonlocal
LWR, see [32]. To visualize the evolution of traffic densities solved from the models, we
plot their snapshots at selected times, with different colors. Furthermore, we compare
asymptotic convergence speeds of the solutions to the uniform flow by plotting the
L2 error \| \rho (\cdot , t) - \=\rho \| \bfL 2 as a function of time t. We present these convergence speed
plots on different time scales, that is, the semilog plot to represent the cases with an
exponential decay in time, i.e., \| \rho (\cdot , t) - \=\rho \| \bfL 2 \propto e - \lambda t for some \lambda > 0, and the log-log
plot for cases showing only an algebraic decay in time, in particular, \| \rho (\cdot , t) - \=\rho \| \bfL 2 \propto 
1/t. We also remark that, with the linear decreasing kernel, the exponent \lambda of the
exponential decay rate can be estimated theoretically by (2.21) and (2.22). These
theoretical estimates are compared with the value of \lambda estimated from the numerical
solutions.

Experiment 1. The first experiment aims to validate the quick dissipation of
traffic waves established in Theorem 3. In this experiment, we choose a bell-shaped
initial data:

\rho 0(x) = 0.4 + 0.6 exp
\bigl( 
 - 100(x - 0.5)2

\bigr) 
.

It represents the scenario that initially vehicles cluster near x = 0.5 and the traffic is
lighter in other places. We compare solutions of three models solved with the initial
data. The results are plotted in Figure 3.1.
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STABILITY OF A NONLOCAL TRAFFIC FLOW MODEL 237

Fig. 3.1. Compare solutions from different models with the bell-shaped initial data.

For the local LWR, the solution first develops a shock wave from the smooth
initial data. Then the shock wave dissipates at a speed no faster than the algebraic
decay. At time t = 6, the L2 error \| \rho (\cdot , t) - \=\rho \| \bfL 2 is on the scale of 10 - 2 and one can
still visually observe a jump in density at the shock.

For the nonlocal LWR, the nonlocal range is set as \delta = 0.2. With the linear
decreasing kernel, the solution remains smooth and the initial high density near x =
0.5 quickly dissipates. The solution converges to the uniform flow exponentially with
the numerically estimated exponent \lambda = 1.26, which is very close to the theoretical
estimate \lambda = 1.23 given by (2.21). At time t = 6, the whole density profile is nearly
uniform with the L2 error on the scale of 10 - 4. With the constant kernel, the solution
first has an exponential convergence to the uniform flow, but the L2 error stagnates
on the scale of 10 - 3 after t = 2.5, which means that there are nondissipative traffic
waves with small amplitudes. The contrast between the case using a linear decreasing
kernel and that with a constant kernel helps to illustrate the natural design principle
concerning the use of nonlocal information, that is, placing more attention on the
nonlocal density information of nearby vehicles could result in better traffic conditions.

Experiment 2. The second experiment aims to check the case with linear initial
data as discussed in section 2.4. In this experiment, we choose the initial data to be
a linear function as in (2.23) with \beta = 0.5. We compare solutions of three models
solved with the initial data. The results are plotted in Figure 3.2.

For the local LWR, the solution is a piecewise linear function as given in sec-
tion 2.4. At t = 1

2\beta = 1, a shock wave forms. Then the shock wave dissipates and

the solution converges to the uniform flow with an algebraic decay in the L2 error,
i.e., \| \rho (\cdot , t) - \=\rho \| \bfL 2 = a/t, where the estimated value of the coefficient is a = 0.142.
The result validates the analytically derived value a = 1

2
\surd 
12

= 0.1443 . . . based on

the estimate in (2.24).
For the nonlocal LWR, the nonlocal range is set as \delta = 0.2. With the linear

decreasing kernel, the exponential convergence to the uniform flow is observed with the
numerically estimated exponent \lambda = 0.66, also effectively predicted by the theoretical
estimate \lambda = 0.61 given by (2.21). Meanwhile, we also observe that the traffic density
is no longer piecewise linear when t > 0. A complicated dynamic process is involved
in the transition from the linear initial data to the uniform flow. This shows that
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Fig. 3.2. Compare solutions from different models with the linear initial data.

