1434

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 19, NO. 3, MAY/JUNE 2022

Generating Realistic Fake Equations in Order
to Reduce Intellectual Property Theft

Yanhai Xiong
Sushil Jajodia

, Giridhar Kaushik Ramachandran
, Fellow, IEEE, and V. S. Subrahmanian

, Rajesh Ganesan",

Abstract—According to Symantec, the average gap from the time a company is compromised by a zero-day attack to the time the
vulnerability is discovered is 312 days. This leaves an adversary with a lot of time to exfiltrate corporate IP. Recent work has suggested
automatically generating multiple fake versions of a document to impose costs on the attacker who needs to correctly identify the
original document from a set of mostly fake documents. But in the real world, documents contain many diverse components. In this
article, we focus on technical documents that often contain equations. We present FEE (Fake Equation Engine), a framework to
generate fake equations in such documents. FEE tries to preserve multiple aspects of a given equation when generating a fake.
Moreover, FEE is very general and applies to diverse equational forms including polynomial equations, differential equations,
transcendental equations, and more. FEE iteratively solves a complex, changing optimization problem inside it. We also present
FEE-FAST, a fast approximate algorithm to solve the optimization problem within FEE. Using a panel of human subjects, we show that

FEE achieves a high rate in deceiving sophisticated subjects.

Index Terms—Cybersecurity, intellectual property theft, deception

1 INTRODUCTION

CCORDING to research from Symantec [4], on average,

there is a gap of 312 days from the time a company is
compromised by a zero-day attack to the time the vulnera-
bility is disclosed. During this time, the attacker can easily
steal a huge amount of intellectual property.

As a compromised enterprise doesn’t even know they
have been compromised, there is a need for techniques that
automatically penalize the attacker by: delaying him, increas-
ing his level of frustration, adding financial costs, and
increasing his uncertainty. Recent work [5], [6], [13], [17], [21]
has suggested that for any given original document d, we
generate N fake versions of d such that it is hard for the
attacker to separate the original document from the fakes.
The fakes should be “similar enough” to the original to make
them credible to experts in the field, yet “dissimilar enough”
to make them likely to be wrong. The attacker will need to
spend time to identify the real one — and even after making a
decision, will be unsure about whether he was right or
wrong. Simply put, generating fake documents deters attack-
ers by imposing delays, financial costs, frustration, and
uncertainty on the attackers.

Past work in this relatively new area focuses on the textual
part ([5], [13], [21]) or tabular data ([6], [17]) in a document.
However, technical documents have many components:

o Yanhai Xiong and V. S. Subrahmanian are with the Dartmouth College, Han-
over, NH 03755 USA. E-mail: yanhaixiong7@gmail .com, vs@dartmouth.edu.
o Giridhar Kaushik Ramachandran, Rajesh Ganesan, and Sushil Jajodia are
with the George Mason University, Fairfax, VA 22030 USA.
E-mail: {gramacha, rganesan, jajodiaj@gmu.edu.

Manuscript received 5 May 2020; revised 24 Sept. 2020; accepted 4 Nov. 2020.
Date of publication 13 Nov. 2020; date of current version 13 May 2022.
(Corresponding author: Sushil Jajodia.)

Digital Object Identifier no. 10.1109/TDSC.2020.3038132

diagrams, images, equations, tables, and more. Equations are
at the very heart of technical documents because a small
change in an equation can completely alter its meaning and/
or render it incorrectly. And finding errors in complex equa-
tions is not always an easy task, especially if the errors are
subtle.

In this paper, we focus on taking an equation that might
occur in a technical document and generating k fake versions
of it so that the resulting fake equations are “similar enough”
to the original equation to be credible, but sufficiently
“dissimilar” to likely be wrong. However, equations are not
just pieces of syntax. An equation has a semantic meaning.
The equation y = 2x + 4 has a physical meaning — it denotes
aline in a 2-dimensional space with a slope of 2 and a y-inter-
cept of 4. When we talk about one equation being “similar”
or “dissimilar” to another, this semantic meaning should be
taken into account. So should the form of the equation (e.g.,
linear equation versus differential equation), universal
truths (e.g., weight must exceed 0), and consistency with
other equations within the same document. Moreover, the
space of possible equations is enormous.

All of these factors make the generation of fake equations
a very challenging task. In this paper, we propose a novel
system called Fake Equation Engine (FEE) with the follow-
ing characteristics:

1) FEE takes as input, a grammar which can capture
many different types of equations. FEE then modi-
fies equations by applying some edit operators, each
with a given cost.

2) However, FEE must generate fake equations that
satisfy various desired constraints — which at the
same time conflict with each other. We therefore
write FEE down as an iterative algorithm which
invokes a very non-traditional optimization problem

1545-5971 © 2020 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: George Mason University. Downloaded on May 19,2022 at 16:31:56 UTC from |IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-0542-0181
https://orcid.org/0000-0002-0542-0181
https://orcid.org/0000-0002-0542-0181
https://orcid.org/0000-0002-0542-0181
https://orcid.org/0000-0002-0542-0181
https://orcid.org/ 0000-0002-9800-6149
https://orcid.org/ 0000-0002-9800-6149
https://orcid.org/ 0000-0002-9800-6149
https://orcid.org/ 0000-0002-9800-6149
https://orcid.org/ 0000-0002-9800-6149
https://orcid.org/0000-0003-1875-548X
https://orcid.org/0000-0003-1875-548X
https://orcid.org/0000-0003-1875-548X
https://orcid.org/0000-0003-1875-548X
https://orcid.org/0000-0003-1875-548X
https://orcid.org/0000-0003-3210-558X
https://orcid.org/0000-0003-3210-558X
https://orcid.org/0000-0003-3210-558X
https://orcid.org/0000-0003-3210-558X
https://orcid.org/0000-0003-3210-558X
https://orcid.org/0000-0001-7191-0296
https://orcid.org/0000-0001-7191-0296
https://orcid.org/0000-0001-7191-0296
https://orcid.org/0000-0001-7191-0296
https://orcid.org/0000-0001-7191-0296
mailto:yanhaixiong7@gmail.com
mailto:vs@dartmouth.edu
mailto:gramacha@gmu.edu
mailto:rganesan@gmu.edu
mailto:jajodia@gmu.edu

XIONG ET AL.: GENERATING REALISTIC FAKE EQUATIONS IN ORDER TO REDUCE INTELLECTUAL PROPERTY THEFT

called FEE[OPT] within it. This optimization problem
cannot be solved by a standard optimization problem.
Moreover, FEE[OPT] changes from one iteration of
FEE to the next and is very challenging to solve.

3) We therefore develop a separate algorithm called
FEE-FAST that approximately solves this optimiza-
tion problem.

In all, FEE generates a desired set of k fake equations for
any given real equation. We tested FEE out on a panel of 50
subjects on Amazon Mechanical Turk, each of who is in the
US and has a Master’s degree or higher. The subjects were
given 20 tasks, each of which involved identifying the cor-
rect equation from a set of 11 equations (10 fake, one real).
We defined the notion of deception factor and show that FEE
achieves a high deception factor: most subjects were effec-
tively deceived by FEE even though a number of conditions
favored the subjects’ in their quest to find the right equation.

The remainder of this paper is organized as follows.
Section 2 presents a quick overview of related work.
Section 3 presents the architecture of the overall FEE frame-
work. After this, Section 4 presents the form in which equa-
tions are considered by FEE through context free grammars
and show that this syntax is enough to represent polyno-
mial, differential, and transcendental equations. Section 5
shows the main contributions of the paper including the
overall FEE algorithm, the FEE[OPT] optimization prob-
lem, and the FEE-FAST algorithm to solve FEE[OPT]. We
then present our experimental results in Section 6 after
which we present conclusions and future work.

2 RELATED WORK

The use of deception in warfare goes back many centuries
[9], [15]. In the context of cybersecurity, deception has pri-
marily been used by the attacker — for instance, phishing
attacks try to deceive a victim into downloading malware or
otherwise being compromised.

The use of cyber-deception [12] for defensive purposes is
newer. Issues such as piracy on the Internet (e.g., of videos)
[23], audio (e.g., music recordings) [14] and software code
[18] have led to the creation of a host of watermarking and
steganography techniques so that legitimate owners of
music or videos can show clear evidence of piracy. [19] pro-
vides an excellent survey of methods to identify data leak-
age from organizations using such methods.

