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The average-distance problem with an
Euler elastica penalization

Qiang Du, Xin Yang Lu, and Chong Wang

Abstract. We consider the minimization of an average-distance functional defined on a two-
dimensional domain � with an Euler elastica penalization associated with @�, the boundary of �.
The average distance is given by Z

�
distp.x; @�/ dx;

where p � 1 is a given parameter and dist.x; @�/ is the Hausdorff distance between ¹xº and @�.
The penalty term is a multiple of the Euler elastica (i.e., the Helfrich bending energy or the Willmore
energy) of the boundary curve @�, which is proportional to the integrated squared curvature defined
on @�, as given by

�

Z
@�
�2@� dH1

x@�;

where �@� denotes the (signed) curvature of @� and �>0 denotes a penalty constant. The domain�
is allowed to vary among compact, convex sets of R2 with Hausdorff dimension equal to two. Under
no a priori assumptions on the regularity of the boundary @�, we prove the existence of minimizers
of Ep;�. Moreover, we establish the C 1;1-regularity of its minimizers. An original construction of
a suitable family of competitors plays a decisive role in proving the regularity.

1. Introduction

The curvature of boundaries plays an important role in many physical and biological mod-
els. For instance, the elasticity of cell membranes is strongly correlated to its bending, and
thus to its curvature. One way to quantify the bending energy per unit area of closed lipid
bilayers was proposed by Helfrich in [11], and is now commonly referred to as “Helfrich
bending energy”. A related notion, from differential geometry, is the “Willmore energy”,
which measures how much a surface differs from the sphere [10]. In 2D, the Willmore
energy simplifies to be a multiple of the integrated squared curvature, which is also com-
monly referred as the Euler elastica.

Easy access to the boundary is also relevant in nature: many processes such as heat
dissipation, waste disposal, and nutrient absorption are more efficient when the whole
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body has “easy access” to its boundary. One way to quantify the “average accessibility”
for points of a set � � R2 to the boundary @� is an energy functional of the form

� 7!

Z
�

distp.x; @�/ dx (1.1)

for a given parameter p � 1.
There are other energy functionals sharing similar geometric features with (1.1). For

example, (1.1) is formally similar to the average-distance functional associated with a
given domain � � R2,

† 7!

Z
�

distp.x;†/ dx; (1.2)

where the unknown † varies among compact subsets of �. In many existing studies,
† is assumed to be a connected set with its Hausdorff dimension equal to one, and its
one-dimensional Hausdorff measure is to be bounded from above by a specified constant.
Problems of this type are used in many modeling applications, such as urban planning and
optimal pricing. For a (non-exhaustive) list of references on the average-distance problem
we refer to the works by Buttazzo et al. [2, 3, 5, 6] and [4, Chapter 3.3]. Also related are
the papers by Paolini and Stepanov [14], Santambrogio and Tilli [15], Tilli [18], Lemenant
and Mainini [13], Slepčev [16], and the review paper by Lemenant [12]. Alternatively, if
† is assumed to vary among sets � consisting of discrete points with a fixed cardinality,
say k, then the minimization of the functional in (1.2), often named the quantization error
in this case, is related to the centroidal Voronoi tessellations [8] and k-means, which are
widely studied in subjects such as vector quantization, signal compression, sensor and
resource placement, geometric meshing, and so on [9].

In this work, we consider the average-distance energy functional as a functional of the
domain � with † D @� penalized by the Euler elastica of @�, as given by

Ep;�.�/ D

Z
�

distp.x; @�/ dx C �
Z
@�

�2@�dH1
x@�;

where p � 1; � > 0 are given parameters, with � proportional to a bending constant,
and H1

x@�
denotes the Hausdorff measure restricted on @�. For further properties of the

Hausdorff measure, we refer to [1]. We consider a free boundary problem associated with
the minimization of Ep;� among domains � in the admissible set

A WD
®
� W � � R2 is compact, convex, and Hausdorff two-dimensional

¯
:

For any �1; �2 2 A, define the metric in A as

d.�1; �2/ WD H2.�14�2/; (1.3)

where 4 denotes the symmetric difference of the two sets and H2 denotes the two-
dimensional Hausdorff measure.

The term Z
@�

�2@� dH1
x@�
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is the integrated squared curvature [7]. Since we do not make any a priori assumptions on
the regularity of the boundary @�, we need to make sense of the integrand �@�. For future
reference, we define it as follows: let  be an arc-length parameterization of @� and defineZ

@�

�2@� dH1
x@� WD

´RH1.@�/

0
j 00j2 ds if  2 H 2..0;H1.@�//IR2/;

C1 otherwise:
(1.4)

Here, H1.@�/ denotes the total length of @�. That is, we are reducing our minimization
problem to quite regular sets, i.e., domains � whose boundaries admit an H 2 regular
arc-length parameterization. Therefore, we are considering the minimization problem

inf
²Z

�

distp.x; @�/ dx C �
Z H1.@�/

0

j 00j2 ds W H1.@�/ > 0;

j 0j D 1; .Œ0;H1.@�/�/ is the boundary of a compact convex set
³
:

We note first a simple rescaling analysis where the domain � is stretched by a factor
" > 0. Given the two-dimensional nature, if " > 1, then the average-distance functional is
scaled by no more than "2Cp but no less than "2. Meanwhile, the Euler elastica gets scaled
by 1=". This shows that the optimal �, if it exists, must have a suitable and finite size for
any prescribed � > 0. Indeed, the energy considered might be viewed as a competition
between access to the boundary and the elastic stiffness of the boundary.

The main result of this paper is the following:

Theorem 1.1. Given p � 1 and � > 0, any minimizer � of Ep;� is C 1;1-regular with a
Lipschitz constant of at most

C D C.p; �/ WD

q
��1p.C1 C 1/p�1�C

2
1 C 2C2;

where

C1 D C1.p; �/ WD .p C 1/.p C 2/
�24
�

�pC1
.2.1C ��//pC2; (1.5)

C2 D C2.p; �/ WD 32.�
�1
C �/2 C 32

p
2C1�.�

�1
C �/5=2 (1.6)

are constants independent of �. That is, the boundary @� admits a C 1;1-regular arc-
length parameterization  W Œ0;H1.@�/�! R2 such that

j 0.t1/ � 
0.t2/j � C jt1 � t2j

for any t1; t2.

