
Generating Realistic Fake Equations in Order
to Reduce Intellectual Property Theft

Yanhai Xiong , Giridhar Kaushik Ramachandran , Rajesh Ganesan ,

Sushil Jajodia , Fellow, IEEE, and V. S. Subrahmanian

Abstract—According to Symantec, the average gap from the time a company is compromised by a zero-day attack to the time the

vulnerability is discovered is 312 days. This leaves an adversary with a lot of time to exfiltrate corporate IP. Recent work has suggested

automatically generating multiple fake versions of a document to impose costs on the attacker who needs to correctly identify the

original document from a set of mostly fake documents. But in the real world, documents contain many diverse components. In this

article, we focus on technical documents that often contain equations. We present FEE (Fake Equation Engine), a framework to

generate fake equations in such documents. FEE tries to preserve multiple aspects of a given equation when generating a fake.

Moreover, FEE is very general and applies to diverse equational forms including polynomial equations, differential equations,

transcendental equations, and more. FEE iteratively solves a complex, changing optimization problem inside it. We also present

FEE-FAST, a fast approximate algorithm to solve the optimization problem within FEE. Using a panel of human subjects, we show that

FEE achieves a high rate in deceiving sophisticated subjects.

Index Terms—Cybersecurity, intellectual property theft, deception

Ç

1 INTRODUCTION

ACCORDING to research from Symantec [4], on average,
there is a gap of 312 days from the time a company is

compromised by a zero-day attack to the time the vulnera-
bility is disclosed. During this time, the attacker can easily
steal a huge amount of intellectual property.

As a compromised enterprise doesn’t even know they
have been compromised, there is a need for techniques that
automatically penalize the attacker by: delaying him, increas-
ing his level of frustration, adding financial costs, and
increasing his uncertainty. Recent work [5], [6], [13], [17], [21]
has suggested that for any given original document d, we
generate N fake versions of d such that it is hard for the
attacker to separate the original document from the fakes.
The fakes should be “similar enough” to the original to make
them credible to experts in the field, yet “dissimilar enough”
to make them likely to be wrong. The attacker will need to
spend time to identify the real one— and even aftermaking a
decision, will be unsure about whether he was right or
wrong. Simply put, generating fake documents deters attack-
ers by imposing delays, financial costs, frustration, and
uncertainty on the attackers.

Past work in this relatively new area focuses on the textual
part ([5], [13], [21]) or tabular data ([6], [17]) in a document.
However, technical documents have many components:

diagrams, images, equations, tables, and more. Equations are
at the very heart of technical documents because a small
change in an equation can completely alter its meaning and/
or render it incorrectly. And finding errors in complex equa-
tions is not always an easy task, especially if the errors are
subtle.

In this paper, we focus on taking an equation that might
occur in a technical document and generating k fake versions
of it so that the resulting fake equations are “similar enough”
to the original equation to be credible, but sufficiently
“dissimilar” to likely be wrong. However, equations are not
just pieces of syntax. An equation has a semantic meaning.
The equation y ¼ 2xþ 4 has a physical meaning— it denotes
a line in a 2-dimensional spacewith a slope of 2 and a y-inter-
cept of 4. When we talk about one equation being “similar”
or “dissimilar” to another, this semantic meaning should be
taken into account. So should the form of the equation (e.g.,
linear equation versus differential equation), universal
truths (e.g., weight must exceed 0), and consistency with
other equations within the same document. Moreover, the
space of possible equations is enormous.

All of these factors make the generation of fake equations
a very challenging task. In this paper, we propose a novel
system called Fake Equation Engine (FEE) with the follow-
ing characteristics:

1) FEE takes as input, a grammar which can capture
many different types of equations. FEE then modi-
fies equations by applying some edit operators, each
with a given cost.

2) However, FEE must generate fake equations that
satisfy various desired constraints — which at the
same time conflict with each other. We therefore
write FEE down as an iterative algorithm which
invokes a very non-traditional optimization problem

� Yanhai Xiong and V. S. Subrahmanian are with the Dartmouth College, Han-
over, NH 03755USA. E-mail: yanhaixiong7@gmail.com, vs@dartmouth.edu.

� Giridhar Kaushik Ramachandran, Rajesh Ganesan, and Sushil Jajodia are
with the George Mason University, Fairfax, VA 22030 USA.
E-mail: {gramacha, rganesan, jajodia}@gmu.edu.

Manuscript received 5 May 2020; revised 24 Sept. 2020; accepted 4 Nov. 2020.
Date of publication 13 Nov. 2020; date of current version 13 May 2022.
(Corresponding author: Sushil Jajodia.)
Digital Object Identifier no. 10.1109/TDSC.2020.3038132

1434 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 19, NO. 3, MAY/JUNE 2022

1545-5971 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: George Mason University. Downloaded on May 19,2022 at 16:31:56 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-0542-0181
https://orcid.org/0000-0002-0542-0181
https://orcid.org/0000-0002-0542-0181
https://orcid.org/0000-0002-0542-0181
https://orcid.org/0000-0002-0542-0181
https://orcid.org/ 0000-0002-9800-6149
https://orcid.org/ 0000-0002-9800-6149
https://orcid.org/ 0000-0002-9800-6149
https://orcid.org/ 0000-0002-9800-6149
https://orcid.org/ 0000-0002-9800-6149
https://orcid.org/0000-0003-1875-548X
https://orcid.org/0000-0003-1875-548X
https://orcid.org/0000-0003-1875-548X
https://orcid.org/0000-0003-1875-548X
https://orcid.org/0000-0003-1875-548X
https://orcid.org/0000-0003-3210-558X
https://orcid.org/0000-0003-3210-558X
https://orcid.org/0000-0003-3210-558X
https://orcid.org/0000-0003-3210-558X
https://orcid.org/0000-0003-3210-558X
https://orcid.org/0000-0001-7191-0296
https://orcid.org/0000-0001-7191-0296
https://orcid.org/0000-0001-7191-0296
https://orcid.org/0000-0001-7191-0296
https://orcid.org/0000-0001-7191-0296
mailto:yanhaixiong7@gmail.com
mailto:vs@dartmouth.edu
mailto:gramacha@gmu.edu
mailto:rganesan@gmu.edu
mailto:jajodia@gmu.edu

called FEE½OPT� within it. This optimization problem
cannot be solved by a standard optimization problem.
Moreover, FEE½OPT� changes from one iteration of
FEE to the next and is very challenging to solve.

3) We therefore develop a separate algorithm called
FEE-FAST that approximately solves this optimiza-
tion problem.

In all, FEE generates a desired set of k fake equations for
any given real equation. We tested FEE out on a panel of 50
subjects on Amazon Mechanical Turk, each of who is in the
US and has a Master’s degree or higher. The subjects were
given 20 tasks, each of which involved identifying the cor-
rect equation from a set of 11 equations (10 fake, one real).
We defined the notion of deception factor and show that FEE
achieves a high deception factor: most subjects were effec-
tively deceived by FEE even though a number of conditions
favored the subjects’ in their quest to find the right equation.

The remainder of this paper is organized as follows.
Section 2 presents a quick overview of related work.
Section 3 presents the architecture of the overall FEE frame-
work. After this, Section 4 presents the form in which equa-
tions are considered by FEE through context free grammars
and show that this syntax is enough to represent polyno-
mial, differential, and transcendental equations. Section 5
shows the main contributions of the paper including the
overall FEE algorithm, the FEE½OPT� optimization prob-
lem, and the FEE-FAST algorithm to solve FEE½OPT�. We
then present our experimental results in Section 6 after
which we present conclusions and future work.

2 RELATED WORK

The use of deception in warfare goes back many centuries
[9], [15]. In the context of cybersecurity, deception has pri-
marily been used by the attacker — for instance, phishing
attacks try to deceive a victim into downloading malware or
otherwise being compromised.

The use of cyber-deception [12] for defensive purposes is
newer. Issues such as piracy on the Internet (e.g., of videos)
[23], audio (e.g., music recordings) [14] and software code
[18] have led to the creation of a host of watermarking and
steganography techniques so that legitimate owners of
music or videos can show clear evidence of piracy. [19] pro-
vides an excellent survey of methods to identify data leak-
age from organizations using such methods.

One class of methods to protect technical documents
involve the creation of a “decoy” document [20], [22], [24].
[20] proposes Canary files. If the content of a canary file is
accessed or copied or deleted, then the system administrator
is immediately notified about the access. [22] mentions two
methods to generate honeyfiles with different levels of per-
mitted interaction. [24] uses honeyfiles to send alarms when
intrusions are detected. Such research on honeyfiles focus
on generating alarms when fake documents are touched.