One class of methods to protect technical documents
involve the creation of a “decoy” document [20], [22], [24].
[20] proposes Canary files. If the content of a canary file is
accessed or copied or deleted, then the system administrator
is immediately notified about the access. [22] mentions two
methods to generate honeyfiles with different levels of per-
mitted interaction. [24] uses honeyfiles to send alarms when
intrusions are detected. Such research on honeyfiles focus
on generating alarms when fake documents are touched.

In general, generating decoy technical documents involve
handling the fact that technical documents contain diverse
many constituent parts such as text, tables, graphs, equations
and flow-charts etc. [5] develops the Fake Online Repository
Generation Engine (FORGE) system in which fake versions of
the textual part of a document are automatically generated
using a mix of three methods: natural language processing,

1435

multi-layered graph “meta-centrality” measures, and optimi-
zation. [21] use word transposition and substitution based on
parts of speech tagging and pre-collected n-grams to generate
fake text. [13] focuses on increasing comprehension burden
for attackers through shuffling, deletion and addition of con-
cepts. [6], [17] provide methods for synthesizing fake tables
for large data using Generative Adversarial networks.

However, to date, there has been no work that we are
aware of that specifically tries to generate fake equations
that may occur within a technical document. An equation is
a model of some underlying phenomenon: for instance, the
famous e = mc? is really a model that captures the relation-
ship between energy (e), mass (m) and the speed of light (c).
Equations are typically derived in one of two ways. The
equations could be derived from a body of data which
already exists (e.g., regression equations [3]). Alternatively,
the equations may constitute a theoretical model — and
experiments to gather data to validate the theoretical
method may be subsequently generated. This happens fre-
quently in physics. In this paper, we develop methods to
deceive attackers when they have access to the actual docu-
ment containing an equation but the paper itself doesn’t
contain the extensive data needed to support the equations
in the document (if in fact that data even exists). To the best
of our knowledge, there is no work on generating fake equa-
tions under these conditions which are the widespread as
far as technical documents are concerned.

There are also efforts that focus on generating synthetic
structured datasets such as relational databases [6] and spe-
cialized data sets such as network traces [16]. Those are
important efforts that are orthogonal to ours.

Unlike the above efforts, we focus on manipulating equa-
tions within the technical document. The FEE framework we
propose is based on context-free grammars [11] and can auto-
matically generate fake equations that are “similar enough”
to the original equation to be realistic, yet “dissimilar
enough” to the original equation to likely be wrong.

3 FEE ARCHITECTURE

Fig. 1 shows the architecture of the FEE framework. The
system takes as input, an original document with a real
equation. The goal is to generate a number of fake docu-
ments, each with a fake version of this equation.

FEE contains a suite of context free grammars (CFGs) that
each try to parse the equation. Currently, we have developed
CFGs for polynomial, differential, and transcendental equa-
tions. Each of the CFGs tries to parse the equation e — as
long as one of the CFGs accepts the equation, we can gener-
ate fake versions of it." The creation of such CFGs is easy and
many example CFGs for different equational forms already
exist [1]. A rich body of work exists on recognizing mathe-
matical expressions from handwritten documents [10] as
well as from printed documents [2]. We therefore do not
delve deeply into this part of FEE in this paper.

Once an equation is parsed into its constituent parts by one
of the parsers in FEE, the FEE algorithm uses a set of edit

1. If no CFG in the suite accepts an equation, then this means that
the equation is of a form different from those that we have considered
in the library. In such cases a new CFG must be created.

Authorized licensed use limited to: George Mason University. Downloaded on May 19,2022 at 16:31:56 UTC from IEEE Xplore. Restrictions apply.

1436

Form context-free grammar library
Get constraints
Define cost function Get edit operators

o

Run FEE-FAST

Enough fake equations?

Generate fake documents with fake equations

Fig. 1. FEE architecture.

operators and a cost function to pose an optimization problem
that we call FEE[OPT]. This is a highly non-traditional optimi-
zation problem which we solve using the FEE-FAST algo-
rithm. The main FEE algorithm involves FEE-FAST
iteratively — but in each iteration, a modified version of the
optimization problem is created and solved. The algorithm
finally outputs a set of k fake equations. The novel contribu-
tions of this paper include the overall FEE architecture as well
as the FEE algorithm consisting of both FEE[OPT] and
FEE-FAST, together with the experiments documenting their
efficacy.

4 REPRESENTING AND MANIPULATING EQUATIONS
VIA CFGs

Though all readers are familiar with the intuitive concept of
an equation, we need to formally define the types of equa-
tions manipulated by the FEE framework. We use context-
free grammars or CFGs [11] in order to express equations.
We recall that a CFG G = (Vi;, T¢;, Ra, Si) consists of 4 parts
where V(; is a set whose elements are called variable sym-
bols, T¢; is a set disjoint from V; whose elements are called
terminal symbols, R is a finite set of “production rules”
(defined below) and Sg € Vi; is a distinguished variable
called the “start” variable for the grammar G.

A production rule is an expression of the form X — Y
where X € V; is a variable and Y is a string (possibly
empty) constructed from the set (Vi UTg) .2

Throughout this paper, we assume that any given equa-
tion is accepted by a grammar G in FEE’s repository of gram-
mars. We use G to denote the set of all strings accepted by
grammar G.

Throughout this paper, we will use three grammars
G1, G2, G3 as running examples in order to illustrate the defi-
nitions, concepts, and algorithms in the paper.

Example 1 (Polynomial Equation Grammar G,). Suppose
Ve is a set of variables, T includes the set consisting of

2. Given a set of production rules, it is common to denote the set of
all strings including the empty string generated by a set 3 of symbols
by 3.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 19, NO. 3, MAY/JUNE 2022

some finite decimal numbers in set R as well as the set
X =A{zy,...,2,} for some n, and some fixed set O =
0' U©? of operations, where O' = {()} is a set of unary
operations and Q% = {+, —, x, =} is a set of binary opera-
tions. In this case, our CFG might contain the following
production rules:

SGHVZV
V—-tvte RUX
V-V4+V
V-V-V
V-VxV
V-V V

vV — (V).

This grammar accepts all polynomial equations contain-
ing the sole operators +, —, X, +, (). The set of equations
accepted by this grammar therefore includes: z; =
3Xry—4Xw3+5xxyxxy and =2+ (22 +5) etc.
Of course, this grammar can be easily modified to
include other types of operators (e.g., exponentiation).

We also define terms that occur in any string accepted by
the grammar G as follows.

Definition 1 (Term). A term § in a string s is a sub-string of s
(we use T to denote the subterm relationship, i.e., 5 C s) with
length greater than 1 such that: (i) § is accepted by the grammar
and (ii) § contains at least one element from X. Therefore, when
§C s, len(8) > land 3 € G, we have

if 3t € X such that t T §, then § is a term;

if § is a term, then VO € o', any O(8) C s is a term;
if 5is a term and V is a variable (as defined in produc-
tion rules of Example 1), then YO € Q% any
O(5,V) C s is a term and the same for O(V, §) C s.

Thus, for the sample equation x; =3 x 23 — 4 X 23 + 5 x
x4 % x4 which is accepted by the grammar G;, both 3 x 3 and
3 X 19 — 4 x x3 are terms, but 3 x x5 — 4x is not a valid term.

Example 2 (Differential Equation Grammar G,). Sup-
pose V¢ is a set of variables and T; is the union of the sets
R,X,0, where R is a set of finite decimal numbers, X =
{x1,...,2,} for some n and O = Q' UQ?* = {+, —, x, =,
9/9,()} is some fixed set of operations. In this case, the
CFG includes following production rules:

Sa—-V=V

V—-tvte RUX

V —aV/oV

V-V+4+V

V-oV-V

V-VxV

V-oV=V

V— (V).
This grammar accepts all polynomial differential equa-
tions that involving the simple operators +, —, x, <+, ().

The set of equations accepted by this grammar includes
8(y1 + ><;1:1)/8;z:1 :3X.’E2 and 8]./1/8(:131 XI1+2) =

Authorized licensed use limited to: George Mason University. Downloaded on May 19,2022 at 16:31:56 UTC from IEEE Xplore. Restrictions apply.

XIONG ET AL.: GENERATING REALISTIC FAKE EQUATIONS IN ORDER TO REDUCE INTELLECTUAL PROPERTY THEFT

9(dy2/0x1) /09 + 3 X 1 — y; etc. In the case of the sample
equation d(y; + 1 X x1)/0z1 =3 X x2, Y1+ X1 X 29,
d(y1 + x1 X 21)/0z1 and 3 X x5 are all valid terms.

