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Abstract. In this paper we consider the functional Ep,\lambda (\Omega ) :=
\int 
\Omega distp(x, \partial \Omega )dx + \lambda 

\scrH 1(\partial \Omega )

\scrH 2(\Omega )
.

Here p \geq 1, \lambda > 0 are given parameters, the unknown \Omega varies among compact, convex, Hausdorff
two-dimensional sets of \BbbR 2, \partial \Omega denotes the boundary of \Omega , and dist(x, \partial \Omega ) := infy\in \partial \Omega | x - y| . The
integral term

\int 
\Omega distp(x, \partial \Omega )dx quantifies the ``easiness"" for points in \Omega to reach the boundary, while

\scrH 1(\partial \Omega )

\scrH 2(\Omega )
is the perimeter-to-area ratio. The main aim is to prove existence and C1,1-regularity of

minimizers of Ep,\lambda .
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1. Introduction. The perimeter-to-area ratio (in 2D), or surface area-to-volume
ratio (in 3D), plays a crucial role in many processes. In biology, for instance, the size
of prokaryote cells is limited by the efficiency of diffusion processes, fundamental to
transport nutrients across the cell, which is strongly correlated with the surface area-
to-volume ratio. A larger surface area-to-volume ratio also gives prokaryote cells a
high metabolic rate, fast growth, and short lifespan compared to eukaryote cells (see,
for instance, [10]).

In chemistry, higher surface area-to-volume ratio increases the typical speed of
chemical reactions. This phenomenon can be observed in many instances, some-
times quite dramatically, such as dust explosions, when dust particles of seemingly
nonflammable materials (e.g., aluminum, sugar, flour, etc.) can be ignited due to
their very large surface area-to-volume ratio [13, 11].

In this paper we will focus on the two-dimensional case. In the above examples,
there are essentially two often competing quantities: one is the ``easiness"" to access
the boundary, and the other is the perimeter-to-area ratio.

A very thin, rod-like, rectangular body would have very good access to the
boundary (desirable) but large perimeter-to-area ratio. A disc would have the lowest
perimeter-to-area ratio (desirable) among shapes of the same total area, but access
to the boundary would be limited. It is also possible to have both a large perimeter-
to-area ratio and limited access to the boundary.
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AVERAGE DISTANCE WITH PERIMETER-TO-AREA RATIO 3123

Until now, we have discussed the ``easiness"" of accessing the boundary only at a
qualitative level. In order to quantify it, we introduce the ``average distance"" term

Fp(\Omega ) :=

\int 
\Omega 

distp(x, \partial \Omega ) dx,

where dist(x, \partial \Omega ) := infy\in \partial \Omega | x  - y| ; p \geq 1 is a given parameter and | \cdot | denotes the
Euclidean distance.

Consider the energy functional

Ep,\lambda (\Omega ) =

\int 
\Omega 

distp(x, \partial \Omega ) dx+ \lambda 
\scrH 1(\partial \Omega )

\scrH 2(\Omega )
,(1.1)

where p \geq 1, \lambda > 0 are given parameters. Define the admissible set

\scrA := \{ \Omega : \Omega \subset \BbbR 2 is compact, convex, and Hausdorff two-dimensional\} .

The term \scrH 1(\partial \Omega )
\scrH 2(\Omega ) is the perimeter-to-area ratio. Note that neither the perimeter

\scrH 1(\partial \Omega ) nor the area \scrH 2(\Omega ) is penalized; only their ratio is. This makes compactness
results quite challenging to prove, and several estimates (in section 2) will be required.
Another issue is that it is not very clear if the average distance term is just a lower

order perturbation of \scrH 1(\partial \Omega )
\scrH 2(\Omega ) . The role of convexity is to ensure crucial compactness

estimates (Lemmas 2.2 and 3.5). Note that Ep,\lambda is invariant under rigid movements.
Further details about the space of convex sets, and its topology, will be discussed in
section 2. The main result of this paper is the following.

Theorem 1.1. Given p \geq 1, \lambda > 0, the following assertions hold:
(1) Ep,\lambda admits a minimizer in \scrA .
(2) All minimizers are compact, convex, C1,1-regular sets, with Hausdorff dimen-

sion equal to 2.
(3) The perimeter-to-area ratio of any minimizer \Omega satisfies

\scrH 1(\partial \Omega )

\scrH 2(\Omega )
=

p+ 2

\lambda (p+ 3)
min
\scrA 

Ep,\lambda .

Here, and for future reference, the expression ``\Omega is Ck-regular"" means that its
boundary \partial \Omega is Ck-regular; i.e., \partial \Omega admits a Ck-regular parameterization.

Note that the functional Fp is formally similar to the average distance functional

\Sigma \mapsto \rightarrow 
\int 
\Gamma 

distp(x,\Sigma ) d\mu ,

where \Gamma is a given domain, \mu is a given measure on \Gamma , and \Sigma varies among compact,
pathwise connected sets with Hausdorff dimension equal to 1. The average distance
functional has been widely studied and used in several modeling problems. For a
(nonexhaustive) list of references, we cite the papers (and books) by Buttazzo and
collaborators [2, 3, 5, 4, 8, 9, 6, 7]. Also related are the papers by Paolini and
Stepanov [20], Santambrogio and Tilli [21], Tilli [23], Lemenant and Mainini [17],
Slep\v cev [22], and the review paper by Lemenant [16]. Similar variational problems
entailing a competition between classical perimeter and nonlocal repulsive interaction
were studied by Muratov and Kn\"upfer [19], Goldman, Novaga, and Ruffini [15], and
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3124 QIANG DU, XIN YANG LU, AND CHONG WANG

Goldman, Novaga, and R\"oger [14]. Figalli et al. studied a competition between a
nonlocal s-perimeter and a nonlocal repulsive interaction term [12].

The rest of the paper is structured as follows: section 2 is dedicated to proving
some auxiliary estimates on the area ((2.1) and Corollary 2.1) and perimeter (Lemma
2.2) of elements of minimizing sequences. Existence of minimizers will be shown
in section 3, while C1,1-regularity will be proven in section 4. Finally, we explore
several future directions to further our understanding of the penalized average distance
problem.

2. Preliminary estimates. In this section we collect some preliminary esti-
mates that will be used later. First, we remark that given p \geq 1 and \lambda > 0, for any
\Omega \in \scrA it holds

(2.1) \scrH 2(\Omega ) \geq 4\pi \lambda 2

Ep,\lambda (\Omega )2
.

