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We apply topological data analysis to the behavior of C. elegans, a widely studied model
organism in biology. In particular, we use topology to produce a quantitative summary of
complex behavior which may be applied to high-throughput data. Our methods allow us to
distinguish and classify videos from various environmental conditions and we analyze the
trade-off between accuracy and interpretability. Furthermore, we present a novel
technique for visualizing the outputs of our analysis in terms of the input. Specifically,
we use representative cycles of persistent homology to produce synthetic videos of
stereotypical behaviors.

Keywords: persistent homology, topological data analysis, delay embedding, sliding window embedding,
C. elegans, behavior phenotyping

1 INTRODUCTION

Model organisms are indispensable in understanding basic principles of biology. Studies of model
organisms have played a major role in discoveries of disease mechanisms, disease treatment, and
neuroscience principles. The behavior of these model organisms can illuminate responses and
phenotypes important for understanding the effects of experimental conditions on subjects. Behavior
can be affected by neuron activity, external stimuli, and past experiences (learning), so being able to
adequately measure and compare behaviors is a useful evaluation tool for a wide range of
experiments.

We propose persistent homology as a new tool for assessing behavior of Caenorhabditis
elegans, worms that are a widely used model organism. Persistence has been successfully used
to study high-dimensional time series, especially those that exhibit some quasi-periodic
behavior like the undulation of C. elegans (Tralie, 2016; Tralie and Perea, 2018). But to
the authors’ knowledge, persistent homology has not been previously used to analyze C.
elegans behavior, though it and similar techniques have been used to study C. elegans neural
data (Petri et al.,, 2013; Backholm et al., 2015; Sizemore et al., 2019; Helm et al., 2020;
Litgehetmann et al., 2020).

In this paper we use persistent homology to study the locomotion of C. elegans in two settings. In
our initial study (Section 3.1), we follow one worm as it moves on the surface of an agar plate. Under
these conditions there are no barriers to movement and the locomotion is both smooth and complex.
We show that persistent homology is able to detect and differentiate between various characteristic
behaviors such as forward crawling, backward crawling, and transitioning between the two. We also
show a unique contribution of persistence: the synthesis of skeleton data of C. elegans performing
stereotyped, periodic behaviors. This translates into videos of, for example, forward crawling that are
smooth when looped (see Supplementary Material for an example). Furthermore, this mapping
from persistence features to behavior gives a concrete and biologically relevant interpretation of
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results: features of interest—such as a feature that is detected in
one sample and not another—can be expressed as videos of
synthetic behavior.

We also analyze data from an experiment of the effect of
environment on C. elegans (Section 3.2). In this setting a more
controlled environment is required, so the organisms are
submerged in a solution and confined to wells in microfluidic
devices. Our main results study C. elegans’ locomotion in
solutions that have various levels of viscosity. We show that
we are able to use persistent homology—and average persistence
landscapes in particular—to summarize C. elegans locomotion in
a way that allows the classification of the viscosity of an animal’s
environment with a high level of accuracy, and in fact a much
higher level of accuracy than simpler methods based on speed and
variety of postures. Our results indicate that persistent homology
is a promising tool for quantifying the impact of changes to
genotype and environment on C. elegans locomotion.

1.1 Related Work

Caenorhabditis elegans is a free-living soil nematode that has been
a workhorse genetic model system. The nematode’s transparent
tissue, simple anatomy, and fast reproduction contribute to both
ease in culture and a literal window into the internal workings of a
living organism. Its completely sequenced genome contains many
genes that are homologous to human genes, and importantly the
ability to manipulate genes with relative ease makes it an
extremely attractive model system. For neuroscience in
particular, C. elegans presents a unique opportunity with its
simple nervous system (just 302 neurons) that is complex
enough to exhibit many sensory modalities, including
mechanosensation, chemosensation, and response to heat,
osmolarity, and smell.

Behavior characterization in C. elegans was historically
qualitative, mainly relying on experimentalists specifying
end-point assessment (e.g. whether the worm chemotaxes
to a particular source of odor within a certain amount of
time), or experimentalists using heuristics to assess behavior
(e.g. naming worms genes “unc” for uncoordinated). In the
last decade, machine vision tools first replaced human
identifications of worms from images and videos, which
allows much larger dynamic datasets to be annotated and
analyzed. In recent vyears, further development in
quantitative behavior characterization tools such as
tracking (Stirman et al., 2011; Swierczek et al, 2011;
Husson et al., 2012; Yemini et al., 2013; Porto et al., 2019),
eigenworms (Stephens et al., 2008), behavior “dictionaries”
(Brown et al., 2013), and t-SNE (Berman et al., 2016; Liu et al.,
2018) have moved the field away from merely describing the
outcome to understanding the types of behavior the brain of
this simple system can generate. While many of these
techniques do well in quantitatively describing behavior
and distinguishing differences in behavior, behavioral
dynamics are rich and opportunities abound in exploring
behavioral dynamics using other mathematical tools.

Persistent homology has been used to analyze time series data
in many different settings. Some earlier work was theoretical and
studied the interaction between persistence and sliding window
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embeddings—which we used in this research—as well as
proposed possible applications (Firas and Elizabeth, 2015;
Perea and Harer, 2015; Perea, 2016). Research into gene
expression has used persistent homology to detect patterns or
classify whether a signal is periodic (Dequéant et al., 2008; Perea
etal., 2015). Frequently, persistence has been used to study neural
data (Petri et al., 2013; Backholm et al., 2015; Stolz et al., 2017;
Sizemore et al., 2019; Helm et al., 2020; Litgehetmann et al.,
2020), and in many cases neural data from C. elegans, but the
analysis tends to rely on clique complexes as the topological space
of interest instead of sliding window embeddings.

