
Factored LT and Factored Raptor Codes for Large-Scale
Distributed Matrix Multiplication

Asit Kumar Pradhan, Anoosheh Heidarzadeh, and Krishna R. Narayanan

Abstract— We propose two coding schemes for distributed
matrix multiplication in the presence of stragglers. These coding
schemes are adaptations of LT codes and Raptor codes to
distributed matrix multiplication and are termed Factored LT
(FLT) codes and Factored Raptor (FR) codes. Empirically, we
show that FLT codes have a near-optimal recovery threshold
when the number of worker nodes is very large, and that FR
codes have an excellent recovery threshold while the number
of worker nodes is moderately large. FLT and FR codes have
better recovery thresholds when compared to Product codes
and they are expected to have better numerical stability when
compared to Polynomial codes, while they can also be decoded
with a low-complexity decoding algorithm.

I. INTRODUCTION

We consider a matrix multiplication problem where the
goal is to compute C = ATB given two input matrices A ∈
Rs×r and B ∈ Rs×t. Many applications in optimization and
machine learning require multiplications of large matrices of
dimension of the order of 105×105. These large-scale matrix
multiplications cannot be carried out in a single machine
mainly due to low-latency requirement in many applications.
This requirement can be met by dividing input matrices A and
B into m and n sub-matrices, respectively, and distributing the
tasks of computing the product of these sub-matrices among
P worker nodes [1]–[12]. A master node then collects the
results of the worker nodes, and aggregates them appropriately
to obtain C. Since the master node requires the results of
all worker nodes so as to successfully compute C, a few
slow worker nodes, referred to as stragglers, can significantly
increase the computational delay.

In [6], Lee et al. proposed a scheme, referred to as 1-
D maximum distance separable (MDS) codes, to mitigate
the effect of stragglers for the case of n = 1, in which the
sub-matrices of the matrix A are encoded using a (P,m)
MDS code, and the task of computing AT

i B, for i ∈ [P],
is distributed among P worker nodes. This scheme can be
extended to matrix-matrix multiplication in a natural way
by considering each column of B as a vector; however, as
shown in [2], the recovery threshold of this scheme —defined
as the minimum number of worker nodes that the master
node needs to wait for to compute C, will not be optimal.
In [2], Yu et al. proposed a coding scheme, referred to as
Polynomial codes, which divides both A and B into sub-
matrices. As was shown in [2], the Polynomial codes achieve

The authors are with the Department of Electrical and Computer
Engineering, Texas A&M University, College Station, TX 77843 USA (E-
mail:{asit.pradhan,anoosheh,krn}@tamu.edu).

This material is based upon work supported by the National Science
Foundation (NSF) under Grants No. 1718658, 1642983, and 1611285.

the minimum possible recovery threshold, i.e., K = mn.
The main drawback of Polynomial codes is that the decoding
process requires interpolating polynomials of degree K, which
is equivalent to inverting a K × K Vandermonde matrix.
However, inverting real-valued Vandermonde matrices is
highly numerically unstable even for moderate K [13].

In [9], Lee et al. proposed a coding scheme using Product
codes, where both the input matrices A and B are split
(column-wise) into m = n sub-matrices, and encoded using
an (
√
P ,m) MDS code, unlike the scheme in [6]. Product

codes can be implemented using several component codes
such as Polynomial codes [1], OrthoPoly codes [14], Random
Khatri-Rao-Product (RKRP) codes [15], etc. [4], [16]. Product
codes are generally better than Polynomial codes in terms of
numerical stability. For example, decoding of a Product code
of dimension K (= m2) built from Polynomial component
codes of dimension

√
K requires the inversion of

√
K×
√
K

Vandermonde matrices, whereas decoding of a Polynomial
code of dimension K would require inversion of a K ×K
Vandermonde matrix. The main drawback of Product codes is
that their recovery threshold is not optimal unlike Polynomial
codes. In [17], Baharav et al. proposed a scheme, referred to
as d-dimensional Product codes for matrix multiplication, by
spreading component matrices of A and B over d/2 dimen-
sions each, and encoding them using a d-dimensional Product
code. While d-dimensional Product codes can perform better
than 2-dimensional Product codes for certain regimes of P
and K, the recovery threshold of d-dimensional Product codes
is still not optimal when the number of stragglers is linear in
P . Moreover, (P,K) d-dimensional Product codes of rate R
are built upon (P 1/d,K1/d) MDS component codes of rate
R1/d. Unless P is very large, it is impractical to use large
values of d since the set of possible MDS component codes
becomes trivial for large d.