In general, generating decoy technical documents involve
handling the fact that technical documents contain diverse
many constituent parts such as text, tables, graphs, equations
and flow-charts etc. [5] develops the Fake Online Repository
Generation Engine (FORGE) system inwhich fake versions of
the textual part of a document are automatically generated
using a mix of three methods: natural language processing,

multi-layered graph “meta-centrality” measures, and optimi-
zation. [21] use word transposition and substitution based on
parts of speech tagging and pre-collected n-grams to generate
fake text. [13] focuses on increasing comprehension burden
for attackers through shuffling, deletion and addition of con-
cepts. [6], [17] provide methods for synthesizing fake tables
for large data usingGenerative Adversarial networks.

However, to date, there has been no work that we are
aware of that specifically tries to generate fake equations
that may occur within a technical document. An equation is
a model of some underlying phenomenon: for instance, the
famous e ¼ mc2 is really a model that captures the relation-
ship between energy (e), mass (m) and the speed of light (c).
Equations are typically derived in one of two ways. The
equations could be derived from a body of data which
already exists (e.g., regression equations [3]). Alternatively,
the equations may constitute a theoretical model — and
experiments to gather data to validate the theoretical
method may be subsequently generated. This happens fre-
quently in physics. In this paper, we develop methods to
deceive attackers when they have access to the actual docu-
ment containing an equation but the paper itself doesn’t
contain the extensive data needed to support the equations
in the document (if in fact that data even exists). To the best
of our knowledge, there is no work on generating fake equa-
tions under these conditions which are the widespread as
far as technical documents are concerned.

There are also efforts that focus on generating synthetic
structured datasets such as relational databases [6] and spe-
cialized data sets such as network traces [16]. Those are
important efforts that are orthogonal to ours.

Unlike the above efforts, we focus on manipulating equa-
tions within the technical document. The FEE framework we
propose is based on context-free grammars [11] and can auto-
matically generate fake equations that are “similar enough”
to the original equation to be realistic, yet “dissimilar
enough” to the original equation to likely bewrong.

3 FEE ARCHITECTURE

Fig. 1 shows the architecture of the FEE framework. The
system takes as input, an original document with a real
equation. The goal is to generate a number of fake docu-
ments, each with a fake version of this equation.

FEE contains a suite of context free grammars (CFGs) that
each try to parse the equation. Currently, we have developed
CFGs for polynomial, differential, and transcendental equa-
tions. Each of the CFGs tries to parse the equation e — as
long as one of the CFGs accepts the equation, we can gener-
ate fake versions of it.1 The creation of such CFGs is easy and
many example CFGs for different equational forms already
exist [1]. A rich body of work exists on recognizing mathe-
matical expressions from handwritten documents [10] as
well as from printed documents [2]. We therefore do not
delve deeply into this part of FEE in this paper.

Once an equation is parsed into its constituent parts by one
of the parsers in FEE, the FEE algorithm uses a set of edit

1. If no CFG in the suite accepts an equation, then this means that
the equation is of a form different from those that we have considered
in the library. In such cases a new CFGmust be created.

XIONG ET AL.: GENERATING REALISTIC FAKE EQUATIONS IN ORDER TO REDUCE INTELLECTUAL PROPERTY THEFT 1435

Authorized licensed use limited to: George Mason University. Downloaded on May 19,2022 at 16:31:56 UTC from IEEE Xplore. Restrictions apply.

operators and a cost function to pose an optimization problem
thatwe callFEE½OPT�. This is a highly non-traditional optimi-
zation problem which we solve using the FEE-FAST algo-
rithm. The main FEE algorithm involves FEE-FAST
iteratively — but in each iteration, a modified version of the
optimization problem is created and solved. The algorithm
finally outputs a set of k fake equations. The novel contribu-
tions of this paper include the overall FEE architecture aswell
as the FEE algorithm consisting of both FEE½OPT� and
FEE-FAST, together with the experiments documenting their
efficacy.

4 REPRESENTING AND MANIPULATING EQUATIONS

VIA CFGS

Though all readers are familiar with the intuitive concept of
an equation, we need to formally define the types of equa-
tions manipulated by the FEE framework. We use context-
free grammars or CFGs [11] in order to express equations.
We recall that a CFG G ¼ ðVG; TG;RG; SGÞ consists of 4 parts
where VG is a set whose elements are called variable sym-
bols, TG is a set disjoint from VG whose elements are called
terminal symbols, RG is a finite set of “production rules”
(defined below) and SG 2 VG is a distinguished variable
called the “start” variable for the grammar G.

A production rule is an expression of the form X ! Y
where X 2 VG is a variable and Y is a string (possibly
empty) constructed from the set ðVG [TGÞ? .2

Throughout this paper, we assume that any given equa-
tion is accepted by a grammar G in FEE’s repository of gram-
mars. We use G?

to denote the set of all strings accepted by
grammar G.

Throughout this paper, we will use three grammars
G1;G2;G3 as running examples in order to illustrate the defi-
nitions, concepts, and algorithms in the paper.

Example 1 (Polynomial Equation Grammar G1). Suppose
VG is a set of variables, TG includes the set consisting of

some finite decimal numbers in set R as well as the set
X ¼ fx1; . . . ; xng for some n, and some fixed set O ¼
O1 [O2 of operations, where O1 ¼ fðÞg is a set of unary
operations and O2 ¼ fþ;�;�;�g is a set of binary opera-
tions. In this case, our CFG might contain the following
production rules:

SG ! V ¼ V

V ! t8t 2 R [X

V ! V þ V

V ! V � V

V ! V � V

V ! V � V

V ! ðV Þ:
This grammar accepts all polynomial equations contain-
ing the sole operators þ;�;�;�; ðÞ. The set of equations
accepted by this grammar therefore includes: x1 ¼
3� x2 � 4� x3 þ 5� x4 � x4 and x1 ¼ 2� ðx2 þ 5Þ etc.
Of course, this grammar can be easily modified to
include other types of operators (e.g., exponentiation).

We also define terms that occur in any string accepted by
the grammar G as follows.

Definition 1 (Term). A term ŝ in a string s is a sub-string of s
(we use v to denote the subterm relationship, i.e., ŝ v s) with
length greater than 1 such that: (i) ŝ is accepted by the grammar
and (ii) ŝ contains at least one element from X. Therefore, when
ŝ v s, lenðŝÞ > 1 and ŝ 2 G?

, we have

� if 9t 2 X such that t u ŝ, then ŝ is a term;
� if ŝ is a term, then 8O 2 O1, any OðŝÞ v s is a term;
� if ŝ is a term and V is a variable (as defined in produc-

tion rules of Example 1), then 8O 2 O2, any
Oðŝ; V Þ v s is a term and the same for OðV; ŝÞ v s.

Thus, for the sample equation x1 ¼ 3� x2 � 4� x3 þ 5�
x4 � x4 which is accepted by the grammar G1, both 3� x2 and
3� x2 � 4� x3 are terms, but 3� x2 � 4� is not a valid term.

Example 2 (Differential Equation Grammar G2). Sup-
pose VG is a set of variables and TG is the union of the sets
R;X;O, where R is a set of finite decimal numbers, X ¼
fx1; . . . ; xng for some n and O ¼ O1 [O2 ¼ fþ;�;�;�;
@=@; ðÞg is some fixed set of operations. In this case, the
CFG includes following production rules:

SG ! V ¼ V

V ! t8t 2 R [X

V ! @V =@V

V ! V þ V

V ! V � V

V ! V � V

V ! V � V

V ! ðV Þ:
This grammar accepts all polynomial differential equa-
tions that involving the simple operators þ;�;�;�; ðÞ.
The set of equations accepted by this grammar includes
@ðy1 þ x1 � x1Þ=@x1 ¼ 3� x2 and @y1=@ðx1 � x1 þ 2Þ ¼

Fig. 1. FEE architecture.

2. Given a set of production rules, it is common to denote the set of
all strings including the empty string generated by a set S of symbols
by S

?

.

1436 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 19, NO. 3, MAY/JUNE 2022

Authorized licensed use limited to: George Mason University. Downloaded on May 19,2022 at 16:31:56 UTC from IEEE Xplore. Restrictions apply.

@ð@y2=@x1Þ=@x2 þ 3� x1 � y1 etc. In the case of the sample
equation @ðy1 þ x1 � x1Þ=@x1 ¼ 3� x2, y1 þ x1 � x1,
@ðy1 þ x1 � x1Þ=@x1 and 3� x2 are all valid terms.