Example 3 (Transcendental Equation Grammar Gs).
Suppose V;; is a set of variables, Tf; is the union set of
finite decimal numbers R, X = {x,...,x,} for some n, a
set of unary and binary transcendental functions F =
{sin, cos,exp,log,,log,,”} and some fixed set of opera-
tions O = O' UQ? = {+, —, x, =, ()}. In this case, the CFG
includes the following production rules:

Sg— V=V
V-otvteRUX
V — fVVf € F!
V — VVVf € F?
V-V+V
V-V-V
V-oVxV
VoV+V
V— (V).

Note that F = F! UF?, F! is the set of unary transcenden-
tal functions (sin, cos,exp etc.), while F? is for binary
transcendental functions (e.g., {"}). This grammar
accepts all transcendental equations that involve tran-
scendental functions in the set F. The set of equations
accepted by this grammar includes sinz; =exp(2+
23" (29 — 1)) and z1 =log, (zg x 3+ 1) +2 — 23+ 1 etc.
For the sample equation sinz; = exp(2+ z3 (z2 — 1)),
some instances of terms are x3" (o — 1) and sin z;.

It is important to note that FEE currently contains only
these three grammars. However, grammars for other types
of equational forms can easily be added in a production ver-
sion of such a system. We now introduce edit operations
that modify equations.

Definition 2 (Edit Operator). An edit operator p is a map-
ping from G to G such that forall s € G, p(s) € G is identi-
cal to s in all places except one, i.e. if s=wuy...u, and
p(s) =v1...vy, then it is the case that for all but one 1 <1 <
m,u; = v;.

We assume that the FEE framework is given an arbitrary
but fixed set of edit operators. In our examples, we will
assume a single family of edit operators — but we empha-
size that this is just one example of the types of edit opera-
tors used in FEE. In our definitions, we assume that Ty is
enumerated as ¢, . . ., t; in some arbitrary but fixed order.

Definition 3 (Edit Operator p). The edit operator p; ;, (s)
replaces the j'th occurrences of t; in s by t,.

Though this may seem to be just one edit operator, it is an
exceedingly powerful one as it is parametrized by 3 parame-
ters i, j, 7.

Example 4. Let us return to Example 1 and let s be the
equation: x; =3 X o —4 X 3 +5 X T4 X 24.

The result of applying the edit operator p;; 5(s) is the
equation z; =8 X w3 —4 X 3 + 5 X x4 X T4.

1437

The result of applying the edit operator p, 5 (s) is
1 =3XxTy—4+23+5 X T4 X X4

We now illustrate the application of edit operators to dif-
ferential equations.

Example 5. Let us return to Example 2 and let s be the
equation d(y; + 1 X x1)/0z1 = 3 X .
The result of applying the edit operator
Pajaay)1,0/0(z5+2) () 18 the equation d(y; +x1 X x1)/d(w3+
2) =3 x 9.
The result of applying the edit operator p, 5 . (s) is the
equation d(y, + 1 X x1)/dz1 = 3 + xs. B

The above example only shows two possible edit opera-
tors for a simple differential equation. Of course, many
others are possible and FEE can work with any set of edit
operators that users may design. However, when designing
edit operators, one factor should be kept in mind: the 9/
operator needs to specify the variable whose derivative is
being taken. We now show the edit operators applied to tran-
scendental equations.

Example 6. Let us return to Example 3 and let s be the
equation sinz; = exp(2 + x3"(z2 — 1)).
The result of the edit operator p- . (s) is the equation
sinxy = exp(2 + 3 + (22 — 1)). '
The result of edit operator pe, 114, (s) is the equation
sinzy =log (2 4+ 3" (22 — 1)).

The above example only denotes two possible edit opera-
tors for a simple transcendental equation. While users can
design their own edit operators, one thing to note is that: if
t; is an operator, then ¢, should also be an operator taking
the same number of variables — otherwise a unary operator
may be replaced with a binary operator or vice-versa, result-
ing in equations that are not accepted by the CFG.

Definition 4 (Edit Sequence). An edit sequence is a finite
sequence of edit operations. The result of applying the
edit sequence ey,...,e, to an equation s is given by

em(em_1(...e1(s)...)).

Suppose ey, = p,_n . The above edit sequence is said to be
bty

singular iff for all 1 < u,v < m such that u # v, it is the case
that (£ # £ v/ * #).

Informally speaking, a singular edit sequence never con-
tains two edits of the same terminal symbol. There is no loss
of generality in restricting interest to singular edit sequences
because if two edits e,, e, are such that (¢! =/ A j* = j"),
then the later of the two edits will generate the final result
which means that the first of the two edits in the sequence
can be deleted from the edit sequence without changing the
final result of applying the edit sequence.

Definition 5 (Cost Function). A cost function cost is a map-
ping from edit operations to the set R of positive real numbers.
Cost functions can be applied to edit sequences in the obvi-

ous way by setting cost(ey, ..., ey,) = 2. cost(e;).

The cost of an operation is intended to capture the visual
difference between equations before and after the manipu-
lation operation is applied. We would like an equation with
the operation applied to be as similar as possible to what it
was like before — otherwise, attackers might easily discover

Authorized licensed use limited to: George Mason University. Downloaded on May 19,2022 at 16:31:56 UTC from IEEE Xplore. Restrictions apply.

1438

that the equation (and hence the document it is in) is fake.
Our FEE system seeks to minimize these costs, subject to
generating fake equations sufficiently semantically different
from the original.

Ovwerall Goal (Informal). The overall goal of the FEE frame-
work is the following: given an input equation £, an integer
k>1, a budget B > 0, and some “semantic constraints”,
find a set of k edit sequences es,...,es; such that
3¥ cost(es;)(E) < B (i.e., the budget constraint is satisfied)
and such that a given objective function is optimized.

However, we have thus far not defined two important
terms used in the above statement of the goal. First, every
equation has some semantics — for instance, the equation y =
2 x z + 3 has a semantics, namely it describes the straight line
of slope 2 passing through the point (0,3). We cannot replace
this equation with a “fake” equation that is syntactically
within the stated cost bounds if the fake equation has a seman-
tics that is dramatically different because an adversary would
be able to easily detect the fact that the fake equation is a fake.
However, a fake equation that uses the straight line y =
1.9 x z+3.3, on the other hand, might be close enough
semantically to the equation y =2 x « + 3. In addition, we
want our system of fake equations to be optimal in some sense.
This sense could include deviating sufficiently from the origi-
nal equation to be incorrect (so the adversary is faked out), but
at the same time being sufficiently similar to the original equa-
tion to not obviously be a fake. Thus, the “quality” of a poten-
tial set of fake equations needs to be evaluated in some way
via an objective function. These two points will be addressed
in the next section which will formally define the problem of
finding k fake equations as an optimization problem.

Example 7. Let us return to Example 4 with s being z; =
3 x 29 —4 X w3+ 5 X x4 X xq. Without loss of generality,
we assume that the cost of each edit operator is 1.

Then the cost of the edit sequence es = (p3;5(s),
Px 2+ (8)) is cost(es) = 2 and the resulting fake equation
ises(s) =x1 =8 X a9 —4+ 23+ 5 X 24 X 4.

Example 8. Let us return to Example 5 with s being d(y; +
x1 X x1)/0z1 = 3 X x3. Assume that the cost of editing dif-
ferential function is 2, otherwise 1.

Then the cost of the edit sequence
(Pajaer) 1.9/a(25+2)(8)s P2+ (8)) is 3 and the equation after
edition is d(y; + x1 X x1)/3(x3 +2) = 3 + xs.

es =

Example 9. Let us return to Example 6 with s being sinz; =
exp(2 + x3"(z2 — 1)). Assume that the cost of editing ¢; €
F is 2, otherwise 1.
Then the cost of the edit sequence es = (p-;(s),
Pexp.1og, (8)) is 4 and the new equation is sinz; = log,
(2 + x5 + (CL’Q — 1))

The examples of three kinds of equations shown above
demonstrate how edit sequences can change an equation
with an associated cost. Costs are inputs (provided by the
user) to the FEE framework.

5 FEE ALGORITHM

Given an equation £, integer £ > 0 and budget B, we have
designed an iterative algorithm to find fake equations one
by one as shown in Algorithm 1.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 19, NO. 3, MAY/JUNE 2022

FEE uses the two sets FIE and ES respectively to store
the generated fake equations and corresponding edit
sequences (Line 1). FEE then proceeds iteratively till it has
found the desired number (k) of fake equations. In each iter-
ation, it formulates an optimization problem whose mini-
mal cost solution returns an edit sequence es ¢ ES (Line 3).
If this solution has a cost that fits within the overall budget,
then it is added to the set of fake equations FE and the cor-
responding edit sequence is added to ES. Thus, we solve
FEE[OPT] repeatedly until k& fake equations are generated
or the budget B is exhausted (Lines 2 - 8).