In [18], Mallick et al. proposed a scheme for matrix-vector
multiplication using Luby Transform (LT) codes [19], a type
of rateless codes, which has several desired properties: (i)
high numerical stability; (ii) linear decoding complexity, and
(iii) recovery threshold of P (1 − α), where α ∈ [0, 1) is
the fraction of worker nodes that are stragglers. However,
this scheme is not directly extendable to the matrix-matrix
multiplication problem. In [20], Wang et al. proposed the
use of LT codes for distributed matrix multiplication. The
scheme of [20] has all the properties (i)-(iii); however, for
this scheme, both the communication and the computation
at each worker node are substantially more expensive than
those of Polynomial codes and Product codes.

239978-1-7281-6432-8/20/$31.00 ©2020 IEEE ISIT 2020

Authorized licensed use limited to: Texas A M University. Downloaded on June 22,2022 at 14:26:20 UTC from IEEE Xplore. Restrictions apply.

A. Main Contributions

In this work, we propose two novel encoding schemes. The
first scheme is based on LT codes, referred to as Factored
LT (FLT) codes, which is better in terms of numerical
stability as well as decoding complexity, when compared to
Polynomial codes. In particular, the decoding complexity of
FLT codes is O(rt logK), whereas the decoding complexity
of Polynomial codes is O(rt log2K log logK), where r and
t are the number of columns in A and B, respectively, and
K = mn where m and n are the number of sub-matrices
into which A and B are split, respectively. As in the case of
LT codes for erasure channels, the performance of FLT codes
can be improved for finite lengths, particularly for moderate
values of K. For this regime, we propose a Raptor code based
scheme, termed Factored Raptor (FR) codes, which performs
well even for moderately large K. Our simulation results
show that the recovery threshold of FR codes is better than
that of Product codes. For example, a (10000, 6400) FR code
has recovery threshold 7060, whereas the recovery threshold
of a (21, 18)× (22, 19)× (22, 19) Product code is 7275.

II. NOTATION AND PROBLEM SETUP

A. Notation

We use boldface capital letters for matrices and underlined
variables to represent vectors. We denote the (i, j)th element
of the matrix A by Aij , and represent the ith row and jth
column of the matrix A by Ai,: and A:,j , respectively. We
assume that vectors without transposes are column vectors
unless stated otherwise. We denote {1, . . . , i} by [i], and
denote the cardinality of a set S by |S|.

B. Problem Setup

We consider a system where there is one master node and
P worker nodes. The goal of the master node is to compute
C = ATB in a distributed fashion using P worker nodes.
Worker nodes can only communicate with the master node
and cannot communicate among themselves. To distribute
the computation among workers, A and B are divided along
columns to m and n sub-matrices of size s× r

m and s× t
n ,

respectively, as shown below.

A = [A1,A2, · · · ,Am], and B = [B1,B2, · · ·Bn].

Alternatively, the output matrix C can be written in terms of
the components of A and B as follows:

C =

AT

1B1 AT
1B2 . . . AT

1Bn

AT
2B1 AT

2B1 . . . AT
2Bn

...
...

. . .
...