Indeed, consider an arbitrary \Omega \in \scrA . By the isoperimetric inequality, among all
convex sets with area \scrH 2(\Omega ), the perimeter-to-area ratio is minimum for a disc, where
it attains the value 2

\surd 
\pi /

\sqrt{} 
\scrH 2(\Omega ). Hence

2\lambda 
\surd 
\pi \sqrt{} 

\scrH 2(\Omega )
\leq \lambda 

\scrH 1(\partial \Omega )

\scrH 2(\Omega )
\leq Ep,\lambda (\Omega ),

and (2.1) is proven.

Corollary 2.1. Given p \geq 1, \lambda > 0, any minimizing sequence \Omega n \subseteq \scrA satisfies

\scrH 2(\Omega n) \geq 4\pi \lambda 2

\biggl( 
2\pi 

p2 + 3p+ 2
+ 2\lambda + 1

\biggr)  - 2

=: C1,(2.2)

\scrH 1(\partial \Omega n)

\scrH 2(\Omega n)
\leq 1

\lambda 

\biggl( 
2\pi 

p2 + 3p+ 2
+ 2\lambda + 1

\biggr) 
=: C2(2.3)

for any sufficiently large n.

Proof. First we prove inf\scrA Ep,\lambda < +\infty . Let B1 \in \scrA be a disc of radius 1. Direct
computation gives

inf
\scrA 

Ep,\lambda \leq Ep,\lambda (B1) =

\int 
B1

distp(x, \partial B1) dx+ \lambda 
\scrH 1(\partial B1)

\scrH 2(B1)

= 2\pi 

\int 1

0

(1 - r)pr dr + 2\lambda =
2\pi 

p2 + 3p+ 2
+ 2\lambda < +\infty .(2.4)

Thus, given a minimizing sequence \Omega n \subseteq \scrA , there exists N such that for any n \geq N
it holds

(2.5) Ep,\lambda (\Omega n) \leq 
2\pi 

p2 + 3p+ 2
+ 2\lambda + 1,

and (2.1) gives

\scrH 2(\Omega n) \geq 4\pi \lambda 2

\biggl( 
2\pi 

p2 + 3p+ 2
+ 2\lambda + 1

\biggr)  - 2
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4 QIANG DU, XIN YANG LU, AND CHONG WANG

Proof. We first claim that for any Ω ∈ A it holds
∫

Ω
distp(x, ∂Ω) dx ≥ CH

2(Ω)p+1

H1(∂Ω)p , C = 3−p2−p−4. (2.8)

Consider an arbitrary Ω ∈ A. Let A,B ∈ ∂Ω be two points realizing D := |A − B| = diam Ω. Let Σi,
i = 1, 2 be the lines (see Figure 1) orthogonal to the line segment between A and B (which we denote by
JA,BK). Since Ω is convex, and |A − B| = diam Ω, Ω is entirely contained in the region between Σ1 and
Σ2. Then let Pi, i = 1, 2 be the points on ∂Ω such that the triangles 4APiB have maximal areas. As Ω
is convex, we have

H2(Ω) ≤ D(h1 + h2), hi := dist(Pi, JA,BK).
On the other hand, H2(4APiB) = Dhi/2, hence

H2(4AP1B ∪4AP2B)
H2(Ω) ≥ 1

2 .

A B

D

P
2

P
1

h
1

h
2

1 2

Figure 1. A schematic representation of the construction. The points P1 and (resp.
P2) are the points on ∂Ω above (resp. below) the segment JA,BK furthest away from
JA,BK.

Fig. 1. A schematic representation of the construction. The points P1 and (resp., P2) are the
points on \partial \Omega above (resp., below) the segment JA,BK furthest away from JA,BK.

for any n \geq N , hence (2.2). To prove (2.3), note that (2.5) forces

2\pi 

p2 + 3p+ 2
+ 2\lambda + 1 \geq Ep,\lambda (\Omega n) \geq \lambda 

\scrH 1(\partial \Omega n)

\scrH 2(\Omega n)
,

concluding the proof.

Lemma 2.2. Given p \geq 1 and \lambda > 0, for any minimizing sequence \Omega n \subseteq \scrA , it
holds, for all sufficiently large n,

(2.6) \scrH 1(\partial \Omega n) \leq C3 = C3(p, \lambda )

with C3 being some computable (but uninfluential) constant.

Proof. We first claim that for any \Omega \in \scrA it holds

(2.7)

\int 
\Omega 

distp(x, \partial \Omega ) dx \geq C
\scrH 2(\Omega )p+1

\scrH 1(\partial \Omega )p
, C = 3 - p2 - p - 4.

Consider an arbitrary \Omega \in \scrA . Let A,B \in \partial \Omega be two points realizing D :=
| A  - B| = diam\Omega . Let \Sigma i, i = 1, 2 be the lines (see Figure 1) orthogonal to the
line segment between A and B (which we denote by JA,BK). Since \Omega is convex and
| A - B| = diam\Omega , \Omega is entirely contained in the region between \Sigma 1 and \Sigma 2. Then let
Pi, i = 1, 2 be the points on \partial \Omega such that the triangles \bigtriangleup APiB have maximal areas.
As \Omega is convex, we have

\scrH 2(\Omega ) \leq D(h1 + h2), hi := dist(Pi, JA,BK).

On the other hand, \scrH 2(\bigtriangleup APiB) = Dhi/2; hence

\scrH 2(\bigtriangleup AP1B \cup \bigtriangleup AP2B)

\scrH 2(\Omega )
\geq 1

2
.

Now we do the following construction: let Oi (resp., ri) be the incenter (resp.,
inradius) of \bigtriangleup APiB, i = 1, 2. Denote by \~A (resp., \~Pi, \~B) the midpoints of the line
segments between Oi and A (resp., Pi, B)---see Figure 2.
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THE AVERAGE DISTANCE PROBLEM WITH PERIMETER-TO-AREA RATIO PENALIZATION 5

Now we do the following construction: let Oi (resp. ri) be the incenter (resp. inradius) of 4APiB,
i = 1, 2. Denote by Ã (resp. P̃i, B̃) the midpoints of the line segments between Oi and A (resp. Pi, B) –
see Figure 2.

A B

O
i

P
i

Figure 2. A schematic representation of the construction. The points Ã, P̃i, B̃ are the
midpoints of the segments JOi, AK, JOi, PiK, JOi, BK respectively. The red dotted circle is
the incircle of the triangle 4APiB.

Clearly, 4ÃP̃iB̃ is a rescaled copy of 4APiB, with area H2(4APiB)/4. As

inradius = 2Area
Perimeter ,

we can estimate ri as follows:

ri = Dhi
D + |A− Pi|+ |B − Pi|

≥ Dhi
3D = hi

3 (2.9)

since by definition we have D = diam Ω ≥ |A− Pi|, |B − Pi|. Then, noting that

dist(x, ∂Ω) ≥ dist(x, ∂APiB) ≥ 1
2 dist(Oi, ∂APiB) ≥ 1

2ri

Fig. 2. A schematic representation of the construction. The points \~A, \~Pi, and \~B are the
midpoints of the segments JOi, AK, JOi, PiK, and JOi, BK, respectively. The red dotted circle is the
incircle of the triangle \bigtriangleup APiB.