FEE s Run-time. The run time of Algorithm 1 is O(kTp),
where £ is the desired number of fake equations and 7p is
the time required to solve FEE[OPT]. We will discuss Tp
shortly.

In the rest of this section, we focus on the formulation of
the optimization problem FEE[OPT] which lies at the very
heart of the FEE algorithm.

Algorithm 1. FEE Framework Algorithm

Input: £, k, B
Output: F'E

1 ES,FS«+ (0 // Initial set of edit sequences ES and
fake equations FFE;

2 while |ES| < kdo

3 es,cost(es) « Solve FEE[OPT]// Get the solution es

with minimum cost(es) by solvingFEE[OPT];

4 ifcost(es) + . .pgCOst(es’) < Bthen

5 ES — ESU/{es}, FE — FE U {es(E)}

6 else

7 Print “Budget not sufficient to generate & fake

equations!”
8 break

5.1 FEE]OPT] Optimization Problem Formulation

and the FEE-FAST Algorithm
Recall from the definition of an edit operator p, ;, on an
equation £ that ¢; and ¢, are both from the finite set 7;; and
E is treated as a fixed-length string. Therefore, for any equa-
tion £ that we wish to generate fakes for, there exists a set
O(FE) of edit operators. When E is clear from context, we
will write O instead of O(E).

We are interested in only singular edit sequences, i.e., for
all p, ;. € © with identical (t;, j) values, at most one of them
gets used in any edit sequence es. This assumption leads to
no loss of generality. Suppose ® = {0, ;}, where each O, ; =
{py, j1, } is the set of edit operators for (t;, j) € E. Thus, an edit
sequence es can be represented as a vector es = {ky, j} . yep
where k;, ; is an integer in the interval [0, |®;, ;|]. When k;, ; =
0, es does not change (¢;, j). Otherwise, it uses the k, jth ele-
ment of the set ®,, ;.

The goal of solving the optimization problem FEE[OPT]
is to find the best edit sequence es ¢ ES while minimizing
cost(es).

Before formally writing down the optimization problem
FEE[OPT], we note that we wish to generate fake equations
that will deceive the adversary. However, thus far, the
notion of edit operators and edit sequences do not consider
the semantics of the equations. If we ignore the semantics of
the equation E for which we are generating k fake equations

Authorized licensed use limited to: George Mason University. Downloaded on May 19,2022 at 16:31:56 UTC from IEEE Xplore. Restrictions apply.

XIONG ET AL.: GENERATING REALISTIC FAKE EQUATIONS IN ORDER TO REDUCE INTELLECTUAL PROPERTY THEFT

fei,..., fey, it may become very easy for an adversary to
infer that fey,..., fe, are fake. For instance, suppose we
wish to generate just one fake version of the equation y =
2 x x + 3. Replacing this with the equation y = 2r 4 3 may
be obtainable with a valid edit sequence, but because this
equation’s semantics is dramatically different from that of
the original, this may be easily detectable to an adversary.

Thus, the optimization problem needs to describe a set of
constraints that would achieve a user-specified desired level
of deception of the adversary and we describe some of these
constraints below.

1) Constraints pertaining to universal truths, Cy,.,: These are
constraints which examine whether any variable in
the equation contains any well-known phenomenon
and pertain to information from “universal truths” in
common knowledge. For example, if log2 x z; with
21 representing the mass of an object is in the equation
E, then there is a corresponding universal truth con-
straint which should eliminate ess that would gener-
ate fake equations with components like log — 2 x ;.
Universal truth constraints are also used to ensure
that manipulated equations continue to maintain the
unit consistency in both sides of the equation. For
example, if the left hand side of the equation is a mass
value in kilograms, the right side should also maintain
the same unit. We denote the set of ess that violate the
universal truth as ES,,.

2) Constraints pertaining to the form of an equation Cq:
An original equation can be one of many types (e.g.,
polynomial, differential or transcendental). This con-
straint specifies whether the nature of the original
equation should be maintained. These constraints
can be taken into consideration while generating the
set of edit operators 0.

3) Constraints pertaining to metrics in model hypothesis,
Chyp: In the case where the original equation is a
model fitted on some given/inferrable dataset, the
hypothesis ¢(E) (e.g., t— test) might be discussed.
The user may require that the new equation es(E)
also satisfies the hypothesis, i.e., ¢(es(E)) > t,, where
L, is a corresponding threshold (e.g., 5 percent signifi-
cance t— test value).

4) Constraints pertaining to model metrics, Cpe: In the
case that the original equation is a model fitted on
some given/inferrable dataset, the model metric ¢(E)
(e.g., the coefficient of determination R?) should not
vary dramatically between the original and the fake
(s),i.e, |p(E) — ¢(es(E))| < g, for some 1, > 0. When
ty = 0, the fake model would be required to have the
same value of the associated metric (e.g., coefficient
of determination) as the original model. In practice,
the value of the threshold ¢, that the metric can devi-
ate by will be set as a constraint by the system security
officer who manages the FEE framework.

5) Constraints pertaining to enough distance on model pre-
diction, C),4: When the original equation is a model fit-
ted on some given/inferrable dataset, we would like
to protect the model prediction on the whole variable
space so that an adversary who uses the fake equation
receives erroneous results. We can therefore define a

1439

distance function D,,(E, es(E)) between the predic-
tions of the two equations E, es(E) and require the
distance to fall within a user-specified interval [L, U]
in order to ensure that the manipulated equation is
distinct from the original one, but still within a suit-
able user-specified range.

6) Constraints pertaining to consistency with other occur-
rences of equation terms in the context, Cess: While we
assume that only one equation is manipulated at a
time in this paper, a real world document may con-
tain multiple equations that depend upon each other.
We must therefore examine other occurrences of the
terms 5 in the equation F and try to keep the number
of times there is an inconsistency with other equa-
tions within a given user-specified range that makes
it hard for the adversary to identify the equation
es(E) as fake. It is also possible to set this number to
0. We define N, (5), the violation frequency of a
term to the number of other occurrences of this term
in the context if it is influenced by the edit sequence,
and set a max number N//9* for the equation es(E).

We are now finally in a position to present the formula-

tion of the optimization problem FEE[OPT]

FEE[OPT] e?éigs cost(es) (1)
st. & ESy, (2)

p(es(E)) = 1 ®3)

|B(E) — dles(E))| < 1 4

Dy.a(E,es(E)) € [L,U] (5)

Noyio(8) < N2 (6)
SCE:3ky, > 09(1;.,5) €5

Note that ES,;, denotes the set of ess that violate the univer-
sal truths of the equation E. The 3k, ; > 0,V(¢;,j) € § in the
last constraint means that the term has been modified by
some edit operator of es.

In order to solve FEE[OPT], let us analyze the problem step
by step. First, this problem has a set of integer variables, i.e.,
the k;, js in es indicating whether a given edit operator (¢;, j) is
modified and if yes, which ¢, is used to replace it. Suppose we
define a constant cost for each edit operator in ©. Then the
objective function would be linear w.r.t. the costs of es. For
constraints pertaining to universal truths (Equation (2)), it is rea-
sonable to assume that there are a finite number of natural
truths for equation . We therefore need to derive the set
ES,,,, which means that we must enumerate and check all the
possible edit sequences es ¢ ES. If the equation E consists of
N; editable pairs (¢;, j) (N; < |0]), the complexity of deriving
ES,;, isatleast O(2") and at most O(2/°/). When the equation
E is a regression model, in order to handle constraints (3), (4)
and (5) , we need to first transform equation es(E) from the string
representation to a mathematical representation, such that the
required calculations (w.r.t. hypothesis, metrics and predic-
tions) can be performed. However, to the best of our knowl-
edge, there is no direct transformation for equations from a
string expression to a mathematical expression. Instead, what
we can do is to design a function to realize it. This limitation
makes it impossible to directly solve the problem using

Authorized licensed use limited to: George Mason University. Downloaded on May 19,2022 at 16:31:56 UTC from IEEE Xplore. Restrictions apply.

1440

existing solvers and algorithms when constraints (3)—(5)
exist. Finally, for constraint (6), we first enumerate the set of
terms of equation F, get the number of other occurrences for
each term with the document context, then compute the num-
ber of violations for each edit sequence and compare it with
the threshold.

