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Analytical functions that describe the spatial heterogeneity in polycrystalline me-

dia are highly desirable. These mathematically tractable descriptors can be readily

implemented in physical models of static and dynamic material behavior, including

wave propagation. This paper explores the suitability of von Kármán spatial corre-

lation functions (SCF) to describe polycrystalline media with a distribution of grain

sizes. The empirical two point statistics are compared to the von Kármán and other

commonly reported SCFs. The von Kármán function is shown to be more accurate

than the exponential function, and more tractable that the sum of exponentials form.

The impact of the SCF on wave propagation and scattering is studied by employing a

well-defined analytical model for attenuation. The attenuation varies by over a factor

of two for the aluminum case considered. These results provide preliminary insights

into the suitability of a closed-form von Kármán SCF to describe polycrystalline

media with increasingly complex microstructures.
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I. INTRODUCTION

Microstructure is known to directly impact the physical properties of heterogeneous ma-

terials. In general, the structure is characterized by simple metrics such as average grain

size and shape. However, these approaches fail to capture sufficient details to enable recon-

struction of the original microstructure. These intricate variations may also affect dynamic

parameters associated with wave propagation such as attenuation1 and nonlinearity.2 The

material microstructure can be more rigorously characterized by using n-point spatial cor-

relations. In their simplest form, one-point correlations capture the volume fractions of

constituent phases. A single order increase in complexity through two-point correlations,

the spatial distribution of heterogeneities in the microstructure can be captured. Most

importantly, these two-point correlations have proved useful in reconstructing the original

microstructure3, which is a critical step in design for performance optimization.4

Different approaches have been explored to obtain these spatial statistics. At the fore-

front of these efforts was Berryman5, who presented a digital image processing approach to

calculate one-, two- and three-point correlations. In more recent years, Kalidindi et al.6 have

significantly contributed to the identification of critical features from microstructural images

and their representation as spatial correlations. For example, Altschuh et al.7 explored data

science approaches for feature identification. As previously mentioned, these empirical rep-

resentations of the microstructure have shown to be critical in predicting properties and

performance.3,4,8 However, a gap in accurately connecting these efforts to other methods of

microstructure characterization remains.

More specifically, the nondestructive characterization of polycrystalline media through

ultrasonic methods has seen significant advances in recent years. For example, recent ad-

vances have linked ultrasonic attenuation to stress and strain in polycrystals.9 However,

most analytical models of ultrasonic attenuation and scattering, rely on mathematically

tractable functions to describe the propagation medium. Initial models of wave propagation

in polycrystalline media assumed an exponential form for the two point correlations (or spa-

tial correlation functions), which relied on Poisson statistics to describe the cord lengths.10

Later models enabled introduction of other analytical functions to represent the spatial

statistics11,12, but they still elected the exponential form given the simplicity of its power

spectrum. More recently, these models have been expanded to include a distribution of sizes
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through analytical functions1 while others have explored the use of synthetic polycrystals

to describe the spatial statistics in polycrystals with equiaxed13–16 and irregular17,18 grains.

However, comparisons to analytical models when using synthetic media rely on overdeter-

mined fitting functions to represent the empirically obtained spatial statistics. Tractable,

analytical forms of the two point spatial correlation function are still a significant gap, as

many inversion efforts still rely on simple parameters such as grain size.19,20

Here, we explore the use of a von Kármán spatial correlation function (SCF) to describe

the morphology of grains in polycrystalline media. The von Kármán SCF has been used in

geoscience to describe velocity inhomogeneities in the earth,21,22 a highly complex hetero-

geneous medium. However, its suitability to describe polycrystalline microstructures, such

as those found in metals, at ultrasonic frequencies has yet to be explored. The paper is or-

ganized as follows: Section II presents the theoretical framework for the spatial correlation

function beginning with the conventional exponential approach and the details of the von

Kármán option. In addition, a model for elastic wave attenuation is presented. Section III

evaluates the feasibility of the various correlation functions to describe the spatial statistics

of synthetic polycrystals with a distribution of grain sizes. Synthetic microstructures are

generated using DREAM.3D given the increased accuracy in representing grain structures

when compared to other tessellation approaches.23 The results are expanded to describe the

impact on longitudinal and shear ultrasonic attenuation when compared to other commonly

used analytical representations of the two point statistics.