Clearly, \bigtriangleup \~A \~Pi
\~B is a rescaled copy of \bigtriangleup APiB, with area \scrH 2(\bigtriangleup APiB)/4. As

inradius =
2Area

Perimeter
,

we can estimate ri as follows:

ri =
Dhi

D + | A - Pi| + | B  - Pi| 
\geq Dhi

3D
=

hi

3
,(2.8)

since by definition we have D = diam\Omega \geq | A - Pi| , | B  - Pi| . Then, noting that

dist(x, \partial \Omega ) \geq dist(x, \partial APiB) \geq 1

2
dist(Oi, \partial APiB) \geq 1

2
ri

for all x \in \bigtriangleup \~A \~Pi
\~B, i = 1, 2, we have\int 

\Omega 

distp(x, \partial \Omega ) dx \geq 
2\sum 

i=1

\int 
\bigtriangleup \~A \~Pi

\~B

distp(x, \partial \Omega ) dx

\geq 
2\sum 

i=1

2 - prpi\scrH 
2(\bigtriangleup \~A \~Pi

\~B) =

2\sum 
i=1

2 - p - 2rpi\scrH 
2(\bigtriangleup APiB)

\geq 
2\sum 

i=1

3 - p2 - p - 3hp+1
i D \geq 3 - p2 - p - 3D \cdot max

i=1,2
hp+1
i .(2.9)

Recalling that \scrH 2(\Omega ) \leq D(h1 + h2), \scrH 1(\partial \Omega ) \geq 2D, we get

\scrH 2(\Omega )p+1

\scrH 1(\partial \Omega )p
\leq Dp+1(h1 + h2)

p+1

(2D)p
= 2 - pD(h1 + h2)

p+1 \leq 2D \cdot max
i=1,2

hp+1
i .

Hence (2.9) gives\int 
\Omega 

distp(x, \partial \Omega ) dx \geq C
\scrH 2(\Omega )p+1

\scrH 1(\partial \Omega )p
, C = 3 - p2 - p - 4,
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AVERAGE DISTANCE WITH PERIMETER-TO-AREA RATIO 3127

and (2.7) is proven. From (2.3) we know that

\scrH 1(\partial \Omega n)

\scrH 2(\Omega n)
\leq C2 =\Rightarrow \scrH 2(\Omega n)

p+1

\scrH 1(\partial \Omega n)p+1
\geq C - p - 1

2 ,

so the above inequality gives\int 
\Omega 

distp(x, \partial \Omega n) dx \geq C
\scrH 2(\Omega n)

p+1

\scrH 1(\partial \Omega n)p+1
\scrH 1(\partial \Omega n) \geq CC - p - 1

2 \scrH 1(\partial \Omega n).

Now, any minimizing sequence \{ \Omega n\} is such that, for all sufficiently large n,

Ep,\lambda (\Omega n) \leq inf Ep,\lambda + 1;

thus

inf Ep,\lambda + 1 \geq Ep,\lambda (\Omega n) \geq 
\int 
\Omega n

distp(x, \partial \Omega n) dx \geq CC - p - 1
2 \scrH 1(\partial \Omega n),

and (2.4) shows that inf Ep,\lambda < +\infty , completing the proof.

Remark 2.3. We note that it is an interesting geometric question by itself to
study what the optimal constant C for the inequality (2.7) is. Furthermore, one may
ask if the form of the inequality is optimal. That is, one may ask, given \scrH 2(\Omega ) and
\scrH 1(\partial \Omega ), what is the minimum of

\int 
\Omega 
distp(x, \partial \Omega ) dx, which is a constrained optimiza-

tion problem related to the one considered in this work.

3. Existence. In this section we will prove that the Ep,\lambda admits a minimizer
in \scrA . As our arguments rely on a lower semicontinuity result, namely, Lemma 3.4
below, we need first to introduce a metric on \scrA .

For any \Omega 1,\Omega 2 \in \scrA , define

d(\Omega 1,\Omega 2) := \scrH 2(\Omega 1\bigtriangleup \Omega 2),(3.1)

where \bigtriangleup denotes the symmetric difference. Set

\=\scrA := completion of \scrA with respect to d.

Before we can proceed, we need to characterize the elements of \=\scrA \setminus \scrA : we cannot
exclude a priori that an element \Omega \in \=\scrA can be quite irregular:

1. \Omega \in \=\scrA needs not to be closed: indeed it is very possible for a sequence of
compact sets to converge to an open set in the metric d. For instance, let
\Omega n be the closed ball of radius 1  - 1/n centered around the origin; then it
converges to the open ball, centered around the origin, of radius 1.

2. As we do not have any a priori bounds on the diameter of elements of \scrA , a
set \Omega \in \=\scrA needs not to be bounded.

3. The distance d is insensitive to perturbations on\scrH 2-negligible sets. Therefore,
we cannot exclude that \=\scrA might contain compact convex sets up to \scrH 2-
negligible sets. Thus whether a generic element in \=\scrA is convex or not is
unclear.

In view of the above mentioned issues, we cannot assume compactness, or convexity,
for elements of \=\scrA . Our goal is to show (see Lemma 3.3 below) that minimizing
sequences must converge to some element in \scrA .

The next result, from [22], will be crucial for our convergence arguments.
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Lemma 3.1. Consider a sequence of constant speed parameterized curves \gamma n :
[0, 1]  - \rightarrow K, where K \subseteq \BbbR d is some compact set. Assume moreover that

sup
n

L(\gamma n) < +\infty , sup
n

\| \gamma n\| BV ([0,1];\BbbR d) < +\infty ,(3.2)

where \| \cdot \| BV ([0,1];\BbbR d) denotes the bounded variation norm. Then there exists a curve
\gamma : [0, 1]  - \rightarrow K such that

1. \gamma n \rightarrow \gamma in C\alpha ([0, 1];\BbbR d) for all \alpha \in [0, 1),
2. \gamma \prime 

n \rightarrow \gamma \prime in Lp(0, 1;\BbbR d) for all p < +\infty ,

3. \gamma \prime \prime 
n

\ast 
\rightharpoonup \gamma \prime \prime weakly as measures.