2 MATERIALS AND METHODS

In this section we describe the collection and preprocessing of
experimental data (Section 2.1), mathematical background
(Sections 2.2 and 2.3), and pipeline for using topological data
analysis on C. elegans behavior data (Section 2.4).

2.1 Description of Data
C. elegans (N2 strain) were cultured at 20°C under standard
conditions on agar plates seeded with OP50 E. Coli. Animals
were age-synchronized via hatch-off and cultured on plate until
they reached day 1 of adulthood. For behavior experiments on agar,
animals were prepared, imaged, and tracked as previously
described (Porto et al, 2019). For behavior experiments in
methylcellulose media, synchronized populations were then
washed off of culture plates with M9 buffer. Unless otherwise
noted, video data was collected on a dissecting microscope (Leica
MZ16) using a CMOS camera (Thorlabs DCC3240M), with a
frame rate of 30 frames per second and a magnification of x1.2.

Behavior data was collected with animals confined with
microfluidic devices. In these devices the cavities in which worms
are loaded have only slightly greater depth than the width of an adult
worm, which restricts worms to the focal plane of the microscope
and to almost entirely 2-dimensional behavior. Microfluidic devices
were fabricated as described previously (Chung et al, 2011).
Methylcellulose solutions were prepared at concentrations of
0.5%, 1%, 2%, and 3% weight in volume of M9 buffer. To
ensure that single animals could be isolated in single chambers of
the unbonded microchamber microfluidic device, we first picked
animals onto a room-temperature, unseeded plate. To ensure that
animals were fully immersed in methylcellulose mixture, we used a
glass pipet to aspirate a small amount of methylcellulose solution,
and then aspirated animals from the unseeded plate one at a time
into the methylcellulose solution. Then, single animals surrounded
by methylcellulose mixture were pipetted into individual chambers
of an unbonded PDMS chamber device. The device could then be
flipped over onto a sterile 10 cm Petri dish and gently pressed down
until the individual chamber walls came into contact with the Petri
dish, preventing animals from leaving their chambers. Animals were
then imaged in devices for about 5 min at 30 frames per second,
resulting in time series data with 10,665 points.

To extract midline data from videos, we first found masks for
each frame to isolate the worm from the background using a
combination of Otsu thresholding (Otsu, 1979), image smoothing
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using a Gaussian kernel, and size filtration. Otsu thresholding is a
thresholding algorithm based on the gray-level histogram of an
image. The threshold is identified by the grayscale pixel value that
minimizes the intra-class variance of background and foreground
pixels. We then broadly followed the method used in Stephens et al.
(Stephens et al., 2008) to represent the worm’s posture in “worm-
centric” coordinates. Briefly, we found the midline of the worm in
each frame by thinning the mask to a single line and interpolating
between pixels of this line such that the midline was represented by
101 evenly spaced points. We calculated the tangent angle between
each pair of adjacent points along the midline so that the animal’s
posture could be represented as a vector of angles, and then
transformed those vectors with PCA so users could balance
accuracy requirements and resource limitations via truncation
of the data. We replaced frames in which animals were self-
occluded with the data from the most recent non-self-occluded
frame. We used untruncated PCA data for most computations
because it has the same persistence output as the raw angle data.
We used truncated PCA data (the first five principal components)
for the computations in Section 3.1.

The videos for this study were selected from a much larger set
of data based on how well they could be segmented and
skeletonized. Some videos have subsequences that are difficult
to automatically skeletonize because the animals self-occlude, i.e.
bend in such a way as to cross over themselves. Thus, this dataset
is likely biased toward less complex behaviors like thrashing and
there are some cases where there are multiple videos of the same
animal. The resulting data set has 40 samples of 10,665 points
each with 10 samples for each viscosity condition.

2.2 Sliding Window Embeddings

Sliding window embeddings turn time series data into point
cloud data in a way that does not forget the temporal
information of the time series. There are some additional
benefits to sliding window embeddings, including that they
“separate” points that intersect each other in a time series,
such as in Examples 2.6 and 2.7.

Definition 2.1: A time series is a sequence of vectors (x;),r =

(X¢5 X41> X425 - - ) Where each x; is in the same finite-dimensional
vector space V and T is a totally ordered set.

Remark 2.2: The totally ordered set T, which indexes the time
series, can be Z, N, or a finite set like [N] = {1,2,...,N}. For
many applications including the ones in this paper, the indexing set
is finite and will be omitted in notation for brevity, as in (x;),Given
any time series we can construct a new time series called a sliding
window embedding, which is also known as a time delay
embedding with a lag or delay time of 1.

Definition 2.3: Given a time series 7 = (x;), with vectors
x; € V, a sliding window embedding of window length [ of T
is a new time series, 7} = (x;),, with

1
xt+l—1] eV,

where [-] is concatenation of vectors.

That is, the " vector in the new time series is the
concatenation of [ consecutive vectors in the original time
series and has dimension equal to [ - dim (V).
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Remark 2.4: If the original time series has N points, then the
sliding window embedding of window length [ has N —-1+1
points, as one can see in Example 2.5.

Example 2.5: Consider the time series 7 =
([1,2], [3,4], [5,6], [7. 8], [9,10]) in R? The sliding window
embedding of 7 of window length [ = 3 is

7 = ([1,2,3,4,5,6], [3,4,5,6,7,8], [5,6,7,8,9,10]) < R,

which has 5 -3 + 1 = 3 points.