II. THEORY

Heterogeneity in polycrystalline media can be described using statistical parameters per-

taining to the fluctuations from the mean response. For example, we may define δC as

the modulus fluctuations about the average elastic modulus 〈C〉 such that the covariance

function given by24

Λαβγδ
ijkl (x,x′) = 〈δCijkl (x) δCαβγδ (x

′)〉, (1)

contains all relevant statistical information regarding the inhomogeneity. Statistical homo-

geneity, where the covariance is dependent only on the distance between x and x′, r = x−x′,

is commonly assumed. Further, when the crystallites are randomly oriented, the spatial and
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tensorial components are decoupled, yielding

Λαβγδ
ijkl (r) = Ξαβγδ

ijkl W (r) , (2)

where Ξαβγδ
ijkl is the eighth-rank covariance of the elastic modulus tensor and W (r) is the

two point spatial correlation function (SCF), which gives a statistical measure of the spatial

scale of the heterogeneity. Here, the SCF denotes the probability that two points separated

by a distance r lie within the same crystallite (or grain). Empirically, this probability may

be defined as14

W (r) =
1

Np

Np
∑

n=1

I (xn, xn + r) (3)

where I equals 1 when positions xn and xn + r lie in the same grain and zero otherwise.

Modeling efforts of the medium’s response often necessitate analytical representations of the

heterogeneity. To this end, in Sec. IIA, we define mathematically tractable SCFs that may

be used to describe polycrystalline media. Then, in Sec. II B, the power spectral densities

of the SCFs are implemented to define the attenuation of said media.

A. Spatial Correlation Function

Statistical approaches enable us to treat heterogeneous media as a continuum. In the

geophysical literature, Earth heterogeneities are commonly described using the von Kármán

SCF25,26. This model describes the medium using two parameters as follows22

W (r) =
21−κ

Γ(κ)

( r

L

)κ

Kκ

( r

L

)

(4)

where Γ(κ) is the gamma function, Kκ is the modified Bessel function of the second kind

of order κ, L is the correlation length, related to the typical size of heterogeneities (or

grains in the polycrystalline case), and κ is the Hurst number (0 ≤ κ ≤ 1), related to the

“roughness” of the medium.27 With increasing Hurst number, von Kármán media display

smoother spatial variations. A value of κ = 0 corresponds to a smooth Euclidean field, while

κ = 1 represents a space-filling medium. Because the Hurst number is associated with the

fractal dimension of a stochastic field, it may be suitable for representing complex physical

features in polycrystalline microstructures.

A special case of Eq. (4) occurs when κ = 0.5,

W (r) = e−r/L. (5)
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This exponential form of the SCF was shown to be physically realizable by Torquato28,29

and is commonly employed to describe wave propagation in polycrystalline media given the

simplicity of its spectral representation, first shown by Stanke and Kino12. The exponential

SCF assumes the cord lengths describing the spatial statistics of the microstructure have

Poisson statistics. Further, this form of the SCF assumes that the microstructure can

be described by a single characteristic length, L. Others have attempted to capture the

microstructural complexities of polycrystals with a distribution of grain sizes by considering

a weighted sum of exponential functions as follows30

W (r) =

N
∑

i=1

Aie
−r/Li (6)

where Ai and Li are fitting coefficients of the measured two point statistics for a polycrystal

and N is the number of terms in the sum. Van Pamel et al.30 specify that individual

terms of the series do not hold physical meaning (e.g., the individual Ai coefficients may be

negative). However, physical constraints are imposed on the sum such that
∑N

i=1 Ai = 1.