Algorithm 2. FEE-FAST Approximate Algorithm for
Solving FEE[OPT]

Input: E, ES, O
Output: es
1 BES"— 0 // Initialize the set of candidate edit
sequences
2 foreaches ¢ ES do
3 ifes(E) ¢ ES,;, then
4 ES — ES'U {es}
5 ES" — {es],.. es‘ES, } such that cost(es|) < --- <
Cost(es‘Eb,) // Sort elements of ES’ inascending
orderaccordlng totheir costs

6 es=[]// Initialize the solution as an empty
vector
7 forl=1:|ES'|do // Loop starts from the first

element
8 Get the mathematical formulation of es}(E)
9 if es)(E) satisfies constraints (3), (4), (5) and (6) then
10 es «— es]
11 break
12 if es = [] then
13 Print “No eligible edit sequence exists!”

We now propose Algorithm 2 to solve the problem P. The
current set S of selected edit sequences and the set © of edit
operators are inputs for the generation of the output es, i.e.,
the best eligible (unused) edit sequence with the lowest cost.
First, the set ES’ of candidate edit sequences is initialized to
the empty set (Line 1). We then add each edit sequence that
obeys the universal truths to ES’ (Lines 2 - 4).? The elements
in ES' are then sorted in ascending order according to their
costs (Line 5). We then initialize the output es as an empty
vector (Line 6) and check the candidate edit sequences in ES’
one by one (Lines 7 - 11) until a satisfying one is found (Lines
9 -11) or all candidates are found to be ineligible (Lines 12 -
13). Note that the cost function cost(-) is called only in Line 5
— hence the correctness of our algorithm is not affected by
the complexity (or non-linearity) of the cost function. How-
ever the run-time could be affected because cost(-) is not lim-
ited at all in what it can be and hence a subroutine
implementing it could, in theory, be expensive.

Run-Time of FEE-FAST . The run time of Algorithm 2 is
O(|ES’|), which means it depends on the number of remain-
ing eligible edit sequences. Users may use additional steps
to further constrain | ES’| in practice.

While the formulation of FEE[OPT] can vary a great deal
for different applications, the proposed framework can
always be adapted according to user specifications. In the
next section, we demonstrate how to apply FEE framework

3. In case the number of valid edit sequences is enormous, enumer-
ating the set £S5’ is unrealistic. We then instead use genetic approaches
to generate edit sequences starting from the ones with lower costs.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 19, NO. 3, MAY/JUNE 2022

under 3 distinct realistic circumstances and conduct a
detailed human evaluation on 20 different documents.

6 EXPERIMENTS

We collected a set of 20 patents ranging over diverse areas
that contained different kinds of equations. We then used
the FEE framework to generate 10 fake versions for one
equation from each document. We then invited a panel of
50 human subjects to identify the original correct equation.
Thus, each human subject was given 20 tasks with each task
containing 11 versions (10 fake, 1 real) of an equation.

To apply FEE on a document with a specific equation,
the process includes following steps:

Step 1 Decide the content of set T(; and the initial set of
edit operators ©;

Step 2 Check the constraints presented in Section 5.1, reduce
the set ® and get constraints in the FEE[OPT] optimi-
zation problem;

Step 3 Customize the hyper-parameters if needed, other-
wise use the default values;

Step 4 Run Algorithms 1 and 2 to generate the set FE of
fake equations.

While Steps 1 and 2 require human inputs, Steps 3 and 4
are fully automated. Note that the parameter setting in Step 3
is flexible as FEE system users can also define their own
parameters. Sections 6.1 and 6.2 demonstrate the process and
result of applying FEE each of the above steps for 2 represen-
tative documents with 2 different equations.

6.1 Linear Equation Manipulation

[8] presents a multiple linear regression model to estimate
the productivity of construction (i.e., building) operations
that use concrete. The linear regression model is fitted on a
set of data collected from a major civil engineering project.
The authors present some statistics for the data, as well as
hypotheses and metrics associated with their final model.
We select the linear equation E they use in their paper

Pctual :131Tp + 1.75V,, + 0.567,
+ 0.59W — 0.01C}, + 0.37L,, — 6.95,

and try to generate fake versions of it.

Step 1. To start using FEE, we must first decide T =
RUOUX of the grammar for this equation. Let ¢=
{c1,...,¢7} denote the coefficient vector in equation E. Con-
sidering that coefficients in ¢ are all 2-decimal positive num-
bers, we set R as the set of all 2-decimal non-negative
numbers with upper bound max;¢; + 0z = 9.36 and lower
bound max(0, min;¢; — oz) = 0.00, where oz is the standard
deviation of ¢. The reason for setting these bounds is to limit
how the coefficients are manipulated so that the fake equa-
tions will not have unreasonably complex coefficients. The
operators are set to {+, —, x}, O as these are the ones that
appear in the equation. Furthermore, X = {P,qyu, 1), Va,
T, W,C, L, }. To ensure Ot it (E) is still an equation accepted
by the grammar, the initial set © of edit operators is

O={p tiF#t-&(ti,t, €0 ti,t, ERUX) }.

Authorized licensed use limited to: George Mason University. Downloaded on May 19,2022 at 16:31:56 UTC from IEEE Xplore. Restrictions apply.

XIONG ET AL.: GENERATING REALISTIC FAKE EQUATIONS IN ORDER TO REDUCE INTELLECTUAL PROPERTY THEFT 1441
TABLE 1
Right Hand Sides of Fake Equations With Model Metrics for Section 6.1
Fake Equation R? F-stat Distance Cost Cost to R?
2.3924Tp +0.0511V,, -0.0796T;, +0.0394C; -0.2651W -0.2008L,, +5.0218 0.840 170.525 114.253 0.50 1.68
1.75697Tp+0.0561V,-0.11407;, -0.0193C;-0.2434W+ 0.3196 L,,+ 8.8719 0.833 162.280 107.551 1.53 0.54
2.31507p +0.0505V,, -0.0723T, +0.0300C; -0.0079W -0.1714L,, +4.9161 0.841 172.240 110.632 4.96 0.17
2.32507°p +0.0525V, -0.07137;, +0.0320C; -0.0081W -0.1624L,, +4.9161 0.841 172.240 113.632 5.04 0.17
1.7456Tp+0.0577V,,-0.164T;, -0.0221C;-0.2554W+ 0.3196 L, + 8.8719 0.833 164.270 109.591 5.20 0.16
1.84807p+ 0.0563V/, -0.09827,,-0.0115C; -0.0467W +0.1550L,,+7.8201 0.835 163.130 105.664 5.36 0.15
3.6712Tp +0.0181V,,+0.16427},+ 0.1373C; +0.0050W -1.4549L,, -1.6103 0.769 106.830 124.24 6.18 0.12
2.5871Tp +0.0382V,+0.0352T;, +0.0516C;+0.0173W -0.5264L,, +3.7194 0.837 166.922 101.545 7.45 0.11
1.52087p +0.0594V,, -0.14117;, -0.0339C; -0.6544W+0.5576 L,,+ 11.0711 0.792 120.601 153.775 7.74 0.10
2.3224Tp +0.0512V, -0.07687;, +0.0344C; -0.2851W -0.2008L,, +5.0218 0.840 169.525 109.253 8.21 0.11

“

Step 2. Check each constraint presented in Section 5.1.
The discussion of each constraint is listed below.

1) Although all the elements in X are supposed to be
positive values, there is no need for universal truth
constraints because the edit operators will not lead to
any results with violations to these universal truths.

2) For this example, suppose we would like to maintain a
linear model as this is mentioned in the context of the
document. In this case, we only modify the coeffi-
cients and the operators +, —. When a coefficient is
changed to 0, it means the corresponding variable is
not considered in the linear model. Thus, ® is updated
as follows:

®:{ Pt; jitr 7 7é Ly & (ti7tT € {+7_} H it € R)}

Note that the size of © is 9377 x 27.

3) t— test and F— test results are discussed in the
paper. To add corresponding constraints for these
hypothesis, we first generate synthetic data used
for model fitting with the statistics provided in
the document (details in Appendix A, which can
be found on the Computer Society Digital Library
at http://doi.ieeecomputersociety.org/10.1109/
TDSC.2020.3038132), then set corresponding con-
straints for them.

4) As in the case of constraint 3, we set constraints for
model metrics R? with synthetic data.

5) We derive a reasonable interval for each indepen-
dent variable in X — {P,¢yq }, then sample 1M points
in the united 6— dimensional space and evaluate the
difference of model predictions on them.