Fig. 3.3. Compare solutions from different models with the sine-wave initial data.

the nonlocal LWR may have richer transient behaviors than the local LWR. With the
constant kernel, similar patterns are observed but the L2 error stagnates on the scale
of 10 - 2 after t = 2.5 because of the existence of nondissipative traffic waves.

Experiment 3. The third experiment aims to validate the counterexample given
in section 2.5. In this experiment, we choose the initial data to be a sine-wave,

\rho 0(x) = 0.5 + 0.4 sin(4\pi x),

which is periodic with a period 0.5. We compare two solutions with the initial data:
one solved from the nonlocal LWR with the linear decreasing kernel, the other solved
from that with the constant kernel. For both cases, the nonlocal range is set to be
the same as the period of the initial data, i.e., \delta = 0.5. The results are plotted in
Figure 3.3.

With the linear decreasing kernel, the sine-wave quickly dissipates and the solution
converges to the uniform flow exponentially with the numerically estimated exponent
\lambda = 2.02. In comparison, the theoretical estimate (2.21) gives \lambda = 2.00 while the
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Fig. 3.4. Compare solutions with different choices of nonlocal range \delta .

asymptotic estimate (2.22) gives \lambda = 3.29. The result shows that the the actual
exponent \lambda may deviate away from the linear relation described by (2.22) when \delta is
large but can still be effectively predicted by (2.21).

With the constant kernel, the solution is a traveling wave moving at the constant
speed \=u = 1  - \=\rho = 0.5 and the L2 error stays constant in time and never decays. In
this case, vehicles need to repeatedly accelerate and decelerate in accordance with the
oscillations in traffic density, resulting in a worse traffic situation even in comparison
to that modeled by the local LWR. This again reinforces the advantage of paying more
attention to the nearby density information when nonlocal information is utilized.

Experiment 4. The fourth experiment aims to examine the impact of the non-
local range \delta . In this experiment, we focus on the nonlocal LWR with the linear
decreasing kernel and choose a piecewise constant initial data:

\rho 0(x) =

\Biggl\{ 
0.25, 0 \leq x < 0.5;

0.75, 0.5 \leq x < 1.

For various values of the nonlocal range \delta , solutions of the model with the initial data
are compared. The results are plotted in Figure 3.4.

In the first row of Figure 3.4, we plot traffic density evolution for the solutions
with \delta = 0.1 and \delta = 0.2. Although the initial data is discontinuous, the dissipation
of traffic waves and the convergence to the uniform flow can still be observed. This
result indicates that the regularity assumption in Theorem 3 might not be necessary,
as discussed in section 2.4.

In the bottom left figure of Figure 3.4, we compare the decay rates of convergence
for the solutions with \delta ranging from 0.1 to 0.3 with a step 0.05. The result shows
that all solutions have exponential convergence to the uniform flow for these values
of \delta , while the convergence is faster with a larger \delta . The exponent \lambda numerically
estimated from the solutions with these values of \delta are compared with the theoretical
estimates given by (2.21), as shown in the bottom right figure of Figure 3.4. One can
observe an effective match between the theoretical and numerical estimates.

Experiment 5. Finally, let us examine how the mean density affects the decay
rate of convergence. In this experiment, we focus on the nonlocal LWR with the linear
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Fig. 3.5. Compare solutions with initial data with different mean densities.

decreasing kernel. The nonlocal range is fixed to be \delta = 0.2. We choose a family of
bell-shaped initial data

\rho 0(x) = \rho \mathrm{m}\mathrm{i}\mathrm{n} + 0.6 exp
\bigl( 
 - 100(x - 0.5)2

\bigr) 
,

with \rho \mathrm{m}\mathrm{i}\mathrm{n} \in [0, 0.4]. Such a family of initial data have the same variation but different
mean densities. We compare the decay rates of convergence for the solutions with
\rho \mathrm{m}\mathrm{i}\mathrm{n} ranging from 0 to 0.4 with a step 0.1, as shown on the left side of Figure 3.5.