AT
mB1 AT

mB2 . . . AT
mBn

 .
Then, computing C is equivalent to computing mn blocks
AT

i Bj for i ∈ [m] and j ∈ [n]. For each p ∈ [P], let IpA
and IpB be two subsets of [m] and [n], respectively. For each
p ∈ [P], we define

(Ãp)T =
∑
i∈[m]

apiA
T
i , B̃p =

∑
j∈[n]

bpjBj , (1)

where api for i ∈ IpA and bpj for j ∈ IpB are randomly
sampled from a Gaussian distribution with zero mean and
unit variance; and we choose api = bpj = 0 for i /∈ IpA
and j /∈ IpB. The master node computes (Ãp)T and B̃p

and sends them to the worker node p. The worker node
p computes C̃p = (Ãp)TB̃p and returns C̃p to the master
node. We refer to C̃T = [C̃1, C̃2, · · · C̃P] as the encoding
function. The master node collects C̃p’s from a subset of
worker nodes, referred to as non-stragglers, and attempts to
recover the matrix C from the results of the non-straggling
worker nodes using a decoding function f . Given an encoding
function C̃ and a decoding function f , the recovery threshold
is defined as the minimum integer N such that the master
node can recover the matrix C from the results of any N
(non-straggling) worker nodes.

The goal is to design an encoding function and a decoding
function so as to minimize the recovery threshold.

III. PROPOSED CODING SCHEMES

A. LT-Coded Distributed Matrix Multiplication

In this section, we propose Factored LT (FLT) codes, which,
in this paper, will be used as a component of the distributed
matrix multiplication scheme proposed in Section III-B.
The application of FLT codes as a standalone scheme for
distributed matrix multiplication is left for future work.

In the following, we briefly describe the encoding and
decoding of FLT codes.

1) Encoding: LT codes, introduced by Luby in [19], are a
class of rateless erasure codes that can be used to generate
a (potentially infinite) sequence of output symbols from K
source symbols. The number of source symbols involved in
generating an output symbol is referred to as the degree of
the output symbol. The degree of output symbols follow a
degree distribution Ω(x). In [19], it was shown that in the
case of a single erasure channel, the source symbols can
be recovered from any N = K(1 + ε) output symbols with
high probability, where ε is the overhead. In particular, as
shown in [19], for some proper choice of degree distribution
Ω(x), the overhead ε vanishes as K grows unbounded. To
apply LT codes to the task of matrix-matrix multiplication,
we treat AT

i Bj’s for i ∈ [m] and j ∈ [n] as source symbols,
where Ai’s and Bj’s are component matrices of A and B,
respectively. As described in Section II, the matrix-matrix
multiplication problem requires each output symbol to be the
product of Ã and B̃, where Ã and B̃ are sum of randomly
chosen chunks of A and B, respectively. Unlike the case of
a single erasure channel, for the matrix-matrix multiplication
problem a degree-d output symbol cannot be generated from
any arbitrary d source symbols. Thus, the encoding of LT
codes is not directly applicable to our setting.

Let Ω(x) =
∑K

i=1 Ωix
i be a degree distribution, where

Ωi = 0 for all prime i > max(m,n). The encoding process
performed by the master node for each worker node p ∈ [P]
is described as follows:

1. Randomly choose a degree d by sampling from the
degree distribution Ω(x).

240

Authorized licensed use limited to: Texas A M University. Downloaded on June 22,2022 at 14:26:20 UTC from IEEE Xplore. Restrictions apply.

2. Randomly choose a divisor, denoted by d1, of d in such
a way that d1 ≤ m and d2 = d

d1
≤ n.

3. Choose IpA and IpB uniformly randomly from Spm and
Spn, respectively, where Spm (or Spn) is the collection of
all subsets of [m] (or [n]) that are of size d1 (or d2).

4. Compute (Ãp)T and B̃p as in (1), and send them to
the worker node p; and request the worker node p to
compute C̃p = (Ãp)TB̃p, and send it back.

The encoded symbols C̃p’s for p ∈ [P] constitute a codeword
of the FLT code.

Example 1: Let m = 3, n = 3, and Ω(x) = 0.2x+0.7x2+
0.1x4. Consider the generation of an encoded symbol at the
worker node p. The master node randomly samples a degree
d from Ω(x), say d = 4. Then, the master node randomly
chooses a divisor d1 of d = 4, say d1 = 2, which implies
that d2 = d

d1
= 2. Then, for this example, Spm = Spn =

{{1, 2}, {1, 3}, {2, 3}}. The master node then chooses IpA
and IpB uniformly at random from Spm and Spn, respectively;
say, IpA = {2, 3} and IpB = {1, 3}. For simplicity, in this
example, the coefficients api ’s and bpj ’s are chosen as follows:

api =

{
1, if i ∈ IpA
0, Otherwise

, bpj =

{
1, if j ∈ IpB
0, Otherwise,

The master node computes (Ãp)T = AT
2 + AT

3 and
B̃p = B1 + B3, and sends them to the worker node p.
The worker node p is tasked to compute C̃p = (Ãp)TB̃p =
(AT

2 + AT
3)(B1 + B3) and send it back to the master node.