Example 3 (Transcendental Equation Grammar G3).
Suppose VG is a set of variables, TG is the union set of
finite decimal numbers R, X ¼ fx1; . . . ; xng for some n, a
set of unary and binary transcendental functions F ¼
f sin ; cos ; exp; log e; log n; ĝ and some fixed set of opera-
tions O ¼ O1 [O2 ¼ fþ;�;�;�; ðÞg. In this case, the CFG
includes the following production rules:

SG ! V ¼ V

V ! t8t 2 R [X
V ! fV 8f 2 F1

V ! VfV 8f 2 F2

V ! V þ V

V ! V � V

V ! V � V

V ! V � V

V ! ðV Þ:

Note that F ¼ F1 [F2, F1 is the set of unary transcenden-
tal functions (sin ; cos ; exp etc.), while F2 is for binary
transcendental functions (e.g., f̂ gÞ. This grammar
accepts all transcendental equations that involve tran-
scendental functions in the set F. The set of equations
accepted by this grammar includes sin x1 ¼ expð2þ
x3 ð̂x2 � 1ÞÞ and x1 ¼ log eðx2 � x2 þ 1Þ � 2� x3 þ 1 etc.
For the sample equation sinx1 ¼ expð2þ x3 ð̂x2 � 1ÞÞ,
some instances of terms are x3 ð̂x2 � 1Þ and sinx1.

It is important to note that FEE currently contains only
these three grammars. However, grammars for other types
of equational forms can easily be added in a production ver-
sion of such a system. We now introduce edit operations
that modify equations.

Definition 2 (Edit Operator). An edit operator r is a map-
ping from G?

to G?
such that for all s 2 G?

, rðsÞ 2 G?
is identi-

cal to s in all places except one, i.e. if s ¼ u1 . . .um and
rðsÞ ¼ v1 . . . vm, then it is the case that for all but one 1 � i �
m, ui ¼ vi.

We assume that the FEE framework is given an arbitrary
but fixed set of edit operators. In our examples, we will
assume a single family of edit operators — but we empha-
size that this is just one example of the types of edit opera-
tors used in FEE. In our definitions, we assume that TG is
enumerated as t1; . . . ; tk in some arbitrary but fixed order.

Definition 3 (Edit Operator r). The edit operator rti;j;trðsÞ
replaces the j’th occurrences of ti in s by tr.

Though this may seem to be just one edit operator, it is an
exceedingly powerful one as it is parametrized by 3 parame-
ters i; j; r.

Example 4. Let us return to Example 1 and let s be the
equation: x1 ¼ 3� x2 � 4� x3 þ 5� x4 � x4.

The result of applying the edit operator r3;1;8ðsÞ is the
equation x1 ¼ 8� x2 � 4� x3 þ 5� x4 � x4.

The result of applying the edit operator r�;2;þðsÞ is
x1 ¼ 3� x2 � 4þ x3 þ 5� x4 � x4.

We now illustrate the application of edit operators to dif-
ferential equations.

Example 5. Let us return to Example 2 and let s be the
equation @ðy1 þ x1 � x1Þ=@x1 ¼ 3� x2.

The result of applying the edit operator
r@=@ðx1Þ;1;@=@ðx3þ2ÞðsÞ is the equation @ðy1 þ x1 � x1Þ=@ðx3þ
2Þ ¼ 3� x2.

The result of applying the edit operator r�;2;�ðsÞ is the
equation @ðy1 þ x1 � x1Þ=@x1 ¼ 3� x2.

The above example only shows two possible edit opera-
tors for a simple differential equation. Of course, many
others are possible and FEE can work with any set of edit
operators that users may design. However, when designing
edit operators, one factor should be kept in mind: the @=@
operator needs to specify the variable whose derivative is
being taken.We now show the edit operators applied to tran-
scendental equations.

Example 6. Let us return to Example 3 and let s be the
equation sinx1 ¼ expð2þ x3 ð̂x2 � 1ÞÞ.

The result of the edit operator r ;̂1;þðsÞ is the equation
sin x1 ¼ expð2þ x3 þ ðx2 � 1ÞÞ.

The result of edit operator rexp;1;log e
ðsÞ is the equation

sin x1 ¼ log eð2þ x3 ð̂x2 � 1ÞÞ.
The above example only denotes two possible edit opera-

tors for a simple transcendental equation. While users can
design their own edit operators, one thing to note is that: if
ti is an operator, then tr should also be an operator taking
the same number of variables — otherwise a unary operator
may be replaced with a binary operator or vice-versa, result-
ing in equations that are not accepted by the CFG.

Definition 4 (Edit Sequence). An edit sequence is a finite
sequence of edit operations. The result of applying the
edit sequence e1; . . . ; em to an equation s is given by
emðem�1ð. . . e1ðsÞ . . .ÞÞ.

Suppose eh ¼ rth
i
;jh;thr

. The above edit sequence is said to be

singular iff for all 1 � u; v � m such that u 6¼ v, it is the case
that ðtui 6¼ tvi _ ju 6¼ jvÞ.
Informally speaking, a singular edit sequence never con-

tains two edits of the same terminal symbol. There is no loss
of generality in restricting interest to singular edit sequences
because if two edits eu; ev are such that ðtui ¼ tvi ^ ju ¼ jvÞ,
then the later of the two edits will generate the final result
which means that the first of the two edits in the sequence
can be deleted from the edit sequence without changing the
final result of applying the edit sequence.

Definition 5 (Cost Function). A cost function cost is a map-
ping from edit operations to the set Rþ of positive real numbers.

Cost functions can be applied to edit sequences in the obvi-
ous way by setting costðe1; . . . ; emÞ ¼ S

m
i¼1costðeiÞ.

The cost of an operation is intended to capture the visual
difference between equations before and after the manipu-
lation operation is applied. We would like an equation with
the operation applied to be as similar as possible to what it
was like before — otherwise, attackers might easily discover

XIONG ET AL.: GENERATING REALISTIC FAKE EQUATIONS IN ORDER TO REDUCE INTELLECTUAL PROPERTY THEFT 1437

Authorized licensed use limited to: George Mason University. Downloaded on May 19,2022 at 16:31:56 UTC from IEEE Xplore. Restrictions apply.

that the equation (and hence the document it is in) is fake.
Our FEE system seeks to minimize these costs, subject to
generating fake equations sufficiently semantically different
from the original.

Overall Goal (Informal). The overall goal of the FEE frame-
work is the following: given an input equation E, an integer
k � 1, a budget B > 0, and some “semantic constraints”,
find a set of k edit sequences es1; . . . ; esk such that
Sk
i¼1costðesiÞðEÞ � B (i.e., the budget constraint is satisfied)

and such that a given objective function is optimized.
However, we have thus far not defined two important

terms used in the above statement of the goal. First, every
equation has some semantics — for instance, the equation y ¼
2� xþ 3 has a semantics, namely it describes the straight line
of slope 2 passing through the point (0,3). We cannot replace
this equation with a “fake” equation that is syntactically
within the stated cost bounds if the fake equation has a seman-
tics that is dramatically different because an adversary would
be able to easily detect the fact that the fake equation is a fake.
However, a fake equation that uses the straight line y ¼
1:9� xþ 3:3, on the other hand, might be close enough
semantically to the equation y ¼ 2� xþ 3. In addition, we
want our systemof fake equations to be optimal in some sense.
This sense could include deviating sufficiently from the origi-
nal equation to be incorrect (so the adversary is faked out), but
at the same time being sufficiently similar to the original equa-
tion to not obviously be a fake. Thus, the “quality” of a poten-
tial set of fake equations needs to be evaluated in some way
via an objective function. These two points will be addressed
in the next section which will formally define the problem of
finding k fake equations as an optimization problem.

Example 7. Let us return to Example 4 with s being x1 ¼
3� x2 � 4� x3 þ 5� x4 � x4. Without loss of generality,
we assume that the cost of each edit operator is 1.

Then the cost of the edit sequence es ¼ hr3;1;8ðsÞ;
r�;2;þðsÞi is costðesÞ ¼ 2 and the resulting fake equation
is esðsÞ ¼ x1 ¼ 8� x2 � 4þ x3 þ 5� x4 � x4.

Example 8. Let us return to Example 5 with s being @ðy1 þ
x1 � x1Þ=@x1 ¼ 3� x2. Assume that the cost of editing dif-
ferential function is 2, otherwise 1.

Then the cost of the edit sequence es ¼
hr@=@ðx1Þ;1;@=@ðx3þ2ÞðsÞ; r�;2;�ðsÞi is 3 and the equation after
edition is @ðy1 þ x1 � x1Þ=@ðx3 þ 2Þ ¼ 3� x2.

Example 9. Let us return to Example 6 with s being sin x1 ¼
expð2þ x3 ð̂x2 � 1ÞÞ. Assume that the cost of editing ti 2
F is 2, otherwise 1.

Then the cost of the edit sequence es ¼ hr ;̂1;þðsÞ;
rexp;1;log e

ðsÞi is 4 and the new equation is sinx1 ¼ log e

ð2þ x3 þ ðx2 � 1ÞÞ.
The examples of three kinds of equations shown above

demonstrate how edit sequences can change an equation
with an associated cost. Costs are inputs (provided by the
user) to the FEE framework.

5 FEE ALGORITHM

Given an equation E, integer k > 0 and budget B, we have
designed an iterative algorithm to find fake equations one
by one as shown in Algorithm 1.