We applied persistent homology (Section 2.3) to sliding
window embeddings of C. elegans video data in order to
quantify behavior. Degree one persistent homology detected
cycles in these sliding window embeddings which we show
correspond to particular behaviors.

The cycles that persistent homology detects may consist
of collections of points that trace out a closed curve. A cycle
is “large” or highly persistent if it encloses an area that
could fit a large ball; a cycle that is tall and skinny has small
persistence.

Below we see two examples where a time series exhibits a
single periodic behavior but persistent homology will detect
either two or zero non-trivial cycles. In contrast, the persistent
homology of a sliding window embedding detects exactly one
non-trivial cycle in both examples.

Example 2.6: Figure 1A displays one period of a periodic time
series in R* with the property that if successive points are connected
by line segments then the path of the time series self-intersects. To
discover this figure-eight-shaped loop, one might try to use
persistent homology (Section 2.3). However, persistent homology
would detect two distinct loops, each comprising half of the period.
See Figure 2D for an illustration of these loops.

Figures 1B,C show two-dimensional PCA projections of
sliding window embeddings of the figure-eight for /=10 and
I = 20, respectively, using the first and third principal components.
In these point clouds the time series draw out simple closed curves,
and in fact in each of these cases persistence detects a single loop.

Notice that as the window length increases, the “size” of the
loop increases. This increase in the loop’s persistence makes it
easier for persistent homology to robustly detect it.

Example 2.7: Figure 3A shows a 1-dimensional time series
that is a discretization of a sine wave. This periodic behavior
creates no loops — in fact, because the points take values in R, the
time series cannot produce degree 1 homology. However, a
sliding window embedding, in this case of window length 4,
creates a loop that is detected by persistent homology. That loop
in R* is projected down to two dimensions in Figure 3B.

2.3 Persistent Homology

In this section we provide an overview of persistent homology
and how it may be used to produce quantitative summaries of the
shape of a collection of points such as the sliding window
embedding discussed above.

Definition 2.9: A simplicial complex on a set of vertices V'is a
collection K of non-empty subsets of V such that if 7 € K and
7' C 7, then 7" € K. An element 7 € K is called a simplex. An
n-simplex or simplex of dimension 7 is a simplex 7 € K with size
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FIGURE 1 | (A) A time series in R? determines a self-intersecting curve. (B) The sliding window embedding of window length 10 separates the previously
intersecting segments of the curve. (C) A sliding window embedding with a higher window length separates the intersecting segments even further. With too small of a
window length /, the resulting loop will be relatively flat and long and will therefore have small persistence and be difficult to differentiate from noise.
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FIGURE 2 | (A) The 1-skeleton of the Vietoris-Rips filtered simplicial complex of a figure-eight-shaped point cloud at four scales. (B) The degree 1 persistence
diagram of the figure eight in 2-dimensions. Note that the point has multiplicity 2. (C) The corresponding degree 1 persistence landscape. The first and second
landscapes are nonzero and identical and all other landscapes are trivial. (D) The two loops that generate the homology of the Vietoris-Rips complex on the figure eight.
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|7] = n+ 1. The 1-skeleton of a simplicial complex K is the set of
simplices with dimension at most one. A filtered simplicial
complex or filtration is a collection {K,},.g of simplicial
complexes K, where S & R such that K, S K for all r,s € S
with r < s.

Definition 2.10: Let X ¢ R be a finite set and let > 0. The
Vietoris-Rips complex of X at scale r, denoted R, (X), is the
simplicial complex with vertex set X and whose simplices are
given as follows. A subset {xo,...,x,} € X is an n-simplex in
R, (X) if and only if lx,» —le <rforallij e {0,...,n}

Definition 2.11: The Vietoris-Rips filtration of a finite set
X ¢ R% is the collection R (X) := {R,(X)},so.Note that while
the Vietoris-Rips complex of X is parameterized by the non-
negative reals, the finiteness of X guarantees that R (X) consists of
only finitely many distinct simplicial complexes.

Example 2.12: Figure 2A shows the 1-skeleton of the Vietoris-
Rips complex of a pointcloud in R? at four scales. Notice that each
simplicial complex includes into the next.

The persistent homology of a Vietoris-Rips filtration can be
represented by a multiset in R? called a persistence diagram in
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FIGURE 3| Sliding window embeddings encode periodic behavior in the

form of loops. (A) A periodic time series that has trivial first homology. (B) A
sliding window embedding with / = 4 of the original time series that has
nontrivial first homology.

which each point gives the scale of the appearance and
disappearance of a topological feature (such as a loop) in the
filtration.

Example 2.13: Figures 2B,C show the persistent homology in
degree 1 of Example 2.12. Notice that both Figure 2B—the
persistence diagram—and Figure 2C—the persistence landscape
(see Definition 2.14)—show two cycles, but because they are born
and die at exactly the same radius parameters they are plotted in
the same place. The two cycles are shown in Figure 2D.

It is difficult to apply standard tools of statistics and machine
learning directly to persistence diagrams, which, for example, need
not have unique averages (Mileyko et al., 2011). A solution is to
map persistence diagrams into a vector space or Hilbert space. One
such mapping is the persistence landscape. See (Bubenik, 2015) for
the following definitions and results.

Definition 2.14: For a < b let f,;, : R — R be the piecewise-
linear function given by

b

. a+
t—a,lfllStST

Jan (1) =

+b
b-t, it 2 <t <b
2
0, otherwise.

Given a persistence diagram Dgm, (K), the corresponding kth
persistence landscape is the function A : R — R given by
defining A (f) to be the kth largest value of f,,(¢) over all
points (a,b) € ngp (IC). The persistence landscape is the
sequence (Ax)r. The parameter k is called the depth of the
persistence landscape. For a point cloud X, we will denote by
PL (X) the persistence landscape obtained by applying degree 1
persistent homology to the Vietoris-Rips filtration of X.