The rest of the paper is organized as follows: Section 2 is dedicated to proving some
auxiliary estimates on elements of minimizing sequences. Existence of minimizers is
shown in Section 3, while C 1;1-regularity is established in Section 4. Finally, in Sec-
tion 5, we explore several future directions to further our understanding of the penalized
average-distance problem. Technical results concerning properties of convex sets used in
this paper will be presented in Appendix A.
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2. Estimates

This section is dedicated to establishing quantitative bounds on the diameter and the area
of any domain associated with the minimizing sequences of Ep;�. In particular, the main
result is Lemma 2.3, which provides a uniform upper bound on the diameter, crucial to
the proof of the existence of minimizers.

Remark. It is worth noting that, due to (1.4), any set�whose boundary is not C 1-regular
will have infinite energy, since a corner on @� with a discontinuous tangent corresponds
to the Dirac measure in the curvature measure �@�. Thus, we can restrict ourselves to
C 1-regular sets.

Lemma 2.1. Given p � 1 and � > 0, for any � 2 A it holds that

diam.�/ �
4��

Ep;�.�/
: (2.7)

Then, for any minimizing sequence�n �A (that is,Ep;�.�n/! infAEp;�), it holds that

diam.�n/ �
2��

1C ��
(2.8)

for all sufficiently large n.

Proof. Consider an arbitrary � 2 A. Choose x; y 2 @� such that jx � yj D diam.�/.
Note that � � B.x; diam.�// and hence, due to the convexity of � (see Lemma A.1), it
follows that

H1.@�/ � � diam.�/:

As @� is a closed convex curve with winding number equal to one and our restriction on
the curvature term ensures that the boundary is H 2 regular, it follows thatZ

@�

j�@�j dH1
x@� D 2�;

and by Hölder’s inequality we have

Ep;�.�/ � �

Z
@�

�2@� dH1
x@�

�
4�2�

H1.@�/

�
4��

diam.�/

and hence, equation (2.7).
To prove (2.8), we show first that infA Ep;� < C1. Consider the unit ball B WD

B..0; 0/; 1/, and note that

inf
A
Ep;� � Ep;�.B/ D

Z
B

distp.x; @B/ dx C �
Z
@B

�2@B dH1
x@B �

�

3
C 2��: (2.9)
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Let �n � A be an arbitrary minimizing sequence. Clearly, since Ep;�.�n/! infAEp;�,
for all sufficiently large n it holds that

Ep;�.�n/ � inf
NA

Ep;� C 2 �
�

3

(2.9)
� 2C 2��; (2.10)

and (2.7) gives

diam.�n/ �
2��

1C ��

and hence, (2.8).

In the following, we will use the total variation of a function u, which we now define.
Let � � Rn be an open set and let u 2 L1.�/. Then,

kukTV WD sup
²Z

�

u div� dx W � 2 C 1c .�IR
n/; k�kL1.�/ � 1

³
;

and
kukBV D kukL1 C kukTV :

Lemma 2.2. Given p � 1, � > 0, and � 2 A, it holds that

H2.�/ �
��2

2Ep;�.�/2
: (2.11)

Moreover, given a minimizing sequence �n � A (that is, Ep;�.�n/ ! infA Ep;�), we
have

H2.�n/ �
��2

8.1C ��/2
(2.12)

for all sufficiently large n.

To simplify notations, given a point z 2 R2, we let zx (resp. zy) denote the x (resp. y)
coordinate of z, and given points x; y 2 R2, we denote by

ŒŒx; y�� WD
®
.1 � s/x C sy W s 2 Œ0; 1�

¯
the line segment between x and y.

Proof. Consider an arbitrary � 2 A. Choose arbitrary points Nx; Ny 2 @� such that
j Nx � Nyj D diam.�/. Endow R2 with a Cartesian coordinate system, with the origin at
the midpoint . Nx C Ny/=2 (see Figure 1), such that

Nx D .� diam.�/=2; 0/; Ny D .diam.�/=2; 0/:

Let  W Œ0;H1.@�/�! @� be an arc-length parameterization, and without loss of gener-
ality, we impose .0/ D Nx. We make and prove the following claim:
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Nx Ny

.t1/

.t2/

@�

x-axis

Figure 1. Schematic representation of the construction.

 0.0/x D 0: Assume the opposite, i.e.,  0.0/x ¤ 0. For j"j � 1, since  is C 1-regular,
it holds that ."/ D Nx C " 0.0/C v" for some vector v" with jv"j D o."/ as "! 0. Since
Ny � Nx is parallel to the x-axis, it follows that

d
dt
j Ny � .t/j

ˇ̌̌
tD0
D lim
"!0

j Ny � . Nx C " 0.0//j � j Ny � Nxj C o."/

"
D  0.0/x ¤ 0;

hence, t D 0 is not a maximum for t 7! j Ny � .t/j. This contradicts

j Ny � Nxj D diam.�/ D max
x2@�

j Ny � xj;

and the claim is proven.
Without loss of generality, we can further impose  0.0/ D .0; 1/. Consider the region

� \ ¹y � 0º. Set
t1 WD inf¹t W  0.t/y D 1=2º;

where .t/y denotes the y-coordinate of .t/. By Hölder’s inequality, it follows that

1

4t1
�
k 0yk

2
TV.0;t1/

t1
�

Z
@�

�2@� dH1
x@� �

Ep;�.�/

�
H) t1 �

�

4Ep;�.�/
: (2.13)

Since 1=2 �  0y.t/ � 1 for any t 2 Œ0; t1�, it holds that .t1/y � t1=2. Due to the con-
vexity of � \ ¹y � 0º, both line segments ŒŒ.t1/; Nx�� and ŒŒ.t1/; Ny�� are contained in �,
hence,4Nx.t1/ Ny ��. By construction, the triangle4Nx.t1/ Ny has base ŒŒ Nx; Ny�� and height
ŒŒ.t1/; ..t1/x ; 0/��. Therefore,

H2.4Nx.t1/ Ny/ D
1

2
j Nx � Nyj � j.t1/y j �

diam.�/t1
4

: (2.14)

By repeating the same construction for � \ ¹y � 0º, we get the existence of

t2 �
�

4Ep;�.�/
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such that the triangle4Nx.t2/ Ny satisfies

H2.4Nx.t2/ Ny/ D
1

2
j Nx � Nyj � j.t2/y j �

diam.�/t2
4

: (2.15)

Combining (2.14) and (2.15) gives

H2.�/ �
diam.�/t1

4
C

diam.�/t2
4

(2.7);(2.13)
�

��2

2Ep;�.�/2
;

and hence, (2.11).
We conclude the proof that (2.12) holds by noting that the above arguments give

H2.�n/
(2.11)
�

��2

2Ep;�.�n/2

(2.10)
�

��2

8.1C ��/2

for any sufficiently large n.