FEE uses the two sets FE and ES respectively to store
the generated fake equations and corresponding edit
sequences (Line 1). FEE then proceeds iteratively till it has
found the desired number (k) of fake equations. In each iter-
ation, it formulates an optimization problem whose mini-
mal cost solution returns an edit sequence es =2 ES (Line 3).
If this solution has a cost that fits within the overall budget,
then it is added to the set of fake equations FE and the cor-
responding edit sequence is added to ES. Thus, we solve
FEE½OPT� repeatedly until k fake equations are generated
or the budget B is exhausted (Lines 2 - 8).

FEE ’s Run-time. The run time of Algorithm 1 is OðkTP Þ,
where k is the desired number of fake equations and TP is
the time required to solve FEE½OPT�. We will discuss TP

shortly.
In the rest of this section, we focus on the formulation of

the optimization problem FEE½OPT� which lies at the very
heart of the FEE algorithm.

Algorithm 1. FEE Framework Algorithm

Input: E, k, B
Output: FE

1 ES; FS ; // Initial set of edit sequences ES and

fake equations FE ;
2 while jESj < k do
3 es; costðesÞ Solve FEE½OPT�// Get the solution es

with minimum costðesÞ by solvingFEE½OPT� ;
4 if costðesÞ þP

es02ES costðes0Þ � B then
5 ES ES [fesg; FE FE [fesðEÞg
6 else
7 Print “Budget not sufficient to generate k fake

equations!”
8 break

5.1 FEE½OPT� Optimization Problem Formulation
and the FEE-FAST Algorithm

Recall from the definition of an edit operator rti;j;tr on an
equation E that ti and tr are both from the finite set TG and
E is treated as a fixed-length string. Therefore, for any equa-
tion E that we wish to generate fakes for, there exists a set
QðEÞ of edit operators. When E is clear from context, we
will write Q instead of QðEÞ.

We are interested in only singular edit sequences, i.e., for
all rti;j;tr 2 Q with identical ðti; jÞ values, at most one of them
gets used in any edit sequence es. This assumption leads to
no loss of generality. SupposeQ ¼ fQti;jg, where eachQti;j ¼
frti;j;trg is the set of edit operators for ðti; jÞ 2 E. Thus, an edit
sequence es can be represented as a vector es ¼ fkti;jgðti;jÞ2E ,
where kti;j is an integer in the interval ½0; jQti;jj�. When kti;j ¼
0, es does not change ðti; jÞ. Otherwise, it uses the kti;jth ele-
ment of the setQti;j.

The goal of solving the optimization problem FEE½OPT�
is to find the best edit sequence es =2 ES while minimizing
costðesÞ.

Before formally writing down the optimization problem
FEE½OPT�, we note that we wish to generate fake equations
that will deceive the adversary. However, thus far, the
notion of edit operators and edit sequences do not consider
the semantics of the equations. If we ignore the semantics of
the equation E for which we are generating k fake equations

1438 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 19, NO. 3, MAY/JUNE 2022

Authorized licensed use limited to: George Mason University. Downloaded on May 19,2022 at 16:31:56 UTC from IEEE Xplore. Restrictions apply.

fe1; . . . ; fek, it may become very easy for an adversary to
infer that fe1; . . . ; fek are fake. For instance, suppose we
wish to generate just one fake version of the equation y ¼
2� xþ 3: Replacing this with the equation y ¼ 2̂xþ 3 may
be obtainable with a valid edit sequence, but because this
equation’s semantics is dramatically different from that of
the original, this may be easily detectable to an adversary.

Thus, the optimization problem needs to describe a set of
constraints that would achieve a user-specified desired level
of deception of the adversary and we describe some of these
constraints below.

1) Constraints pertaining to universal truths,Ctru: These are
constraints which examine whether any variable in
the equation contains any well-known phenomenon
and pertain to information from “universal truths” in
common knowledge. For example, if log 2� x1 with
x1 representing themass of an object is in the equation
E, then there is a corresponding universal truth con-
straint which should eliminate ess that would gener-
ate fake equations with components like log � 2� x1.
Universal truth constraints are also used to ensure
that manipulated equations continue to maintain the
unit consistency in both sides of the equation. For
example, if the left hand side of the equation is a mass
value in kilograms, the right side should alsomaintain
the same unit. We denote the set of ess that violate the
universal truth asES �tru.

2) Constraints pertaining to the form of an equation Cnat:
An original equation can be one of many types (e.g.,
polynomial, differential or transcendental). This con-
straint specifies whether the nature of the original
equation should be maintained. These constraints
can be taken into consideration while generating the
set of edit operators Q.

3) Constraints pertaining to metrics in model hypothesis,
Chyp: In the case where the original equation is a
model fitted on some given/inferrable dataset, the
hypothesis ’ðEÞ (e.g., t� test) might be discussed.
The user may require that the new equation esðEÞ
also satisfies the hypothesis, i.e., ’ðesðEÞÞ � i’, where
i’ is a corresponding threshold (e.g., 5 percent signifi-
cance t� test value).

4) Constraints pertaining to model metrics, Cmet: In the
case that the original equation is a model fitted on
some given/inferrable dataset, themodelmetric fðEÞ
(e.g., the coefficient of determination R2) should not
vary dramatically between the original and the fake
(s), i.e., jfðEÞ � fðesðEÞÞj � if, for some if � 0. When
if ¼ 0, the fake model would be required to have the
same value of the associated metric (e.g., coefficient
of determination) as the original model. In practice,
the value of the threshold if that the metric can devi-
ate bywill be set as a constraint by the system security
officer whomanages the FEE framework.

5) Constraints pertaining to enough distance on model pre-
diction,Cprd:When the original equation is amodel fit-
ted on some given/inferrable dataset, we would like
to protect the model prediction on the whole variable
space so that an adversarywho uses the fake equation
receives erroneous results. We can therefore define a

distance function DprdðE; esðEÞÞ between the predic-
tions of the two equations E; esðEÞ and require the
distance to fall within a user-specified interval ½L;U �
in order to ensure that the manipulated equation is
distinct from the original one, but still within a suit-
able user-specified range.

6) Constraints pertaining to consistency with other occur-
rences of equation terms in the context, Ccss: While we
assume that only one equation is manipulated at a
time in this paper, a real world document may con-
tain multiple equations that depend upon each other.
We must therefore examine other occurrences of the
terms ŝ in the equation E and try to keep the number
of times there is an inconsistency with other equa-
tions within a given user-specified range that makes
it hard for the adversary to identify the equation
esðEÞ as fake. It is also possible to set this number to
0. We define NvioðŝÞ, the violation frequency of a
term to the number of other occurrences of this term
in the context if it is influenced by the edit sequence,
and set a max numberNmax

vio for the equation esðEÞ.
We are now finally in a position to present the formula-

tion of the optimization problem FEE½OPT�
FEE½OPT� min

es =2 ES
costðesÞ (1)

s.t. =2 ES �tru (2)

’ðesðEÞÞ � i’ (3)

jfðEÞ � fðesðEÞÞj � if (4)

DprdðE; esðEÞÞ 2 ½L;U � (5)
X

ŝvE:9kti;j > 0;8ðti;jÞ2ŝ
NvioðŝÞ � Nmax

vio : (6)

Note that ES �tru denotes the set of ess that violate the univer-
sal truths of the equation E. The 9kti;j > 0; 8ðti; jÞ 2 ŝ in the
last constraint means that the term has been modified by
some edit operator of es.

In order to solveFEE½OPT�, let us analyze the problem step
by step. First, this problem has a set of integer variables, i.e.,
the kti;js in es indicatingwhether a given edit operator ðti; jÞ is
modified and if yes, which tr is used to replace it. Suppose we
define a constant cost for each edit operator in Q. Then the
objective function would be linear w.r.t. the costs of es. For
constraints pertaining to universal truths (Equation (2)), it is rea-
sonable to assume that there are a finite number of natural
truths for equation E. We therefore need to derive the set
ES �tru, whichmeans that wemust enumerate and check all the
possible edit sequences es =2 ES. If the equation E consists of
Nt editable pairs ðti; jÞ (Nt � jQj), the complexity of deriving
ES �tru is at leastOð2NtÞ and atmostOð2jQjÞ. When the equation
E is a regression model, in order to handle constraints (3), (4)
and (5) , we need to first transform equation esðEÞ from the string
representation to a mathematical representation, such that the
required calculations (w.r.t. hypothesis, metrics and predic-
tions) can be performed. However, to the best of our knowl-
edge, there is no direct transformation for equations from a
string expression to a mathematical expression. Instead, what
we can do is to design a function to realize it. This limitation
makes it impossible to directly solve the problem using

XIONG ET AL.: GENERATING REALISTIC FAKE EQUATIONS IN ORDER TO REDUCE INTELLECTUAL PROPERTY THEFT 1439

Authorized licensed use limited to: George Mason University. Downloaded on May 19,2022 at 16:31:56 UTC from IEEE Xplore. Restrictions apply.

existing solvers and algorithms when constraints (3)—(5)
exist. Finally, for constraint (6), we first enumerate the set of
terms of equation E, get the number of other occurrences for
each termwith the document context, then compute the num-
ber of violations for each edit sequence and compare it with
the threshold.