Notice that C̃p = AT
2B1 + AT

2B3 + AT
3B1 + AT

3B3 is a
linear combination of d = 4 source symbols, as desired. The
encoding process is illustrated in Fig. 1.

2) Decoding: Without loss of generality, suppose that the
master node collects results from the first N workers with
N ≤ P . Given the above encoding scheme, we have

C̃1

C̃2

...
C̃N

 =

a11b

1
1 a11b

1
2 . . . a1mb

1
n

a21b
2
1 a21b

2
1 . . . a2mb

2
n

...
...

. . .
...

aN1 b
N
1 aN1 b

N
2 . . . aNmb

N
n

︸ ︷︷ ︸

M

AT

1B1

AT
1B2

...
AT

mBn

We use M ∈ RN×mn to represent the above coefficient
matrix. To guarantee decodability, the master node should
collect results from enough number of workers such that
the coefficient matrix M has full column rank. Given such
M , the master node then uses a peeling decoding algorithm,
which can be described using a bipartite graph as follows.
The bipartite graph is constructed with one part of the nodes
(referred to as the left nodes) being the set of source symbols
AT

i Bj , i ∈ [m] and j ∈ [n], and the other part (referred to
as the right nodes) being the set of output symbols C̃p for
p ∈ [N]. There is an edge between the vertices AT

i Bj and C̃p

if AT
i Bj is involved in the computation of C̃p. The peeling

decoding algorithm works in iterations. In each iteration, the
master node searches for a right node of degree 1. If such
a node cannot be found, the decoding algorithm terminates.

Otherwise, the master node recovers the (unique) left node
connected to the found degree-1 right node, and removes all
edges adjacent to the recovered left node. The master node
runs this process iteratively until all left nodes are recovered
or no degree-1 right node can be found. An early termination
of the decoding process (before all left nodes are recovered)
yields a decoding failure; otherwise, the decoding process is
dubbed successful.

B. Raptor-Coded Distributed Matrix Multiplication

In the FLT coding scheme presented in section III-A.1, the
output symbols are generated by taking a linear combination
of randomly chosen source symbols. Therefore, when the
number of encoded symbols are close to the number of
source symbols, a small fraction of source symbols remain
uncovered by any output symbols, which means there exists
a fraction of all zero columns in the coefficient matrix M.
These uncovered source symbols cannot be recovered at the
end of the peeling decoding process. This implies that FLT
codes do not perform well for moderate values of N . This is
a well known issue with LT codes [19]. To address this issue,
we propose a Raptor code based scheme, termed Factored
Raptor (FR) codes, which is described below.

1) Encoding: An FR code is an FLT code concatenated
with an outer code. In the case of a single erasure channel,
the source symbols are encoded using the outer code, and the
input symbols of the LT code are formed by a codeword of
the outer code. Unlike the case of a single erasure channel,
the outer code of FR codes cannot be chosen arbitrarily, due
to the structure imposed by the matrix-matrix multiplication
problem. In distributed matrix multiplication problem, the
worker nodes are asked to compute product of a linear
combination of chunks of one matrix with that of the other
matrix. Collection of these products must form a codeword
of the FLT code, and the input symbols corresponding to
the codeword of the FLT code must form a codeword of the
outer code. This requirement is met by encoding A and B
with an MDS code and sending the linear combination of
chunks of the respective encoded matrix to the worker nodes.
We briefly describe the encoding process below.