Lemma 2.3. Given p � 1 and � > 0, for any � 2 A it holds that

diam.�/ � .p C 1/.p C 2/
�24
�

�pC1
Ep;�.�/

pC2: (2.16)

Moreover, for any minimizing sequence�n �A (that is, Ep;�.�n/! infAEp;�) it holds
that

diam.�n/ � C1 (2.17)

for all sufficiently large n, with C1 defined in (1.5).

Proof. Similar to the proof of Lemma 2.2, consider an arbitrary � 2 A and choose arbi-
trary points Nx; Ny 2 @� such that j Nx � Nyj D diam.�/. Endow R2 again with a Cartesian
coordinate system, with the origin at the midpoint . Nx C Ny/=2 (see Figure 2), such that

Nx D .� diam.�/=2; 0/; Ny D .diam.�/=2; 0/:

In the proof of Lemma 2.2 we have shown the existence of a point q 2 @� (e.g., the
point .t1/) such that

4Nxq Ny � �; jqy j �
�

8Ep;�.�/
: (2.18)

Let qc be the incenter of4Nxq Ny, and note that for any z 2 4Nxqc Ny we have

dist.z; @.4Nxq Ny// D dist.z; ŒŒ Nx; Ny��/:

Denote by q?c 2 ŒŒ Nx; Ny�� the projection of qc on ŒŒ Nx; Ny�� and set

D1 WD j Nx � q
?
c j; D2 WD j Ny � q

?
c j; r WD jqc � q

?
c j:
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Nx Ny

q

q?c

qc

@�

Figure 2. Schematic representation of the construction. Only the region�\ ¹y � 0º is represented.
Notice that the sides of4Nxq Ny are tangents of the incircle.

Clearly, D1 CD2 D diam.�/, and direct computation givesZ
�

distp.z; @�/ dz �
Z
4Nxqc Ny

distp.z; @�/ dz

�

Z
4Nxqc Ny

distp.z; ŒŒ Nx; Ny��/ dz

D

Z
4Nxqc Ny

zpy dz

D

Z D1

0

Z r
D1
x

0

yp dy dx C
Z D2

0

Z r
D2
x

0

yp dy dx

D
rpC1.D1 CD2/

.p C 1/.p C 2/

D
rpC1 diam.�/
.p C 1/.p C 2/

: (2.19)

To estimate r , note that the sides ŒŒ Nx; qc �� and ŒŒ Ny; qc �� satisfy

j Nx � Nyj D diam.�/ � max¹j Nx � qc j; j Ny � qc jº:

Since qc is the incenter of 4Nxq Ny and the sides of 4Nxq Ny are tangents of the incircle, we
have

H2.4Nxq Ny/ D
1

2
diam.�/jqy j D

1

2
.diam.�/C j Nx � qc j C j Ny � qc j/r:

Thus, we infer

r �
jqy j

3

(2.18)
�

�

24Ep;�.�/
:
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Substituting into (2.19) gives� �

24Ep;�.�/

�pC1
�

diam.�/
.p C 1/.p C 2/

�

Z
�

distp.z; @�/ dz � Ep;�.�/;

and hence, (2.16).
To prove (2.17), note that for any minimizing sequence it holds that

Ep;�.�n/
(2.10)
� 2.1C ��/

H) diam.�n/
(2.16)
� .p C 1/.p C 2/

�24
�

�pC1
.2.1C ��//pC2 D C1

for all sufficiently large n.

3. Proof of existence

Set
A WD completion of A with respect to the metric d;

where d is defined in (1.3).

Lemma 3.1. Given a compact set † � R2 and a sequence of curves ¹kº W Œ0; 1�! †

satisfying
sup
k

k 0kkBV < C1; sup
k

H1.k.Œ0; 1�// < C1;

where k � kBV denotes the BV norm, there exists a curve  W Œ0; 1�! † such that (upon
subsequence) it holds that:

(1) k !  in C ˛ for any ˛ 2 Œ0; 1/,

(2)  0
k
!  0 in Lp for any p 2 Œ1;1/, and

(3)  00
k

�
*  00 in the space of signed Borel measures.

This is a classical result (see for instance [16], to which we refer for the proof).

Lemma 3.2. If a minimizing sequence �n � A converges to some � 2 AnA, then �
must be either be a point or a line segment.

Proof. The compactness of � can be guaranteed by Lemma 2.3. To see that � 2 AnA is
convex, consider an arbitrary pair of points P;Q 2 � and t 2 .0; 1/. We now show that
.1 � t /P C tQ 2 �. Consider sequences Pn; Qn 2 �n such that Pn ! P , Qn ! Q.
Since each �n is convex, .1 � t /Pn C tQn 2 �n. By Lemma 3.1, we know

kn � kC 0.Œ0;1�IR2/ ! 0:

As a consequence,
dH .@�n; @�/! 0:
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This allows us to choose, for each n, another point zn 2 � such that jzn � ..1 � t /Pn C
tQn/j � dH .@�n; @�/. By construction, now the sequences .1 � t /Pn C tQn and zn
have the same limit. As .1 � t /Pn C tQn ! .1 � t /P C tQ and zn ! z, hence z D
.1 � t /P C tQ, using the compactness of � finally gives z 2 �. Then, if � contains
non-collinear points x; y; z, by convexity we have 4xyz � �, which would give the
contradiction � 2 A.

Lemma 3.3. Given a sequence �n � A such that Ep;�.�n/ is bounded, there exists
� 2 A such that a subsequence of �n (still denoted by �n) converges to � with respect
to the metric d defined in (1.3).

Proof. By (2.7) and (2.16), we have

.p C 1/.p C 2/
�24
�

�pC1
Ep;�.�n/

pC2
� diam.�n/

�
4��

Ep;�.�n/
;

hence, supn diam.�n/ < C1, that is, �n has uniform bounded diameters. Note also that
supnEp;�.�n/ < C1 implies

sup
n

Z
@�n

�2@�n dH1
x@�n

< C1;

i.e., the curvatures of �n are uniformly square integrable. Then, by letting n W Œ0; 2��!
R2 be constant speed parameterizations of @�n, we have that a subsequence n satisfies
all the hypotheses of Lemma 3.1, thus concluding the proof.

Based on Lemmas 2.1, 2.2, 2.3, and 3.3 we get the following corollary:

Corollary 3.4. Any minimizer (if they exist at all) satisfies estimates (2.8), (2.12), and
(2.17).

Lemma 3.5. For any p � 1 and � > 0, the functional Ep;� admits a minimizer in A.

