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a b s t r a c t

Many predator species attempt to locate prey by following seemingly random paths. Al-
though the underlying physical mechanism of the search remains largely unknown, such
search paths are usually modeled by some type of random walk. Here, we introduce the
stochastic pursuit-evasion equations that consider the bidirectional interaction between
predators and prey. This assumption results in a modulated persistent random walk that
is characterized by three interesting properties: power-law or tempered power-law dis-
tributed running times, superdiffusive or transient superdiffusive dynamics, and strong
directional persistence. Furthermore, the proposed model exhibits a transition from
Brownian to Lévy-like motion with intensifying predator–prey interaction. Interestingly,
persistent random walks with pure-power law distributed running times emerge at the
limit of highest predator–prey interaction. We hypothesize that the system ultimately
self-organizes into a critical interaction to avoid extinction.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Many physiological and pathological processes are directly linked to the ability of living organisms to move. For
nstance, animal migration is essential in searching for food or a mate [1]; however, this phenomenon is also responsible
or the faster and wider spread of diseases [2]. Cell motility, as a different example, is vital for a healthy immune system
esponse, but movement of cancerous cells also leads to metastasis [3]. Thus, understanding the movement of organisms
ill address fundamental questions in biology and help develop new therapeutic strategies and better policies for public
ealth and safety.
Living organisms often follow a species-specific strategy in the presence of signals generated by a target of interest.

hey receive and process these signals and then execute their strategy to move towards the target. In the absence of
xternal stimuli, many species attempt to locate a target by moving in a seemingly stochastic fashion. This movement
ay result from simple random and memoryless decisions or decisions based on learning, memory, or interaction with

he environment. Therefore, mathematical modeling of such paths may require implementation of various Markovian,
on-Markovian or even deterministic processes [4–10].
Although no general theory exists explaining the underlying physical mechanism of foraging, some predators have been

bserved undertaking long persistent walks that are interrupted by random short-term reorientations. Among others,
évy walks (LWs) are a class of stochastic processes that have been used extensively to model such search patterns.
Ws move persistently with finite speed for running times τ that are power-law distributed, i.e., P (τ ) ∼ τ−µ, where
1 < µ < 3 [11,12], and then change direction with turning angles that are uniformly distributed. Due to the finiteness of
the speed, the same power law distribution characterizes persistent running distances, l, of LWs (P (l) ∼ l−µ). However,
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n a real experimental setup, where space and time is finite, the recorded walk may be described better by a tempered
ower-law distribution, which is a power law bounded by an exponential:

P (τ ) ∼ τ−µe−τ/τc . (1)

Here, τc indicates the critical time the distribution starts deviating from pure power laws. For the remainder of this
paper, we define Levy-like RWs as stochastic processes that possess power-law or tempered power-law step distributions.

Other stochastic processes, such as correlated RWs, composite RWs, or intermittent RWs have proven successful in
modeling search patterns, and in many cases give very similar results to LWs. Correlated RWs, for instance, are stochastic
processes mainly based on the Ornstein–Uhlenbeck (OU) equation and its extensions to include multiplicative noise
and memory effects [13–18]. Such approaches result in correlated persistent RWs capturing some of the properties of
foraging dynamics. Composite RW, as a different example, is a mixture of two or more simple RWs [19]. Intermittent
RWs is another, recently introduced, stochastic process for foraging paths [20–22]; in this process, the predator randomly
switches between Brownian search motion and ballistic relocation. Lévy-like RWs can also emerge from the chaotic
behavior of a deterministic nonlinear system of equations [8,9,23].

Generally speaking, there are two main schools of thought in modeling foraging patterns. Evolutionists believe that
organisms must have evolved through natural selection to adopt LWs movement simply because power-law distributed
displacements optimize search efficiencies [24–32]. Emergentists, on the other hand, believe that LWs may simply
result from the interaction of predators with the environment, without necessarily optimizing their searching efficiency
[33–41]. In this study, we embrace both hypotheses but from a different perspective. Predators utilize the search patterns
that either spontaneously emerge due to interaction with the environment or are adapted through natural selection to
enhance encounters with prey. We primarily hypothesize that prey are subject to the same assumptions. Specifically,
prey also utilize natural selection and interaction with the environment to develop random avoidance paths that reduce
encounters with predators. Thus, foraging is, at a bare minimum, a pursuit-evasion process between the predators and
prey. Any improvement in the predator’s searching skills is subsequently accompanied by an improvement in the prey’s
avoidance skills and vice versa.