1. For m̃ ≥ m and ñ ≥ n such that P = m̃ñ, the master
node encodes the matrix A = [A1,A2, · · · ,Am] or
B = [B1,B2, · · · ,Bn] using an (m̃,m) or (ñ, n) MDS
code to obtain the coded matrix Ã = [A1, Ã2, · · · Ãm̃]
or B̃ = [B1, B̃2, · · · B̃ñ], respectively.

2. The master node then encodes Ã and B̃ according to
the degree distribution of an FLT code as described in
Section III-A.1.

By the above construction, C̃ is a codeword of the FLT code,
and AiBj’s for i ∈ [m̃] and j ∈ [ñ] form a codeword of an
(m̃,m)× (ñ, n) outer Product code.

2) Decoding: Decoding of FR codes consists of alternating
decoding iterations on the FLT code and the outer Product
code. At the master node, encoding of FR codes induces
a Tanner graph which has AiBj’s for i ∈ [m̃] and j ∈
[ñ] as the input symbols (i.e., left nodes) and C̃p’s as the
output symbols (i.e., right nodes). Decoding iterations of

241

Authorized licensed use limited to: Texas A M University. Downloaded on June 22,2022 at 14:26:20 UTC from IEEE Xplore. Restrictions apply.

A1 A2 A3

Master node

B1 B2 B3

A2 + A3

B1 + B3

d1 = 2

IpA = {2, 3}

d2 = 2

IpB = {1, 3}

(AT
2 + AT

3)(B1 + B3)

Worker node p

AT
1B1 AT

1B2 AT
1B3 AT

2B1 AT
2B2 AT

2B3 AT
3B1 AT

3B2 AT
3B3

C̃p = AT
2B1 + AT

2B3 + AT
3B1 + AT

3B3

Fig. 1: Encoding of a degree-4 node

the FLT code proceed on this Tanner graph as described in
Section III-A.2. The matrix U = ÃTB̃ is a codeword of the
(m̃,m)× (ñ, n) outer Product code. Each row and column
of U is a codeword of the (ñ, n) MDS code and the (m̃,m)
MDS code, respectively. Decoding of the outer Product code
proceeds by decoding the component MDS codes.

Example 2: We now illustrate encoding of an FR code for
computing the product of two matrices A = [A1,A2] and
B = [B1,B2]. We consider a (3, 2) × (3, 2) Product code
as the outer code with a (3, 2) MDS code as the component
code, and a (10, 9) FLT code with degree distribution Ω(x) =
0.2x + 0.7x2 + 0.1x4. Encoding of the outer Product code
is done by applying the (3, 2) MDS code to both A and
B to obtain Ã = [A1,A2,A3] and B̃ = [B1,B2,B3],
respectively. Using the same procedure as in Example 1
for generating an output symbol of an FLT code, for this
example suppose each worker node p for p ∈ [10] is requested
to compute C̃p as follows:

C̃1 = AT
1B2, C̃2 = AT

1B3,

C̃3 = (AT
1 + AT

2)B1, C̃4 = (AT
1 + AT

3)B1,

C̃5 = (AT
1 + AT

2)B3, C̃6 = (AT
1 + AT

3)B3,

C̃7 = AT
1 (B1 + B2), C̃8 = AT

2 (B2 + B3),

C̃9 = AT
3 (B1 + B2), C̃10 = (AT

2 + AT
3)(B2 + B3).

Example 3: In this example, we describe the decoding
algorithm at the master node using the code described in
Example 2. For this example, consider that the master node
collects results from the worker nodes {1, 3, 5, 7}. The peeling
decoding is run on the subgraph, denoted by G0, induced
by the worker nodes {1, 3, 5, 7}. In iteration 0, the source
symbol AT

1B2 is recovered from worker 1 since C̃1 is a
degree-1 node in G0. Peel the edges connected to the source
symbol AT

1B2 in G0 and denote the residual graph by G1.
In iteration 1, the source symbol AT

1B1 = C̃7 −AT
1B2 is

recovered from worker 1 since C̃1 is a degree-1 node in G1.
Similarly, the source symbol AT

2B1 is recovered from worker
3 in iteration 3. Since there are no degree-1 symbols left after
iteration 3, the decoder of the FLT code cannot proceed
further. Decoding of the FR code can proceed further by
decoding the outer Product code. Arrange the input symbols
to the FLT code in a 3× 2 matrix as shown in Fig. 2e. Both
first row and first column have two computation results as
shown in Fig. 2e. In iteration 4, the missing computation
results in both first row and first column are recovered by

decoding the (3, 2) MDS code. The first few iterations of the
decoding process for this example are illustrated in Fig. 2.

