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Abstract. In this paper we consider the functional E, 5 (Q) := fQ dist? (x, 0Q) dz + A 7'[2((9))'

Here p > 1, A > 0 are given parameters, the unknown {2 varies among compact, convex, Hausdorff
two-dimensional sets of R2, 9Q denotes the boundary of , and dist(x, Q) := infycaq | —y|. The
integral term fQ dist? (z, Q) dz quantifies the “easiness” for points in € to reach the boundary, while
H(09)
H2(Q)
minimizers of Ej .

is the perimeter-to-area ratio. The main aim is to prove existence and C':!-regularity of
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1. Introduction. The perimeter-to-area ratio (in 2D), or surface area-to-volume
ratio (in 3D), plays a crucial role in many processes. In biology, for instance, the size
of prokaryote cells is limited by the efficiency of diffusion processes, fundamental to
transport nutrients across the cell, which is strongly correlated with the surface area-
to-volume ratio. A larger surface area-to-volume ratio also gives prokaryote cells a
high metabolic rate, fast growth, and short lifespan compared to eukaryote cells (see,
for instance, [10]).

In chemistry, higher surface area-to-volume ratio increases the typical speed of
chemical reactions. This phenomenon can be observed in many instances, some-
times quite dramatically, such as dust explosions, when dust particles of seemingly
nonflammable materials (e.g., aluminum, sugar, flour, etc.) can be ignited due to
their very large surface area-to-volume ratio [13, 11].

In this paper we will focus on the two-dimensional case. In the above examples,
there are essentially two often competing quantities: one is the “easiness” to access
the boundary, and the other is the perimeter-to-area ratio.

A very thin, rod-like, rectangular body would have very good access to the
boundary (desirable) but large perimeter-to-area ratio. A disc would have the lowest
perimeter-to-area ratio (desirable) among shapes of the same total area, but access
to the boundary would be limited. It is also possible to have both a large perimeter-
to-area ratio and limited access to the boundary.
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Until now, we have discussed the “easiness” of accessing the boundary only at a
qualitative level. In order to quantify it, we introduce the “average distance” term

F,(Q) := /Qdistp(a:,aﬂ) dz

where dist(x, 0Q) := infycon |z — y|; p > 1 is a given parameter and | - | denotes the
FEuclidean distance.
Consider the energy functional

H(DQ)

(1.1) E,A( / dist?(z,09) da + A\———- H2(Q)

where p > 1, A > 0 are given parameters. Define the admissible set

A= {Q:Q c R?is compact, convex, and Hausdorff two-dimensional}.
1
The term 7;‘_[2(2%)

H*(0R2) nor the area H?(2) is penalized; only their ratio is. This makes compactness
results quite challenging to prove, and several estimates (in section 2) will be required.
Another issue is that it is not very clear if the average distance term is just a lower

is the perimeter-to-area ratio. Note that neither the perimeter

order perturbation of HQ(Q)) The role of convexity is to ensure crucial compactness
estimates (Lemmas 2.2 and 3.5). Note that E, 5 is invariant under rigid movements.
Further details about the space of convex sets, and its topology, will be discussed in
section 2. The main result of this paper is the following.

THEOREM 1.1. Given p > 1, A > 0, the following assertions hold:

(1) E, x admits o minimizer in A.

(2) All minimizers are compact, convex, C*'-regular sets, with Hausdorff dimen-
sion equal to 2.

(3) The perimeter-to-area ratio of any minimizer S satisfies

HY(OQ)  p+2 L E
H2Q)  Alp+3) A4 PN

Here, and for future reference, the expression “2 is C*-regular” means that its
boundary 9 is C*-regular; i.e., 9Q admits a C*-regular parameterization.