The pursuit-evasion stochastic process presented in this work is based on simple stochastic differential equations that
are straightforwardly applicable in all three dimensions. A few notable characteristics of this approach are tempered
power law distributed running times, transient superdiffusion behavior, and strong directional persistence. Interestingly,
our model undergoes a transition from Brownian to Levy-like RWs with an increasing predator–prey interaction. We
hypothesize that both predators and prey eventually self-organize to a critical state that minimizes the chances of
extinction of the whole ecosystem [29,42].

This paper is organized as follows. Section 2.1 presents the traditional pursuit equation; 2.2 introduces our stochastic
pursuit-evasion model. Section 3 details numerical and analytical results. Specifically, Sections 3.1.1, 3.1.2, and 3.1.3
present the distribution of running times, the superdiffusive behavior, and the directional persistence, respectively, of
the proposed model in one dimension (1D). Section 3.2 briefly presents the same results in two dimensions (2D) and
three dimensions (3D). Comparison with similar existing mathematical models is also discussed. We conclude this paper
by summarizing our work in Section 4.

2. The model

2.1. Pursuit model

The traditional pursuit equation describes the trajectory of a predator chasing an unsuspecting prey moving on a
predefined deterministic trajectory [43,44]. It is important to underline that the prey has already been located and being
chased by a predator in close proximity. Thus, this type of pursuit is not to be confused with foraging, where the predator
tries to first find a prey. A traditional example usually used in textbooks to illustrate this toy-model is the dog-cat pursuit
on a 2D plane [43,44]. The cat is assumed to follow a deterministic path, Rt , where t represents time. The dog’s strategy
is rather simple as it moves directly towards the cat with speed vr . With these simple assumptions, the position of the
dog, r t , is given by the following equation:

dr t
dt

= vr
Rt − r t

∥Rt − r t∥
, (2)

where ∥·∥ is the Euclidian norm. This equation was first introduced by Pierre Bouguer in 1732 [45], but the term pursuit
curves was coined in 1859 by George Boole in his book, Treatise on Differential Equations [46]. In general, the speed of
the dog can be proportional to that of the cat: vr ∼

⏐⏐Ṙt
⏐⏐. In what follows, we assume for simplicity that the length and

time are both dimensionless. The differential equations are all solved numerically using the Euler or Euler–Maruyama
method [47].

Fig. 1a illustrates a representative curve of this problem. The dog moves directly towards its target at any point in
time and eventually catches the cat if vr > vR. Similar direct pursuit curves can be found across taxa, even at a scale
that is smaller by five orders of magnitude, such as the pursuit of a bacterium by a white blood cell as shown in Fig. 1b.
This trajectory was derived from the iconic 16 mm movie made by David Rogers at Vanderbilt University, Nashville, USA
2
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Fig. 1. Examples of predator–prey pursuit curves. Time increases according to the palettes shown on the top of the Figure. (a) Deterministic dog-cat
pursuit curve. The dog always points directly to the cat’s location. (b) Neutrophil (large object) hunting a Staphylococcus aureus bacterium (small
object) [48]. (c) Stochastic pursuit curves of a predator chasing a Brownian particle. Here, DR = 1 and vr = 6. (d) Same as in (c), but only the
rajectory of the predator is shown for clarity. Straight lines and stars indicate the runs and tumbles, respectively.

n the 1950s [48]. This movie gives the impression that, similarly to the dog-cat pursuit, the white blood cell directly
hases a bacterium. A striking difference as compared to the deterministic example is the stochastic nature of the pursuit
urve. This stochasticity is rather expected at such small scales where thermal fluctuations dominate the trajectories of
olecules and nano-to-micro-scale structures.
Despite the randomness of the curves, Eq. (2) can still describe this problem if one assumes that the bacterium is

oving along a predefined stochastic path. The result of such a stochastic pursuit equation is shown in Fig. 1c, where
he pursuer is chasing a Brownian particle, i.e., Rt =

√
2DRW t , where DR is the diffusion coefficient and W t is the

standard 2D Brownian motion (BM) or Wiener process [44,49]. An interesting first observation is that the pursuer’s
stochastic path consists of long runs interrupted by short-time random reorientations (see Fig. 1d). Such a process, known
as run-and-tumble motion, has been first observed in bacterium swimming [50]. Our preliminary simulations indicate
that this phenomenon emerges naturally in our model for a broad range of parameters. More systematic analysis of the
distributions of velocity, tumble angles, running lengths etc., needs to be done to directly link the motion illustrated in
Fig. 1d with the run-and-tumble dynamics observed in experiments. This study will be presented in a future paper.