3) Optimal Decoding by Inactivation Decoding: Maximum
likelihood decoding of FLT and FR codes can be implemented
using a low-complexity algorithm known as inactivation
decoding [21], which is a combination of peeling decoding
and matrix inversion. The inactivation decoding starts with
peeling decoding, which continues until it encounters a
stopping set. At this point, the decoder assigns a variable to the
value of an unrecovered symbol, referred to as an inactivated
symbol. Then, the peeling decoder starts again and computes
the unrecovered symbols in terms of the variable representing
the value of the inactivated symbol. This procedure is repeated
again, when the peeling decoder is stuck, by choosing another
inactivated symbol from the unrecovered input symbols. The
decoding stops when all the input symbols are either recovered
or inactivated. Finally, optimal decoding of the inactivated
symbols is performed via Gaussian elimination, and the
decoded values are back-substituted into the decoded input
symbols which depend on them.

IV. COMPLEXITY CONSIDERATIONS

A. Encoding Complexity

In our encoding scheme, the master node sends two
matrices Ãp and B̃p to each worker node p, and each worker
node computes only one product. Therefore, the computation
and communication costs of our proposed scheme are the
same as those of Polynomial codes and Product codes. Unlike
the FLT coding scheme, the LT coding scheme proposed
in [20] requires the master node to send (on average) logK
chunks of the input matrices to each worker node, and each
worker node must compute (on average) logK products.

B. Decoding Complexity

In the following, we briefly describe the decoding com-
plexity of FR codes. The peeling of every edge in the Tanner
graph corresponds to performing rt

K operations. Let davg be
the average degree of output degree distribution. Then, each
block AT

i Bj will be involved in O(
davgN
K) such operations on

average. We are interested in the case when m̃−m and ñ−n
are very small and hence, the decoding complexity of the
outer code is negligible when compared to that of the LT part
of the FR code. In addition, we are interested in a regime
where r and t are very large and hence, the approximate
complexity of the decoding algorithm is O(rt

davgN
K).

242

Authorized licensed use limited to: Texas A M University. Downloaded on June 22,2022 at 14:26:20 UTC from IEEE Xplore. Restrictions apply.

AT
1B1

AT
1B2

AT
1B3

AT
2B1

AT
2B3

Ĉ1

C̃3

C̃5

C̃7

(a) Iteration 0

AT
1B1

AT
1B2

AT
1B3

AT
2B1

AT
2B3

C̃1

C̃3

C̃5

C̃7

(b) Iteration 1

AT
1B1

AT
1B2

AT
1B3

AT
2B1

AT
2B3

C̃1

C̃3

C̃5

C̃7

(c) Iteration 2

AT
1B1

AT
1B2

AT
1B3

AT
2B1

AT
2B3

C̃1

C̃3

C̃5

C̃7

(d) Iteration 3

AT
1B1 AT

1B2 ?
AT

2B1 ? ?

? ? ?
(e) Iteration 4

AT
1B1 AT

1B2 AT
1B3

AT
2B1 ? ?

AT
3B1 ? ?

(f) Iteration 5

Fig. 2: Illustration of the decoding algorithm for FR codes

0.26 0.27 0.28 0.29 0.3 0.31 0.32
10−5

10−4

10−3

10−2

10−1

100

α

Pr
ob

ab
ili

ty
of

de
co

di
ng

fa
ilu

re

3-D Product code
FR code (Scheme I)
FR code (Scheme II)
FR code (Scheme III)
FR code - Inactivation decoding

Fig. 3: Probability of decoding failure versus fraction of
straggling workers α = P−N

P .