Persistence landscapes have unique averages, satisfy the law of
large numbers and central limit theorems, and can be discretized
for computations. Because the sequence of functions that make
up a landscape are nested, they can all be graphed on the same
plot as in the right column of Figure 4.

While the persistence landscape is defined to be an object in a
space of continuous functions, it can be discretized and turned
into a finite-dimensional vector. Through discretization, each
depth of the landscape transforms from a continuous function on
R to a vector where the i entry in the vector corresponds to the
function value at the i discrete parameter value. The vectors for
each depth of the landscape are concatenated together to produce
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a single high-dimensional vector. These discrete landscapes can
be computed directly, which we did for the computations
outlined in Section 2.4.

This vector space (in fact, Hilbert space) setting lets us use
linear algebra-based statistical and machine learning techniques
such as principal component analysis (PCA). The principal
components from PCA on discretized landscapes can be
converted into a format much like a persistence landscape—a
sequence of continuous functions on R—but the principal
components are not themselves persistence landscapes because
the functions fail to be nonnegative.

2.4 Pipeline

In this section we give details for our analysis of C. elegans data.
The input consist of piecewise linear midlines of C. elegans from
video recordings as described in Section 2.1. These midlines were
parameterized by the 100 angles between adjacent segments and
then were transformed using PCA, so each sample input to our
system was a time series 7 of 100-dimensional vectors measured
in radians. See Figure 1 in (Stephens et al, 2008) and the
accompanied  description for more details on this
parameterization of the C. elegans midlines or see our short
summary of the procedure in Section 2.1.

The time domain of this time series was divided into
overlapping patches of a given size called the patch length,
resulting in a collection {r;}; of smaller time series. For our
experiments, a patch length of 300 was chosen, with adjacent
patches overlapping by half of the patch length. The sliding
window embeddings of the 7; were then computed with
window length parameter [ = 20, resulting in a new collection
{(Ti)l}i of time series of length 300 — [ + 1 = 281. This analysis
is not particularly sensitive to the choices of the hyperparameters
patch length and window length; only extreme changes in either
parameter lead to significant changes in results. The
hyperparameter choices were motivated by the timescales at
which C. elegans complete meaningful behaviors: for patch
length, 150 frames of 30 fps video is 5s of behavior; for
window lengths, 20 frames is 0.67s and corresponds to
roughly one period of forward crawling in adult C. elegans
submerged in the 0.5% methylcellulose environment. Strategies
for choosing appropriate window lengths are described in (Perea
and Harer, 2015). The method for cross validation of the choice of
window length is described at the end of this section.

Persistence diagrams were computed for each of the patches
(). This step accounts for the vast majority of the
computational —resources of the pipeline, and the
computational costs are made worse by the concatenation of
vectors in a sliding window embedding. This is where we greatly
benefit from the preprocessing that turns video data, which is
extremely high-dimensional (see (Tralie and Perea, 2018) Section
3.1), into a 100-dimensional time series. On a 2017 15-inch
MacBook Pro with a 2.8 GHz Intel Core i7 processor and
16 GB of RAM, this step took 22588.632s, or about 6 h and
15 min.

For each (Ti)l, a (discretized) persistence landscape PL ( (T,»)l)
was computed from the persistence diagram of the Vietoris-Rips
complex R((Ti)l). The grid of parameter values on which the
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persistence landscape was evaluated to produce its discretization
was chosen to include all of the bars of the barcode and to be
sufficiently fine to produce nice visualizations. Since the
persistence landscapes are piecewise linear with slope bounded by
+ 1, the step size of this discretization bounds the error and there is
eventually little to be gained from a finer discretization. The step size
of the discretization we used was 0.1. The maximum depth was
chosen to include all nonzero depths of the persistence landscapes.

The collection {PL ( (Ti)l )}; of persistence landscapes was then
assembled into a single summary for a given video by averaging
the persistence landscapes across patches to result in a single
average persistence landscape associated to each video. These
steps are summarized in Figure 5. For each environment

viscosity, the average persistence landscapes for each video
were averaged to give an average persistence landscape of
the class.

The persistence landscapes for each class were used for
analysis of the sliding window embedding as follows.
Distances between each class’ average persistence landscapes
were computed using the usual Euclidean distance. The
pairwise distances were visualized using multidimensional
scaling to give a 2-dimensional visualization of the similarities
between the classes; see Figure 6A.

Principal component analysis (PCA) was applied to the set of
average persistence landscapes for each video and the first two
principal components were plotted as sequences of functions. We
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FIGURE 5 | Pipeline for a single worm.

plotted the PCA projection of these video average persistence
landscapes together with the average of each class; see Figure 7.
These plots visualize some of the similarity between classes and
variation within classes.

Next, we further studied the variation within classes in two
ways. First, the standard deviations of each coordinate were
computed for the average persistence landscapes of the videos
in each class. These were visualized as sequences of functions in
Figure 8B to show the variation in different parts of the average
persistence landscapes. Second, we applied PCA to the average
persistence landscapes of the videos in each class and plotted the
cumulative variances explained by the first n principal
components for n=1,...,10 (10 is the number of samples in
each class). The first three principal components were also
computed. See Figure 9.

We conducted a permutation test on the pairwise Euclidean
distances between the average persistence landscapes of each
videos. We used 10,000 permutations for each permutation
test. The approximate p-value equals the percentage of cases in
which the distance is at least as large as the observed distance.
Results can be found in Table 2A.