Remark 3.2. We remark that this convergence result is quite strong: consider a
sequence \{ \Omega n\} \subseteq \scrA , and let \gamma n be constant speed parameterizations of \partial \Omega n. Note
that \gamma n are all closed curves. Assume that we are under the hypotheses of Lemma
3.1; hence there exists \gamma : [0, 1]  - \rightarrow K such that \gamma n \rightarrow \gamma in C\alpha ([0, 1];\BbbR d) for all
\alpha \in [0, 1). In particular, we can define \Omega to be the bounded region delimited by the
graph of \gamma , and we have the uniform convergence of the boundaries, which in turn
gives d\scrH (\partial \Omega n, \partial \Omega ) \rightarrow 0. Here d\scrH denotes the Hausdorff distance

d\scrH (X,Y ) := max

\biggl\{ 
sup
x\in X

dist(x, Y ), sup
y\in Y

dist(y,X)

\biggr\} 
.

Such strong convergence also implies that the characteristic functions \chi \Omega n converge
to \chi \Omega in Lp, p \in [1,+\infty ), since

\| \chi \Omega n
 - \chi \Omega \| pLp(\BbbR d)

\leq \scrH 2(\Omega n\bigtriangleup \Omega ) \leq max
\Bigl\{ 
sup
n

L(\gamma n), L(\gamma )
\Bigr\} 
\cdot d\scrH (\partial \Omega n, \partial \Omega ) \rightarrow 0.

Lemma 3.3. Consider a minimizing sequence \Omega n \subseteq \scrA ; then there exists \Omega \in \scrA 
and a sequence xn \subseteq \BbbR n such that \Omega n + xn \rightarrow \Omega in the metric d.

Note that since our energy is translation invariant, the above convergence result
is sufficient for our purposes.

Proof. In this proof it is more convenient to work with constant speed, instead of
arc-length, parameterizations.

Consider minimizing sequence \{ \Omega n\} \subseteq \scrA , and let \varphi n : [0, 1]  - \rightarrow \partial \Omega n be constant
speed parameterizations. Note all \partial \Omega n are closed curves, and as Ep,\lambda is translation
invariant, we can replace \Omega n with translated copies (which, for brevity, we still denote
by \Omega n and by \varphi n the parameterization of \partial \Omega n) such that \varphi n(0) = \varphi n(1) = 0. We show
that we are under the conditions (3.2): first, the upper bound on the perimeter (2.6)
and \Omega n \subseteq \BbbR 2 ensures all \Omega n are contained in some compact set K. As the curves \varphi n

are parameterized by constant speed, we have \| \varphi \prime 
n\| = L(\varphi n) = \scrH 1(\partial \Omega n) a.e. Then, in

view of Lemma 2.2, we infer (3.2). Therefore there exists a limit curve \varphi : [0, 1]  - \rightarrow K
such that the convergences in Lemma 3.1 hold. Since \varphi n(0) = \varphi n(1) = 0 for all n, we
get \varphi (0) = \varphi (1) = 0 too. We define \Omega to be the bounded area delimited by \varphi , and the
graph of \varphi turn out to be \partial \Omega . By construction, \Omega is compact.

We need to check it is convex: consider arbitrary P,Q \in \Omega , t \in (0, 1), and we
show that (1  - t)P + tQ \in \Omega . Consider sequences Pn, Qn \in \Omega n such that Pn \rightarrow P ,
Qn \rightarrow Q: since each \Omega n is convex, (1  - t)Pn + tQn \in \Omega n. By Lemma 3.1, we know
\| \varphi n  - \varphi \| C0([0,1];\BbbR 2) \rightarrow 0. As a consequence,

d\scrH (\partial \Omega n, \partial \Omega ) \rightarrow 0
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too. This allows us to choose, for each n, another point zn \in \Omega such that | zn  - ((1 - 
t)Pn + tQn)| \leq d\scrH (\partial \Omega n, \partial \Omega ). By construction, now the sequences (1  - t)Pn + tQn

and zn have the same limit. As (1 - t)Pn + tQn \rightarrow (1 - t)P + tQ and zn \rightarrow z, hence
z = (1 - t)P + tQ, using the compactness of \Omega finally gives z \in \Omega .

Finally, we check that dim\scrH \Omega = 2. Since the ambient space \BbbR 2 already has Haus-
dorff dimension two, it suffices to show that \Omega contains a set of Hausdorff dimension
two. For each n, we can use the construction from the proof of Lemma 2.2 on each
\Omega n: we showed the existence of triangles Ti := \bigtriangleup \~A \~Pi

\~B (see Figure 1) whose distance
to the boundary is at least ri/2, with ri being the incenter which satisfied ri \geq hi/3.
Now, since we showed in the proof of Lemma 2.2 that

2\sum 
i=1

hi,n diam\Omega n \geq \scrH 2(\Omega n)

and

\scrH 2(\Omega n) \geq C1, diam\Omega n \leq \scrH 1(\partial \Omega n) \leq C3

due to Corrollary 2.1, we get

2\sum 
i=1

hi,n \geq \scrH 2(\Omega n)

diam\Omega n
\geq C1

C3
> 0.

This shows that at least one of the triangles Ti,n, i = 1, 2, must be nondegenerate
since its inradius is bounded from below by

max
i=1,2

ri,n \geq max
i=1,2

hi,n

3
\geq C1

6C3
,

and the proof is complete.

Lemma 3.3 is of crucial importance: since we are interested in the minimizers of
Ep,\lambda , this allows us to reduce the minimization problem to \scrA and neglect the highly
irregular elements of \=\scrA \setminus \scrA .

Lemma 3.4. Given p \geq 1, \lambda > 0, and a minimizing sequence \Omega n \subseteq \scrA converging
to \Omega \in \scrA with respect to d, then it holds

\scrH 2(\Omega ) = lim
n\rightarrow +\infty 

\scrH 2(\Omega n),(3.3)

\scrH 1(\partial \Omega ) \leq lim inf
n\rightarrow +\infty 

\scrH 1(\partial \Omega n),(3.4) \int 
\Omega 

distp(x, \partial \Omega ) dx = lim
n\rightarrow +\infty 

\int 
\Omega n

distp(x, \partial \Omega n) dx.(3.5)

Proof. Estimate (3.3) follows from the definition of the metric d and Remark 3.2.
To prove (3.4), recall that the perimeter \scrH 1(\partial \Omega n) is the total variation of the

characteristic function of \Omega n. Convergence \Omega n \rightarrow \Omega with respect to d implies (see
Remark 3.2)