Proof. Consider a minimizing sequence �n � A. Since Ep;� is invariant under rigid
movements, we can assume that .0; 0/ 2 �n for any n. In view of (2.10), without loss
of generality, we can also impose

sup
n
Ep;�.�n/ � 2.1C ��/:

Then, by Lemma 2.3 we get supn diam.�n/ � C1, and hence

�n � B..0; 0/; C1/ for any n:

Thus, �n is a sequence of uniformly bounded, compact sets and there exists (upon sub-
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sequence, which we do not relabel) a limit set � 2 A such that �n ! � in the metric d
(defined in (1.3)).

We claim Z
�

distp.z; @�/ dz D lim
n!C1

Z
�n

distp.z; @�n/ dz; (3.20)Z
@�

�2@� dH1
x@� � lim inf

n!C1

Z
@�n

�2@�n dH1
x@�n

: (3.21)

Inequality (3.21) follows rather straightforwardly from the lower semicontinuity of the
H 2 norm.

We need to prove (3.20). In the following, it is useful to recall Lemma A.1, which
states that the diameter is continuous with respect to the convergence in A. We split the
sums Z

�n

distp.z; @�n/ dz D
Z
�nn�

distp.z; @�n/ dz C
Z
�n\�

distp.z; @�n/ dz;Z
�

distp.z; @�/ dz D
Z
�n�n

distp.z; @�/ dz C
Z
�n\�

distp.z; @�/ dz;

and note that ˇ̌̌Z
�n

distp.z; @�n/ dz �
Z
�

distp.z; @�/ dz
ˇ̌̌

�

Z
�nn�

distp.z; @�n/ dz C
Z
�n�n

distp.z; @�/ dz (3.22)

C

Z
�n\�

j distp.z; @�n/ � distp.z; @�/j dz: (3.23)

Moreover,Z
�nn�

distp.z; @�n/ dz � H2.�nn�/ diam.�n/p � H2.�nn�/C
p
1 ! 0;Z

�n�n

distp.z; @�/ dz � H2.�n�n/ diam.�/p � H2.�n�n/C
p
1 ! 0;

and hence,

lim
n!C1

Z
�nn�

distp.z; @�n/ dz D lim
n!C1

Z
�n�n

distp.z; @�/ dz D 0:

To prove

lim
n!C1

Z
�n\�

j distp.z; @�n/ � distp.z; @�/j dz D 0;

denote by dH the Hausdorff distance, and by the mean value theorem, it holds thatZ
�n\�

j distp.z; @�n/ � distp.z; @�/j dz
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�

Z
�n\�

j dist.z; @�n/ � dist.z; @�/j

� p sup
z2�n\�

�
max¹dist.z; @�n/; dist.z; @�/º

�p�1 dz

� H2.�n \�/dH .@�n; @�/ � pC
p�1
1

� �C 21 dH .@�n; @�/ � pC
p�1
1 ! 0:

Thus, both terms (3.22) and (3.23) converge to zero, and (3.20) is proven.
Combining with (3.20) gives

Ep;�.�/ � lim inf
n!C1

Ep;�.�n/ D inf
NA

Ep;�;

hence, � is effectively a minimizer of Ep;�. Since � is the limit of �n � A, based on
Lemma 3.2 and Corollary 3.4, we have � 2 A.

4. Proof of regularity

This section completes the proof of Theorem 1.1 by establishing the desired regularity of
the minimizers. A few technical estimates used in the proof are left as separate lemmas
proved at the end of the section.

Proof of Theorem 1.1. Let � be a minimizer of Ep;� and let  be an arc-length parame-
terization of @�. Assume there exist M; ", t1 < t2 such that

j 0.t2/ � 
0.t1/j DM"; t2 � t1 D ": (4.24)

The quantity " is assumed to be vanishingly small, and estimates involving " will be in
general valid for sufficiently small ", rather than all ". The goal is to find an upper bound
for M .

Without loss of generality, upon rigid movements, we can assume t1 D 0, t2 D ".
Endow R2 with a Cartesian coordinate system with

.0/ 2 ¹x � 0; y D 0º; ."/ 2 ¹y � 0; x D 0º;  0.0/ D .0; 1/: (4.25)

We first give an estimate of ."/y . Using Hölder’s inequality and recalling the fact that

�@� � H1
x@�;

d�@�
dH1

x@�

2 L2.0;H1.@�/IR/;

for any t 2 Œ0; "� it holds that

Ep;�.�/

�
�

Z
.Œ0;t�/

�2@� dH1
x@� D

Z t

0

j 00j2 ds �
j 0.t/ �  0.0/j2

"
�
j 0.t/y � 1j

2

"

H) j 0.t/y � 1j D 1 � 
0.t/y �

q
"Ep;�.�/=�
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H)  0.t/y � 1 �

q
"Ep;�.�/=�;

and hence,

."/y D

Z "

0

 0.t/y dt �
Z "

0

�
1 �

q
"Ep;�.�/=�

�
dt D "

�
1 �

q
"Ep;�.�/=�

�
:

On the other hand, as we imposed ."/y � 0, we have

."/y D j."/y j D
ˇ̌̌Z "

0

 0.t/y dt
ˇ̌̌
�

Z "

0

j 0.t/y j dt � ":

In particular,

" �

q
Ep;�.�/=�"

3=2
� ."/y � ";

and therefore
."/y D "CO."

3=2/: (4.26)

Construct the competitor �" in the following way:
(1) Denote by t˙ the two times such that  0.t˙/ D .˙1; 0/ and by t? the time such

that  0.t?/D .0;�1/. Since we imposed  0.0/D .0; 1/, without loss of generality we can
assume that the tangent direction turns counterclockwise, i.e.,

" < t� < t? < tC < H1.@�/:

Note that

2

t? � t�
D
j 0.t?/ � 

0.t�/j
2

t? � t�
�

Z
.Œt�;t?�/

�2@� dH1
x@� �

Ep;�.�/

�

(2.9)
� 2��1 C 2�

H) t? � t� �
1

��1 C �
:

Similarly, we get

min
®
H1.@�/ � tC; tC � t?; t�

¯
�

1

��1 C �
: (4.27)

(2) Define the vector field v W Œt�; tC�! R2 as

v.s/ WD

8<:
�

cos
�
�
2

�
1C s�t�

t?�t�

��
; sin

�
�
2

�
1C s�t�

t?�t�

���
; if s 2 Œt�; t?�;�

cos
�
�
2

�
1C

tC�s
tC�t?

��
;�
�
tC�s
tC�t?

�2 sin
�
�
2

�
1C

tC�s
tC�t?