Algorithm 2. FEE-FAST Approximate Algorithm for
Solving FEE½OPT�
Input: E;ES;Q
Output: es
1 ES0 ; // Initialize the set of candidate edit

sequences

2 for each es =2 ES do
3 if esðEÞ =2 ES �tru then
4 ES0 ES0 [fesg
5 ES0 fes01; . . . ; es0jES0 jg such that costðes01Þ � 	 	 	 �
costðes0jES0 jÞ // Sort elements of ES0 inascending
orderaccording to their costs

6 es ¼ ½ � // Initialize the solution as an empty

vector

7 for l ¼ 1 : jES0j do // Loop starts from the first

element

8 Get the mathematical formulation of es0lðEÞ
9 if es0lðEÞ satisfies constraints (3), (4), (5) and (6) then
10 es es0l
11 break
12 if es ¼ ½ � then
13 Print “No eligible edit sequence exists!”

We now propose Algorithm 2 to solve the problem P. The
current setES of selected edit sequences and the setQ of edit
operators are inputs for the generation of the output es, i.e.,
the best eligible (unused) edit sequence with the lowest cost.
First, the set ES0 of candidate edit sequences is initialized to
the empty set (Line 1). We then add each edit sequence that
obeys the universal truths to ES0 (Lines 2 - 4).3 The elements
in ES0 are then sorted in ascending order according to their
costs (Line 5). We then initialize the output es as an empty
vector (Line 6) and check the candidate edit sequences inES0

one by one (Lines 7 - 11) until a satisfying one is found (Lines
9 - 11) or all candidates are found to be ineligible (Lines 12 -
13). Note that the cost function costð	Þ is called only in Line 5
— hence the correctness of our algorithm is not affected by
the complexity (or non-linearity) of the cost function. How-
ever the run-time could be affected because costð	Þ is not lim-
ited at all in what it can be and hence a subroutine
implementing it could, in theory, be expensive.

Run-Time of FEE-FAST . The run time of Algorithm 2 is
OðjES0jÞ, which means it depends on the number of remain-
ing eligible edit sequences. Users may use additional steps
to further constrain jES0j in practice.

While the formulation of FEE½OPT� can vary a great deal
for different applications, the proposed framework can
always be adapted according to user specifications. In the
next section, we demonstrate how to apply FEE framework

under 3 distinct realistic circumstances and conduct a
detailed human evaluation on 20 different documents.

6 EXPERIMENTS

We collected a set of 20 patents ranging over diverse areas
that contained different kinds of equations. We then used
the FEE framework to generate 10 fake versions for one
equation from each document. We then invited a panel of
50 human subjects to identify the original correct equation.
Thus, each human subject was given 20 tasks with each task
containing 11 versions (10 fake, 1 real) of an equation.

To apply FEE on a document with a specific equation,
the process includes following steps:

Step 1 Decide the content of set TG and the initial set of
edit operators Q;

Step 2 Check the constraints presented in Section 5.1, reduce
the setQ and get constraints in the FEE½OPT� optimi-
zation problem;

Step 3 Customize the hyper-parameters if needed, other-
wise use the default values;

Step 4 Run Algorithms 1 and 2 to generate the set FE of
fake equations.

While Steps 1 and 2 require human inputs, Steps 3 and 4
are fully automated. Note that the parameter setting in Step 3
is flexible as FEE system users can also define their own
parameters. Sections 6.1 and 6.2 demonstrate the process and
result of applying FEE each of the above steps for 2 represen-
tative documentswith 2 different equations.

6.1 Linear Equation Manipulation

[8] presents a multiple linear regression model to estimate
the productivity of construction (i.e., building) operations
that use concrete. The linear regression model is fitted on a
set of data collected from a major civil engineering project.
The authors present some statistics for the data, as well as
hypotheses and metrics associated with their final model.
We select the linear equation E they use in their paper

Pactual ¼1:31Tp þ 1:75Va þ 0:56Tn

þ 0:59W � 0:01Ct þ 0:37Ln � 6:95;

and try to generate fake versions of it.
Step 1. To start using FEE, we must first decide TG ¼

R [O [X of the grammar for this equation. Let ~c ¼
fc1; . . . ; c7g denote the coefficient vector in equation E. Con-
sidering that coefficients in~c are all 2-decimal positive num-
bers, we set R as the set of all 2-decimal non-negative
numbers with upper bound maxici þ s~c ¼ 9:36 and lower
bound maxð0;minici � s~cÞ ¼ 0:00, where s~c is the standard
deviation of~c. The reason for setting these bounds is to limit
how the coefficients are manipulated so that the fake equa-
tions will not have unreasonably complex coefficients. The
operators are set to fþ;�;�g, O as these are the ones that
appear in the equation. Furthermore, X ¼ fPactual; Tp; Va;
Tn;W;Ct; Lng. To ensure rti;j;trðEÞ is still an equation accepted
by the grammar, the initial setQ of edit operators is

Q ¼ f rti;j;tr : ti 6¼ tr & ð ti; tr 2 O jj ti; tr 2 R [X Þ g:
3. In case the number of valid edit sequences is enormous, enumer-

ating the set ES0 is unrealistic. We then instead use genetic approaches
to generate edit sequences starting from the ones with lower costs.

1440 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 19, NO. 3, MAY/JUNE 2022

Authorized licensed use limited to: George Mason University. Downloaded on May 19,2022 at 16:31:56 UTC from IEEE Xplore. Restrictions apply.

Step 2. Check each constraint presented in Section 5.1.
The discussion of each constraint is listed below.

1) Although all the elements in X are supposed to be
positive values, there is no need for universal truth
constraints because the edit operators will not lead to
any results with violations to these universal truths.

2) For this example, supposewewould like tomaintain a
linear model as this is mentioned in the context of the
document. In this case, we only modify the coeffi-
cients and the operators þ;�. When a coefficient is
changed to 0, it means the corresponding variable is
not considered in the linearmodel. Thus,Q is updated
as follows:

Q¼f rti;j;tr : ti 6¼ tr & ðti; tr 2 fþ;�g jj ti; tr 2 RÞg:

Note that the size of Q is 9377 � 27.
3) t� test and F� test results are discussed in the

paper. To add corresponding constraints for these
hypothesis, we first generate synthetic data used
for model fitting with the statistics provided in
the document (details in Appendix A, which can
be found on the Computer Society Digital Library
at http://doi.ieeecomputersociety.org/10.1109/
TDSC.2020.3038132), then set corresponding con-
straints for them.

4) As in the case of constraint 3, we set constraints for
model metrics R2 with synthetic data.

5) We derive a reasonable interval for each indepen-
dent variable in X� fPactualg, then sample 1M points
in the united 6� dimensional space and evaluate the
difference of model predictions on them.

6) The set of terms of the original equation E that occur
in the context of the document is empty.

Step 3. We set the cost of rti;j;tr ¼ jti � trj while ti; tr 2 R;
maxt1;t22Rjt1 � t2j if ti; tr 2 O. The intuition is that (1) a larger
difference in the value of a coefficient increases the amount of
visual difference and (2) changing the operator basically
changes the relationship between the independent variable
and Pactual, thus it can be more significant than changing the
value of a coefficient. Our goal is to generate k ¼ 10 fake equa-
tions with budgetB ¼ 60. The threshold i’ is tð0:025; 192Þ and
F ð0:01; 8; 192Þ respectively for t� test and F� test; if ¼ 0:03
for R2. We try different values for L and U . Distance function
Dprd takes the sum of absolute distance of predictions on gen-
erated data points.

Step 4. We used R to develop the algorithm. Considering
that the variable space is enormous, instead of generate and
rank the set ES0 (Lines 1 to 5 of Algorithm 2), we directly
start searching from edit sequences with smaller costs.

6.1.1 Generated Fakes

We generated 10 fake equations as shown in Table 1 — we
only show the right hand side of the equations as all the left
hand sides are the same. The R2 of all generated equations
is in [0.769,0.841] and the cost varies from 0.5 to 8.21.