Note that the functional F), is formally similar to the average distance functional
Y / dist? (z, X) du,
r

where T is a given domain, p is a given measure on I'; and ¥ varies among compact,
pathwise connected sets with Hausdorff dimension equal to 1. The average distance
functional has been widely studied and used in several modeling problems. For a
(nonexhaustive) list of references, we cite the papers (and books) by Buttazzo and
collaborators [2, 3, 5, 4, 8, 9, 6, 7]. Also related are the papers by Paolini and
Stepanov [20], Santambrogio and Tilli [21], Tilli [23], Lemenant and Mainini [17],
Slepcev [22], and the review paper by Lemenant [16]. Similar variational problems
entailing a competition between classical perimeter and nonlocal repulsive interaction
were studied by Muratov and Kniipfer [19], Goldman, Novaga, and Ruffini [15], and
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Goldman, Novaga, and Roger [14]. Figalli et al. studied a competition between a
nonlocal s-perimeter and a nonlocal repulsive interaction term [12].

The rest of the paper is structured as follows: section 2 is dedicated to proving
some auxiliary estimates on the area ((2.1) and Corollary 2.1) and perimeter (Lemma
2.2) of elements of minimizing sequences. Existence of minimizers will be shown
in section 3, while C'>'-regularity will be proven in section 4. Finally, we explore
several future directions to further our understanding of the penalized average distance
problem.

2. Preliminary estimates. In this section we collect some preliminary esti-
mates that will be used later. First, we remark that given p > 1 and A > 0, for any
Q € A it holds

9 47\
(2.1) H(Q2) > AOS

Indeed, consider an arbitrary Q € A. By the isoperimetric inequality, among all
convex sets with area H2()), the perimeter-to-area ratio is minimum for a disc, where

it attains the value 2v/7/+/H?2(2). Hence

2A/m M09
H2(Q) —  HAQ)

< EP,/\(Q)v

and (2.1) is proven.

COROLLARY 2.1. Givenp > 1, A > 0, any minimizing sequence 2, C A satisfies

2 -2
2.2 2(0,) > 4N ——— + 20+ 1 =:
(2.2) H=(Q,) > 47 <p2—|-3p—|—2+ +> Ch,
HY(0,) 1 21
2.3 o o 2T 4on+1) =C
( ) Hz(Qn) A p2—|—3p+2+ + 2

for any sufficiently large n.

Proof. First we prove inf 4 F}, » < +00. Let B; € A be a disc of radius 1. Direct
computation gives

| | N
lﬁf Epx < E,\(B1) = /B1 dist”(z,0B1) dz + )\W
1 2T
2.4 =2 L=r)frdr+ 23 = ——— —— +2X < +o0.
24 7T/O( r)Pr dr + st +oo

Thus, given a minimizing sequence 2, C A, there exists N such that for any n > N
it holds

(2.5) Epr(Q) < zﬂﬁ’)ﬁ FOAF 1,
and (2.1) gives
27 -2
H2(Q,) > 4n\? (W +2X + 1)
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21 22

Fic. 1. A schematic representation of the construction. The points P1 and (resp., P2) are the
points on O above (resp., below) the segment [A, B] furthest away from [A, B].

for any n > N, hence (2.2). To prove (2.3), note that (2.5) forces

o HL(D0,)
AT o1 B () > A )
Fraprz T ATIZ B 2 A5 60

concluding the proof. ]

LEMMA 2.2. Given p > 1 and A > 0, for any minimizing sequence €, C A, it
holds, for all sufficiently large n,

(2.6) HL(09,) < C3 = Cs(p, \)

with C3 being some computable (but uninfluential) constant.

Proof. We first claim that for any Q € A it holds

HA(Q)P !

—po—p—4
oy (TP

(2.7) / dist? (z,0Q) dz > C
Q

Consider an arbitrary Q € A. Let A, B € 09 be two points realizing D :=
|A — B| = diamQ. Let 3;, i = 1,2 be the lines (see Figure 1) orthogonal to the
line segment between A and B (which we denote by [A, B]). Since Q is convex and
|A — B| = diam ©, © is entirely contained in the region between ¥; and . Then let
P;, i =1,2 be the points on 92 such that the triangles AAP; B have maximal areas.
As Q is convex, we have

H2(Q) < D(hy + hs), h; := dist(P;, [A, B]).
On the other hand, H?(AAP;B) = Dh;/2; hence

H2(AAP,B U AAP,B)
H2()

>

DN | =

Now we do the following construction: let O; (resp., 7;) be the incenter (resp.,
inradius) of AAP;B, i = 1,2. Denote by A (resp., P;, B) the midpoints of the line
segments between O; and A (resp., P;, B)—see Figure 2.
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P.