���
; if s 2 Œt?; tC�:

(4.28)
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Note first that v is continuous (smooth outside t?), and direct computation gives

v0.s/ D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

�=2
t?�t�

�
� sin

�
�
2

�
1C s�t�

t?�t�

��
; cos

�
�
2

�
1C s�t�

t?�t�

���
; if s 2 Œt�; t?/;�

�=2
tC�t?

sin
�
�
2

�
1C

tC�s
tC�t?

��
;

�=2
tC�t?

�
tC�s
tC�t?

�2 cos
�
�
2

�
1C

tC�s
tC�t?

��
C2

tC�s

.tC�t?/2
sin
�
�
2

�
1C

tC�s
tC�t?

���
; if s 2 .t?; tC�:

In particular,

lim
t!t�

?

v0.t/ D
�=2

t? � t�
.0;�1/; lim

t!tC
?

v0.t/ D
�=2

tC � t?
.0;�1/;

that is, the left and right limit differ just by a multiplicative constant. This observation is
crucial, since it implies that the tangent derivative of the arc-length reparameterization of
v does not jump at t D t? (recall also that  0 does not jump at t D t?, hence, the tangent
derivative of the arc-length reparameterization of  C cv does not jump at t D t?, for any
c > 0). We claim:

kv0kL1 � max
° �=2

t? � t�
;

4

tC � t?

±
� 4.��1 C �/ < C1; (4.29)

kv00kL1 � 16.�
�1
C �/2 < C1: (4.30)

The proofs of both claims are presented in Lemma 4.1 below.
(3) Let " be the curve such that

".t/ WD

8̂̂̂̂
<̂
ˆ̂̂:
.2.t/x ; 2.t/y/ if t 2 Œ0; "�;

.t/C .0; ."/y/ if t 2 Œ"; t��;

.t/C ."/yv.t/ if t 2 Œt�; tC�;�
.t/x

�
1C .0/x

.0/x�.tC/x

�
�

.tC/x.0/x
.0/x�.tC/x

�
if t 2 ŒtC;H1.@�/�:

(4.31)

Note that " defined in (4.31) is injective. Let @�" be the image of ", and �" be the
bounded region of the plane delimited by @�". This will be our competitor. Observe first
that, as  0.tC/ D .1; 0/,

lim
t!t�C

 0".t/ D
�
1C ."/y

�=2

tC � t?

�
.1; 0/;

lim
t!tCC

 0".t/ D
�
1C

.0/x

.0/x � .tC/x

�
.1; 0/;

that is, the left and right limit differ just by a multiplicative constant. This observation is
again crucial, since it implies that the tangent derivative of the arc-length reparameteriza-
tion of  C ."/yv does not jump at t D tC.
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0 x-axis

y-axis

@�

@�"

.0/

."/

".0/

"."/

x-axis

¹x D .tC/xº

@�

@�"

.H1.@�//
D.0/

".H
1.@�//

D".0/

.tC/
D".tC/

Figure 3. Representation of the construction of the competitor ", for t 2 Œ0; "� (left) and t 2
ŒtC;H

1.@�/� (right).

Intuitively, for t 2 Œ0;H1.@�/� the competitor " is constructed from  (see Figure 3)
by:

(1) a homothety of center .0; 0/ and ratio 2 for t 2 Œ0; "�,

(2) a translation of the vector .0; ."/y/ for t 2 Œ"; t��,

(3) adding the smooth vector field ."/yv.t/ for t 2 Œt�; tC�,

(4) a scaling of factor

1C
.0/x

.0/x � .tC/x

and then translation to the right by

.tC/x.0/x

.0/x � .tC/x

in the x direction for t 2 ŒtC;H1.@�/�.

It is straightforward to check compactness and convexity for�". Moreover, denoting by Q"
the arc-length reparameterization of ", the curvature of Q" is still a function (instead of
a more generic measure), as " is always constructed from  via translation, scaling, or
summing with smooth vector fields, and the tangent derivative Q 0" never jumps at “junction
points” (i.e., for t D "; t�; t?; tC, and H1.@�/, respectively).

Next, to estimate Ep;�.�"/ �Ep;�.�/, we claimZ
�"

distp.z; @�"/ dz �
Z
�

distp.z; @�/ dz

� " � p.C1 C 1/
p�1�C 21 =2C .2"/

pC1�.C1 C 1/ (4.32)

and Z
@�"

�2@�" dH1
x@�"
�

Z
@�

�2@� dH1
x@� � "

�
C2 �

M 2

2

�
CO."3=2/; (4.33)
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with
C2 D 32.�

�1
C �/2 C 32

p
2C1�.�

�1
C �/5=2;

as defined in (1.6).

Step 1. Proof of (4.33). Using the notation from (4.31), we make the following claims:Z
.Œ";t��/

�2@� dH1
x@� D

Z
".Œ";t��/

�2@�" dH1
x@�"

(4.34)

andZ
".ŒtC;H1.@�/�/

�2@�" dH1
x@�"
�

Z
.ŒtC;H1.@�/�/

�2@� dH1
x@� � O."

3=2/; (4.35)Z
".Œt�;tC�/

�2@�" dH1
x@�"
�

Z
.Œt�;tC�/

�2@� dH1
x@� � "C2 CO."

3=2/; (4.36)Z
.Œ0;"�/

�2@� dH1
x@� �

Z
".Œ0;"�/

�2@�" dH1
x@�"
�
M 2"

2
: (4.37)

The proof of all four assertions are quite technical, and for the reader’s convenience, will
be done in Lemmas 4.2 and 4.3 below. Combining (4.34), (4.35), (4.36), and (4.37) givesZ

�"

�2@�" dH1
x�"
�

Z
�

�2@� dH1
x� C "

�
C2 �

M 2

2

�
CO."3=2/;

and hence, (4.33).

Step 2. Proof of (4.32). Recall that the construction of the competitor�" in (4.31) also
gives

(1) ."/y > .0/x > 0.

(2) For t 2 Œ";H1.@�/� the competitor ".t/ is obtained by translating .t/ by a vector
of length at most 2". Moreover, it holds that

.t/x � .tC/x

.0/x � .tC/x
.0/x � 2"; 8t 2 Œ";H

1.@�/�;

since by construction we have .0/x � 2", and .0/ is the point with the most
positive x coordinate, which ensures that

.t/x � .tC/x

.0/x � .tC/x
� 1:

(3) For t 2 Œ0; "�, the competitor ".t/ is obtained by scaling .t/ by a factor of two.