6.2 Differential Equation Manipulation

[7] models gene expression using differential equations. This
paper includes analytical discussion rather than statistical
analysis for its equations. We take one differential equation
as the targetE for whichwewish to generate fakes

d2r

dt2
¼ ð�CUC�1 � V Þ dr

dt
þ ð�CUC�1V þ CLÞr:

Step 1. We extract all the notations related to the equation
E to get the set TG ¼ R [O [X. The current coefficients in E
are all 1 and we get R ¼ f1; 2; 3g; O ¼ fþ;�;�; d=d; �1; Tg,
where �1; T are inverse and transposition operators for
matrices; X ¼ ft;~r;~p;~s;~x; ~�; L; V; U;C;Mg. To ensure that
fake equations are accepted by the grammar and still remain
syntactically valid differential equations, we initialize

Q ¼ f rti;j;tr : ti 6¼ tr &

ðti; tr 2 R [X jj
ti; tr 2 O1 ¼ f �1; Tg jj
ti; tr 2 O2 ¼ fd=d;þ;�;�g Þ g:

Step 2. Constraints 3 to 5 are not applicable. Other con-
straints are:

1. The equation E involves a matrix, so we need to
keep the dimension of the matrices consistent. From
the document we get: vectors ~r;~p;~s are n� dimen-
sional, ~x; ~� are 2n� dimensional, matrices L; V; U; C
are n� n� dimensional and M is 2n� 2n� dimen-
sional. Thus FEE should ensure that the dimension
of both sides of E is the same. To achieve this, we
build a function to check this for esðEÞ.

TABLE 1
Right Hand Sides of Fake Equations With Model Metrics for Section 6.1

Fake Equation R2 F -stat Distance Cost Cost to R2

2.3924TP +0.0511Va -0.0796Tn +0.0394Ct -0.2651W -0.2008Ln +5.0218 0.840 170.525 114.253 0.50 1.68
1.7569TP+0.0561Va-0.1140Tn -0.0193Ct-0.2434W+ 0.3196Ln+ 8.8719 0.833 162.280 107.551 1.53 0.54
2.3150TP +0.0505Va -0.0723Tn +0.0300Ct -0.0079W -0.1714Ln +4.9161 0.841 172.240 110.632 4.96 0.17
2.3250TP +0.0525Va -0.0713Tn +0.0320Ct -0.0081W -0.1624Ln +4.9161 0.841 172.240 113.632 5.04 0.17
1.7456TP+0.0577Va-0.164Tn -0.0221Ct-0.2554W+ 0.3196Ln+ 8.8719 0.833 164.270 109.591 5.20 0.16
1.8480TP+ 0.0563Va -0.0982Tn-0.0115Ct -0.0467W +0.1550Ln+7.8201 0.835 163.130 105.664 5.36 0.15
3.6712TP +0.0181Va+0.1642Tn+ 0.1373Ct +0.0050W -1.4549Ln -1.6103 0.769 106.830 124.24 6.18 0.12
2.5871TP +0.0382Va+0.0352Tn +0.0516Ct+0.0173W -0.5264Ln +3.7194 0.837 166.922 101.545 7.45 0.11
1.5208TP +0.0594Va -0.1411Tn -0.0339Ct -0.6544W+0.5576Ln+ 11.0711 0.792 120.601 153.775 7.74 0.10
2.3224TP +0.0512Va -0.0768Tn +0.0344Ct -0.2851W -0.2008Ln +5.0218 0.840 169.525 109.253 8.21 0.11

“Pactual ¼” is the left hand side of all the equations and hence is not shown explicity in the table.

XIONG ET AL.: GENERATING REALISTIC FAKE EQUATIONS IN ORDER TO REDUCE INTELLECTUAL PROPERTY THEFT 1441

Authorized licensed use limited to: George Mason University. Downloaded on May 19,2022 at 16:31:56 UTC from IEEE Xplore. Restrictions apply.

http://doi.ieeecomputersociety.org/10.1109/TDSC.2020.3038132
http://doi.ieeecomputersociety.org/10.1109/TDSC.2020.3038132

2. To ensure that the generated fake equation is still a
differential equation, we must ensure that at least one
differential operator remains in place after the edit. This
can be achieved by using the constraint 9kd=d;j ¼ 0.
There is no need to update Q.

3. The set of terms with non-zero number of other
occurrences are: fCUC�1;�CUC�1 � V; CL;C�1V;
ð�CUC�1V þ CLÞ~r; d2r

dt2
; ð�CUC�1 � V Þ drdt þ ð�CUC�1Vþ

CLÞrg.
Step 3. We set the cost for all edit operators to the same

value 1 and generate k ¼ 10 fake equations with budget B ¼
50. The NvioðŝÞ value for each term is 2,1,2,3,1,1,1 respec-
tively. Nmax

vio is set as 10.
Step 4. We use Python to develop the algorithms and find

eligible fake equations.

6.2.1 Generated Fakes

The FEE framework generated the 10 fake equations shown
in Table 2. The cost varies from 3 to 6. The corresponding
edit sequences are also listed in the table.

6.3 Human Evaluation

As mentioned earlier, we selected 20 technical documents
on diverse topics. We selected one equation from each docu-
ment as the target equation for manipulation. The equation
length (which is denoted by the number of editable compo-
nents in the equation) varies from 8 to 34. We used FEE to
generate 10 fake equations per equation which were then
used to generate 10 fake documents. Thus, each of the fake
documents had exactly one fake equation in it — and the
subjects were told that. This gives them a potential advan-
tage in detecting fakes. For each original/fake document,
we show each subject 3 pages in all: the page on which the
equation occurs together with the immediately preceding
and immediately succeeding page. This gives the human
subject some context. Note that showing 3 pages surrounding
an equation biases the experiment in favor of the adversary by pro-
viding him very valuable context in the form of text that the FEE
algorithm does not currently consider to modify.4

Our experiment involves 50workers onAmazonMechan-
ical Turk (MTurk), all of whom are required to have a Mas-
ter’s degree or higher from the United States. Each worker is
asked to answer 20 questions in a randomized order. Each
question has 11 randomized choices and each choice is a
3-page document. Exactly 1 of the 11 choices is the original
document. All workers were told that only one equation in a
fake document is fake (this is a tougher test for our FEE sys-
tem because the subjects know that they only need to find
one fake equation) and they are asked to select the document
they think is most likely to be fake, 2ndmost likely to be fake,
and 3rd most likely. We name these choices the 1st, 2nd and
3rd choice respectively.

Deception Rate of Hit@1. We define the Deception Rate as
the probability that the original document is not discovered
as the 1st choice when it is mixed with 10 generated fake
versions. On average, this deception rate is 88.6 percent.

Distribution of Hit@1. Fig. 2 shows the distribution of
Hit@1. For each human subject, we first calculate Hit@1 as
the number of times that the original document was selected
as their 1st choice. Hit@1 is a number between 0 through 20.
We then plot Fig. 2 with the above data. The x-axis shows
the number of documents (0 through 20) and the y-axis
shows the portion of workers whose 1st choice correctly
identified that amount of original documents. It is shown
that Hit@1 varies from 0 to 10. We fit the distribution with a
normal distribution and draw the probability distribution
function (PDF) curve in red. The average value of Hit@1 is
2.28 with a standard deviation 2.03. This means that on
average, each worker was only able to correctly get 2.28 real
documents in 20 guesses.

Deception Rate of Hit@1þHit@2. We also looked at what
happened when we considered a worker’s guess to be cor-
rect if either his 1st or 2nd choice was correct. On average
and as expected (as we are more generous in accepting the
worker’s guess as correct in this case), the deception rate
decreases to 80.7 percent from 88.6 percent in the case of
Hit@1.

Distribution of Hit@1þHit@2. Fig. 3 shows the distribu-
tion of guesses by the 50 MTurk workers in the case when
we consider either their 1st or 2nd guess to be correct. In
this case, the number of correct selections varies from 0 to
12. The mean and standard deviation of Hit@1þHit@2 are
respectively 3.86 and 2.55.

TABLE 2
Fake Differential Equations With Their Corresponding Costs and Edit Sequences for Section 6.2

Fake Equation Edit Sequence Cost

d2r
dt2
¼ ð�CUC�1 � V �1Þ drdt þ ð�CUC�1 þ V þ CLÞ � r {rV;1;V�1 ; r�;6;þ; r�;8;�} 3

d2r
dt2
¼ ð�CUL� V Þ drdt þ ðCUC�1 þ V þ CLÞr {rC�1;1;C ; r�;3;þ; r�;6;þ} 4

d2r
dt2
¼ ð�CUC�1 � V Þ drdt þ ð�CUTV �1V þ ULÞr {rU;2;UT ; rC�1;2;V�1 ; rC;3;U } 4

� d2r
dt2
¼ ð�C þ UC�1 � V Þ drdt þ ð�CUC�1 � V þ CLÞ � r {rþ;1;�; r�;1;þ; r�;6;�; r�;8;�} 4

d2r
dt2
¼ ð�CUC�1 � V �1Þ d2p

dt2
þ ð�CUC�1V � CLÞr {rV;1;V�1 ; rþ;3;�; rdr

dt;1;
d2p

dt2

} 5

d2r
dt2
¼ ð�CUC�1 � V Þ drdt þ ð�C�1UTC�1 þ V þ C þ LÞ � r {rC;2;C�1 ; rU;2;UT ; r�;6;þ; r�;7;þ; r�;8;�} 5

d2r
dt2
¼ ð�C � UC�1 � L�1Þ drdt þ ð�L�1UC�1V þ CLÞr {rV;1;L�1 ; rC;2;L�1 ; r�;1;�} 5

d2r
dt2
¼ ð�CUU � V Þ drdt þ ð�CUCTV þ CUÞr {rC�1 ;1;U ; rL;1;U ; rC�1 ;2;CT } 5

d2r
dt2
¼ ð�CUC � V Þ d2s

dt2
þ ðC þ UC�1V þ CLÞr {rC�1 ;1;C ; rdr

dt;1;
d2s
dt2
; r�;4;þ; r�;3;þ} 6

d2r
dt2
¼ ð�V �1UC�1 � CÞ drdt þ ð�CU þ C�1V þ CV �1Þr {rC;1;V�1 ; rV;1;C ; rL;1;V�1 ; r�;5;þ} 6

4. Combining FEE with a very robust paradigm for generating fake
textual content such as the FORGE system [5] is an important next step
that we propose to study in future work.