A B

Fia. 2. A schematic representation of the construction. The points A, Iai, and B are the
midpoints of the segments [O;, A], [Oi, B;], and [O;, B], respectively. The red dotted circle is the
incircle of the triangle ANAP; B.

Clearly, AAP;B is a rescaled copy of AAP;B, with area H2(AAP;B)/4. As
2Area

inradius = ———,
Perimeter
we can estimate r; as follows:

Dh; Dh;  h

2.8 = _
(28) "TDY[A-P|+|B-P|~ 3D 3

since by definition we have D = diam Q > |A — P;|,|B — P;|. Then, noting that
1 1
diSt(I,@Q) Z diSt(I, 8AP1B) Z 5 dlSt(O“aAPLB) Z 5’[‘,’

for all z € AAP,B, i = 1,2, we have

2
/ dist?(x,0Q) dx > Z/ dist? (z, 0Q) dz
o =/

AP,
2 L 2
> 2 PrPHA(AAPB) =) 277 P HA (AAPB)
i=1 =1
2
) > —po—p—3pPtl 5 9—po—p-3p). P+l
(2.9) _23 277D > 37P2 7D - maxc b

Recalling that H?(Q) < D(hy + ha), H1(0Q) > 2D, we get

HAQH _ DY (hy o+ ha)?
Hi(OQ)P = (2D)?

=27PD(hy + ho)P*! <2D- max AN
=1,

Hence (2.9) gives

H2(Q)p+1

—po—p—4
weap  CTTET

/ dist? (z,0Q) dz > C
Q
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and (2.7) is proven. From (2.3) we know that

H'(09,) HAQ)L

< _— >
HZ(QTL) < CQ — Hl(aQn)IH‘l = C2 )

so the above inequality gives

fH2 (Qn)p+1

—p—1
W#(am)zccﬁ H(00,).

/ dist? (x,0Q,)dz > C
Q

Now, any minimizing sequence {Q,} is such that, for all sufficiently large n,
Ep(Qn) <infE, x + 1;

thus

inf B\ + 1> Epa(Q) > / dist? (,09,,) dz > CCy P H (99,),
Q'n,

and (2.4) shows that inf F,, y < 400, completing the proof. d

REMARK 2.3. We note that it is an interesting geometric question by itself to
study what the optimal constant C' for the inequality (2.7) is. Furthermore, one may
ask if the form of the inequality is optimal. That is, one may ask, given H*(Q)) and
HL(09Q), what is the minimum of Jo dist? (z, 000) dz, which is a constrained optimiza-
tion problem related to the one considered in this work.

3. Existence. In this section we will prove that the E, y admits a minimizer
in A. As our arguments rely on a lower semicontinuity result, namely, Lemma 3.4
below, we need first to introduce a metric on A.

For any Q1,5 € A, define
(3.1) d(Q1,Q2) == H* (U AQ),

where A denotes the symmetric difference. Set

A := completion of A with respect to d.

Before we can proceed, we need to characterize the elements of A\ A: we cannot
exclude a priori that an element € € A can be quite irregular:

1. Q € A needs not to be closed: indeed it is very possible for a sequence of
compact sets to converge to an open set in the metric d. For instance, let
0, be the closed ball of radius 1 — 1/n centered around the origin; then it
converges to the open ball, centered around the origin, of radius 1.

2. As we do not have any a priori bounds on the diameter of elements of A, a
set 2 € A needs not to be bounded.

3. The distance d is insensitive to perturbations on H2-negligible sets. Therefore,
we cannot exclude that A might contain compact convex sets up to H2-
negligible sets. Thus whether a generic element in A is convex or not is
unclear.

In view of the above mentioned issues, we cannot assume compactness, or convexity,
for elements of A. Our goal is to show (see Lemma 3.3 below) that minimizing
sequences must converge to some element in A.