One readily checks for all t that j".t/ � .t/j � 2" holds, and

dH .@�"; @�/ � 2":
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Thus, by the mean value theorem, for each point x 2 �" \� we have

distp.x; @�"/ � distp.x; @�/ � .dist.x; @�"/ � dist.x; @�//

� p
�

sup
z2�"\�

max¹dist.x; @�"/; dist.x; @�/º
�p�1

� 2" � p.diam.�/C 2"/p�1

(2.17)
� " � 2p.C1 C 1/

p�1;

with C1 defined in (1.5). Thus, by convexity of �,

H2.�" \�/ � H2.�/ � �.diam.�/=2/2:

It follows thatZ
�"\�

distp.x; @�"/ dx �
Z
�

distp.x; @�/ dx � " � 2p.C1 C 1/p�1H2.�" \�/

� " � p.C1 C 1/
p�1�C 21 =2: (4.38)

Then note that, since by construction we have dH .@�"; @�/ � 2", it follows thatZ
�"n�

distp.x; @�"/ dx � .2"/pH2.�"n�/ � .2"/
p
� 2"H1.@�"/

� .2"/pC1�.diam.�/C 4"/

� .2"/pC1�.C1 C 1/: (4.39)

The inequality H2.�"n�/ � 2"H
1.@�"/ is due to the convexity of �", the fact that

dH .@�"; @�/ � 2", and Lemma A.3. Combining (4.38) and (4.39) givesZ
�"

distp.x; @�"/ dx �
Z
�

distp.x; @�/ dx

� " � p.C1 C 1/
p�1�C 21 =2C .2"/

pC1�.C1 C 1/: (4.40)

Thus, (4.32) is proven.
Combining (4.32) and (4.33) we finally infer

Ep;�.�"/ �Ep;�.�/ D

Z
�"

distp.x; @�"/ dx �
Z
�

distp.x; @�/ dx

C �

�Z
@�"

�2@�" dH1
x@�"
�

Z
@�

�2@� dH1
x@�

�
� " � p.C1 C 1/

p�1�C 21 =2C .2"/
pC1�.C1 C 1/

C �
�
"
�
C2 �

M 2

2

�
CO."3=2/

�
:

Note also that the term .2"/pC1�.C1 C 1/ can be absorbed into O."3=2/ due to the con-
dition p � 1, therefore,

Ep;�.�"/ �Ep;�.�/ � �
�
"
�
��1p.C1 C 1/

p�1�C 21 =2C C2 �
M 2

2

�
CO."3=2/

�
:
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The minimality assumption on � and the arbitrariness of " > 0 then imply

��1p.C1 C 1/
p�1�C 21 =2C C2 �

M 2

2
� 0

H) M �

q
��1p.C1 C 1/p�1�C

2
1 C 2C2 D C;

and the proof is complete.

Lemma 4.1. Under the hypotheses of Theorem 1.1, assertions (4.29) and (4.30) hold.

Proof. We use the same notations from the proof of Theorem 1.1. Since

v0.s/ D

8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

�=2
t?�t�

�
� sin

�
�
2

�
1C s�t�

t?�t�

��
;

cos
�
�
2

�
1C s�t�

t?�t�

���
; if s 2 Œt�; t?/;�

�=2
tC�t?

sin
�
�
2

�
1C

tC�s
tC�t?

��
;

�=2
tC�t?

�
tC�s
tC�t?

�2 cos
�
�
2

�
1C

tC�s
tC�t?

��
C2

tC�s

.tC�t?/2
sin
�
�
2

�
1C

tC�s
tC�t?

���
if s 2 .t?; tC�;

it follows that

jv0.s/j �
�=2

t? � t�
for any s 2 Œt�; t?/;

and

jv0.s/j D

�� �=2

tC � t?

�2
sin2

��
2

�
1C

tC � s

tC � t?

��
C

� �=2

tC � t?

�2� tC � s
tC � t?

�4
cos2

��
2

�
1C

tC � s

tC � t?

��
C 4

.tC � s/
2

.tC � t?/4
sin2

��
2

�
1C

tC � s

tC � t?

��
C 4

�=2

tC � t?

.tC � s/
3

.tC � t?/4
cos

��
2

�
1C

tC � s

tC � t?

��
sin
��
2

�
1C

tC � s

tC � t?

���1=2
�

�� �=2

tC � t?

�2
C

4C �

.tC � t?/2

�1=2
�

4

tC � t?

for any s 2 .t?; tC�. Thus, (4.29) is proven.
To prove (4.30), note that for s 2 Œt�; t?/ we have

v00.s/ D �
� �=2

t? � t�

�2�
cos

��
2

�
1C

s � t�

t? � t�

��
; sin

��
2

�
1C

s � t�

t? � t�

���
;

and hence,

jv00.s/j �
� �=2

t? � t�

�2
:
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Similarly, for s 2 .t?; tC� it holds that

v00.s/ D

�
�

� �=2

tC � t?

�2
cos

��
2

�
1C

tC � s

tC � t?

��
;

�=2

tC � t?

�
�2.tC � s/

.tC � t?/2
cos

��
2

�
1C

tC � s

tC � t?

��
C

� tC � s
tC � t?

�2 �=2

tC � t?
sin
��
2

�
1C

tC � s

tC � t?

���
� 2

tC � s

.tC � t?/2
�=2

tC � t?
cos

��
2

�
1C

tC � s

tC � t?

��
�

2

.tC � t?/2
sin
��
2

�
1C

tC � s

tC � t?

���
:

Therefore, using (4.27) we have

jv00.s/j �
� 4

tC � t?

�2
� 16.��1 C �/2;

hence, (4.30) is proven.

The rest of the section contains the proofs of the technical estimates needed in the
above proof.

Lemma 4.2. Under the hypotheses of Theorem 1.1, assertions (4.34), (4.35), and (4.37)
hold.

Proof. We use the same notations from the proof of Theorem 1.1.

Proof of (4.34). By construction, for any t 2 Œ"; t��, ".t/ differ from .t/ by a trans-
lation. Thus, the curvature of these two segments are always equal, hence (4.34).