2.2. Stochastic pursuit-evasion model

In this work, we extend the pursuit equation to allow for the prey to evade the predator. Specifically, the modified
stochastic pursuit-evasion model describes the motion of a predator that stochastically drifts directly towards the prey,
which in turn, stochastically drifts directly away from the predator. Let the drift and diffusivity of the predator be denoted
by vr and Dr , respectively. Similarly, we use vR and DR to represent the drift and diffusivity of the prey. The time evolution
of the system in d dimensions, where d = 1, 2, and 3, is given by the following system of stochastic differential equations:

dr t = vr n̂tdt +

√
2DrdW r

t , (3)

dRt = vRn̂tdt +

√
2DRdW R

t , (4)

where n̂t = (Rt − r t )/ ∥Rt − r t∥ represents the orientation vector, and W r
t and W R

t are d-dimensional independent
Wiener processes. The initial positions of the predator and prey are assumed to be r0 = 0 and R0 = α0, respectively. The
difference xt = Rt − r t is given by

dxt = −vn̂tdt +
√
2DdW t ,with x0 = α0, (5)

here v = (vr − vR), D = Dr + DR and W t is also a d-dimensional independent Wiener process. This simplified equation
rovides information about the properties of the distribution of x , e.g., whether there is a stationary distribution. A
t

3
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ore general stochastic pursuit-evasion equation model with anisotropic drift vectors and diffusivity matrices, as well
s different types of predator–prey interaction can also be formulated. Here, we have to mention that the interaction
erm, (n̂t ), is nonlinear. Consequently, the components of the position vectors are not independent as in several OU-based
orrelated RWs models. Furthermore, for the purpose of this work, the drift of the predator vr must not be zero, otherwise
q. (3) would simply describe a Brownian motion. The vR can be either positive or zero. The case of vR = 0 describes an
nsuspected prey performing BM, while for vR > 0 the prey actively evades the predator. Without loss of generality, we
ssume DR = 1 for the remainder of this paper.
A critical point that we clarify here is the hypothetical underpinnings of the predator–prey dynamics in scenarios where

prey can remain undetectable. In the absence of detectable prey, two critical assumptions are made: first, the predator
ssumes the existence of prey and takes a ‘‘first guess’’ at the position of this prey (α0). Second, the predator’s guess as
o the location of its prey evolves according to the drift–diffusion process of Eq. (4). Parameters of the system, such as
he drift velocities and diffusivities may generally be determined by different physiological processes, such as training,
atural selection, or both. Similarly, the predator’s guess as to the location of prey may also stem from these processes.
herefore, we assume that the predator actively seeks prey regardless of the existence/presence of detectable prey. The
xistence of the predator’s guess makes the predator’s motion to be active, which has shown to be an important aspect
f foraging, especially in some cases of sparsely distributed fixed targets (e.g., [31]). The absence of the predator’s guess
ould imply the predator has purely passive motion (Brownian motion), contrary to evidence observed in foraging.
There is rich literature on mathematical modeling of pursuit-evasion games (see, for instance, [43,51] and references

herein). The stochastic version of such models is usually described by discrete stochastic processes on a two-dimensional
attice. Krapivsky and Redner, for instance, modeled both predators and preys as independent discrete simple RWs [52].
ince both RWs are independent, there is no active pursuit-evasion game. However, a prey is eliminated once it is located
n the same site as a predator. Oshanin et al. introduced a short-range interaction between the prey and the predator [53].
pecifically, once a predator and a prey are located in adjacent sites, the predator jumps to the prey’s site with probability
ne, while the prey tries to avoid the predator with probability of < 1 (lazy prey reaction). In both works, the major
bjective is the detailed analysis of the survival rate. There are a few technical differences between our model and works
uch as [52,53]. First, our model is a continuous-time stochastic process while those studied in [52,53] are discrete-time
odels. Second, the interaction range in our case is infinite, while the interaction range for [52,53] is minimal, i.e., it is

imited to the same or nearest neighboring site. Third, the objective of each study significantly differs. Refs. [52,53] focus
n the survival rate, while our work focuses on the statistical properties of the resulting dynamics. As we will see in the
ext section, the resulting stochastic process has characteristics observed in various experiments. We hypothesize that
uch a phenomenological pursuit-evasion game between a predator and a hypothetical prey could possibly model some
haracteristics of foraging search patterns. We will address in future studies whether the resulting stochastic process is
good candidate for modeling foraging dynamics with direct comparison with existing experimental data.

. Results and discussion

.1. One-dimensional case

.1.1. Persistent random walk with tempered power-law distributed running times
The distribution of running times (or lengths) has perhaps been the single most studied property of stochastic search

atterns. Our proposed model describes a generalized persistent random walk with power-law or tempered power-law
istributed running times. Such power law distribution is consistent with a large number of experimental observations
see, for example [28,54,55]). It is emphasized that relating experimental data to power-law distributions requires very
areful statistical analysis [33,56].
Let us first present the one-dimensional case, where some analytical results are readily derived. Here, the difference

quation reduces to:

dxt = −vsgn (xt) dt +
√
2DdWt , (6)

where sgn (·) is the standard sign function. The analysis of Eq. (6) can be divided into three different cases with varying
values of relative drift: (i) v > 0, (ii) v = 0, and (iii) v < 0. Each of these scenarios is illustrated as follows.