\chi \Omega n
\rightarrow \chi \Omega strongly in L1(\BbbR 2)

with ``\chi "" denoting the characteristic function of the subscribed set. Thus (3.4) follows
from the lower semicontinuity of the total variation seminorm.
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To prove (3.5), note that\int 
\Omega n

distp(x, \partial \Omega n) dx =

\int 
\Omega n\setminus \Omega 

distp(x, \partial \Omega n) dx+

\int 
\Omega n\cap \Omega 

distp(x, \partial \Omega n) dx,\int 
\Omega 

distp(x, \partial \Omega ) dx =

\int 
\Omega \setminus \Omega n

distp(x, \partial \Omega ) dx+

\int 
\Omega n\cap \Omega 

distp(x, \partial \Omega ) dx;

hence \bigm| \bigm| \bigm| \bigm| \int 
\Omega n

distp(x, \partial \Omega n) dx - 
\int 
\Omega 

distp(x, \partial \Omega ) dx

\bigm| \bigm| \bigm| \bigm| 
\leq 

\int 
\Omega n\setminus \Omega 

distp(x, \partial \Omega n) dx+

\int 
\Omega \setminus \Omega n

distp(x, \partial \Omega ) dx(3.6)

+

\int 
\Omega n\cap \Omega 

| distp(x, \partial \Omega n) - distp(x, \partial \Omega )| dx.(3.7)

By Lemma 2.2,
diam(\Omega n) \leq \scrH 1(\partial \Omega n) \leq C3.

According to (3.4),

diam(\Omega ) \leq \scrH 1(\partial \Omega ) \leq lim inf
n\rightarrow +\infty 

\scrH 1(\partial \Omega n) \leq C3.

Therefore,\int 
\Omega n\setminus \Omega 

distp(x, \partial \Omega n) dx \leq \scrH 2(\Omega n\setminus \Omega )(diam(\Omega n))
p \leq \scrH 2(\Omega n\setminus \Omega )Cp

3 \rightarrow 0,\int 
\Omega \setminus \Omega n

distp(x, \partial \Omega ) dx \leq \scrH 2(\Omega \setminus \Omega n)(diam(\Omega ))p \leq \scrH 2(\Omega \setminus \Omega n)C
p
3 \rightarrow 0;

hence the sum in (3.6) goes to zero. To estimate (3.7), denote by d\scrH the Hausdorff
distance, and note that, by the mean value theorem, it holds\int 

\Omega n\cap \Omega 

| distp(x, \partial \Omega n) - distp(x, \partial \Omega )| dx

\leq 
\int 
\Omega n\cap \Omega 

| dist(x, \partial \Omega n) - dist(x, \partial \Omega )| 

\cdot p sup
x\in \Omega n\cap \Omega 

\Bigl( 
max\{ dist(x, \partial \Omega n),dist(x, \partial \Omega )\} 

\Bigr) p - 1

dx

\leq \scrH 2(\Omega n \cap \Omega )d\scrH (\partial \Omega n, \partial \Omega ) \cdot p
\Bigl( 
max\{ diam\Omega n,diam\Omega \} 

\Bigr) p - 1

\leq \scrH 2(\Omega n \cap \Omega ) d\scrH (\partial \Omega n, \partial \Omega ) \cdot p Cp - 1
3 \rightarrow 0.

Thus the term in (3.7) goes to zero too, and (3.5) is proven.

Now we prove part (1) of Theorem 1.1, i.e., the existence of minimizers in \scrA .

Lemma 3.5. For any p \geq 1, \lambda > 0, the functional Ep,\lambda admits a minimizer
\Omega \in \scrA , which satisfies

\scrH 2(\Omega ) \geq C1, \scrH 1(\partial \Omega ) \leq C3,

with C1 (resp., C3) defined in (2.2) (resp., (2.6)).
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Proof. Corollary 2.1 gives \scrH 2(\Omega n) \geq C1 for any sufficiently large n, and Lemma
3.4 gives

(3.8) \scrH 2(\Omega ) = lim
n\rightarrow +\infty 

\scrH 2(\Omega n) \geq C1.

Based on Lemma 3.4 and (2.6),

\scrH 1(\partial \Omega ) \leq C3.(3.9)

Lemma 3.4 gives

(3.10)
\scrH 1(\partial \Omega )

\scrH 2(\Omega )
\leq lim inf

n\rightarrow +\infty 

\scrH 1(\partial \Omega n)

\scrH 2(\Omega n)
,

and \int 
\Omega 

distp(x, \partial \Omega ) dx = lim
n\rightarrow +\infty 

\int 
\Omega n

distp(x, \partial \Omega n) dx.(3.11)

Combining (3.10) and (3.11) gives

Ep,\lambda (\Omega ) =

\int 
\Omega 

distp(x, \partial \Omega )dx+ \lambda 
\scrH 1(\partial \Omega )

\scrH 2(\Omega )

\leq lim
n\rightarrow +\infty 

\int 
\Omega n

distp(x, \partial \Omega n) dx+ \lambda lim inf
n\rightarrow +\infty 

\scrH 1(\partial \Omega n)

\scrH 2(\Omega n)
\leq lim inf

n\rightarrow +\infty 
Ep,\lambda (\Omega n) = inf

\=\scrA 
Ep,\lambda ;

hence \Omega is effectively a minimizer of Ep,\lambda in \=\scrA . Lemma 3.3 shows \Omega \in \scrA .

4. Regularity. Now we prove part (2) of Theorem 1.1. The proof will be split
over Lemmas 4.2 and 4.3.

Lemma 4.1. Let S be a compact, convex set, with Hausdorff dimension equal to 2.
Let w1, w2 \in \partial S be arbitrary distinct points, and let \sigma be the segment with endpoints
w1 and w2. Denoting by S1 and S2 the two connected components of S\setminus \sigma , then both
S1, S2 are convex.

Proof. Endow \BbbR 2 with a Cartesian coordinate system. Upon rotation and reflec-
tion, assume that \sigma lies in the y-axis and S1 \subseteq \{ x > 0\} , S2 \subseteq \{ x < 0\} . Clearly, given
points u, v \in S1, the segment \xi between u and v lies entirely in S \cap \{ x > 0\} = S1;
hence S1 is convex. The proof for S2 is analogous.

Lemma 4.2. (C1-regularity) For any p \geq 1, \lambda > 0, any minimizer of Ep,\lambda is
C1-regular.

Proof. Consider an arbitrary minimizer \Omega \in \scrA . Endow \BbbR 2 with a polar coordinate
system. We parameterize \partial \Omega by a closed Lipschitz curve

\gamma : [0, 2\pi ]  - \rightarrow \partial \Omega .