We applied multiclass support vector machines (SVM) to classify
samples according to viscosity of their environments. We use the
ksvm function from the kernlab package in R on the average
persistence landscapes of the videos. Accuracy was estimated
using 10-fold cross validation with cost set to 10. Cross validation
was repeated 20 times and the results were averaged. A confusion
matrix for one instance of SVM with 10-fold cross validation was also
computed and is shown in Table 2B.

We used support vector regression (SVR) to approximate
viscosity of the worm environments given the worm’s behavior
data. The goal was to assess how predictive our techniques are.
Accuracy was estimated by averaging 10 repetitions of 10-fold
cross validation. Results are plotted in Figure 9.

As a final step we applied cross validation to the
hyperparameter window length. We cross-validated the
choice of window length by running the above pipeline for
window lengths of 1, 10, 20, and 30 on a subset of the data. To
reduce total computation time, we restricted to the first minute

of each video, which corresponds to 1800 frames. We then
compared the permutation test and multiclass SVM results to
see which hyperparameter choice gave the best results. The
results from cross validation of window length can be found in
Section 3.2.1.

2.5 Validation

To help validate our pipeline, we compared our results to those
obtained by applying the same computational procedure to a
null model given by randomly permuting the frames in
each video.

We also studied the effects of using a preprocessing step different
from sliding window embeddings: moving average filters. A moving
average filter of window length [ of time series data creates a new time
series. This time series has the same length as the corresponding
sliding window embedding and each point in the time series is
constructed using the same window of the original time series. The
moving average filter, however, takes the average of the vectors in its
window, instead of concatenating them.

Furthermore, we compared our results to the ones obtained
from two simpler techniques. For the first technique we
attempted to characterize C. elegans behavior using the speed
of the worm. To do this, we computed 2-norms of the differences
between two consecutive frames of angle data and then averaged
all of those discrete derivatives, which resulted in a single value
per sample. For the second technique, which could be described
as measuring the variance of the worm’s pose over a video, we
computed standard deviations for the angle data coordinate-wize,
which resulted in a vector of length 100 per sample. In each case
we performed a permutation test and multiclass SVM on the
resulting feature vectors. The results of these experiments appear
in Section 3.2.2.

3 RESULTS

We present the results of a case study of a single sample of
behavior data and an experiment on the effects of viscosity of the
surrounding environment on C. elegans locomotion and
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FIGURE 6 | (A) Multidimensional scaling of average persistence landscape of each sample. (B) Multidimensional scaling of average persistence landscapes of the
classes and the origin.
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FIGURE 7 | (A) Projection of average persistence landscapes onto two
principal components, with average persistence landscapes of videos given
by outlined symbols and average persistence landscapes of classes given by
solid symbols. (B) The first two principal components.

behavior. The case study assesses a significantly smaller data set
and directly links topological features to specific behaviors. The
experimental results in Section 3.2 are more difficult to directly
interpret in terms of specific behaviors but nonetheless we show
the effectiveness of persistent homology in distinguishing
variations in behaviors. We leave more explicit interpretation
of average persistence landscapes in terms of specific behaviors
for future work.

3.1 An lllustrative Case Study

The following results were obtained by carefully analyzing a sample
of C. elegans behavior data from a video of a worm crawling on
agar. The sample consists of 400 frames of a 30 frames per second
video, so roughly 13 s of behavior. Having a solid surface to provide
friction forces slower but more complicated behavior than we
would see in an aqueous environment, and we take advantage of
the resulting clarity of the data.

In the data we analyzed the subject exhibits the following
behaviors in chronological order:

. crawl forward,

. crawl backward,

. pause, and

. crawl backward again.

=W N =

Below we analyze the time series 7 from this data, the
corresponding sliding window embedding 7%°, the corresponding
moving average filter, and the sliding window embedding of the
corresponding null model. These comparisons illustrate various
strengths of the sliding window embedding: it smooths the noise
from the original time series; it retains more geometric data than the
moving average filter; and it captures temporal data from the
original time series that is destroyed in the null model. Then,
using representative cycles we construct synthetic C. elegans midline
data that produce a forward crawl and explain how this process
gives concrete interpretations of persistence features in terms of
synthetic behavior data. See Section 3.1.1.

To visualize the four point clouds on which we will compute
persistence, we apply PCA and project onto the first few principal
components. Some of these projections are shown in the two left-
most columns of Figure 4. In contrast to the three other time series,
the null model time series in Figure 4D has no discernible
geometric structure. It appears that the corruption of temporal
information has destroyed the interpretability of the visualizations
of sliding window embeddings. Meanwhile, the original time series
7 in Figure 4A has a similar shape to its sliding window embedding
72 in Figure 4B, with the caveat that the sliding window
embedding has the effect of smoothing the data and making it
more robust to noise. The moving average filter in Figure 4C also
has this smoothed property. Though the three time series in Figures
4A-C have similar shapes, persistence diagrams, and persistence
landscapes, they vary in one important feature: the pause.

In Figure 10A the points in the sliding window embedding
that correspond to frames where the worm is performing a
specific behaviors are highlighted. The points corresponding to
the pause behavior deviate from the path of points corresponding
to crawling backwards. This deviation is small compared to the
noisiness of the original time series, so the pause deviation does
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plots in (A), (B), and (C-E) each have their own y-axis scale.