6) The set of terms of the original equation £ that occur
in the context of the document is empty.

Step 3. We set the cost of p,, ;; = [t; — t,| while t;,t, € R;
maxy, t,er|t1 — to| if ¢;, t, € O. The intuition is that (1) a larger
difference in the value of a coefficient increases the amount of
visual difference and (2) changing the operator basically
changes the relationship between the independent variable
and P,.q, thus it can be more significant than changing the
value of a coefficient. Our goal is to generate k = 10 fake equa-
tions with budget B = 60. The threshold ¢, is ¢(0.025; 192) and
F(0.01,8,192) respectively for t— test and F'— test; ¢, = 0.03
for R?. We try different values for L and U. Distance function
D, takes the sum of absolute distance of predictions on gen-
erated data points.

Pocruat =" 1s the left hand side of all the equations and hence is not shown explicity in the table.

Step 4. We used R to develop the algorithm. Considering
that the variable space is enormous, instead of generate and
rank the set ES’ (Lines 1 to 5 of Algorithm 2), we directly
start searching from edit sequences with smaller costs.

6.1.1 Generated Fakes

We generated 10 fake equations as shown in Table 1 — we
only show the right hand side of the equations as all the left
hand sides are the same. The R? of all generated equations
is in [0.769,0.841] and the cost varies from 0.5 to 8.21.

6.2 Differential Equation Manipulation

[7] models gene expression using differential equations. This
paper includes analytical discussion rather than statistical
analysis for its equations. We take one differential equation
as the target F for which we wish to generate fakes

P _
e

d
(—cuc' — V) d{ 4 (~CUC™'V + CL)r.

Step 1. We extract all the notations related to the equation
Eto get the set Tz = R U O U X. The current coefficients in £
are all 1 and we get R = {1,2,3}; 0 = {+, —, x,d/d, !, T},
where ~!, 7 are inverse and transposition operators for
matrices; X = {¢,7,7, 5, Z, X L,V,U,C, M}. To ensure that
fake equations are accepted by the grammar and still remain
syntactically valid differential equations, we initialize

O={p , titt &
(ti,t, e RUX ||
tint, €0 = {7, T}
tit, € 0* = {d/d,+,—,x}) }.

Step 2. Constraints 3 to 5 are not applicable. Other con-
straints are:

1. The equation £ involves a matrix, so we need to
keep the dimension of the matrices consistent. From
the document we get: vectors 7, j, 5 are n— dimen-
sional, ¥, X are 2n— dimensional, matrices L,V,UC
are n X n— dimensional and M is 2n x 2n— dimen-
sional. Thus FEE should ensure that the dimension
of both sides of F is the same. To achieve this, we
build a function to check this for es(E).

Authorized licensed use limited to: George Mason University. Downloaded on May 19,2022 at 16:31:56 UTC from IEEE Xplore. Restrictions apply.

http://doi.ieeecomputersociety.org/10.1109/TDSC.2020.3038132
http://doi.ieeecomputersociety.org/10.1109/TDSC.2020.3038132

1442

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 19, NO. 3, MAY/JUNE 2022

TABLE 2
Fake Differential Equations With Their Corresponding Costs and Edit Sequences for Section 6.2
Fake Equation Edit Sequence Cost
&= (~CUC™ — V&4 (—~CUC™ +V +CL) — 7 {oyiv—1: e Pxs) 3
% = (=CUL - V)& + (CUC™' +V + CL)r {po-11.0iP- 345 Pxo4) 4
%T = (-ouCc™! -)— + (-CUTVT'V + UL)r {pU,Z,D"'”p(/‘*l.‘z.V*l?pU,B,U} 4
_12 (C+UCI)1,+(_CU071_V+CL)_T {p+1 FPx 1,45 Px 6,3 Px 8~ } 4
Lr = (—~cUC — V)B4 (—CcUCTV — CL)r (Pray-1:p5-5 by) 5
. v g2
%:(CUCl V)Z—;+(—071UT071+V+C+L)—7 {pczpl p[rz(/l ,0><G+7p><7+ p><8 } 5
ﬁ =(-C-UCt -1 fi—' + (=L7'UCV + CL)r {ovir-13Pcor-15Px1 -} 5
& — (—CUU — V) & (—CUCTV + CU)r {oc1 103 L1 Po-1 20 5
& — (—CUC — V) 3; +(C+UC'V +CL)r (Pom1,1.0 Py y o5 Pt P-4} 6
e gt
& — (~VUCT ~ C) 4 (~CU + C'V + CV)y o y-13Pvaci PLav-15 Pxs i) 6

2. To ensure that the generated fake equation is still a
differential equation, we must ensure that at least one
differential operator remains in place after the edit. This
can be achieved by using the constraint 3%/, ; = 0.
There is no need to update ©.

3. The set of terms with non-zero number of other

occurrences are: ~{CUC”1 —-cuc-t —v,cL,Cc™,
(-CUC'V + CL)7 ,dtz,(CUC™ - V)& 4+ (-CUCT'V+
CL)r}.

Step 3. We set the cost for all edit operators to the same
value 1 and generate k = 10 fake equations with budget B =
50. The N,,(5) value for each term is 2,1,2,3,1,1,1 respec-
tively. V9% is set as 10.

Step 4. We use Python to develop the algorithms and find
eligible fake equations.

6.2.1 Generated Fakes

The FEE framework generated the 10 fake equations shown
in Table 2. The cost varies from 3 to 6. The corresponding
edit sequences are also listed in the table.

6.3 Human Evaluation

As mentioned earlier, we selected 20 technical documents
on diverse topics. We selected one equation from each docu-
ment as the target equation for manipulation. The equation
length (which is denoted by the number of editable compo-
nents in the equation) varies from 8 to 34. We used FEE to
generate 10 fake equations per equation which were then
used to generate 10 fake documents. Thus, each of the fake
documents had exactly one fake equation in it — and the
subjects were told that. This gives them a potential advan-
tage in detecting fakes. For each original/fake document,
we show each subject 3 pages in all: the page on which the
equation occurs together with the immediately preceding
and immediately succeeding page. This gives the human
subject some context. Note that showing 3 pages surrounding
an equation biases the experiment in favor of the adversary by pro-
viding him very valuable context in the form of text that the FEE
algorithm does not currently consider to modify.*

4. Combining FEE with a very robust paradigm for generating fake
textual content such as the FORGE system [5] is an important next step
that we propose to study in future work.

Our experiment involves 50 workers on Amazon Mechan-
ical Turk (MTurk), all of whom are required to have a Mas-
ter’s degree or higher from the United States. Each worker is
asked to answer 20 questions in a randomized order. Each
question has 11 randomized choices and each choice is a
3-page document. Exactly 1 of the 11 choices is the original
document. All workers were told that only one equation in a
fake document is fake (this is a tougher test for our FEE sys-
tem because the subjects know that they only need to find
one fake equation) and they are asked to select the document
they think is most likely to be fake, 2nd most likely to be fake,
and 3rd most likely. We name these choices the 1st, 2nd and
3rd choice respectively.

Deception Rate of Hit@l. We define the Deception Rate as
the probability that the original document is not discovered
as the 1st choice when it is mixed with 10 generated fake
versions. On average, this deception rate is 88.6 percent.

Distribution of Hit@l. Fig. 2 shows the distribution of
Hit@1. For each human subject, we first calculate HitQ1 as
the number of times that the original document was selected
as their 1st choice. Hit@1 is a number between 0 through 20.
We then plot Fig. 2 with the above data. The z-axis shows
the number of documents (0 through 20) and the y-axis
shows the portion of workers whose 1st choice correctly
identified that amount of original documents. It is shown
that Hit@1 varies from 0 to 10. We fit the distribution with a
normal distribution and draw the probability distribution
function (PDF) curve in red. The average value of HitQ1 is
2.28 with a standard deviation 2.03. This means that on
average, each worker was only able to correctly get 2.28 real
documents in 20 guesses.

Deception Rate of HitQ1 + Hit@2. We also looked at what
happened when we considered a worker’s guess to be cor-
rect if either his 1st or 2nd choice was correct. On average
and as expected (as we are more generous in accepting the
worker’s guess as correct in this case), the deception rate
decreases to 80.7 percent from 88.6 percent in the case of
HitQ1.

Distribution of HitQ1 4 Hit@2. Fig. 3 shows the distribu-
tion of guesses by the 50 MTurk workers in the case when
we consider either their 1st or 2nd guess to be correct. In
this case, the number of correct selections varies from 0 to
12. The mean and standard deviation of Hit@Q1 + Hit@2 are
respectively 3.86 and 2.55.