Case v > 0. In this case, where the predator drifts faster than the prey, Eq. (6) simply describes a Brownian motion with
dry friction, first postulated by de Gennes in [57]. For large time, the asymptotic solution of Eq. (6) is a stationary Laplace
distribution:

ps(x) = exp(− |x| /xc)/2xc, (7)

where xc = D/v [57,58]. This implies that as t → ∞ the average distance between the predator and the prey is always
bounded.

Another important characteristic of this case is the probability distribution function (pdf) of the time τ between two
consecutive predator–prey encounters. This is a problem of finding the first return time of xt . In Appendix A, we show
that this pdf is a tempered power law distribution with µ = 3/2 and τc = 4D/v2, i.e.,

f τ ∼ τ−3/2e−τ/(v2/4D). (8)
( )

4
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Fig. 2. Statistics of the 1D case. Distribution of running times (top row) and mean squared displacement (MSD) (bottom row) as a function of time
or three different values of the Hurst exponent: H = 0.5 (first column), H = 0.3 (second column), and H = 0.7 (third column). In subfigures (d), (e),
nd (f) the MSD profile is divided into three regions by two critical times τ1 and τ2 . Specifically, as we move from region I → II → III, we have: (d)
iffusive → superdiffusive → diffusive, (e) sub diffusive → superdiffusive → subdiffusive, and (c) superdiffusive → superdiffusive → superdiffusive.
he fractional noise is normalized to meet the condition:

⟨
W 2

H,t

⟩
= 2Dα t2H , where α = r (predator) or R (prey). In all subfigures, straight lines

orrespond to numerical results, and the parameters are: (DR = 1, vR = 0, Dr = 0.1, vr = 1).

ase v = 0. If the drifts of the predator and prey are equal, Eq. (6) describes a Brownian motion (i.e., xt =
√
2DWt ). This

result has two major consequences. First, the average distance between the predator and prey is no longer bounded and,
second, the distribution of running times is a pure power-law with µ = 3/2:

f (τ ) ∼ τ−3/2. (9)

Thus, the predator performs a persistent random walk with power law distributed running times. Due to the
divergence of the average and variance of Eq. (9), the process has no characteristic time. This exponent, also known
as Sparre-Andersen scaling [59,60], has been discussed before in foraging dynamics [61,62].

Case v < 0. If the prey drifts faster than the predator, Eq. (6) can be rewritten as: dxt = |v|sgn(xt )dt +
√
2DdWt . In

this limit, there is finite probability that xt never returns to zero, and as a consequence the pdf of the running times is
defective and cannot be defined [63]. This means that after a finite number of encounters N ≥ 0, the prey permanently
evades the predator. Once xt reaches the point of no return at time tN , Eq. (6) becomes a pure drifted Brownian motion
(dBM), i.e., xtN+s = xtN ± |v| s +

√
2DWs, where s ≥ 0.

An interesting observation is that if v ≫ 0, Eq. (8) approximates an exponential and as a result the corresponding
ynamics mimics a Brownian motion. Thus, the stochastic pursuit-evasion model exhibits a transition from Brownian-like
otion for v ≫ 0 to Levy-like walk for v = 0 to dBM for v ≪ 0.
The particular exponent µ = 3/2 that emerges for v ≥ 0, is a consequence of the BM in Eq. (6). However, if one

onsiders fractional Brownian motion (fBM) instead, then the range of µ broadens. This scenario can be modeled by
simply replacing the Brownian motion Wt in Eq. (6) with fractional Brownian motion WH

t , where 0 < H < 1 is the Hurst
exponent [64]. The fBM is correlated for H > 1/2, anticorrelated for H < 1/2, while for H = 1/2, we have the standard
Brownian motion. Following the work of Ref. [65], one can show that for large t the distribution of the running times is

f (τ ) ∼ τ−(2−H). (10)

This scaling breaks down when the drift and diffusion spread become comparable. Here, µ = 2−H , which means that
1 < µ < 2. It is noteworthy that random walks with this range of exponents have been extensively discussed in animals
foraging literature [24,61,62,66–68].