Others have attempted to attribute physical meaning to the weighting coefficients by linking

to the volume fraction of the individual grain sizes1. Yet, least squares fitting of the resulting

integral expressions is challenging. In this paper, we evaluate the validity of the von Kármán,

exponential, and summed exponential correlation functions to describe the morphology of

polycrystalline media.

B. Ultrasonic Attenuation

Based on the theory of Weaver11, we may write the longitudinal and shear attenuation

in a polycrystalline medium as

αL = αLL + αLT ,

αT = αTT + αTL, (7)

respectively, where αij represent the contributions of longitudinal, L, and shear/transverse,

T , scattering modes. The first index corresponds to the incident wave, while the second
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index corresponds to the scattered wave mode. These contributions are explicitly given by

αLL =
k4
Lπ

4ρ2c4L

∫

η̃ (θps)L (θps) sin θpsdθps

αLT =
k4
Tπ

4ρ2c3LcT

∫

η̃ (θps) [M (θps)− L (θps)] sin θpsdθps

αTL =
k4
Lπ

8ρ2c3T cL

∫

η̃ (θps) [M (θps)− L (θps)] sin θpsdθps

αTT =
k4
Tπ

8ρ2c4T

∫

η̃ (θps) [N (θps)− 2M (θps) + L (θps)] sin θpsdθps (8)

where L, M, and N are related to the inner products of the covariance with the prop-

agation (k̂) and displacement (ê) directions (k̂′

αk̂δ ê
′

β êγ k̂
′

lk̂mê
′

j êkΞ
αδβγ
lmjk ). These terms were

explicitly defined by Kube and Turner31 for a statistically isotropic medium with crystallites

of arbitrary symmetries. Weaver’s11 derivation is employed herein as it accounts for spatial

variations in the microstructure through its use of an SCF. Unlike the solution presented by

Stanke and Kino12, Weaver ignores phase velocity dispersion to obtain explicit expressions

for the attenuation coefficients, limiting the applicability to the Rayleigh and stochastic fre-

quency regimes. Exceptions to the equivalency between Stanke and Kino12 and Weaver’s11

models were presented by Kube32.

The final term to define in Eq. (8) is the heterogeneity power spectrum, given by the

spatial Fourier transform of the SCFs defined in Sec. IIA. We first consider the power

spectrum for the von Kármán SCF,

η̃(k) =
π1/2Γ (κ + 3/2)L3

Γ(κ) (1 + k2L2)κ+3/2
, (9)

which for the exponential function, when κ = 0.5, simplifies to

η̃(k) =
L3

(1 + k2L2)2
. (10)

We may write this more generally as a function of the angle between the incident and

scattered waves θps as

η̃(θps) =
L3

π2 [1 + L2 (k2 + k′2 + 2kk′ cos θps)]
2 , (11)

where k and k′ are the wave numbers for the incident and scattered waves, respectively. The

von Kármán spectrum may be written analogously. Note that for the summed exponentials

SCF, the power spectrum may be written as a sum of Eq. (11) over all terms in the function.
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III. RESULTS

Microstructural complexity can take many forms in polycrystalline media. Here, the

applicability of the von Kármán SCF is tested on synthetic microstructures with varying

grain size distributions, known to impact the linear1 and nonlinear2 ultrasonic response of

polycrystals. First, the fitting error for the three analytical functions presented in Sec. IIA

is evaluated as a function of grain size distribution width. Then, the resulting correlation

lengths are compared to the spatial statistics for the corresponding microstructures. Fi-

nally, the different analytical fits are employed to calculate longitudinal and shear ultrasonic

attenuation and the resulting differences are discussed.