We first observe that even in the case with \rho \mathrm{m}\mathrm{i}\mathrm{n} = 0, meaning that the initial data
is supported on a subinterval of the domain and vanishes outside, the solution still
converges to the uniform flow exponentially. This example shows the possibility that
the established global stability result may still be true for nonnegative initial data with
positive mean densities, which presents an interesting problem to be further studied
theoretically in the future. Moreover, we observe that the convergence becomes faster
as the mean density of the initial data gradually increases, again consistent with the
theoretical findings discussed earlier. To better capture the dependence of the expo-
nent \lambda on the mean density \=\rho , we do a linear fitting of the numerically estimated values
of \lambda with respect to \=\rho ; see the plot on the right side of Figure 3.5. The result shows
that a linear relation of the form \lambda = 2.53\=\rho can effectively describe the dependence
of \lambda on \=\rho . As a comparison, the theoretical estimate (2.21) gives \lambda = 2.43\=\rho , which is
also shown on the right side of Figure 3.5. We observe that the theoretical estimate
effectively matches numerical observations. In addition, the largest deviation of the
numerical estimate of \lambda from both the linear fitting and the theoretical estimate oc-
curs when \rho \mathrm{m}\mathrm{i}\mathrm{n} = 0. This is an interesting phenomenon indicating that there might
be a sharper estimate with the existence of vacuum densities in initial data.

4. Conclusions and future work. This paper studies the global stability of a
nonlocal traffic flow model, i.e., the nonlocal LWR that assumes vehicles' velocities
depend on the nonlocal traffic density. Mathematically, the model is a scalar conser-
vation law with a nonlocal term. Under some assumptions, we prove that the solution
of the nonlocal LWR model converges exponentially to the uniform flow as time goes
to infinity. The key assumption is that the nonlocal kernel should be nonincreasing
and nonconstant. It reveals a simple but insightful principle for connected vehicle al-
gorithm design that nearby information should deserve more attention. Indeed, equal
attention (as associated with the constant kernel) might allow nonuniform traffic pat-
terns to persist in time. Moreover, the analysis on the parameter dependence also
shows the importance of choosing suitable ranges of nonlocal information for achieving
the best effectiveness in traffic stabilization.

From the mathematical perspective, our proof relies on a couple of assumptions.
We believe that the nonincreasing and nonconstant assumption on the nonlocal kernel
plays the key role and other assumptions can be relaxed. For example, we have
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discussed how the regularity assumption on the solution can be relaxed. Further
extensions can also be considered and the same global stability analysis may still be
applicable for more general nonlinear desired speed functions as well as variants of
other nonlocal macroscopic traffic models. It is also interesting to discuss asymptotic
convergence to the uniform flow in other metrics. In particular, it will be interesting
to consider in the future the L1 metric, which is popular for local conservation laws,
and more general Lp metrics for p \not = 2.

From the application perspective, it is an interesting question to check the gen-
erality of the proposed design principle for connected vehicles in real traffic. For
example, we are currently exploring the possible impact on utilizing nonlocal infor-
mation both in space and time. Moreover, a realistic traffic system can be modeled
on different scales using different models. For example, we may consider microscopic
traffic models with a given number of discrete vehicles or nonlocal traffic flow models
based on Arrhenius type dynamics or having nudging (look-behind) terms. In addi-
tion, one may study how to extend the findings presented here to other traffic flow
models involving both microscopic and macroscopic scales.

Acknowledgments. We thank the members of the CM3 group at Columbia
University for fruitful discussions. We also thank the referees for very helpful sugges-
tions.
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