The proof is achieved by a contradiction argument. Assume that \Omega is not C1-regular.
That is, \gamma is not C1-regular at some point t0. Upon rotating the coordinates, we can
also assume t0 \in (0, 2\pi ). Since \Omega is convex, both one-sided derivatives

l - := lim
t\rightarrow t - 0

\gamma \prime (t), l+ := lim
t\rightarrow t+0

\gamma \prime (t)

are well defined [1, 18]. Denote by \alpha the angle between l - and l+. Clearly, \alpha \not = \pi .
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\gamma (t0)

\gamma (t1) \gamma (t2)

\Omega 

\partial \Omega 

\alpha 
2

\alpha 
2

\sigma 

Fig. 3. A schematic representation (near \gamma (t0), in first order approximation in \varepsilon ) of the
construction of \Omega \varepsilon .

Figure 3 is a representation (in first order approximation) of \partial \Omega near \gamma (t0). For
small parameters 0 < \varepsilon \ll 1, construct the competitor \Omega \varepsilon as follows:

1. Choose t1 < t0 < t2 such that (in first order approximation in \varepsilon )

\scrH 1(\gamma ([t1, t0])) = \scrH 1(\gamma ([t0, t2])) = \varepsilon +O(\varepsilon 2).

2. Denote by

\sigma := \{ (1 - s)\gamma (t1) + s\gamma (t2) : s \in [0, 1]\} 

the line segment between \gamma (t1) and \gamma (t2), and set

(4.1) L :=
\bigl( 
\partial \Omega \setminus \gamma ([t1, t2])

\bigr) 
\cup \sigma .

Note that such L is a convex Jordan curve, and denote by \Omega \varepsilon the bounded
region delimited by L.

By construction, in first order approximation in \varepsilon , it holds

\scrH 1(\partial \Omega \varepsilon ) = \scrH 1(\partial \Omega ) - 2\varepsilon (1 - sin(\alpha /2)) +O(\varepsilon 2),(4.2)

\scrH 2(\Omega \varepsilon ) = \scrH 2(\Omega ) - \varepsilon 2 sin\alpha 

2
+ o(\varepsilon 2) = \scrH 2(\Omega ) +O(\varepsilon 2).(4.3)

Moreover, it is straightforward to show that

(4.4)

\int 
\Omega \varepsilon 

distp(x, \partial \Omega \varepsilon ) dx \leq 
\int 
\Omega 

distp(x, \partial \Omega ) dx.

Recalling that \scrH 2(\Omega ) > 0 (since \Omega is a minimizer), combining (4.2), (4.3), and
(4.4) gives (in first order approximation in \varepsilon )

Ep,\lambda (\Omega \varepsilon ) =

\int 
\Omega \varepsilon 

distp(x, \partial \Omega \varepsilon ) dx+ \lambda 
\scrH 1(\partial \Omega \varepsilon )

\scrH 2(\Omega \varepsilon )

\leq 
\int 
\Omega 

distp(x, \partial \Omega ) dx+ \lambda 
\scrH 1(\partial \Omega ) - 2\varepsilon (1 - sin(\alpha /2)) +O(\varepsilon 2)

\scrH 2(\Omega ) +O(\varepsilon 2)
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0 \varepsilon 

(\varepsilon , f(\varepsilon ))

x

y

f
\sigma \varepsilon 

\Omega 

Fig. 4. A schematic representation of the construction near p0 = (0, 0).

=

\int 
\Omega 

distp(x, \partial \Omega ) dx+ \lambda 
\scrH 1(\partial \Omega )

\scrH 2(\Omega )
 - 2\lambda \varepsilon (1 - sin(\alpha /2))

\scrH 2(\Omega )
+O(\varepsilon 2)

= Ep,\lambda (\Omega ) - 
2\lambda \varepsilon (1 - sin(\alpha /2))

\scrH 2(\Omega )
+O(\varepsilon 2)

= min
\scrA 

Ep,\lambda  - 2\lambda \varepsilon (1 - sin(\alpha /2))

\scrH 2(\Omega )
+O(\varepsilon 2),

which is a contradiction for sufficiently small \varepsilon . Thus \Omega must be C1-regular.

Lemma 4.3. Given p \geq 1, \lambda > 0, a minimizer \Omega of Ep,\lambda , let \gamma : [0,\scrH 1(\partial \Omega )]  - \rightarrow 
\partial \Omega be an arc-length parameterization. Then it holds

lim sup
h\rightarrow 0

| \gamma (t+ 2h) - 2\gamma (t) + \gamma (t - 2h)| 
h2

\leq 4C(4.5)

for any t, where C is some constant depending only on \lambda and p (and independent of
\Omega ).

We remark that (4.5) implies C1,1-regularity of \partial \Omega .

Proof. Consider an arbitrary point p0 \in \partial \Omega . Since we proved that \Omega is C1-regular,
consider a (local) orthogonal coordinate system with origin in p0 and x-axis oriented
along the tangent derivative (at p0), such that \Omega is entirely contained in the half-plane
\{ y \geq 0\} . The boundary \partial \Omega is thus (locally) the graph of some nonnegative function
f . Clearly, such f satisfies f(0) = 0. See Figure 4 for an illustration.

Choose an arbitrary 0 < \varepsilon \ll 1. Denote by

\sigma \varepsilon := \{ (x, y) : 0 \leq x \leq \varepsilon , y = x \cdot f(\varepsilon )/\varepsilon \} 

the segment between the origin and (\varepsilon , f(\varepsilon )). Let L\varepsilon be the curve obtained by replac-
ing f([0, \varepsilon ]) with \sigma \varepsilon that is,

L\varepsilon := (\partial \Omega \setminus f([0, \varepsilon ])) \cup \sigma \varepsilon .

By construction (see Lemma 4.1) L\varepsilon is a convex Jordan curve, and let \Omega \varepsilon be the
bounded region delimited by L\varepsilon . Note the following:
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1. Clearly we can infer

(4.6)

\int 
\Omega \varepsilon 

distp(x, \partial \Omega \varepsilon ) dx \leq 
\int 
\Omega 

distp(x, \partial \Omega ) dx.

2. For areas, since by construction it holds \Omega \varepsilon \subseteq \Omega , we have

\scrH 2(\Omega ) - \scrH 2(\Omega \varepsilon ) = \scrH 2(\Omega \setminus \Omega \varepsilon )

= \scrH 2(\{ (x, y) : 0 \leq x \leq \varepsilon , f(x) \leq y \leq x \cdot f(\varepsilon )/\varepsilon \} )

=

\int \varepsilon 

0

[xf(\varepsilon )/\varepsilon  - f(x)] dx =
f(\varepsilon )\varepsilon 

2
 - 

\int \varepsilon 

0

f(x) dx.(4.7)

3. For perimeters, note that f \prime (0) = 0, so | f \prime | is small near 0. In particular, by
choosing sufficiently small \varepsilon , we can ensure that\sqrt{} 

1 + | f \prime (x)| 2 \leq 2 for all x \in (0, \varepsilon ),

and | f(\varepsilon )| /\varepsilon can also be made as small as we need to satisfy\sqrt{} 
1 +

f(\varepsilon )2

\varepsilon 2
= 1 +

f(\varepsilon )2

2\varepsilon 2
 - 1

8

\Bigl( f(\varepsilon )2
\varepsilon 2

\Bigr) 2

+O
\Bigl( \Bigl( f(\varepsilon )2

\varepsilon 2

\Bigr) 3\Bigr) 
\leq 1 +

f(\varepsilon )2

2\varepsilon 2
.