V. SIMULATION RESULTS

First, we present simulation results to compare the recovery
threshold of FR codes and 3-D Product codes. For the
FR code, we set m = n = 80 and choose the entries of
A and B to be realizations of an i.i.d. Gaussian random
variable with zero mean and unit variance. We encode the
source symbols AT

i , for i ∈ [m] and j ∈ [n], using an
(82, 80)×(82, 80) Product code, where an (82, 80) systematic
RKRP code [15] is used as the row and column code. The
output symbols from the encoder of the Product code are then
encoded using a (10000, 6724) FLT code with right degree
distribution Ω(x) = 0.013x+0.5x2+0.1661x3+0.0726x4+
0.0826x5 + 0.0581x8 + 0.0340x9 + 0.0576x18 + 0.0160x66.
As discussed in Section III-A.1, the number of source symbols
is K = mn = 6400. For the chosen values of K = 6400 and
P = 10000, the maximum fraction of straggling workers that
any scheme can tolerate is given by P−K

P = 0.36 [1]. Note
that Polynomial codes achieve this threshold, and have zero
probability of decoding failure for any α <= 0.36 where
α = P−N

P denotes the fraction of straggling workers. In our
simulations, for each value of α being considered, the αP
straggling workers were chosen uniformly at random.

To illustrate the superiority of the encoding scheme in
Section III-A.1, we generate coefficient matrix M in three
different ways by altering the second step of encoding as
follows: (Scheme I) Fix d1 = d and d2 = 1; (Scheme II)
Define a uniform random variable i which takes value from
the set I = {1, 2}. Fix di = d and dI\{i} = 1; (Scheme
III) Follow the encoding process in Section III-A.1. For
each of these encoding schemes, in Fig. 3, we have plotted

0.2850 0.2875 0.2900 0.2925 0.2951
10−11

101

1013

1025

1037

α
A

ve
ra

ge
re

la
tiv

e
er

ro
r

FR Code
3-D Product code
Polynomial Code

Fig. 4: Average relative error versus fraction of straggling
workers α = P−N

P .

the probability that the master node is unable to recover
the output matrix C after receiving computations from αP
fraction of workers. We have also plotted the decoding failure
of a (21, 18)× (22, 19)× (22, 19) Product code in Fig. 3 for
comparison. We observe that the encoding scheme described
in Section III-A.1 (Scheme III) has better recovery threshold
when compared to the other two encoding schemes (Schemes
I and II). In addition, the recovery threshold of FR codes
(Scheme III) is higher than that of 3-D Product codes. We
have also plotted the error performance of the FR codes under
inactivation decoding as described in Section III-B.3. One can
see that the recovery threshold under inactivation decoding,
instead of using only peeling decoding, is higher.

Next, for the chosen parameters above, we demonstrate
the numerical stability of the proposed FR codes by sim-
ulating the average relative error defined as ηave :=

E
[
||C− Ĉ||2/||C||2

]
, where Ĉ is the estimate of the output

matrix C. In Fig. 4, we plot the average relative error versus
fraction of straggling workers. While computing average
relative error, we do not account for instances of decoding
failure due to stopping sets. It can be seen that the average
relative error of the simulated FR code is around 10−9

and does not increase as the fraction of straggling workers
increases. It is also observed that 3-D product codes and
FR codes have comparable average relative error, see Fig. 4;
whereas the FR codes have a better recovery threshold than 3-
D product codes, see Fig. 3. In Fig. 4, it can also be seen that
the average relative error of Polynomial codes is substantially
higher than that of product codes and FR codes.

243

Authorized licensed use limited to: Texas A M University. Downloaded on June 22,2022 at 14:26:20 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Polynomial codes:
An optimal design for high-dimensional coded matrix multiplication,”
in Advances in Neural Information Processing Systems, 2017.

[2] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler mitigation
in distributed matrix multiplication: Fundamental limits and optimal
coding,” in 2018 IEEE International Symposium on Information Theory
(ISIT), 2018, pp. 2022–2026.

[3] S. Dutta, Z. Bai, H. Jeong, T. M. Low, and P. Grover, “A unified coded
deep neural network training strategy based on generalized polydot
codes,” in 2018 IEEE International Symposium on Information Theory
(ISIT), 2018, pp. 1585–1589.