Authorized licensed use limited to: George Mason University. Downloaded on May 19,2022 at 16:31:56 UTC from IEEE Xplore. Restrictions apply.

XIONG ET AL.: GENERATING REALISTIC FAKE EQUATIONS IN ORDER TO REDUCE INTELLECTUAL PROPERTY THEFT

The number of original documents selected as the 1st choice
norm(loc=2.28, scale=2.03)

— POF

—Data

of orginal documents

Fig. 2. The number of original documents selected as the 1st choice.

Deception Rate of Hit@Q1 + Hit@Q2 + Hit@3. We also looked
at what happened when we considered a worker’s guess to
be correct if one of his top-3 choices turned out to be correct.
The deception rate now falls to 70.9 percent.

Distribution of Hit@Ql 4+ HitQ2 + Hit@3. Considering all
the top-3 choices (i.e.,, HitQl + Hit@Q2 + Hit@Q3), as shown
in Fig. 4, the mean number of documents uncovered under
this very generous (to the adversary) setting is 5.82 with a
standard deviation equal to 2.85.

From the analysis in the above 3 cases, we can conclude
that FEE is able to deceive most adversaries. Furthermore,
FEE will be able to do an even better job in deceiving the
adversary if some of the following steps are followed.

1) We use publicly accessible patents as the original
documents in the human evaluation and there is
nothing that stops MTurk workers who have full
access to the Internet from searching for the correct
answer on the Internet. In practice, our proposed
approach would most probably be used to protect
private documents where adversaries cannot carry
out such a search.

2) We only alter one equation for each document in the
experiments. In practice, an operational system would
generate fake equations and text simultaneously,
making it much harder for an adversary to find incon-
sistencies between the two.

3) Inthe experiments, we truncate 3-pages from patents
with dozens of pages and clearly tell the workers that
only one equation is different among different
choices. However, attackers in real-world scenarios

The number of original documents selected in the top-2 choices
norm(loc=3.86, scale=2.55)
— POF
Data

requency

of orginal documents

Fig. 3. The number of original documents selected by the first 2 choices.

1443

The percentage of original documents selected in the top-3 choices
norm(loc=5.82, scale=2.85)

of orginal documents

Fig. 4. The number of original documents selected by the first 3 choices.

will need to check the complete text of all documents,
real and fake, and they will not know how many
equations (or how much of the text) has been faked.

4) Finally, nothing prevents us from generating more
than 10 fakes per original document. As the number
of fake documents goes up, the probability that the
adversary will be able to find the real one goes down.

Run-Time. All the fake equations in our experiments were
generated in under 5 seconds. As a consequence, we did not
run further run-time experiments as the fake equation gen-
eration process is clearly fast enough for practical use.

Limitations. Though we selected technical documents
from several different fields to generate fake equations, this
breadth of equations comes at a price. We were not able to
select experts in the specific areas of those equations to eval-
uate the quality of the fakes because selecting workers with
specialized areas of expertise (e.g., degrees in genetics) on
Amazon Mechanical Turk is not supported and is very chal-
lenging. It is, therefore, possible that the deception rates in
this paper will go down a bit if true experts in the discipline
of an equation are used for evaluation.

An Important Note. An alert reader might wonder how a
legitimate user would distinguish a real document from one
containing a fake equation. This problem has been solved in
the FORGE system [5] which is why we do not discuss it in
detail here. In a nutshell, it is possible to embed a message
authenticating code in every document, both real and fake.
An authorized user with a private key will be able to use his
private key with the code in a document to determine
whether the document is real or fake.

7 USAGE OF FEE AND NEXT STEPS

We conclude by noting the big picture underlying FEE.

A technical document d may contain diverse forms of
content including text, tables, equations, formulas, flow-
charts, diagrams, and more. Generating a fake version of d
involves not only generating fake versions of each of these
types of content, but also ensuring that they are combined
together well. In past work [5], we have developed methods
to generate fake versions of the textual part of d as well as
the tables in d [6]. This effort shows how to generate fake
versions of equations.

Future steps revolve around generating fake versions of
flowcharts and diagrams so that a comprehensive method
to generate fake documents exists.

Authorized licensed use limited to: George Mason University. Downloaded on May 19,2022 at 16:31:56 UTC from IEEE Xplore. Restrictions apply.

1444

8 CONCLUSION

There has been considerable recent interest in addressing the
problem of intellectual property theft by automatically generat-
ing multiple fake copies of every real document that an organi-
zation wishes to protect from IP thieves. This strategy imposes
a cost on the adversary as s/he now needs to figure out which
of many exfiltrated documents is real and which are fake.

Past work for the auto-generation of such fakes has focused
on the textual part of a document. However, technical docu-
ments have many constituent parts including text, tables,
equations, diagrams, and more. In this paper, we develop the
methods needed to automatically generate multiple fake equa-
tions. Moreover, our FEE framework ensures that the seman-
tics of the original equation is close enough to the original to be
believable, yet sufficiently far enough to be likely to be wrong.

FEE uses a mechanism that iteratively solves an optimiza-
tion problem in each iteration. However, the optimization
problems solved by FEE are not traditional optimization
problems (e.g., integer linear programs, knapsack problems,
etc.). Rather, they involve a mix of numeric and logical con-
straints. We present a specialized algorithm, FEE-FAST, that
solves these non-traditional optimization problems within
each loop of FEE.

We have tested FEE out with a panel of 50 human sub-
jects on 20 real world patents and shown that FEE has a
high rate of deception, even when the subjects are provided
some advantages when compared to FEE.

Limitation: we need to manually pre-process the con-
straints before feeding it to the FEE framework.

ACKNOWLEDGMENTS

This work was supported in part by the Office of Naval
Research under Grant Nos. N00014-18-1-2670, N00014-16-1-
2896, and NO00014-20-1-2407; and in part by the Army
Research Office under Grant W911NF-13-1-0421.

REFERENCES

[11 M. M. R. Alavi Milani, S. Hosseinpour, and H. Pehlivan, “Rule-
based production of mathematical expressions,” Mathematics,
vol, 6, no. 11, 2018, Art. no. 254.

[2] F. Alvaro, J.-A. Sanchez, and J.-M. Benedi, “Recognition of on-line
handwritten mathematical expressions using 2D stochastic con-
text-free grammars and hidden Markov models,” Pattern Recognit.
Lett., vol. 35, pp. 58-67, 2014.

[3] D.M. Bates and D. G. Watts, Nonlinear Regression Analysis and its
Applications, vol. 2. New York, NY, USA: Wiley, 1988.

[4] L.Bilge and T. Dumitras, “Before we knew it: An empirical study
of zero-day attacks in the real world,” in Proc. ACM Conf. Comput.
Commun. Secur., 2012, pp. 833-844.

[5] T. Chakraborty, S. Jajodia, J. Katz, A. Picariello, G. Sperli, and
V. S. Subrahmanian, “FORGE: A fake online repository generation
engine for cyber deception,” IEEE Trans. Dependable Secure Comput.,
to be published, doi: 10.1109/TDSC.2019.2898661.

[6] H.Chen,S.Jajodia, J. Liu, N. Park, V. Sokolov, and V. Subrahmanian,
“FakeTables: Using GANSs to generate functional dependency pre-
serving tables with bounded real data,” in Proc. 28th Int. Joint Conf.
Artif. Intell., 2019, pp. 2074-2080.

[7] T.Chen, H. L. He, and G. M. Church, “Modeling gene expression
with differential equations,” in Proc. Pacific Symp. Biocomput.,
1999, pp. 29-40.

[8] P.Dunlop and S. Smith, “Estimating key characteristics of the con-
crete delivery and placement process using linear regression analy-
sis,” Civil Eng. Environ. Syst., vol. 20, no. 4, pp. 273-290, Dec. 2003.

[9] C. A. Fowler and R. F. Nesbit, “Tactical deception in air-land
warfare,” J. Electron. Defense, vol. 18, no. 6, pp. 37-45, 1995.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 19, NO. 3, MAY/JUNE 2022

[10] U. Garain and B. B. Chaudhuri, “Recognition of online handwrit-
ten mathematical expressions,” IEEE Trans. Syst., Man, Cybern. B,
Cybern., vol. 34, no. 6, pp. 2366-2376, Dec. 2004.

[11] J. E. Hopcroft and J. D. Ullman, Formal Languages and their Relation
to Automata. Addison-Wesley Longman Publishing, Jan 1, 1969.