Therefore,

\scrH 1(\partial \Omega ) - \scrH 1(\partial \Omega \varepsilon ) =

\int \varepsilon 

0

\Bigl( \sqrt{} 
1 + | f \prime (x)| 2  - 

\sqrt{} 
1 +

f(\varepsilon )2

\varepsilon 2

\Bigr) 
dx

\geq 
\int \varepsilon 

0

\Bigl( \sqrt{} 
1 + | f \prime (x)| 2  - 1 - f(\varepsilon )2

2\varepsilon 2

\Bigr) 
dx,

where, since for sufficiently small \varepsilon \ll 1 the quantity f(\varepsilon )2

2\varepsilon 2 can be made
arbitrarily small, we have\int \varepsilon 

0

f(\varepsilon )2

2\varepsilon 2
dx = o(\varepsilon ), \varepsilon \ll 1.

Thus, for all sufficiently small \varepsilon ,

\scrH 1(\partial \Omega ) - \scrH 1(\partial \Omega \varepsilon ) =

\int \varepsilon 

0

\Bigl( \sqrt{} 
1 + | f \prime (x)| 2  - 

\sqrt{} 
1 +

f(\varepsilon )2

\varepsilon 2

\Bigr) 
dx

\geq 
\int \varepsilon 

0

\Bigl( \sqrt{} 
1 + | f \prime (x)| 2  - 1

\Bigr) 
dx+ o(\varepsilon )

=

\int \varepsilon 

0

| f \prime (x)| 2\sqrt{} 
1 + | f \prime (x)| 2 + 1

dx+ o(\varepsilon ) \geq 1

3

\int \varepsilon 

0

| f \prime (x)| 2 dx.(4.8)

Combining (4.6), (4.7), and (4.8) gives

Ep,\lambda (\Omega \varepsilon ) =

\int 
\Omega \varepsilon 

distp(x, \partial \Omega \varepsilon ) dx+ \lambda 
\scrH 1(\partial \Omega \varepsilon )

\scrH 2(\Omega \varepsilon )

\leq 
\int 
\Omega 

distp(x, \partial \Omega ) dx+ \lambda 
\scrH 1(\partial \Omega ) - 1

3

\int \varepsilon 

0
| f \prime (x)| 2 dx

\scrH 2(\Omega ) - ( f(\varepsilon )\varepsilon 2  - 
\int \varepsilon 

0
f(x) dx)

.(4.9)
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Since

\scrH 1(\partial \Omega )

\scrH 2(\Omega ) - ( f(\varepsilon )\varepsilon 2  - 
\int \varepsilon 

0
f(x) dx)

=
\scrH 1(\partial \Omega )

\scrH 2(\Omega )
\cdot \scrH 2(\Omega )

\scrH 2(\Omega ) - ( f(\varepsilon )\varepsilon 2  - 
\int \varepsilon 

0
f(x) dx)

=
\scrH 1(\partial \Omega )

\scrH 2(\Omega )
\cdot 
\biggl( 
1 +

f(\varepsilon )\varepsilon 
2  - 

\int \varepsilon 

0
f(x) dx

\scrH 2(\Omega ) - ( f(\varepsilon )\varepsilon 2  - 
\int \varepsilon 

0
f(x) dx)

\biggr) 
,

estimate (4.9) reads

Ep,\lambda (\Omega \varepsilon ) \leq 
\int 
\Omega 

distp(x, \partial \Omega ) dx - \lambda 
1
3

\int \varepsilon 

0
| f \prime (x)| 2 dx

\scrH 2(\Omega ) - ( f(\varepsilon )\varepsilon 2  - 
\int \varepsilon 

0
f(x) dx)

+ \lambda 
\scrH 1(\partial \Omega )

\scrH 2(\Omega )
\cdot 
\biggl( 
1 +

f(\varepsilon )\varepsilon 
2  - 

\int \varepsilon 

0
f(x) dx

\scrH 2(\Omega ) - ( f(\varepsilon )\varepsilon 2  - 
\int \varepsilon 

0
f(x) dx)

\biggr) 

= Ep,\lambda (\Omega ) + \lambda 

\scrH 1(\partial \Omega )
\scrH 2(\Omega ) (

f(\varepsilon )\varepsilon 
2  - 

\int \varepsilon 

0
f(x) dx) - 1

3

\int \varepsilon 

0
| f \prime (x)| 2 dx

\scrH 2(\Omega ) - ( f(\varepsilon )\varepsilon 2  - 
\int \varepsilon 

0
f(x) dx)

.(4.10)

Since \Omega is a minimizer, Lemma 3.5 gives \scrH 2(\Omega ) > 0, and note that

f(\varepsilon )\varepsilon 

2
 - 
\int \varepsilon 

0

f(x) dx \leq \scrH 2(\Omega )

2

for all sufficiently small \varepsilon ; hence the denominator in (4.10) is positive. Thus the
minimality of \Omega forces the numerator in (4.10) to be nonnegative, i.e.,

(4.11) 3
\scrH 1(\partial \Omega )

\scrH 2(\Omega )

\biggl( 
f(\varepsilon )\varepsilon 

2
 - 
\int \varepsilon 

0

f(x) dx

\biggr) 
 - 

\int \varepsilon 

0

| f \prime (x)| 2 dx \geq 0.

Equation (4.7) shows

f(\varepsilon )\varepsilon 

2
 - 
\int \varepsilon 

0

f(x) dx = \scrH 2(\Omega ) - \scrH 2(\Omega \varepsilon ) \geq 0

since by construction \Omega \varepsilon \subseteq \Omega . Lemma 3.5 gives

\scrH 2(\Omega ) \geq C1, \scrH 1(\partial \Omega ) \leq C3;

hence

3
\scrH 1(\partial \Omega )

\scrH 2(\Omega )
\leq 3C3

C1
=: C,

and (4.11) forces

(4.12) C

\biggl( 
f(\varepsilon )\varepsilon 

2
 - 
\int \varepsilon 

0

f(x) dx

\biggr) 
\geq 

\int \varepsilon 

0

| f \prime (x)| 2 dx.