In Fig. 2a–c, we show the distribution of a predator chasing a Brownian particle for three different values of the Hurst
exponent. The parameters of the simulations are: DR = 1, Dr = 0.1, vR = 0, and vr = 1. We can clearly see that the
results of our numerical simulations are in good agreement with Eq. (10) up to a critical time τc . An important outcome
of this analysis shows that as v → 0+ the critical time τc → ∞ leading to pure power-law distributions. In practical
situations with finite but long time horizon, such as simulations, experiments or even the real foraging process, the
5
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redicted tempered power-law distributions are practically indistinguishable from the corresponding pure power-law
istributions [69].
The motion of the predator between two encounter times tn and tn+1 is a dBM towards the positive or negative

irection, i.e., ∆rs = ±vr s +
√
2Dr∆W r

s , where ∆rs = rtn+s − rtn , ∆W r
s = W r

tn+s − W r
tn , 0 < s ≤ τn, and τn = tn+1 − tn. In

other words, the predator performs a generalized persistent random walk with three important characteristics. First, the
running times between two directional changes are tempered power-law distributed. Second, during each running time
the predator executes a dBM. Third, the predator’s stochastic path is modulated by the prey’s movement.

This model can be understood better by directly comparing it with OU-based persistent RW very often used in modeling
foraging dynamics. The position of the predator in OU-based models is given by drOUt = vOU (t) dt , where the noise
(velocity) vOU (t) is exponentially correlated [4]. In our case, drt = v (t) dt + σdWH

t , where v (t) = vrsgn (Rt − rt). By
oticing that the return times of the difference Rt − rt follows a tempered power law distribution (see, Eqs. (8) and (9)),
he drift v (t) can be viewed as telegraphic noise with tempered power-law distributed waiting times. Additionally, this
elegraphic noise is modulated by Rt . Thus, the persistency in our model originates from a telegraphic noise, which is an
ntrinsic property of the stochastic pursuit-evasion equations. Notably, this simplified view of our model is valid only in
D. In higher dimensions, the drift term is no longer considered as a telegraphic noise (see Eq. (3)). Similar 1D models of
elegraphic processes embedded in BM have recently been reported [70,71]. Specifically, Malakar et al. used Poissonian
elegraphic noise [70], while Um et al. implemented Poissonian, Gaussian, and power-law telegraphic noise [71]. There
re four main differences between our work and the two previous studies [70,71]. First, our model considers both white
nd fractional noise, while the above cited works use only white noise. Second, the telegraphic noise in our model is
odulated by another stochastic process. Third, the studies in [70,71] have been limited in one-dimension, while our
odel is straightforwardly applicable in all three dimensions. Fourth, Refs. [70,71] have used Poissonian and power law
istributions; in our case power-law distributions are tempered. Interestingly, the limits v ≫ 0 and v → 0+ of our model,
pproximate Poissonian and power-law telegraphic processes, respectively. In summary, our work generalizes [70,71] to
a) consider a modulated tempered-power-law-distributed telegraphic processes coupled with fractional noise, and (b)
onveniently extend it in all three dimensions.

.1.2. Transient superdiffusion
Another characteristic of foraging is the way predators diffuse in space. Consistent with experimental observa-

ions [72–75], the pursuit-evasion model predicts superdiffusive or transient superdiffusive motion. The standard way
o characterize the diffusive behavior of a stochastic processes rt is the mean square displacement (MSD) defined as
[rt − r0]2

⟩
, where r0 is the initial condition and ⟨· · · ⟩ represents the ensemble average. For fBM, MSD grows as a power of

ime, i.e.,
⟨
W 2

H,t

⟩
∼ t2H . Specifically, for (a) H = 1/2 (standard BM), MSD grows linearly in time (diffusion), (b) H < 1/2, the

process spreads slower than a BM (subdiffusion), and (c) H > 1/2, the process spreads faster than a BM (superdiffusion).
Let us first examine the case of H = 1/2 (sampling procedure is described in Appendix B). Fig. 2d shows the MSD of a

predator chasing a Brownian particle with DR > Dr . Here, we can clearly see the existence of three distinct regions: region I
(t < τ1), region II (τ1 < t < τ2) and region III (t > τ2). Regions I and II represent the drift–diffusive motion of the predator
before catching up with the prey. Here, the MSD is a mixture of diffusive and ballistic motion, i.e., MSD = 2Dr t +vr t2. For
very short times (region I: t < τ1) the ballistic part of the MSD is negligible, and the diffusion is well approximated by
MSD = 2Dr t . In the second region, however, the ballistic part of the MSD becomes significant, and the motion turn out to
be superdiffusive. For long enough times (t > τ2), the predator appears to mimic the diffusive trajectory of the prey. In
this limit, the MSD becomes linear again, but with enhanced diffusivity DR > Dr , i.e., MSD = 2DRt . In short, as we move
from region I → II → III, we have diffusive → superdiffusive → diffusive behavior. This type of transient anomalous
diffusion has been observed experimentally [73–75].