A. Synthetic Polycrystalline Microstructures

Four 1 mm3 volumes were generated in DREAM.3D23 through the Pennsylvania State

University’s Institute for Computational and Data Sciences’ Roar supercomputer using the

sample pipeline provided by Norouzian and Turner14. The input mean grain diameter was

30 µm and the standard deviation varied from 6 to 21 µm, expected to result in log-normal

distribution widths ranging from 0.25 < σ < 1. The output statistics for the grain size

distributions for each of the generated volumes are provided in Table I, where µ and σ are

the unbiased estimates of log-normal distribution parameters (i.e., the mean and standard

deviation of logarithmic values, respectively). Note that the last two cases did not strictly

follow a log-normal distribution because a large number of small grains were present to

ensure volume filling. Because the total volume of the synthetic microstructures was fixed,

the total number of grains decreased with increasing distribution width, σ. Sample cross

sections of each microstructure are given in Fig. 1.

FIG. 1. Sample 1 mm x 1 mm cross sections for synthetic polycrystalline microstructures with

increasing standard deviations of 6.87, 12.72, 16.74, and 20.59 from left to right.

A subroutine to calculate the SCF empirically was implemented in MATLAB (R2021b).

The microstructural data, along with the aforementioned statistics, was exported from
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TABLE I. Output statistics for the grain size distribution parameters for synthetic microstructures

generated using DREAM.3D.

µ σ Mean (µm) Standard Deviation (µm) Number of Grains

3.37 0.23 29.96 6.87 60905

3.36 0.41 31.41 12.72 37235

3.23 0.63 29.94 16.74 33221

3.07 0.87 29.01 20.59 26073

DREAM.3D as a 3D matrix where each voxel belonging to a given grain was assigned a

unique identifier. This designation enabled direct application of Eq. (3) where pairs of

points were randomly placed at increasing separation distances. The resulting empirical

SCFs are given in Fig. 2.

B. Spatial Correlation Function

Fitting parameters for each SCF in Sec. IIA were found using an unconstrained nonlin-

ear optimization in MATLAB (R2021b) set to a maximum of 109 iterations and function

evaluations. For the exponential and von Kármán SCFs, the initial guess for the correlation

length was a random integer between 0 and 30 µm, noting that the mean grain diameter for

all tested microstructures was below 32 µm and the correlation length for the exponential

fit was expected to be near the mean grain radius33. The initial guess for the Hurst number,

κ, was selected as a random number between 0 and 1, per the constraints of the SCF. Given

the limited number of fitting parameters for these two functions, the minimization solution

was unique, confirmed through 100 iterations of initial conditions. The resulting fits are

graphically depicted in Fig. 2. The minimization routine for the summed exponentials SCF

required additional constraints to obtain optimal fits. The initial guesses for the pseudo

correlation length arguments in the exponents were still constrained to be between 0 and

30 µm. The initial guess for the weighting factors were constrained between -1000 to 1000.

Given there are a total of 16 fitting parameters for an eight-term summed exponentials fit,

the minimization problem is ill posed. Therefore, through 100 iterations with arbitrary ini-

tial guesses, 100 distinct fits were obtained. The correlation lengths were then calculated as

the weighted sums of the exponents per Ref.34.
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As expected, the summed exponentials SCF provides the lowest fitting error of the empir-

ical data given the large number of fitting parameters, as shown in Figs. 2 and 3. However,

this function is highly dependent on the initial conditions used in the optimization routine,

particularly for the larger correlation distances, r. The error when using the von Kármán

correlation function is improved over the exponential case by nearly an order of magnitude

on average. This result is significant given that only one additional fitting parameter is

necessary and the fitting solution is unique. Overall, the error is practically independent of

distribution width with a slight minimum for a standard deviation ∼13 µm.

FIG. 2. Empirical spatial correlation functions (SCFs) for synthetic polycrystalline microstructures

with standard deviations of (a) 6.87, (b) 12.72, (c) 16.74, and (d) 20.59 µm with corresponding

function fits for exponential, von Kármán, and summed exponential analytical SCFs.