The next result, from [22], will be crucial for our convergence arguments.
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LEMMA 3.1. Consider a sequence of constant speed parameterized curves 7y, :
[0,1] — K, where K C R? is some compact set. Assume moreover that

(3.2) sup L(vn) < +o0, sup [|[Vnll v ([0,1);re) < 400,

where || - || pv(jo,1);re) denotes the bounded variation norm. Then there exists a curve
v :[0,1] — K such that

L. yn — v in C2([0,1];RY) for all a € [0,1),

2. v =" in LP(0,1;R?) for all p < +o0,

3. 4 5 A" weakly as measures.

REMARK 3.2. We remark that this convergence result is quite strong: consider a
sequence {Qp} C A, and let 7, be constant speed parameterizations of 9. Note
that ~y, are all closed curves. Assume that we are under the hypotheses of Lemma
3.1; hence there exists v : [0,1] — K such that v, — v in C%([0,1];R?) for all
a € [0,1). In particular, we can define 2 to be the bounded region delimited by the
graph of v, and we have the uniform convergence of the boundaries, which in turn
gives da (0, 0Q) — 0. Here dyy; denotes the Hausdorff distance

dy(X,Y) := max { sup dist(z, V'), sup dist(y, X)}
reX yey

Such strong convergence also implies that the characteristic functions xq, converge
to xq in LP, p € [1,+00), since

X = Xall}s ey < HA@uAR) < max { sup L(3a), L(7) } - doe( 92, 092) — 0.

LEMMA 3.3. Consider a minimizing sequence 2, C A; then there exists Q € A
and a sequence x, C R™ such that Q, + x, — Q in the metric d.

Note that since our energy is translation invariant, the above convergence result
is sufficient for our purposes.

Proof. In this proof it is more convenient to work with constant speed, instead of
arc-length, parameterizations.

Consider minimizing sequence {Q,,} C A, and let ¢, : [0, 1] — 9, be constant
speed parameterizations. Note all 92, are closed curves, and as E, ) is translation
invariant, we can replace 2, with translated copies (which, for brevity, we still denote
by Q,, and by ¢,, the parameterization of 9€2,,) such that ¢,,(0) = ¢, (1) = 0. We show
that we are under the conditions (3.2): first, the upper bound on the perimeter (2.6)
and €2,, C R? ensures all §2,, are contained in some compact set K. As the curves ©n
are parameterized by constant speed, we have ||}, || = L(¢n) = H(0Q,) a.e. Then, in
view of Lemma 2.2, we infer (3.2). Therefore there exists a limit curve ¢ : [0,1] — K
such that the convergences in Lemma 3.1 hold. Since ¢,,(0) = ¢, (1) = 0 for all n, we
get ©(0) = p(1) = 0 too. We define Q to be the bounded area delimited by ¢, and the
graph of ¢ turn out to be 9Q2. By construction, €2 is compact.

We need to check it is convex: consider arbitrary P,Q € Q, t € (0,1), and we
show that (1 —t)P +tQ € Q. Consider sequences Py, @, € , such that P, — P,
Qn — Q: since each Q,, is convex, (1 — )P, + tQ, € Q,. By Lemma 3.1, we know
llon — @llco(o,1)m2) — 0. As a consequence,

3 (0D, 0Q) — 0
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too. This allows us to choose, for each n, another point z, € Q such that |z, — ((1 —
)P, +tQn)| < dy(0Q,,09). By construction, now the sequences (1 —¢)P,, + tQ,
and z, have the same limit. As (1 —¢)P, +tQ, — (1 —t)P + tQ and z, — z, hence
z = (1 —1t)P +tQ, using the compactness of ) finally gives z € Q.

Finally, we check that dim, €2 = 2. Since the ambient space R? already has Haus-
dorff dimension two, it suffices to show that 2 contains a set of Hausdorff dimension
two. For each n, we can use the construction from the proof of Lemma 2.2 on each
Q,,: we showed the existence of triangles T; := NAP,B (see Figure 1) whose distance
to the boundary is at least r;/2, with r; being the incenter which satisfied r; > h;/3.