FIGURE 8 | (A) The average landscapes for each environmental viscosity, distinguished by percentage of methylcellulose present. The averages here are taken
over the average persistence landscape of videos (i.e. individuals) in a given viscosity class. (B) Standard deviations of each coordinate in the average persistence
landscapes for each class. (C) The first landscapes of each sample landscape, organized by class. These concurrently plotted first landscapes show the variation in the
samples for each class. (D,E) The second and third landscapes, respectively, for each sample according to its class. All plots share the same x-axis; the groups of
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not create a large topological feature in the graph of the original
time series. This is reflected in the persistence diagrams and
landscapes of Figure 4 as well; the original time series diagram
and landscape Figure 4A show only three significant topological
features, while the diagram and landscape of the sliding window
embedding Figure 4B and moving average filter Figure 4C
show four.

The sliding window embedding and moving average filter
both smooth the input data and detect the pause behavior, but
they are qualitatively different. One piece of geometric
information that the sliding window embedding retains that
the moving average filter does not is the direction of the time
series. Consider plotting a time series and the corresponding
reverse-chronological-order time series in the same ambient
space. The points of the original time series would align exactly
with its reverse, so the two corresponding point clouds are the
same. This is also true of a moving average filter on that time

series. The sliding window embedding, however, can have
distinct point clouds.

Retaining the direction of time in a time series is particularly
important for data that has certain types of symmetry. A natural
occurrence of such data is the sine wave data in Example 2.7.
Because the data in this time series follows a path and then
backtracks along that path, it never produces a loop with any
significant persistence. There is no loop in the moving average
filter of the data, either.

3.1.1 Interpretability: Mapping Persistence Features to
(Synthetic) Behaviors

We computed representative cycles for persistent homology
classes for each of the longest-persisting topological features in
the sliding window embedding using Dionysus (Morozov,
2017). These are shown in Figure 10B. The homology
classes that correspond to each of these representative
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FIGURE 9 | PCA on the videos in each class. For each class: (A) video frames showing representative postures. (B) The cumulative variance of the first n principal
components. (C-E) The first three principal components, labeled with the percent of the variance described by that component. These results show increasing

cycles are highlighted in Figure 10C. We remark that instead
of the representative cycles produced by Dionysus one may
want to use (approximate) shortest cycle representatives (Jeff
Erickson, 2012; Dey et al., 2018; Obayashi, 2018; Day et al,,
2019).

One of the benefits of using persistence for behavior analysis is
that these representative cycles give a direct translation from
persistence back into C. elegans behavior. Each point in the cycle
corresponds to [ poses and these points have a defined sequence in
the cycle. The cycle lacks a direction (which way is forward in
time vs which way is backward) but in many cases a direction can
be inferred by subsets of the sequence that correspond to
contiguous sequences in the original time series. Given all this
data and a way to combine / poses into one “average” pose, we can

construct synthetic, periodic behavior data from representative
cycles. An example of frames from such a video is shown in
Figure 10D and the corresponding video is available in the
Supplementary Materials.

TABLE 1 | Normalized pairwise distances between average persistence landscapes
of each class, where distance is Euclidean distance between vectors in R?%5%9
and the normalization is such that the average distance to the origin is 1.

0.5% 1% 2% 3%
origin | 1.1873106 1.5934976 0.6777196  0.5414722
0.5% 0.8330355 0.8380992  0.8809327

1% 0.9972502  1.1255496
2% 0.1758501
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FIGURE 10 | (A) Points in the sliding window embedding 7%° that correspond to each of the labeled behaviors are highlighted. (B) The representative cycles with
longest persistence from automated persistence software correspond to specific behaviors. (C) The persistence diagram with the homology class corresponding to the
above cycle representative highlighted. (D) Still frames from a looping video of forward crawling data. The full video is in Supplementary Materials. This synthetic data

was constructed from the forward representative cycle in (B).

3.2 Experimental Results Average persistence landscapes for each class are shown in
We present our analysis of an experiment where C. elegans are  Figure 8A. The lower viscosity conditions allow for larger depth
submerged in solutions with varying viscosities. The viscosity ~ one landscapes (1;) but have relatively few non-zero higher-
of the solution is correlated with how much methylcellulose is ~ depth landscapes, which means there are a smaller number of
added and experimental conditions are labeled with their  larger loops detected in the sliding window embeddings. This
methylcellulose content, usually in order from low to high  indicates that in lower-viscosity environments, C. elegans
methylcellulose and viscosity. exhibit behaviors of higher amplitude but either

TABLE 2 | Classification statistics. (A) Permutation test results. (B) Confusion matrix for one instance of SVM with 10-fold cross validation

0 [v) 0, 0,

0.5% | 0.0077 0.0001 0.0000 i°/° : : : G

1% 0.0000  0.0000 20/" 9 ' g 9
2% 0.0000 0

3% 0 0 1 10
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FIGURE 11 | Heatmap of the distance matrix of average persistence
landscapes of samples.

demonstrate fewer distinct behaviors or have much less
variation between repetitions of behaviors. Conversely, the
high-viscosity classes show many more cycles in the sliding
window embeddings, with each cycle being small compared to
the cycles found in the low-viscosity environments. These
observations suggest that at high-viscosity, behaviors do not
involve large changes in posture and are more varied. From
observing the raw video data, it is apparent that in higher-
viscosity environments C. elegans can make smaller, tighter
body bends, which is consistent with these results.

We also observed that as viscosity increases, the support of the
persistence landscapes stretches further to the right and cycles are
born at higher radius values. The worms seemed to exhibit less
varied behaviors in lower-viscosity environments, so perhaps in
such environments they continued “retracing their steps”
through the sliding window embedding space which resulted
in more densely sampled curves and thus homology classes
formed at lower radii.