FIG. 3. Sum of squares error for analytical function fits of spatial statistics for various synthetic

polycrystalline media as a function of standard deviation. The errorbars for the summed exponen-

tial fit corresponds to the minimum and maximum error for 100 iterations of initial guesses for the

function fits.

As discussed in Sec. I, correlation length and parameters describing the two point statis-

tics of the microstructure are critical in predicting various material properties35. We compare

the fitting parameters for the various functions and analyze them relative to the grain size

statistics for each microstructure. The correlation length for the summed exponential fits is

calculated as the weighted sum of the exponents, as described by Huang et al34. First, note
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that as the distribution width increases, the correlation length proportionally increases for

all fitting functions, as shown in Fig. 4. Interestingly, the summed exponentials fits result in

correlation lengths practically identical to the single exponential case. Such finding is rele-

vant given the representation for the correlation length in this case has no physical basis. In

other words, although the fitting error is minimum for this function, the resulting correlation

length does not provide unique information about the microstructure morphology relative

to the single exponential function. The von Kármán correlation length was ∼5 µm lower

on average independent of distribution width. The second fitting parameter, κ, decreased

sharply as the standard deviation increased from 5 to 13 µm but remained relatively con-

stant thenceforth. Recall that the Hurst number represents the roughness of the medium,

with a κ = 1 corresponding to a smooth medium. Despite the microstructure with the

lowest standard deviation resulting in a larger total number of sharp grain boundaries, the

magnitude of the exponent suggests that the uniformity in the grain size can be treated as

smoother perturbations. As the standard deviation increases and the number of small grains

rises to ensure volume filling, the Hurst number sharply decreases. Although the number

of small grains continues to increase for the larger standard deviations, we hypothesize the

presence of the sharper perturbations is accounted for as soon as the grain size distribution

deviates from uniformity.

Next we consider the correlation lengths relative to the statistical parameters describing

the grain morphology. As expected, for the exponential fit, the correlation length is closest

to the mean grain radius (∼15 µm) for the smallest grain size distribution width (i.e., for the

microstructure with the most uniform grain size)12,33. It is important to note, however, that

this is also the distribution width with the greatest fitting error. The correlation lengths

quickly deviate from the mean grain radius as the distribution width increases. Therefore,

modeling of material response will be significantly impacted if the mean grain radius is

used as the correlation length for nonuniform distributions of sizes, as reported elsewhere1,2.

Other distribution parameters such as the median, mode, and volumetric mean as defined by

Arguelles and Turner1, were also evaluated to determine associations with the correlation

length, but none of them were predictive or strongly correlated. Coincidentally, the von

Kármán correlation length closely follows the standard deviation for each distribution width.

However, this finding is not expected to hold for other mean grain sizes or distribution

widths.
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FIG. 4. Correlation lengths and von Kármán coefficients for best fit solutions of analytical SCFs

to empirical data as a function of standard deviation.

C. Ultrasonic Attenuation

Using the analytical fits of the two point statistics, we calculated the attenuation for

statistically homogeneous polycrystals with the spatial characteristics obtained from the

synthetic polycrystals. In order to confirm that the results were independent of single

crystal anisotropy, the attenuation was calculated for two materials with highly different

cubic crystal anisotropy, aluminum and lithium. Because the results were nearly identical,

only the aluminum results are presented in this section, which were calculated assuming

c11 = 108, c12 = 62, c44 = 28.3 GPa, and ρ = 2700 kg/m3.

Figure 5 depicts the normalized longitudinal attenuation where L̄ represents the corre-

sponding correlation length for each fitted SCF. Most notably, for the widest distribution

given in Fig. 5(d), a number of the attenuation solutions have sudden drop-offs where the

attenuation values go negative. These results stem from the numerical instabilities in the

fitting procedure but are not identifiable simply by looking at the correlation function of the

resulting sum of squares error. One concern arises that these instabilities are only apparent

when a wide enough range of frequencies is considered. In other words, if the correlation

fit is not restricted for convergence, severe error in attenuation may result from seemingly

appropriate SCF fits.