Now, since we showed in the proof of Lemma 2.2 that

2
Z hi.p diam Q,, > H%(,,)

i=1
and

H2(Q,) > Cy,  diamQ, < H(09,) < C3
due to Corrollary 2.1, we get

2

2(Q
S > ) LG
P diam 2, — C3

This shows that at least one of the triangles T}, ¢ = 1,2, must be nondegenerate
since its inradius is bounded from below by

hi,n Cl
ax r;, > max ,
i=1,2 7 i=1,2 3 6C5

and the proof is complete. O

Lemma 3.3 is of crucial importance: since we are interested in the minimizers of
Ejp x, this allows us to reduce the minimization problem to A and neglect the highly
irregular elements of A\ A.

LEMMA 3.4. Given p > 1, A > 0, and a minimizing sequence €, C A converging
to Q € A with respect to d, then it holds

200y — T 2
(33) HAQ) = lm HAQ).
1 S 1
(3.4) H!(99) < liminf A (002,
(3.5) / dist? (x, 0) dz = lim dist? (x, 082,,) dzx.
Q n—-+oo Q.

Proof. Estimate (3.3) follows from the definition of the metric d and Remark 3.2.

To prove (3.4), recall that the perimeter H!(05,) is the total variation of the
characteristic function of €,. Convergence , — 2 with respect to d implies (see
Remark 3.2)

X, — Xa strongly in L'(R?)

with “x” denoting the characteristic function of the subscribed set. Thus (3.4) follows
from the lower semicontinuity of the total variation seminorm.
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To prove (3.5), note that

/ dist? (x, 0Q,) dz = / dist? (z, 082y, ) dx +/ dist? (z, 09, dz,
Qn Q,\Q Q,NQ

/ dist? (z, 0Q) do = / dist? (z,0Q) dx + / dist? (x, 0Q) dz;
Q O\Q,

2.0
hence
’ / dist? (x, 0Q,) dz — / dist? (z,09) dz
Q. Q

(3.6) < / dist? (z, 02, ) dz + / dist? (z, Q) dz

Q2,\Q O\,
(3.7) + / | dist? (x, 0Qy,) — dist? (z, Q)| da.

Q,NQ
By Lemma 2.2,

diam(2,,) < H'(09,) < Cs.
According to (3.4),

diam(Q) < H*(99) < liminf H'(99,,) < Cs.

n—r—+4oo

Therefore,
/ dist? (z,09Q,,) dz < H?(Q,\Q)(diam(Q,,))? < H*(2,\Q)CE — 0,
Q2,\Q
/ dist? (2, 00) da < HA(Q\Q,) (diam(©))” < HA(Q\QW)CE — 0;
O\Q,

hence the sum in (3.6) goes to zero. To estimate (3.7), denote by dy the Hausdorff
distance, and note that, by the mean value theorem, it holds

/ | dist? (z, 0y,) — dist? (z, 0Q)| dz
Q.N0
< / | dist(z, 0€2,,) — dist(x, 0Q)]
Q,N0

-1
“p sup (max{dist(aBQn),dist(m,GQ)})p dz
€N, NN

-1
< H2(Q, N Q) dyy (09, 00) -p( max{diam Q,,, diam Q})p
<H2(Q, N Q) dp(909,,09) -p CEH = 0.

Thus the term in (3.7) goes to zero too, and (3.5) is proven. O
Now we prove part (1) of Theorem 1.1, i.e., the existence of minimizers in A.

LEMMA 3.5. For any p > 1, A > 0, the functional E, \ admits a minimizer
Q € A, which satisfies

H2(Q) > O, HEH(09) < Cs,
with C1 (resp., C3) defined in (2.2) (resp., (2.6)).
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Proof. Corollary 2.1 gives H?(Q,,) > C; for any sufficiently large n, and Lemma
3.4 gives
(3.8) H2(Q) = lim H*(Q,) > C).

n—-+4oo

Based on Lemma 3.4 and (2.6),

(3.9) H(09) < Cs.
Lemma 3.4 gives
HYOQ) . HY(ON,)
1 ———— <1 f——=
(8.10) H2(Q) e H2(Q)
and
(3.11) /distp(x,aQ) dz = lim dist? (z, 09, da.
Q n—-+o0o Q.

Combining (3.10) and (3.11) gives

. H(69)
E,A(Q) = [ dist?(z,00)dx + \=——=—2
Pa)\( ) /Q ( ) HQ(Q)
1
< nli)r_lgoo o dist? (z, 09y, ) dz + Aggi{g % < lnlr_r}irozf) Ep\(Qn) = ir}f E,; O

hence () is effectively a minimizer of E, ) in A. Lemma 3.3 shows ) € A.