Since \Omega is convex and we assumed (at the beginning of this proof) that \Omega \subseteq \{ y \geq 0\} ,
f is nonnegative; hence (4.12) forces

(4.13)
C

2
f(\varepsilon )\varepsilon \geq 

\int \varepsilon 

0

| f \prime (x)| 2 dx.
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Note that since f(0) = 0, it follows

(4.14) f(\varepsilon ) =

\int \varepsilon 

0

f \prime (x) dx \leq 
\int \varepsilon 

0

| f \prime (x)| dx.

By H\"older's inequality,

(4.15)

\int \varepsilon 

0

| f \prime (x)| 2 dx \geq 1

\varepsilon 

\biggl( \int \varepsilon 

0

| f \prime (x)| dx
\biggr) 2

;

hence

C

2
\varepsilon 

\int \varepsilon 

0

| f \prime (x)| dx
(4.14)

\geq C

2
f(\varepsilon )\varepsilon 

(4.13)

\geq 
\int \varepsilon 

0

| f \prime (x)| 2 dx
(4.15)

\geq 1

\varepsilon 

\biggl( \int \varepsilon 

0

| f \prime (x)| dx
\biggr) 2

=\Rightarrow C

2
\varepsilon 2 \geq 

\int \varepsilon 

0

| f \prime (x)| dx \geq 
\int \varepsilon 

0

f \prime (x) dx = f(\varepsilon ).

The above arguments can be repeated for \varepsilon < 0, | \varepsilon | \ll 1 (or equivalently, when the
orientation of x-axis is inverted). The arbitrariness of \varepsilon then gives

lim sup
\varepsilon \rightarrow 0

| f(\varepsilon ) - 2f(0) + f( - \varepsilon )| 
(\varepsilon /2)2

\leq 4C,

concluding the proof.

Now we prove part (3) of Theorem 1.1.

Lemma 4.4. Given p \geq 1, \lambda > 0, any minimizer \Omega of Ep,\lambda satisfies

\scrH 1(\partial \Omega )

\scrH 2(\Omega )
=

p+ 2

\lambda (p+ 3)
min
\scrA 

Ep,\lambda .

Proof. Let \Omega be an arbitrary minimizer. Endow \BbbR 2 with a Cartesian coordinate
system, and assume without loss of generality that (0, 0) is in the interior part of \Omega .
For any r > 0, denote by

Tr : \BbbR 2  - \rightarrow \BbbR 2, Tr(x) := rx

the homothety of center (0, 0) and ratio r. Note that Tr(\Omega ) \in \scrA for any r > 0, and
the scalings are \int 

Tr(\Omega )

distp(x, \partial Tr(\Omega )) dx = rp+2

\int 
\Omega 

distp(x, \partial \Omega ) dx,

\scrH 1(\partial Tr(\Omega ))

\scrH 2(Tr(\Omega ))
=

1

r
\cdot \scrH 

1(\partial \Omega )

\scrH 2(\Omega )
.

Define the function

f : (0,+\infty )  - \rightarrow (0,+\infty ),

f(r) := Ep,\lambda (Tr(\Omega )) = rp+2

\int 
\Omega 

distp(x, \partial \Omega ) dx+
\lambda 

r
\cdot \scrH 

1(\partial \Omega )

\scrH 2(\Omega )
.
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Since f is smooth and attains a global minimum at r = 1, it follows

f \prime (1) = (p+ 2)

\int 
\Omega 

distp(x, \partial \Omega ) dx - \lambda \cdot \scrH 
1(\partial \Omega )

\scrH 2(\Omega )
= 0

=\Rightarrow 
\int 
\Omega 

distp(x, \partial \Omega ) dx =
\lambda 

p+ 2
\cdot \scrH 

1(\partial \Omega )

\scrH 2(\Omega )
;

hence

Ep,\lambda (\Omega ) =
\lambda (p+ 3)

p+ 2
\cdot \scrH 

1(\partial \Omega )

\scrH 2(\Omega )
= min

\scrA 
Ep,\lambda ,

and the proof is complete.

Let us conclude the paper with some final remarks. In this paper we investi-
gated the minimization problem for the average distance functional, with perimeter-
to-area ratio penalization, in the plane. We proved the existence and C1,1-regularity
of minimizers, mainly relying on constructing suitable competitors. Echoing and de-
veloping former studies that exclusively focused on either the one-dimensional aver-
age distance problem or purely surface area-to-volume ratio question, by considering
optimal sets of combined energy from broader and more eclectic perspectives, this
study enriches and deepens our understanding of penalized average distance prob-
lem.

We remark that all the main results of this paper, i.e., bounds on the perime-
ter and area and C1,1-regular of minimizers, can also be proven if we replace the

perimeter-to-area term with a generalized ratio of the form \lambda \scrH 1(\partial \Omega )\alpha 

\scrH 2(\Omega )\beta 
, symbolizing a

perimeter term normalized (by area) with different scaling exponents \alpha and \beta . That
is, we consider an energy of the form

(4.16) E\alpha ,\beta 
p,\lambda (\Omega ) :=

\int 
\Omega 

distp(x, \partial \Omega ) dx+ \lambda 
\scrH 1(\partial \Omega )\alpha 

\scrH 2(\Omega )\beta 
,

where \alpha , \beta are given powers satisfying 2\beta > \alpha > p
p+1\beta > 0. This last bound, combined

with Young's inequality, allows us to easily bound the perimeter, and the subsequent
results. It can also be quickly checked that if \alpha > 2\beta , then minimizers are just single
points. One more remark is that, according to (2.7), if in (4.16) we pick \alpha = p, \beta =
p+ 1 and \lambda = C as in (2.7), we get

Ep,p+1
p,\lambda (\Omega ) \geq C

\scrH 2(\Omega )p+1

\scrH 1(\partial \Omega )p
+ C

\scrH 1(\partial \Omega )p

\scrH 2(\Omega )p+1
\geq 2C.

So in this case if the optimal constant in (2.7) is obtained by a circle, the optimal shape
for (1.1) is a circle. An interesting question worthy of further consideration is if the
circle would be the minimizer for other parameters, as in similar discussions given in
[19, 15, 14, 12]. Another natural question is to ask if in general one may improve the
C1,1-regularity by combining the established results with elliptic regularity theory,
given that the variation of the perimeter-to-area ratio leads to a system of second
order differential equations of the boundary parametrization.

In addition, it is interesting to improve the results of this paper to higher di-
mensions, again with a generalized ratio penalization. However, the geometric com-
plexity of higher dimensional objects can increase significantly, and more work is
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required to exclude more complicated sets (e.g., ``tentacles""), which were not an is-
sue in the planar case; thus we expected to rely on rather different tools and argu-
ments.
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