1442 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 19, NO. 3, MAY/JUNE 2022

Authorized licensed use limited to: George Mason University. Downloaded on May 19,2022 at 16:31:56 UTC from IEEE Xplore. Restrictions apply.

Deception Rate ofHit@1þHit@2þHit@3.We also looked
at what happened when we considered a worker’s guess to
be correct if one of his top-3 choices turned out to be correct.
The deception rate now falls to 70.9 percent.

Distribution of Hit@1þHit@2þHit@3. Considering all
the top-3 choices (i.e., Hit@1þHit@2þHit@3), as shown
in Fig. 4, the mean number of documents uncovered under
this very generous (to the adversary) setting is 5.82 with a
standard deviation equal to 2.85.

From the analysis in the above 3 cases, we can conclude
that FEE is able to deceive most adversaries. Furthermore,
FEE will be able to do an even better job in deceiving the
adversary if some of the following steps are followed.

1) We use publicly accessible patents as the original
documents in the human evaluation and there is
nothing that stops MTurk workers who have full
access to the Internet from searching for the correct
answer on the Internet. In practice, our proposed
approach would most probably be used to protect
private documents where adversaries cannot carry
out such a search.

2) We only alter one equation for each document in the
experiments. In practice, an operational systemwould
generate fake equations and text simultaneously,
making it much harder for an adversary to find incon-
sistencies between the two.

3) In the experiments, we truncate 3-pages from patents
with dozens of pages and clearly tell the workers that
only one equation is different among different
choices. However, attackers in real-world scenarios

will need to check the complete text of all documents,
real and fake, and they will not know how many
equations (or howmuch of the text) has been faked.

4) Finally, nothing prevents us from generating more
than 10 fakes per original document. As the number
of fake documents goes up, the probability that the
adversary will be able to find the real one goes down.

Run-Time.All the fake equations in our experiments were
generated in under 5 seconds. As a consequence, we did not
run further run-time experiments as the fake equation gen-
eration process is clearly fast enough for practical use.

Limitations. Though we selected technical documents
from several different fields to generate fake equations, this
breadth of equations comes at a price. We were not able to
select experts in the specific areas of those equations to eval-
uate the quality of the fakes because selecting workers with
specialized areas of expertise (e.g., degrees in genetics) on
Amazon Mechanical Turk is not supported and is very chal-
lenging. It is, therefore, possible that the deception rates in
this paper will go down a bit if true experts in the discipline
of an equation are used for evaluation.

An Important Note. An alert reader might wonder how a
legitimate user would distinguish a real document from one
containing a fake equation. This problem has been solved in
the FORGE system [5] which is why we do not discuss it in
detail here. In a nutshell, it is possible to embed a message
authenticating code in every document, both real and fake.
An authorized user with a private key will be able to use his
private key with the code in a document to determine
whether the document is real or fake.

7 USAGE OF FEE AND NEXT STEPS

We conclude by noting the big picture underlying FEE.
A technical document d may contain diverse forms of

content including text, tables, equations, formulas, flow-
charts, diagrams, and more. Generating a fake version of d
involves not only generating fake versions of each of these
types of content, but also ensuring that they are combined
together well. In past work [5], we have developed methods
to generate fake versions of the textual part of d as well as
the tables in d [6]. This effort shows how to generate fake
versions of equations.

Future steps revolve around generating fake versions of
flowcharts and diagrams so that a comprehensive method
to generate fake documents exists.

Fig. 2. The number of original documents selected as the 1st choice.

Fig. 3. The number of original documents selected by the first 2 choices.

Fig. 4. The number of original documents selected by the first 3 choices.

XIONG ET AL.: GENERATING REALISTIC FAKE EQUATIONS IN ORDER TO REDUCE INTELLECTUAL PROPERTY THEFT 1443

Authorized licensed use limited to: George Mason University. Downloaded on May 19,2022 at 16:31:56 UTC from IEEE Xplore. Restrictions apply.

8 CONCLUSION

There has been considerable recent interest in addressing the
problemof intellectual property theft by automatically generat-
ingmultiple fake copies of every real document that an organi-
zation wishes to protect from IP thieves. This strategy imposes
a cost on the adversary as s/he now needs to figure out which
ofmany exfiltrated documents is real andwhich are fake.

Past work for the auto-generation of such fakes has focused
on the textual part of a document. However, technical docu-
ments have many constituent parts including text, tables,
equations, diagrams, and more. In this paper, we develop the
methods needed to automatically generatemultiple fake equa-
tions. Moreover, our FEE framework ensures that the seman-
tics of the original equation is close enough to the original to be
believable, yet sufficiently far enough to be likely to bewrong.

FEE uses a mechanism that iteratively solves an optimiza-
tion problem in each iteration. However, the optimization
problems solved by FEE are not traditional optimization
problems (e.g., integer linear programs, knapsack problems,
etc.). Rather, they involve a mix of numeric and logical con-
straints. We present a specialized algorithm, FEE-FAST, that
solves these non-traditional optimization problems within
each loop ofFEE.

We have tested FEE out with a panel of 50 human sub-
jects on 20 real world patents and shown that FEE has a
high rate of deception, even when the subjects are provided
some advantages when compared to FEE.

Limitation: we need to manually pre-process the con-
straints before feeding it to the FEE framework.

ACKNOWLEDGMENTS

This work was supported in part by the Office of Naval
Research under Grant Nos. N00014-18-1-2670, N00014-16-1-
2896, and N00014-20-1-2407; and in part by the Army
Research Office under Grant W911NF-13-1-0421.

REFERENCES

[1] M. M. R. Alavi Milani, S. Hosseinpour, and H. Pehlivan, “Rule-
based production of mathematical expressions,” Mathematics,
vol. 6, no. 11, 2018, Art. no. 254.

[2] F. �Alvaro, J.-A. S�anchez, and J.-M. Bened�ı, “Recognition of on-line
handwritten mathematical expressions using 2D stochastic con-
text-free grammars and hidden Markov models,” Pattern Recognit.
Lett., vol. 35, pp. 58–67, 2014.

[3] D. M. Bates and D. G. Watts, Nonlinear Regression Analysis and its
Applications, vol. 2. New York, NY, USA: Wiley, 1988.

[4] L. Bilge and T. Dumitraş, “Before we knew it: An empirical study
of zero-day attacks in the real world,” in Proc. ACM Conf. Comput.
Commun. Secur., 2012, pp. 833–844.

[5] T. Chakraborty, S. Jajodia, J. Katz, A. Picariello, G. Sperli, and
V. S. Subrahmanian, “FORGE: A fake online repository generation
engine for cyber deception,” IEEE Trans. Dependable Secure Comput.,
to be published, doi: 10.1109/TDSC.2019.2898661.

[6] H. Chen, S. Jajodia, J. Liu,N. Park, V. Sokolov, andV. Subrahmanian,
“FakeTables: Using GANs to generate functional dependency pre-
serving tables with bounded real data,” in Proc. 28th Int. Joint Conf.
Artif. Intell., 2019, pp. 2074–2080.

[7] T. Chen, H. L. He, and G. M. Church, “Modeling gene expression
with differential equations,” in Proc. Pacific Symp. Biocomput.,
1999, pp. 29–40.

[8] P. Dunlop and S. Smith, “Estimating key characteristics of the con-
crete delivery and placement process using linear regression analy-
sis,”Civil Eng. Environ. Syst., vol. 20, no. 4, pp. 273–290, Dec. 2003.

[9] C. A. Fowler and R. F. Nesbit, “Tactical deception in air-land
warfare,” J. Electron. Defense, vol. 18, no. 6, pp. 37–45, 1995.

[10] U. Garain and B. B. Chaudhuri, “Recognition of online handwrit-
ten mathematical expressions,” IEEE Trans. Syst., Man, Cybern. B,
Cybern., vol. 34, no. 6, pp. 2366–2376, Dec. 2004.