[12] S. Jajodia et al., “A probabilistic logic of cyber deception,” IEEE
Trans. Inf. Forensics Security, vol. 12, no. 11, pp. 2532-2544,
Nov. 2017.

[13] P. Karuna, H. Purohit, R. Ganesan, and S. Jajodia, “Generating
hard to comprehend fake documents for defensive cyber
deception,” IEEE Intell. Syst., vol. 33, no. 5, pp. 1625, Sep./Oct.
2018.

[14] D. Kushner, “Digital decoys [fake MP3 song files to deter
music pirating],” IEEE Spectr., vol. 40, no. 5, pp. 27-27, May
2003.

[15] C.L.Martin, “Military deception reconsidered,” Naval Postgraduate
School Monterey, CA, USA, 2008. [Online]. Available: https://
scholar.google.com/scholar?hl=en&as_sdt=0%2C46&q=Military
+deception+reconsidered&btnG=

[16] M. Mohammady, L. Wang, Y. Hong, H. Louafi, M. Pourzandi, and
M. Debbabi, “Preserving both privacy and utility in network trace
anonymization,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., 2018, pp. 459-474.

[17] N. Park, M. Mohammadi, K. Gorde, S. Jajodia, H. Park, and
Y. Kim, “Data synthesis based on generative adversarial networks,”
Proc. VLDB Endowment, vol. 11, no. 10, pp. 1071-1083, Jun. 2018.

[18] Y. Park and S. J. Stolfo, “Software decoys for insider threat,” in
Proc. 7th ACM Symp. Inf., Comput. Commun. Secur., 2012, pp. 93-94.

[19] A. Shabtai, Y. Elovici, and L. Rokach, A Survey of Data Leakage
Detection and Prevention Solutions. Berlin, Germany: Springer,
2012.

[20] B. Whitham, “Automating the generation of fake documents to
detect network intruders,” Int.]. Cyber-Secur. Digit. Forensics,
vol. 2, no. 1, 2013, Art. no. 103.

[21] B. Whitham, “Automating the generation of enticing text content
for high-interaction honeyfiles,” in Proc. 50th Hawaii Int. Conf.
Syst. Sci., 2017, pp. 6069-6078.

[22] B. Whitham, T. Turner, and L. Brown, “Automated processes for
evaluating the realism of high-interaction honeyfiles,” in Proc.
14th Eur. Conf. Cyber Warfare Secur., 2015, Art. no. 307.

[23] C. Yang, Z. Wang, X. Zhu, C. Huang, J. Shi, and D. Lin, “Pose
guided human video generation,” in Proc. Eur. Conf. Comput. Vis.,
2018, pp. 201-216.

[24]]. Yuill, M. Zappe, D. Denning, and F. Feer, “Honeyfiles: Decep-
tive files for intrusion detection,” in Proc. 5th Annu. IEEE SMC Inf.
Assurance Workshop, 2004, pp. 116-122.

Yanhai Xiong received the bachelor's degree in
automation from the University of Science and
Technological of China, Hefei, China, and the PhD
degree in computer science and engineering from
Nanyang Technological University, Singapore.
She is a postdoc working with Dartmouth College,
since July, 2018. Her research interests include in
optimization, machine learning, cybersecurity, and
smart cities.

Giridhar Kaushik Ramachandran received the
bachelor of science (honors) degree in mathe-
matics and the master's degree in business
administration from the Sri Sathya Sai Institute of
Higher Learning, Anantapur, Andhra Pradesh,
India, in 2012 and 2014, respectively. He is cur-
rently a doctoral researcher in information scien-
ces and technology at George Mason University.
He has more than four years of diverse experi-
ence as a data scientist in the fields of finance,
human resource management and education. He
is interested in the applications of machine learning, optimization and
statistics in cybersecurity, and health and social media.

Authorized licensed use limited to: George Mason University. Downloaded on May 19,2022 at 16:31:56 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TDSC.2019.2898661
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C46&q=Military+deception+reconsidered&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C46&q=Military+deception+reconsidered&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C46&q=Military+deception+reconsidered&btnG=

XIONG ET AL.: GENERATING REALISTIC FAKE EQUATIONS IN ORDER TO REDUCE INTELLECTUAL PROPERTY THEFT

Rajesh Ganesan received the MS degree in
industrial engineering, the MA degree in mathe-
matics, and the PhD degree in industrial engineer-
ing from the University of South Florida, Tampa,
Florida, in 2002, 2005, and 2005, respectively. He
is currently an associate professor of systems
engineering and operations research with George
Mason University, Fairfax, Virginia, where he is
with the Center for Secure Information Systems
and the Center for Air Transportation Systems
Research. His research interests include stochas-
tic optimization (approximate dynamic programming), bigdata analytics,
multiscale statistical data analysis using wavelets, and engineering edu-
cation. His research applications include cybersecurity, healthcare,
defense, air transportation, and nanomanufacturing. He is a senior
member of the Institution of Industrial Engineers and a member of the
American Society for Engineering Education, and INFORMS professional
organization.

Sushil Jajodia (Fellow, IEEE) received the PhD
degree from the University of Oregon, Eugene,
Oregon. He is a university professor, BDM interna-
tional professor, and the founding director of the
Center for Secure Information Systems, Volgenau
School of Engineering, George Mason University,
Fairfax, Virginia. He is also the director of the NSF
I/UCRC Center for Cybersecurity Analytics and
Automation (now in Phase Il). Before coming to
Mason, he held permanent positions with the
National Science Foundation; Naval Research
Laboratory, Washington; and University of Missouri, Columbia. He has
also been a visiting professor with the University of Milan, Sapienza Univer-
sity of Rome, Cambridge University, King's College London, Paris Dau-
phine University, and Imperial College. His research interests include
security, privacy, databases, and distributed systems. He has authored or
coauthored seven books, edited 52 books and conference proceedings,
and published more than 500 technical papers in the refereed journals and
conference proceedings. Five of his books have been translated in Chi-
nese. He is also a holder of 23 patents. His current research sponsors are
the Army Research Office, Office of Naval Research, National Security
Agency, National Science Foundation, Northrop Grumman Corporation,
and Intelligent Automation, Inc. He received the 1996 IFIP TC 11 Kristian
Beckman Award, 2000 Volgenau School of Engineering Outstanding
Research Faculty Award, 2008 ACM SIGSAC Outstanding Contributions
Award, 2011 IFIP WG 11.3 Outstanding Research Contributions Award,
2015 ESORICS Outstanding Research Award, 2016 Federal Information
Systems Security Educators’ Association (FISSEA) Educator of the Year
Award, 2016 IEEE Computer Society Technical Achievement Award, and
2020 |IEEE Computer Society W. Wallace McDowell Award. He was recog-
nized for the most accepted papers at the 30th anniversary of the IEEE
Symposium on Security and Privacy. His h-index is 105 and Erdos number
is 2. For more information please visit: http://csis.gmu.edu/jajodia

1445

V. S. Subrahmanian is the Dartmouth College dis-
tinguished professor in cybersecurity, technology,
and society and director of the Institute for Security,
Technology, and Society at Dartmouth. He previ-
ously served as a professor of computer science
with the University of Maryland from 1989-2017
where he created and headed both the Lab for
Computational Cultural Dynamics and the Center
for Digital International Government. He also served
for more than six years as the director of the Univer-
sity of Maryland’s Institute for Advanced Computer
Studies. He is an expert on big data analytics including methods to analyze
text/geospatial/relational/social network data, learn behavioral models from
the data, forecast actions, and influence behaviors with applications to
cybersecurity and counterterrorism. He has written five books, edited ten,
and published more than 300 refereed articles. He is a fellow of the Ameri-
can Association for the Advancement of Science and the Association for the
Advancement of Artificial Intelligence and received numerous other honors
and awards. His work has been featured in numerous outlets such as the
Baltimore Sun, the Economist, Science, Nature, the Washington Post,
American Public Media. He serves on the editorial boards of numerous jour-
nals including the Science, the board of directors of the Development Gate-
way Foundation (set up by the World Bank), SentiMetrix, Inc., and on the
Research Advisory Board of Tata Consultancy Services. He previously
served on DARPA’s Executive Advisory Council on Advanced Logistics and
as an ad-hoc member of the US Air Force Science Advisory Board. For
more information please visit: http://home.cs.dartmouth.edu/ vs/

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: George Mason University. Downloaded on May 19,2022 at 16:31:56 UTC from IEEE Xplore. Restrictions apply.

http://csis.gmu.edu/jajodia
http://home.cs.dartmouth.edu/