The pairwise distances between landscapes for each sample are
visualized in Figure 11. The normalized pairwise distances
between the average persistence landscapes for each class are
shown in Table 1. We include the origin—the zero persistence
landscape, i.e. the 0 vector—in these distance computations to
complete the normalization. Normalization is such that the
average distances between each class and the origin is 1.
Multidimensional scaling on these distances visualizes the
similarities between samples and classes, respectively, and are
shown in Figure 6. From the raw distances and the
multidimensional scaling of the distances, we can see that the
high-viscosity classes (2% and 3% methylcellulose) are closest
together and that this pair, the 0.5% class, and the 1% class are
roughly equidistant from one another.

Principal component analysis on the average persistence
landscapes for each sample gives the graphs in Figure 7. In
Figure 7A, the projections of the average persistence
landscapes of the samples onto the first two principal
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components are given by hollow symbols and projections of
the average persistence landscapes of the classes are given by
solid symbols. Here we see results similar to those from the
multidimensional scaling in Figure 6: the low-viscosity class
landscapes are far from each other and the high-viscosity
classes, while the high-viscosity class landscapes are quite
close. We can also see some of the variance within classes.
The low-viscosity classes have much more variability than the
high-viscosity classes, with the highest-viscosity class, 3%
methylcellulose, having very little variation in these first
two principal components.

These conclusions about variation in each of the classes are
supported by the standard deviations of each coordinate in the
average (discrete) persistence landscapes of each class. In
Figure 8B the standard deviations of each coordinate are
graphed as sequences of functions so that the standard
deviations can be easily matched up with their corresponding
locations on the average persistence landscapes. We conclude that
there is little variation in the 3% class, slightly more in the 2%
class, and much more in the 0.5% and 1% classes. The 1% class
showed more variation in higher-depth landscapes than the 0.5%
class, suggesting that C. elegans can produce slightly more
complex behaviors in a slightly higher viscosity environments.
The variances of the 0.5% and 1% classes also exhibit a distinct
pattern; the 0.5% samples varied more toward the lower radius
parameters (the left side of the graph), whereas the 1% samples
varied more toward higher (more to the right) radius parameters.

In the following analysis we study the complexity of behavior
expressed in each class. Figure 9 shows results from using PCA
on the videos in each class. The viscosity of the environment is
negatively correlated with the percent of variance explained by
the first principal component, which suggests that behaviors in
low-viscosity environments are simpler than those in high-
viscosity environments. Viscosity appears to be correlated with
the number of nonzero landscapes, which also suggests that high-
viscosity environments allow for more varied behaviors.

We conducted permutation tests between pairs of classes to
determine how well average persistence landscapes can
distinguish between samples from different classes. The
p-values for these computations are shown in Table 2A. The
permutation test gives strong evidence of statistical significance,
i.e. that the topological summaries of samples from each class are
significantly different.

We then used multiclass support vector machines (SVM) to
build a classifier for the samples. The estimated accuracy of the
classifier, computed by averaging accuracies across 20
instantiations of the multiclass SVM classifier, was 95.125%.
This indicates that persistent homology is able to produce
meaningful, distinguishing features from the C. elegans videos.
A sample confusion matrix for one instance of SVM is shown in
Table 2B. Finally, we used support vector regression to estimate
the methylcellulose content in the environment for each sample.
The results are plotted in Figure 12. There are two outliers on this
graph which are estimated as having negative methylcellulose
content. The two animals in these samples moved much more
quickly than their peers, so we believe that the SVR is picking up on
the strong negative correlation between viscosity of the
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environment and speed, and based on these animals’ fast speed,
assigning a methylcellulose content that is so low that it is negative.

3.2.1 Cross Validation of Window Length

As was shown in Example 2.6, changes in the window length of the
sliding window embedding can affect the conclusions drawn from
our computational pipeline. In fact, sliding window embeddings
have been critiqued for their need of this seemingly arbitrary
parameter that can cause significant artifacts when dealing with
volatile data (Lindquist et al., 2014). Our data is not particularly
volatile since it is constrained by physical limitations of C. elegans,
but we have still justified our choice of window length by
conducting cross validation.

We assembled the results from running our computational
pipeline with window lengths of 1, 10, 20, and 30. We found that
different window lengths could be more wuseful for
different tasks.

The permutation test and multiclass SVM results show that
using a window length of 1 (ie., not using a sliding window
embedding) is the most predictive and that the smaller the
window length, the better the accuracy. Window length 1 had
the largest multiclass SVM accuracy at 95.500% compared to
accuracies 91.750%, 83.375%, and 79.125% for window lengths
10, 20, and 30, respectively. The permutation test results were less
definitive, with window length 1 showing slightly more separation
between the 0.5% and 1% methylcellulose classes but all window
lengths giving strong results. The runtimes of each computation
differed significantly, with window length one data running for
just over 5 min while window length 30 data took 90 min. This
indicates that for predictive purposes and doing statistics on large
data sets, using persistence on as close to the raw data as possible
is best, but sliding window embeddings can still be useful if they
are desirable for other reasons.

These statistical results contrast with the ease of visualization
and interpretability of the analyses using the different window
lengths. PCA projections of the cross validation data show much
more differentiation between classes when the window length is
10, 20, or 30 compared to when it is 1. This is presumably because
the first two principal components do not explain as much of the
variation in the raw data, so separation between classes takes
more principal components to describe. Meanwhile, sliding
window embeddings consolidate variation in the samples into
fewer principal components, so there are fewer significant
principal components to visualize and interpret in terms of
the original application. Essentially, sliding window
embeddings give a slightly simplified but still predictive
representation of the raw data.