[11] J. E. Hopcroft and J. D. Ullman, Formal Languages and their Relation
to Automata. Addison-Wesley Longman Publishing, Jan 1, 1969.

[12] S. Jajodia et al., “A probabilistic logic of cyber deception,” IEEE
Trans. Inf. Forensics Security, vol. 12, no. 11, pp. 2532–2544,
Nov. 2017.

[13] P. Karuna, H. Purohit, R. Ganesan, and S. Jajodia, “Generating
hard to comprehend fake documents for defensive cyber
deception,” IEEE Intell. Syst., vol. 33, no. 5, pp. 16–25, Sep./Oct.
2018.

[14] D. Kushner, “Digital decoys [fake MP3 song files to deter
music pirating],” IEEE Spectr., vol. 40, no. 5, pp. 27–27, May
2003.

[15] C. L. Martin, “Military deception reconsidered,” Naval Postgraduate
School Monterey, CA, USA, 2008. [Online]. Available: https://
scholar.google.com/scholar?hl=en&as_sdt=0%2C46&q=Military
+deception+reconsidered&btnG=

[16] M. Mohammady, L. Wang, Y. Hong, H. Louafi, M. Pourzandi, and
M. Debbabi, “Preserving both privacy and utility in network trace
anonymization,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., 2018, pp. 459–474.

[17] N. Park, M. Mohammadi, K. Gorde, S. Jajodia, H. Park, and
Y. Kim, “Data synthesis based on generative adversarial networks,”
Proc. VLDBEndowment, vol. 11, no. 10, pp. 1071–1083, Jun. 2018.

[18] Y. Park and S. J. Stolfo, “Software decoys for insider threat,” in
Proc. 7th ACM Symp. Inf., Comput. Commun. Secur., 2012, pp. 93–94.

[19] A. Shabtai, Y. Elovici, and L. Rokach, A Survey of Data Leakage
Detection and Prevention Solutions. Berlin, Germany: Springer,
2012.

[20] B. Whitham, “Automating the generation of fake documents to
detect network intruders,” Int. J. Cyber-Secur. Digit. Forensics,
vol. 2, no. 1, 2013, Art. no. 103.

[21] B. Whitham, “Automating the generation of enticing text content
for high-interaction honeyfiles,” in Proc. 50th Hawaii Int. Conf.
Syst. Sci., 2017, pp. 6069–6078.

[22] B. Whitham, T. Turner, and L. Brown, “Automated processes for
evaluating the realism of high-interaction honeyfiles,” in Proc.
14th Eur. Conf. Cyber Warfare Secur., 2015, Art. no. 307.

[23] C. Yang, Z. Wang, X. Zhu, C. Huang, J. Shi, and D. Lin, “Pose
guided human video generation,” in Proc. Eur. Conf. Comput. Vis.,
2018, pp. 201–216.

[24] J. Yuill, M. Zappe, D. Denning, and F. Feer, “Honeyfiles: Decep-
tive files for intrusion detection,” in Proc. 5th Annu. IEEE SMC Inf.
Assurance Workshop, 2004, pp. 116–122.

Yanhai Xiong received the bachelor’s degree in
automation from the University of Science and
Technological of China, Hefei, China, and the PhD
degree in computer science and engineering from
Nanyang Technological University, Singapore.
She is a postdoc working with Dartmouth College,
since July, 2018. Her research interests include in
optimization, machine learning, cybersecurity, and
smart cities.

Giridhar Kaushik Ramachandran received the
bachelor of science (honors) degree in mathe-
matics and the master’s degree in business
administration from the Sri Sathya Sai Institute of
Higher Learning, Anantapur, Andhra Pradesh,
India, in 2012 and 2014, respectively. He is cur-
rently a doctoral researcher in information scien-
ces and technology at George Mason University.
He has more than four years of diverse experi-
ence as a data scientist in the fields of finance,
human resource management and education. He

is interested in the applications of machine learning, optimization and
statistics in cybersecurity, and health and social media.

1444 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 19, NO. 3, MAY/JUNE 2022

Authorized licensed use limited to: George Mason University. Downloaded on May 19,2022 at 16:31:56 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TDSC.2019.2898661
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C46&q=Military+deception+reconsidered&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C46&q=Military+deception+reconsidered&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C46&q=Military+deception+reconsidered&btnG=

Rajesh Ganesan received the MS degree in
industrial engineering, the MA degree in mathe-
matics, and the PhD degree in industrial engineer-
ing from the University of South Florida, Tampa,
Florida, in 2002, 2005, and 2005, respectively. He
is currently an associate professor of systems
engineering and operations research with George
Mason University, Fairfax, Virginia, where he is
with the Center for Secure Information Systems
and the Center for Air Transportation Systems
Research. His research interests include stochas-

tic optimization (approximate dynamic programming), bigdata analytics,
multiscale statistical data analysis using wavelets, and engineering edu-
cation. His research applications include cybersecurity, healthcare,
defense, air transportation, and nanomanufacturing. He is a senior
member of the Institution of Industrial Engineers and a member of the
American Society for Engineering Education, and INFORMS professional
organization.

Sushil Jajodia (Fellow, IEEE) received the PhD
degree from the University of Oregon, Eugene,
Oregon. He is a university professor, BDM interna-
tional professor, and the founding director of the
Center for Secure Information Systems, Volgenau
School of Engineering, George Mason University,
Fairfax, Virginia. He is also the director of the NSF
I/UCRC Center for Cybersecurity Analytics and
Automation (now in Phase II). Before coming to
Mason, he held permanent positions with the
National Science Foundation; Naval Research

Laboratory, Washington; and University of Missouri, Columbia. He has
also been a visiting professor with the University ofMilan, Sapienza Univer-
sity of Rome, Cambridge University, King’s College London, Paris Dau-
phine University, and Imperial College. His research interests include
security, privacy, databases, and distributed systems. He has authored or
coauthored seven books, edited 52 books and conference proceedings,
and published more than 500 technical papers in the refereed journals and
conference proceedings. Five of his books have been translated in Chi-
nese. He is also a holder of 23 patents. His current research sponsors are
the Army Research Office, Office of Naval Research, National Security
Agency, National Science Foundation, Northrop Grumman Corporation,
and Intelligent Automation, Inc. He received the 1996 IFIP TC 11 Kristian
Beckman Award, 2000 Volgenau School of Engineering Outstanding
Research Faculty Award, 2008 ACM SIGSAC Outstanding Contributions
Award, 2011 IFIP WG 11.3 Outstanding Research Contributions Award,
2015 ESORICS Outstanding Research Award, 2016 Federal Information
Systems Security Educators’ Association (FISSEA) Educator of the Year
Award, 2016 IEEE Computer Society Technical Achievement Award, and
2020 IEEEComputer SocietyW.WallaceMcDowell Award. He was recog-
nized for the most accepted papers at the 30th anniversary of the IEEE
Symposium on Security and Privacy. His h-index is 105 and Erdos number
is 2. Formore information please visit: http://csis.gmu.edu/jajodia

V. S. Subrahmanian is the Dartmouth College dis-
tinguished professor in cybersecurity, technology,
and society and director of the Institute for Security,
Technology, and Society at Dartmouth. He previ-
ously served as a professor of computer science
with the University of Maryland from 1989–2017
where he created and headed both the Lab for
Computational Cultural Dynamics and the Center
for Digital International Government. He also served
for more than six years as the director of the Univer-
sity of Maryland’s Institute for Advanced Computer

Studies. He is an expert on big data analytics including methods to analyze
text/geospatial/relational/social network data, learn behavioral models from
the data, forecast actions, and influence behaviors with applications to
cybersecurity and counterterrorism. He has written five books, edited ten,
and published more than 300 refereed articles. He is a fellow of the Ameri-
can Association for the Advancement of Science and the Association for the
Advancement of Artificial Intelligence and received numerous other honors
and awards. His work has been featured in numerous outlets such as the
Baltimore Sun, the Economist, Science, Nature, the Washington Post,
American Public Media. He serves on the editorial boards of numerous jour-
nals including the Science, the board of directors of the Development Gate-
way Foundation (set up by the World Bank), SentiMetrix, Inc., and on the
Research Advisory Board of Tata Consultancy Services. He previously
served onDARPA’s Executive Advisory Council on Advanced Logistics and
as an ad-hoc member of the US Air Force Science Advisory Board. For
more information please visit: http://home.cs.dartmouth.edu/ vs/

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

XIONG ET AL.: GENERATING REALISTIC FAKE EQUATIONS IN ORDER TO REDUCE INTELLECTUAL PROPERTY THEFT 1445

Authorized licensed use limited to: George Mason University. Downloaded on May 19,2022 at 16:31:56 UTC from IEEE Xplore. Restrictions apply.

http://csis.gmu.edu/jajodia
http://home.cs.dartmouth.edu/