Proof of (4.35). For t 2 ŒtC;H1.@�/� we have

".t/ D
�
.t/x

�
1C

.0/x

.0/x � .tC/x

�
�

.tC/x.0/x

.0/x � .tC/x
; .t/y

�
;

 0".t/ D
�
 0.t/x

�
1C

.0/x

.0/x � .tC/x

�
;  0.t/y

�
;

 00" .t/ D
�
 00.t/x

�
1C

.0/x

.0/x � .tC/x

�
;  00.t/y

�
:

We claim

.0/x �

Z "

0

j 0.t/xj dt � "3=2
q
Ep;�.�/=�; .0/x � .tC/x �

�

2Ep;�.�/
: (4.41)

In view of (4.25), and noting that for any t 2 Œ0; "� it holds that

Ep;�.�/

�
�

Z
.Œ0;t�/

�2@� dH1
x@� D

Z t

0

j 00j2 ds �
j 0.t/ �  0.0/j2

"
�
j 0.t/xj

2

"
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H) j 0.t/xj �

q
"Ep;�.�/=�;

it follows that

j.0/x � ."/xj D j.0/xj �

Z "

0

j 0.t/xj dt � "3=2
q
Ep;�.�/=�:

Now, recall that by construction  0.tC/ D .1; 0/,  0.H1.@�// D  0.0/ D .0; 1/, j 0j � 1
for a.e. t , and let � 2 .tC;H1.@�// be the time for which  0.�/ D .1=2;

p
3=2/. Then,

Ep;�.�/

�
�

Z
.ŒtC;��/

�2@� dH1
x@� D

Z �

tC

j 00j2 ds �
j 0.�/ �  0.tC/j

2

� � tC
D

1

� � tC

H) � � tC � �=Ep;�.�/;

and since  0x � 0 on ŒtC;H
1.@�/� and  0x � 1=2 for all t 2 ŒtC; � �, it follows that

.0/x � .tC/x � .�/x � .tC/x �
�

2Ep;�.�/
, hence (4.41) is proven. Consequently,ˇ̌̌ .0/x

.0/x � .tC/x

ˇ̌̌
� 2."Ep;�.�/=�/

3=2
D O."3=2/:

Therefore,

j 0"j
�4
D

�
j 0xj

2
�
1C

.0/x

.0/x � .tC/x

�2
C j 0y j

2
��2

D

�
1C j 0xj

2 2.0/x

.0/x � .tC/x
C j 0xj

2
� .0/x

.0/x � .tC/x

�2��2
D 1CO."3=2/:

Observe that for t 2 ŒtC;H1.@�/� we have

�@�" D

ˇ̌̌
 00"
j 0"j
�  0"

h 00" ;
0
"i

j 0"j3

ˇ̌̌
j 0"j

;

h 00" ; 
0
"i D 

0
x
00
x

�
1C

.0/x

.0/x � .tC/x

�2
C  0y

00
y D h

0;  00i CO."3=2/ D O."3=2/:

Here, we use the fact that

h 00;  0i D
1

2

d
dt
j 0j2 D 0; (4.42)

since  is parameterized by arc-length. We also haveZ H1.@�/

tC

j 00" j
2

j 0"j
4

dt D
Z H1.@�/

tC

�
j 00j2 C j 00x j

2 2.0/x

.0/x � .tC/x

C j 00x j
2
� 2.0/x

.0/x � .tC/x

�2�
.1CO."3=2// dt
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D

Z H1.@�/

tC

j 00j2 dt CO."3=2/;

hence (4.35).

Proof of (4.37). In the time interval Œ0; "�, the competitor is obtained by scaling by a
factor of two, and direct computations give that the integrated squared curvature scales by
a factor of 1=2. Thus, based on (4.24) we getZ "

0

ˇ̌̌̌
d
dt

�
 0

j 0j

�ˇ̌̌̌2
dt �

1

2

Z "

0

ˇ̌̌̌
d
dt

�
 0"
j 0"j

�ˇ̌̌̌2
dt

D
1

2

Z "

0

ˇ̌̌̌
d
dt

�
 0

j 0j

�ˇ̌̌̌2
dt D

1

2

Z "

0

ˇ̌
 00
ˇ̌2

�
M 2

2
"; (4.43)

hence (4.37).

Lemma 4.3. Under the hypotheses of Theorem 1.1, assertion (4.36) holds.

Proof. We use the same notations from the proof of Theorem 1.1. In the time interval
Œt�; tC�, " is given by

".t/ D .t/C ."/yv.t/; t 2 Œt�; tC�:

Note first that since � is a minimizer of Ep;�, it must be thatZ
.Œt�;tC�/

�2@� dH1
x@� < C1;

and recalling our definition of integrated squared curvature in (1.4), it follows that the
Radon–Nikodym derivative

d�@�
dH1

x@�

is square integrable. In terms of the parameterization ", this gives

1

j 0"j

d
dt

�
 0"
j 0"j

�
D

1

j 0"j

�
 00"
j 0"j
�  0"
h 00" ; 

0
"i

j 0"j
3

�
2 L2.0;H1.@�/IR/:

Recall (4.26), that is, ."/y D "CO."3=2/. This together with the facts that  is param-
eterized by arc-length (i.e., j 0j D 1 for a.e. t ), and v was defined in (4.28) (in particular,
jv0j was uniformly bounded from above), it follows that

j 0"j D

q
1C 2"h 0; v0i CO."3=2/:

Then, for any ˛ 2 R and sufficiently small ", we have

j 0"j
˛
D 1C ˛"h 0; v0i CO."3=2/: (4.44)
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Routine calculation shows that

1

j 0"j

d
dt

�
 0"
j 0"j

�
D

 00"
j 0"j

2
�  0"
h 00" ; 

0
"i

j 0"j
4

D
 00 C "v00

j 0"j
2
�

 0"
j 0"j

4

�
h 00;  0i C "2hv00; v0i C "h 00; v0i C "h 0; v00i

�
C higher order terms:

Based on (4.42), we observe:

(1) As both jv0j and jv00j are uniformly bounded from above, the term "2hv00; v0i is of
order O."2/.

(2) The norm of " 0"h
0; v00i=j 0"j

4 is estimated by

"

ˇ̌̌̌
 0"h

0; v00i

j 0"j
4

ˇ̌̌̌
� "
j 0j � jv00j

j 0"j
3
� "kv00kL1 CO."