4. Regularity. Now we prove part (2) of Theorem 1.1. The proof will be split
over Lemmas 4.2 and 4.3.

LEMMA 4.1. Let S be a compact, convex set, with Hausdorff dimension equal to 2.
Let wy, wy € OS be arbitrary distinct points, and let o be the segment with endpoints
wy and wy. Denoting by S1 and S the two connected components of S\o, then both
S1, So are conver.

Proof. Endow R? with a Cartesian coordinate system. Upon rotation and reflec-
tion, assume that o lies in the y-axis and S7 C {x > 0}, S3 C {z < 0}. Clearly, given
points u,v € Sy, the segment & between u and v lies entirely in S N {x > 0} = Sy;
hence S; is convex. The proof for S5 is analogous. 0

LEMMA 4.2. (C'-regularity) For any p > 1, A\ > 0, any minimizer of E, \ is
C*-regular.

Proof. Consider an arbitrary minimizer Q € A. Endow R? with a polar coordinate
system. We parameterize 0f) by a closed Lipschitz curve

v : [0, 27] — 0.

The proof is achieved by a contradiction argument. Assume that € is not C'-regular.
That is, 7 is not C'-regular at some point ty. Upon rotating the coordinates, we can
also assume tg € (0,27). Since ) is convex, both one-sided derivatives

I~ = lim ~'(t), It := lim +/(t)

— +
t—t, t—tg

are well defined [1, 18]. Denote by « the angle between (= and I*. Clearly, o # .
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FiG. 3. A schematic representation (near ~(to), in first order approximation in €) of the
construction of Q.

Figure 3 is a representation (in first order approximation) of 9Q near v(¢y). For
small parameters 0 < ¢ <« 1, construct the competitor 2. as follows:
1. Choose t; < tg < tg such that (in first order approximation in )

H! (([t1, to]) = H' (([to, t2])) = £ + O(?).

2. Denote by

o= {(1— s)(t) + s7(t2) : s € [0, 1]}

the line segment between v(¢1) and (t2), and set

Note that such L is a convex Jordan curve, and denote by . the bounded
region delimited by L.
By construction, in first order approximation in &, it holds

(4.2) HY(09.) = H'(99) — 2¢(1 — sin(a/2)) + O(e?),
e?sina

(4.3) M) = HA(Q) - 5

+0(e?) = H*(Q) + O(£?).

Moreover, it is straightforward to show that

(4.4) / dist?(z, 0Q) dz < / dist? (x, 0Q2) dz.
Q. Q

Recalling that H2(Q) > 0 (since € is a minimizer), combining (4.2), (4.3), and
(4.4) gives (in first order approximation in ¢)

Epr($2e) = /Q dist? (z, 092.) dz + )\m
H(0Q) — 2¢(1 — sin(a/2)) + O(£?)

H2(Q) + O(e?)

€

< / dist? (x, 00) dx + A
Q

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/22/22 to 160.39.162.82 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

AVERAGE DISTANCE WITH PERIMETER-TO-AREA RATIO 3133

9%

F1G. 4. A schematic representation of the construction near po = (0,0).

. HE(O2)  2)e(1 —sin(a/2)) )
= [ dist? Q)d —
/Q it (,060) de + A o O
2Xe(1 —sin(a/2
— p,)\(Q) o ( HQ(Q)( / )) + 0(52)
) 2Xe(1 —sin(a/2)) 9
:mf{nEpv\— Q) + O(e%),
which is a contradiction for sufficiently small . Thus © must be C'-regular. ]

LEMMA 4.3. Given p > 1, A > 0, a minimizer Q of E, x, let v : [0, H'(02)] —
02 be an arc-length parameterization. Then it holds

(4.5) lim sup 10T 20) = 20(6) +7(t — 2h)]

< 4C
h—0 h? o

for any t, where C is some constant depending only on A and p (and independent of

We remark that (4.5) implies C1'!-regularity of 9f).