Transient superdiffusion is also evident for H ̸= 1/2. Fig. 2e shows that for H < 1/2 there is a subdiffusive →

superdiffusive → subdiffusive transition. It is interesting to point out that although regions I and III are subdiffusive,
region II is superdiffusive. To the best of our knowledge, such behavior has not been observed experimentally. On the
other hand, for H > 1/2 (see Fig. 2f), we observe a superdiffusive → superdiffusive → superdiffusive behavior. Note
that region II is slightly more superdiffusive than regions I and III. Such anomalous dynamics has been reported in cell
migration [72].

Depending on the values of the system parameters, our model can describe other types of transient superdiffusion
as well. For instance, for Dr = 0 and for H = 1/2, the system undergoes a ballistic → diffusive transition. For v ≤ 0
and H = 1/2, as a different example, the predator transitions from an initial diffusive behavior to asymptotic ballistic
motion [11,71]. As shown in Section 3.2, all these different types of transient anomalous behavior are also observed in
2D and 3D.

Transient superdiffusion has successfully been modeled using a variety of different stochastic processes [4].
Refs. [70,71] have used a Langevin-type of equation coupled to telegraphic noise, [76–79] are based on 2D anisotropic
OU models, [80,81] have implemented 2D continuous time RWs, while [72] solves the fractional Klein–Kramers equation.
The majority of these works have reported only the diffusive → superdiffusive → diffusive anomalous behavior and
only [72] has shown theoretically the existence of superdiffusive → superdiffusive → superdiffusive transition. The
authors of [4,80,81] have also reported a ballistic → superdiffusive → diffusive transition. Refs. [70–72,80,81] have been
studied in 1D and 2D, respectively, while [76–79] are applicable only in 2D. A practical difference between our work and
6
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Fig. 3. Directional persistence in 1D. (a), (b), and (c) show three different representative 1D stochastic paths for v = 2, v = 0, and v = −2,
espectively (Dr = 0, DR = 1). (d) displays log–log plots of the autocorrelation function of the orientation vector versus time. Squares correspond
o numerical results for v = 4 and circles for v = 3. Solid lines represent the analytical result (see Eq. (11)). (e) shows C(t) for v = 3 and the
orresponding fits of Eqs. (12) (dashed lines) and (13) (dashed–dotted lines). In all subfigures Dr = 0.1 and DR = 1.

he aforementioned models is that the stochastic pursuit-evasion equations can reproduce most of these different types
f anomalous diffusion in all three dimensions without additional adjustments and modifications.
Although our model captures qualitatively the diffusive behavior observed in a variety of experiments, statistical anal-

sis of other observables, such as persistence and position distributions, is needed to link the stochastic pursuit-evasion
urves to the anomalous dynamics of some predators.

.1.3. Directional persistence
A third interesting experimental observation is that the random reorientations of predators are correlated [15,72,82–

6]. Here, we show that our approach predicts strongly correlated stochastic paths, with correlation times that diverge
ear v ≈ 0. Below, we analyze the directional persistence of our model in 1D and for H = 1/2. Similar behavior is
bserved in 2D and 3D systems (see next subsection).
A first qualitative understanding of the directional persistence is obtained by simply observing representative stochastic

aths for different values of the drift v. Fig. 3a–c show that the paths appear to be random for positive drift (Fig. 3a),
ntermediately persistent for v = 0 (Fig. 3b), and increasingly very persistent for negative drift (Fig. 3c). Thus, we observe
hat our model exhibits a transition from low persistency to high persistency as the drift crosses zero from positive values.

A more rigorous way of studying the persistency of a stochastic process is through autocorrelation functions. In
ost experimental and theoretical works, the persistence of foraging paths is usually detected through the velocity
utocorrelation function. In our model, since the Wiener process is nowhere differentiable [87], the instantaneous velocity
f the predator cannot be defined (see Eq. (3). A very recent theoretical analysis argues that similar issues may exist even in
xperimental measurements [88]. To avoid this mathematical limitation, we studied the persistency in our model through
he autocorrelation of the orientational vector n̂t , C(t) =

⟨
n̂0 · n̂t

⟩
.

In 1D and for v > 0, the orientational vector has a known stationary solution [57,58]. In Appendix C, we show that
he autocorrelation function of n̂t = sgn(xt ) is given by

C (t) =

(
2
t
τc

+ 1
)
erfc

(√
t
τc

)
−

√
4
π

t
τc

exp
(

−
t
τc

)
, (11)

here erfc (·) is the complementary error function and τc = 4D/v2 is defined as the correlation time. Consequently, the
correlation time diverges as v → 0.