We can also see from Figure 4 that PCA projections of
behavior data are easier to interpret when we use a sliding
window embedding than when we look at just the raw time
series. Recall that one of the behavioral features from the
data—the pause—was not detectable over noise when looking
at the PCA projection of the original time series but could be
identified in both the PCA projection and the persistence
landscape of the sliding window embedding. Because we were
able to identify the topological feature we were also able to
compute a corresponding representative cycle, which in turn
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FIGURE 12| SVR estimates of methylcellulose content for each sample.
Horizontal lines are at 0.5%, 1%, 2%, and 3% methylcellulose.

allowed an estimate of the locomotion corresponding to the
pause behavior to be constructed. Identification and
construction of the corresponding locomotion of the pause
behavior would have been more difficult using the original
time series.

3.2.2 Validation Results

We conducted permutation tests and applied multiclass SVM for
data from two simple behavior quantification techniques which
are described in Section 2.5. Results of the permutation test are
listed in Table 3. For the method based on averages of 2-norms of
consecutive frames of vector angles the cross validation error was
12.5% and training error was 7.5%. For the method based on
standard deviations of vector angles the cross validation error was
70% and training error was 35%. Though more computationally
taxing, persistence and sliding window embeddings produced
much more accurate results than either of these simpler
techniques.

Computations for the null model involve permuting the
original time series of each sample and running our sliding
window embedding and persistence techniques on that
permuted data. Analysis of the null model showed that
temporal information is necessary for our techniques to give
good accuracy differentiating between samples taken in differing
viscosity environments.

For the null model, the average error across 20 iterations of 10-
fold cross validation on SVMs was 51.625%. The permutation
tests showed that we could distinguish the 0.5% methylcellulose
class without temporal information, but could not do as well
differentiating between the three higher viscosity classes. It seems
that the distribution of poses in the 0.5% methylcellulose class
was different enough from the other classes to produce noticeably
larger topological features that resulted in larger landscapes. This
is probably because the lowest viscosity class had more extreme
poses and thus the diameter of the space of poses for that class was
significantly larger.
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TABLE 3 | Permutation test results on simpler techniques which use rough measures of each worm’s average movement speed and variation in posture. (A) Speed:
averages of 2-norms of the difference between consecutive frames of vector angles. (B) Posture change: standard deviations of vectors angles.

A
1% 2% 3%
0.5% | 0.3497 0.0000 0.0000
1% 0.0492  0.0480
2% 0.1026

4 DISCUSSION

We have demonstrated that persistent homology is a viable
technique for studying C. elegans behavior and provides useful
interpretations and visualizations. Our method consists of
constructing sliding window embeddings of time series of
piecewise linear C. elegans skeletons and using degree one
persistent homology to create topological summaries for each
patch of each video. These topological summaries, called
persistence landscapes, are averaged over patches to produce a
single average persistence for each video. These average
persistence landscapes are our topological summary statistics
and they are the statistics to which we apply further statistical
analysis and machine learning techniques, such as principal
component analysis, multidimensional scaling, permutation
tests, and multiclass support vector machines. As far as we are
aware, this is the first application of persistent homology to C.
elegans behavior data.

Our analysis showed that persistence is able to detect
variability in C. elegans behavior data, but also that it can
provide interpretable conclusions and useful visualizations.
The potential of persistence for interpretability and
visualization results is demonstrated in the case study of
Section 3.1, where topological features were connected
directly to behavioral features and persistence was used to
create synthetic behavior data corresponding to stereotyped
behaviors such as forward crawling. Our analysis of
experimental data shows that persistent homology can detect
the variation of behavior induced by changes in the viscosity of
the environment. It also suggests that persistence can measure
complexity of behavior and that sliding window embeddings
with low window lengths can be more predictive while sliding
window embeddings with higher window lengths can be more
useful for producing clear and interpretable visualizations,
including video of synthetic data.

Persistent homology produces powerful summaries of the
“shape” of data. However, using persistent homology in a way
that is interpretable by experimentalists is a challenge and a topic
of current research. We take a step in this direction by using
representative cycles of the most persistent features of a sliding
window embedding to produce synthetic videos of characteristic
cyclic behaviors. At this time, there does not exist a
straightforward way to similarly interpret our composite
summaries, the average persistence landscapes. However, there
is work in progress toward this goal (Bubenik and Wagner, 2018),
and our pipeline would be able to incorporate such advances.

B
| 1% 2% 3%
0.5% | 0.0002 0.0000 0.0000
1% 0.9961  0.0625
2% 0.0411

Our analysis has implications for future experimental design.
We observed that low-viscosity environments allow for the
detection of variation between samples, while high-viscosity
environments may allow animals to perform more complex
and varying behaviors. Tuning the viscosity of the
environment for an experiment or performing experiments in
multiple fluid environments with varying viscosities could allow
for more easily assessing results regarding variations within
populations or variations in behavior.

An extension to this experiment that could provide more
validation for our techniques would be to include samples from
two new environmental conditions: buffer, which would
correspond to 0% methylcellulose and a lower viscosity than
appears in our current data; and agar, which provides a solid
surface for the worms to crawl on and surrounding air as
opposed to an aqueous environment to be submerged and
swim in. We would expect the new buffer class to allow for
only fast, simple behaviors in line with the experiments already
done, and the agar environment to allow more complex
behaviors in the subjects.

The method that we have developed for applying
topological data analysis to C. elegans locomotion data will
facilitate the future study of biological phonemena such as
aging. In particular, our rich quantitative summary of
locomotion suggests that we may be able to measure not
just lifespan, but “healthspan,” the length of time an
individual is healthy and physically capable. Many therapies
and medicines for humans and other organisms have a goal of
expanding healthspan, and therefore require a detailed
measure of the ability to locomote, such as those provided
by our methods.
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