Proof. Consider an arbitrary point py € 9. Since we proved that € is C'-regular,
consider a (local) orthogonal coordinate system with origin in py and z-axis oriented
along the tangent derivative (at pg), such that € is entirely contained in the half-plane
{y > 0}. The boundary 912 is thus (locally) the graph of some nonnegative function
f. Clearly, such f satisfies f(0) = 0. See Figure 4 for an illustration.

Choose an arbitrary 0 < € < 1. Denote by

oe :={(z,y) : 0<z<e, y=x-f(e)/e}

the segment between the origin and (e, f(g)). Let L. be the curve obtained by replac-
ing f([0,¢]) with o, that is,

L. := (09Q\f([0,¢])) U 0.

By construction (see Lemma 4.1) L. is a convex Jordan curve, and let €. be the
bounded region delimited by L.. Note the following:
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1. Clearly we can infer

(4.6) / dist? (z, 09, ) do < / dist? (x, 0Q) dz
Q. Q
2. For areas, since by construction it holds Q. C 2, we have
H2(Q) — H(Q:) = H>(Q\)
=H({(x,y): 0<z<e¢, f(a) <y <z f(e)/e})

(4.7) - / ef(e)fe — fla))do = 1 f( ) da

3. For perimeters, note that f/(0) = 0, so |f’| is small near 0. In particular, by
choosing sufficiently small €, we can ensure that

1+ |f(@)P<2 for all z € (0,¢),

and | f(e)|/e can also be made as small as we need to satisfy

TRy L LY o(L)) < e L1

g2 2e2 8\ g2 € 2¢

1+

Therefore,
wi(00) - 100 = [ (VITIF@F -
> [(VIFTF@P - 1- L)
0

2e2

f(e)?

ooz can be made

where, since for sufficiently small ¢ < 1 the quantity
arbitrarily small, we have

WIO

0 2e?

x = o(g), ek 1.

Thus, for all sufficiently small ¢,

H%aﬂ)—w(ms):/j (VIFIF@P -
2/0( 1+|f’(x)|2—1)dx+0(5)

Y S V00 VN B LR
(4.8) - [ e @23/0 F(@)[2 da.

Combining (4.6), (4.7), and (4.8) gives

dist? (x, 0Q) dz + A

Bya(©0) = [ aist(a,500) o A
9 /Q H(0Q) — 5 [ 1f'(= )de

H2(Q) — f(s € ﬁ)
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Since
H1(09) _ HY(09) 'HZ(Q)
H2(Q) — (L2 — [=fa)de)  HAQ) H2(0) — (L2 - = f(
H(09) f“ fo

H2(Q) ( T H2(Q) — 6)5 f()

estimate (4.9) reads

Ep,/\(QE) < /lestp(x,aQ) dx H2(Q 3 fOf(LfE |}d.’IJ
o f
W (e
A
P\ ) - (5 g s
B (@) + A 7;[{2(3%) (f(;)s _ fOE f(z)dz) | (z)]? dz

(4.10)

Since Q is a minimizer, Lemma 3.5 gives H2(2) > 0, and note that

for all sufficiently small &; hence the denominator in (4.10) is positive.

e [ H2(Q)
- /0 fayde <

minimality of 2 forces the numerator in (4.10) to be nonnegative, i.e.,

(4.11)

3

1 (aQ
’)L[Q

/f dx) /|f (z)]?dz > 0.

Equation (4.7) shows

£ /0 f(z)dz = H3(Q) — H* () >0

since by construction . C 2. Lemma 3.5 gives

hence

H2(Q) > O, HL(09) < Cs;

W) _3Cs _
o S @

and (4.11) forces

(4.12)

c(f(; / Ef(w)d:v> > | @R e

3135

=)

Thus the

Since 2 is convex and we assumed (at the beginning of this proof) that Q C {y > 0},
f is nonnegative; hence (4.12) forces

(4.13)

Sreez [irepan
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Note that since f(0) = 0, it follows

(4.14) 0= [ rwws [ 1@l

By Hoélder’s inequality,

(4.15) [irwras ( [reia)

hence
Se [1r@iae 2" Sre: S [rwpa " ([ ldx)
:5522/0 If’(:v)ldwz/o f(@) de = £(e).