Fig. 3d shows the time evolution of C(τ ) for two different values of the drift. We can clearly see that the autocorrelation
function relaxes faster with increasing v. We also observe an excellent match of the numerical prediction with Eq. (11).
Furthermore, we observe that, for short times, C(τ ) is characterized by a slow relaxation, which eventually become pure
exponential. Interestingly, the slow relaxation of C(τ ) can be well fitted by a stretched exponential. Thus, Eq. (11) can be
approximated by

C t ≈ e−(t/tc )b , for t < t (12)
( ) ∗
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Fig. 4. Three representative stochastic paths in 2D (top row) and 3D (bottom row) for v = 2 (first column), v = 0 (second column), and v = −2
third column). In all subfigures Dr = 0.1, DR = 1, and H = 1/2.

nd

C (t) ≈ e−t/Tc , for t > t∗ (13)

here t∗ is the switch time between stretched and pure exponential, tc and Tc denote the corresponding correlation times,
nd 0 < b ≤ 1 is the stretching exponent. In Fig. 3e, we see that t∗ ≈ 1 and the stretched exponential is an adequate
pproximation for up to two orders of magnitude drop of the autocorrelation function.

.2. Two- and three-dimensional cases

In this section, we briefly present numerical results of the 2D and 3D stochastic pursuit-evasion model for H = 1/2.
In Fig. 4a–c and d–f representative trajectories of the 2D and 3D model, respectively, for different values of the relative

rift v are shown. Similar to 1D case, the stochastic paths are very random for v ≫ 0, intermediately persistent for v ≈ 0,
nd highly persistent for v ≪ 0.
Fig. 5 shows the main statistical properties of the 2D and 3D stochastic pursuit-evasion curves. Specifically, in Fig. 5a,

e show that the running times follow a tempered power-law distribution with exponent µ = 3/2. Similar to the 1D
ase if one considers fractional noise, i.e., H ̸= 1/2 then 1 < m < 2. The transient superdiffusive behavior of the predator
s presented in Fig. 5b. As we can clearly see, the diffusive → superdiffusive → diffusive transition is maintained in both
D and 3D curves. In general, by adjusting the parameters of the system accordingly, all the different types of transient
nomalous dynamics discussed in Section 3.1.2 are preserved in 2D and 3D. Figs. 5c and 5d exhibit the orientational
utocorrelation function in 2D and 3D, respectively. The dashed and dashed–dotted lines represent the best fit of a
tretched exponential (Eq. (12)) and a pure exponential (Eq. (13)). We see that Eq. (12) fits very well the numerical
imulation for up to one to two orders of magnitude drop of the C(τ ). Similar to 1D the autocorrelation function relaxes
lower with decreasing v and ultimately diverges for v → 0+.
Overall, this section demonstrates that the major characteristics of the 1D pursuit-evasion model are maintained in

D and 3D without additional modifications.

. Summary

A central assumption of this work was that foraging dynamics emerge from the strong coupling between predators
nd prey. Predators move randomly to locate prey who simultaneously move randomly to avoid predators. To develop
uch a stochastic process, we built upon the traditional pursuit model. Specifically, we assumed that predators drift
tochastically towards prey and prey respond by drifting away from predators. This coupled process can be modeled
y what we call stochastic pursuit-evasion curves described by Eqs. (3) and (4). If the position of the prey is known, this
odel can approximate features of chemotaxis. In the absence of any external stimuli, predators assume the existence of
rey and actively continue their foraging pattern.
From the purely mathematical point of view, the stochastic pursuit-evasion curves are described by a persistent random

alk with three key properties: (a) the predator executes drifted Brownian motion between two consecutive directional

hanges, (b) the corresponding running times are drawn from tempered power-law distributions, and (c) the predator’s

8
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Fig. 5. Model statistics in 2D and 3D. Top row shows the log–log plot of the 2D and 3D (a) distribution of running times and (b) MSD as a function
of time. The curves for the 3D cases have been shifted upwards for clarity. In both subfigures v = 1. Bottom row displays the log–log plots of the
utocorrelation function of the orientation vector versus time in (c) 2D and (d) 3D. Squares correspond to numerical results for v = 4 and circles for

v = 3. Dashed line and dashed–dotted line in (e) represent fits of Eqs. (12) and (13), respectively. In all subfigures: Dr = 0.1, DR = 1, and H = 1/2.