[4] A. Ramamoorthy, L. Tang, and P. O. Vontobel, “Universally decodable
matrices for distributed matrix-vector multiplication,” IEEE Interna-
tional Symposium on Information Theory, ISIT, 2019.

[5] Q. Yu, S. Li, N. Raviv, S. M. M. Kalan, M. Soltanolkotabi, and
S. Avestimehr, “Lagrange coded computing: Optimal design for
resiliency, security and privacy,” in International Conference on
Artificial Intelligence and Statistics (AISTATS), 2018.

[6] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchan-
dran, “Speeding up distributed machine learning using codes,” IEEE
Transactions on Information Theory, vol. 64, no. 3, pp. 1514–1529,
2018.

[7] S. Dutta, V. Cadambe, and P. Grover, ““short-dot”: Computing large
linear transforms distributedly using coded short dot products,” IEEE
Transactions on Information Theory, vol. 65, no. 10, pp. 6171–6193,
2019.

[8] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “A unified coding
framework for distributed computing with straggling servers,” in 2016
IEEE Globecom Workshops, Dec 2016, pp. 1–6.

[9] K. Lee, C. Suh, and K. Ramchandran, “High-dimensional coded matrix
multiplication,” in 2017 IEEE International Symposium on Information
Theory (ISIT), June 2017, pp. 2418–2422.

[10] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “Coded distributed
computing: Straggling servers and multistage dataflows,” in 2016
54th Annual Allerton Conference on Communication, Control, and
Computing (Allerton), Sep. 2016, pp. 164–171.

[11] Y. Yang, P. Grover, and S. Kar, “Coded distributed computing for
inverse problems,” in Advances in Neural Information Processing
Systems 30, 2017, pp. 709–719.

[12] A. B. Das and A. Ramamoorthy, “Distributed matrix-vector multipli-
cation: A convolutional coding approach,” 2019 IEEE International
Symposium on Information Theory (ISIT), pp. 3022–3026, 2019.

[13] V. Y. Pan, “How bad are Vandermonde matrices?” SIAM J. Matrix
Analysis Applications, vol. 37, pp. 676–694, 2015.

[14] M. Fahim and V. Cadambe, “Numerically stable polynomially coded
computing,” in to appear in proceedings of the International Symposium
on Information Theory, 2019.

[15] A. M. Subramaniam, A. Heidarzadeh, and K. R. Narayanan, “Random
khatri-rao-product codes for numerically-stable distributed matrix multi-
plication,” in 2019 57th Annual Allerton Conference on Communication,
Control, and Computing (Allerton), 2019, pp. 253–259.

[16] A. Severinson, A. Graell i Amat, and E. Rosnes, “Block-diagonal
and LT codes for distributed computing with straggling servers,” IEEE
Transactions on Communications, vol. 67, no. 3, pp. 1739–1753, March
2019.

[17] T. Baharav, K. Lee, O. Ocal, and K. Ramchandran, “Straggler-proofing
massive-scale distributed matrix multiplication with d-dimensional
product codes,” in IEEE International Symposium on Information
Theory (ISIT), June 2018, pp. 1993–1997.

[18] A. Mallick, M. Chaudhari, and G. Joshi, “Fast and efficient distributed
matrix-vector multiplication using rateless fountain codes,” in 2019
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), May 2019, pp. 8192–8196.

[19] M. Luby, “LT codes,” in The 43rd Annual IEEE Symposium on
Foundations of Computer Science, Proceedings., Nov 2002, pp. 271–
280.

[20] S. Wang, J. Liu, and N. B. Shroff, “Coded sparse matrix
multiplication,” CoRR, vol. abs/1802.03430, 2018. [Online]. Available:
http://arxiv.org/abs/1802.03430

[21] D. Burshtein and G. Miller, “Efficient maximum-likelihood decoding
of LDPC codes over the binary erasure channel,” IEEE Transactions
on Information Theory, vol. 50, no. 11, pp. 2837–2844, Nov.

244

Authorized licensed use limited to: Texas A M University. Downloaded on June 22,2022 at 14:26:20 UTC from IEEE Xplore. Restrictions apply.