The above arguments can be repeated for £ < 0, |¢] < 1 (or equivalently, when the
orientation of x-axis is inverted). The arbitrariness of ¢ then gives

. |f(e) —2f(0) + f(—¢)
hr?_%lp /2 <4C,

concluding the proof. 0
Now we prove part (3) of Theorem 1.1.
LEMMA 4.4. Given p > 1, A > 0, any minimizer Q of E, » satisfies

HY(OQ)  p+2 i E
H2(Q)  Ap+3) A PN

Proof. Let Q2 be an arbitrary minimizer. Endow R? with a Cartesian coordinate
system, and assume without loss of generality that (0,0) is in the interior part of .
For any r > 0, denote by

T,:R*> —R?  T.z):=rzx

the homothety of center (0,0) and ratio r. Note that 7,.(Q2) € A for any r > 0, and
the scalings are

Q
HOT.() 1 H'(09)
HAT(9) —r HA)

/ dist?(x, 0T, (Q)) da = rp+2/ dist? (x, 002) dz
T,()

Define the function

f:(0,+00) — (07+OO>7

1
f(r) = Ep’)\(TT(Q)) = Tp+2/ﬂdistp(:c,8ﬂ) dz + % ) 7‘7{[2((8(?))
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Since f is smooth and attains a global minimum at r = 1, it follows

. HL(00)
"M=(p+2 dist?(z,00)dz — A+ ——> =0
FU=w+2) | dist’(a. 00 )
. A HL(09)
P o) AT Sl
:>/lest (x,00) dz PRI
hence
Ap+3) HY(O0) )
Ep7)\( ) = p+ 2 ’ H2(Q) = mf{nEp,)\a
and the proof is complete. 0

Let us conclude the paper with some final remarks. In this paper we investi-
gated the minimization problem for the average distance functional, with perimeter-
to-area ratio penalization, in the plane. We proved the existence and C'!-regularity
of minimizers, mainly relying on constructing suitable competitors. Echoing and de-
veloping former studies that exclusively focused on either the one-dimensional aver-
age distance problem or purely surface area-to-volume ratio question, by considering
optimal sets of combined energy from broader and more eclectic perspectives, this
study enriches and deepens our understanding of penalized average distance prob-
lem.

We remark that all the main results of this paper, i.e., bounds on the perime-
ter and area and C'!-regular of minimizers, can also be proven if we replace the

1 o4
perimeter-to-area term with a generalized ratio of the form /\%, symbolizing a

perimeter term normalized (by area) with different scaling exponents o and 8. That
is, we consider an energy of the form
HL(O0)

4.16 EXP(Q) = [ dist?(z,00) dz + A\ g~

( ) PA ( ) /Q 1S (Z‘, ) x + H2(Q)B 9

where «, 8 are given powers satisfying 26 > o > ﬁ B > 0. This last bound, combined
with Young’s inequality, allows us to easily bound the perimeter, and the subsequent
results. It can also be quickly checked that if o > 24, then minimizers are just single
points. One more remark is that, according to (2.7), if in (4.16) we pick a« = p, 8 =
p+1land A= C asin (2.7), we get

HAQP L HOQ)"

oy Carapn =2

BT () > C

So in this case if the optimal constant in (2.7) is obtained by a circle, the optimal shape
for (1.1) is a circle. An interesting question worthy of further consideration is if the
circle would be the minimizer for other parameters, as in similar discussions given in
[19, 15, 14, 12]. Another natural question is to ask if in general one may improve the
CVloregularity by combining the established results with elliptic regularity theory,
given that the variation of the perimeter-to-area ratio leads to a system of second
order differential equations of the boundary parametrization.

In addition, it is interesting to improve the results of this paper to higher di-
mensions, again with a generalized ratio penalization. However, the geometric com-
plexity of higher dimensional objects can increase significantly, and more work is

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/22/22 to 160.39.162.82 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

3138

QIANG DU, XIN YANG LU, AND CHONG WANG

required to exclude more complicated sets (e.g., “tentacles”), which were not an is-
sue in the planar case; thus we expected to rely on rather different tools and argu-
ments.

[10]
[11]

[12]

(13]

14]
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