2/: (4.45)

(3) The norm of " 0"h
00; v0i=j 0"j

4 is estimated by

"

ˇ̌̌̌
 0"h

00; v0i

j 0"j
4

ˇ̌̌̌
� "
j 00j � jv0j

j 0"j
3

: (4.46)

Thus, combining (4.42), (4.45), and (4.46) givesZ tC

t�

ˇ̌̌̌
 0"
h 00" ; 

0
"i

j 0"j
4

ˇ̌̌̌2
dt D

Z tC

t�

ˇ̌̌̌
 0"
j 0"j

4

�
h 00;  0i C "2hv00; v0i C "h 00; v0i C "h 0; v00i

�ˇ̌̌̌2
dt

C higher order terms

�

Z tC

t�

j 0"j
�6
ˇ̌
"h 00; v0i C "h 0; v00i

ˇ̌2 dt CO."3/

� 2

Z tC

t�

j 0"j
�6.j"h 00; v0ij2 C j"h 0; v00ij2/ dt CO."3/

D 2"2
Z tC

t�

j 0"j
�6
�
jh 00; v0ij2 C jh 0; v00ij2

�
dt CO."3/

� 2"2kv0k2L1

Z tC

t�

j 0"j
�6
j 00j2 dt CO."2/:

In view of (4.44), we getZ tC

t�

j 0"j
�6
j 00j2 dt � 2

Z tC

t�

j 00j2 dt � 2
Z
@�

�2@� dH1
x@� < C1;

hence

2"2kv0k2L1

Z tC

t�

j 0"j
�6
j 00j2 dt � O."2/:

Thus, Z tC

t�

ˇ̌̌̌
 0"
h 00" ; 

0
"i

j 0"j
4

ˇ̌̌̌2
dt � O."2/
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andZ
.Œt�;tC�/

�2@�" dH1
x@�"
D

Z tC

t�

ˇ̌̌̌
1

j 0"j

d
dt

�
 0"
j 0"j

�ˇ̌̌̌2
dt D

Z tC

t�

ˇ̌̌̌
 00"
j 0"j

2
�  0"
h 00" ; 

0
"i

j 0"j
4

ˇ̌̌̌2
dt

D

Z tC

t�

ˇ̌̌̌
 00"
j 0"j

2

ˇ̌̌̌2
dt CO."2/:

Again, in view of (4.44), it follows thatZ tC

t�

ˇ̌̌̌
 00"
j 0"j

2

ˇ̌̌̌2
dt D

Z tC

t�

ˇ̌̌̌
 00 C "v00

j 0"j
2

ˇ̌̌̌2
dt

D

Z tC

t�

�
h 00 C "v00;  00 C "v00i

��
1 � 4"h 0; v0i CO."3=2/

�
dt

C higher order terms

D

Z tC

t�

�
j 00j2 C 2"h 00; v00i C "2jv00j

��
1 � 4"h 0; v0i CO."3=2/

�
dt

C higher order terms

� .1C 4"kv0kL1/

Z tC

t�

j 00j2 dt C 2"kv00kL1
Z tC

t�

j 00j dt CO."3=2/

� .1C 4"kv0kL1/

Z tC

t�

j 00j2 dt

C 2"kv00kL1

�
H1.@�/

Z tC

t�

j 00j2 dt
�1=2

CO."3=2/

�

Z tC

t�

j 00j2 dt C 4"kv0kL1Ep;�.�/=�

C 2"kv00kL1
q

H1.@�/Ep;�.�/=�CO."
3=2/: (4.47)

Note that

4kv0kL1Ep;�.�/=�C 2kv
00
kL1

q
H1.@�/Ep;�.�/=�

� 32.��1 C �/2 C 32
p
2C1�.�

�1
C �/5=2 D C2

in view of (1.6), (2.17), (4.29), (4.30), and Lemma A.1. Hence, inequality (4.36) follows
from (4.47).

5. Conclusion

In this paper we investigated the minimization problem for the average-distance functional
defined for a two-dimensional domain with respect to its boundary, subject to a penalty
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proportional to the Euler elastica of the boundary. We proved the existence and C 1;1-
regularity of minimizers, mainly relying on the method of contradictions by constructing
suitable competitors. Echoing the large amount of existing studies that have exclusively
focused on either the 1D average-distance problem or the 2D Willmore energy question,
by considering variational problems associated with combined energy functional, this
study enriches and deepens our understanding of the penalized average-distance prob-
lem. Questions on the exact shape of a minimizer are still open and worth investigating in
future. Limiting behaviors of the minimizers, properly scaled with respect to �, as �! 0

and �!1 may also shed light on this class of free boundary problems.

A. Technical results concerning properties of convex sets

In this appendix, we collect some results about convex sets, convergence in A, and their
effect on geometric quantities such as perimeter and diameter. One elementary yet crucial
observation is that, given a two-dimensional convex set � 2 A, every point x 2 A has a
set U � � of positive area containing x.

Lemma A.1 ([17, p. 1]). Let n� 2 and let A;B �Rn be two convex bodies (i.e., compact
convex sets with non-empty interior). If A� B , then the monotonicity of perimeters holds,
i.e.,

Hn�1.@A/ � Hn�1.@B/: (1.48)

As a consequence, since any set with diameter d is contained in a ball of diameter d , we
have

H1.@�/ � � diam.�/; for all � 2 A:

Lemma A.2. Consider a sequence �n � A converging to � 2 A in the topology of A

such that
S
n�n � K for some compact set K. Then, diam.�n/! diam.�/.

Proof. Consider a sequence �n � A converging to � in the topology of A. As each �n
is compact, there exist xn; yn 2 �n such that jxn � ynj D diam.�n/. By our assumption
that �n � A are all contained in a given compact set K, we have, up to a subsequence,
xn ! x, yn ! y for some x; y 2 �. Thus, it is clear that

diam.�n/ D jxn � ynj ! jx � yj � diam.�/:

We need to exclude the strict inequality case. This is achieved by a contradiction argument.
Assume the opposite, i.e., there exist v;w 2� such that jv �wj> jx � yj. Then, we claim
that there exist sequences vn; wn of points in �n such that, up to a subsequence, vn ! v,
wn ! w. This, because of our assumption, would leave the existence of some set U � �
of positive area, containing either v or w, such that there are no sequence of points in �n
that enter into U . This contradicts the fact that �n is converging to � in the topology of
A. Thus, the proof is complete.



The average-distance problem with an Euler elastica penalization 161

Lemma A.3. Given convex sets �"; � such that dH .@�"; @�/ � ı, it holds that

H2.�"n�/ � 2ıH
1.@�"/: (1.49)

Proof. Clearly, �"n� is entirely contained in®
x 2 �" W dist.x;�"/ � ı

¯
;

that is, the part of the tubular neighborhood of @�" with thickness ı that lies inside �".
We now use an approximation argument. We approximate @�" with convex polygons

Pn ��", e.g., by choosing n points x1;n; : : : ; xn;n 2 @�" such that supi jxiC1;n � xi;nj �
2H1.@�"/=n, and then connecting xiC1;n to xi;n with line segments.

Note that the area of the difference is continuous with respect to such an approxima-
tion, i.e., H2.Pnn�/% H2.�"n�/. It is then a straightforward computation to check
that

H2.¹x 2 Pn W dist.x; Pn/ � ıº/ � 2ıH1.@Pn/;

for all sufficiently large n.
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