ynamics are instantly modulated by the prey’s position. Such a stochastic process has several interesting properties.
irst, there is a transition from dBM for v ≪ 0 to LW-like patterns for v = 0 and BM-like behavior for v ≫ 0. Second,
redators exhibit rich anomalous or transient anomalous dynamics. Third, the directional vector of predators shows a
trong correlation with correlation times that diverge as v → 0. Such properties have been observed and discussed in a
ariety of experimental and theoretical works.
Although we have demonstrated a qualitative agreement with some experimental measurements, more systematic

ork is required to link our model with specific foraging patterns. Such analysis certainly requires a direct comparison
f the stochastic pursuit-evasion curves with experimental data. This question will be thoroughly investigated in a
uture work. Furthermore, in future studies, we plan to explore cases of (a) different types of noise (e.g., colored noise),
b) alternative prey dynamics, such as LWs, intermittent RWs, or other continuous-time RWs, and (c) more complex
ursuit-evasion strategies [51,89].
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ppendix A. Distribution of predator–prey encounter times

Here, we show the validity of Eqs. (8) and (9). Let the initial condition for the difference be x0 = a0, and, without loss
f generality, assume that a > 0. The difference x is positive until the first predator–prey encounter, and consequently
0 t

9
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x
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1

a

t

s

A

a
a
t
s
e
s
a
v

A

t executes a simple dBM i.e., xt = −vt +
√
2DWt . Let t1 be the time immediately after the first encounter and denote

xt1 = a1 < 0. The same process is repeated with a new initial condition a1 till xt changes sign again. Finding the probability
istribution function of τj = tj+1−tj, where j = 1, 2, . . ., is equivalent to the first passage time problem of a drift–diffusion

process over a level aj. The solution to this problem for any a > 0, presented by Smoluchowski and Schrödinger in
915 [90,91], is given by the inverse Gaussian or Wald distribution:

f (τ ; a) =
a

2
√

πD
τ−3/2 exp

[
−

(a − vτ )2

4Dτ

]
. (A.1)

An important remark is that a can be as small as possible, but not zero. If a = 0, xt may cross the origin infinite times
nd as a result the probability distribution cannot be defined [65]. Eq. (A.1) can be rewritten as:

f (τ ) =
a

√
4πD

exp
( av
2D

)
exp

(
−

a2

4Dτ

)
τ−3/2 exp

(
−

τ

4D/v2

)
. (A.2)

The first two factors in the above equation are constants for given a, while the third factor is only significant for short
times of the order or smaller than α2/4D. Note that |a| ≤ |dxt |, and thus, a is in general very small. For intermediate
imes only the fourth and fifth factor contribute to the distribution, i.e.,

f (τ ) ∼ τ−3/2 exp
(

−
τ

4D/v2

)
. (A.3)

This is simply Eq. (8); a tempered power law distribution with µ = 3/2 and τc = 4D/v2 (see Eq. (1)). Note that the
caling does not depend on a.
If v = 0, then Eq. (A.1) converges to the Lévy (or Lévy–Smirnov) distribution:

f (τ ; α) =
a

2
√

πD
τ−3/2 exp

[
−

a2

4Dτ

]
. (A.4)

This equation reduces to Eq. (9) for τ ≫ a2/4D.

ppendix B. Sampling

We have tested that for v > 0, the difference xt always reaches a stationary solution. To ensure that statistical averages
re sampled from this state, we implement the following equilibration procedure. The initial conditions of the predator
nd prey are always r0 = 0 and R0 ∼ ps (R0), respectively (see Eq. (7)). The initial condition for x0 = R0 − r0 is very close
o the stationary solution. We then integrate Eqs. (3) and (4) up to a time teq to ensure that the system has reached its
tationary state. Statistical sampling always starts after teq. We have tested numerically that this equilibration procedure
nsures that ensemble and time averages match. It may be noted that for H = 1/2 and d = 1, Eq. (7) is already the exact
tationary distribution and extra equilibration is not required. For v ≤ 0, the system does not have a stationary solution,
nd thus, this equilibration procedure is not applicable. Here, we have to mention that the pursuit-evasion game is still
alid even if the system starts far away from equilibrium.

ppendix C. Orientational autocorrelation function

The propagator for the one-dimensional Brownian motion with dry friction is given by:

p
(
x̃, t̃|x̃′, 0

)
=

e−t̃/4

2
√

π t̃
e−(|x̃|−|x̃′|)/2e−(x̃−x̃′)

2
/(4t̃)

+
e−|x̃|

4

[
1 + erf

(
t̃ − (

⏐⏐x̃⏐⏐− |x̃′
|)

2
√

t̃

)]
,

where t̃ = (v2/D)t and x̃ = (v/D)x [58]. Thus, the autocorrelation function of the orientational vector nt = sgn (xt) is:⟨
n̂0n̂t

⟩
=

∫
∞

−∞

∫
∞

−∞

sgn
(
x̃
)
sgn

(
x̃′
)
p
(
x̃, t|x̃′, 0

)
ps
(
x̃′
)
dx̃′dx̃,

where ps(x) is the stationary distribution given by Eq. (7). Straightforward integration gives Eq. (11).
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