FIG. 5. Normalized longitudinal attenuation for a statistically homogeneous, macroscopically

isotropic aluminum polycrystal with spatial statistics defined through synthetic polycrystalline

microstructures with standard deviations of (a) 6.87, (b) 12.72, (c) 16.74, and (d) 20.59 µm.
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In order to enable more quantitative comparison of attenuation, the ratio of attenuations

relative to the exponential case are given in Figs. 6 and 7, for longitudinal and shear

attenuation, respectively. First, we note that the deviation in the predicted attenuation

from the exponential function varies as a function of distribution width, with the sharpest

difference observed as the standard deviation in grain size increases from 6.87 to 12.72 µm.

For the longitudinal case in Fig. 6, the minimum difference occurs when kL̄ ∼ 2, independent

of distribution width, with two instances denoting coinciding values of attenuation for both

the von Kármán and summed exponential fits. As expected from the differences observed

in the SCF fits in Fig. 2, the attenuation using the summed exponentials fit shows the

greatest variation for the 12.72 µm standard deviation in Fig. 6(b). These differences are

most apparent at low kL̄ values, showing the impact of differences in the correlation function

at large r. The von Kármán and summed exponential functions display inverse behavior in

relation to the single exponential function, thus, emphasizing the importance of an accurate

representation for the SCF when calculating ultrasonic parameters.

FIG. 6. Longitudinal attenuation ratios when using von Kármán and summed exponential SCFs

relative to a single exponential fit for an aluminum polycrystal with grain size standard deviations

of (a) 6.87, (b) 12.72, (c) 16.74, and (d) 20.59 µm.

The results for the shear attenuation ratios are given in Fig. 7. Interestingly, there

is nearly no difference in the attenuation values in the stochastic regime when employing

the summed exponentials function relative to the single exponential. In addition, the von

Kármán function never coincides with the single exponential term, though the error is also

relatively constant in this frequency region. As with the longitudinal attenuation, the error

is greatest for the narrowest distribution, in accordance with the errors reported for the

SCF fits. It is important to note that in the Rayleigh regime, which is greatly relevant for

ultrasonic applications, the difference between the summed exponentials and von Kármán

functions for both longitudinal and shear attenuation can be nearly two-fold. It is imper-

ative that the absolute SCF is calculated in realistic materials to determine whether a two

12

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

00
91

52
1



parameter function, such as the von Kármán SCF, is suitable to represent the complexities

in the heterogeneity of these materials. This work represents a significant first step in this

analysis by considering the impact of SCF using realistic synthetic microstructures.

FIG. 7. Shear attenuation ratios when using von Kármán and summed exponential SCFs relative

to a single exponential fit for an aluminum polycrystal with grain size standard deviations of (a)

6.87, (b) 12.72, (c) 16.74, and (d) 20.59 µm.

IV. SUMMARY

Describing the microstructure of polycrystalline media through mathematically tractable

statistical models is equally desirable and challenging. By analyzing the accuracy of three an-

alytical spatial correlation functions, a critical evaluation of the suitability of these functions

to describe polycrystalline media was provided. In this article, synthetic microstructures

representative of real metallic polycrystals were generated using open source software. The

exact spatial statistics were calculated empirically for four volumes with increasingly wide

grain size distributions. Although the summed exponentials approach resulted in minimum

fitting error, the numerical instabilities associated with the ill-posed minimization problem

suggest more tractable approaches should be explored. To this end, the von Kármán function

improved the fit of the two point statistics by nearly an order of magnitude. Furthermore,

using different analytical functions to represent the two point statistics resulted in mea-

surable discrepancies in the calculated attenuation exceeding a factor of two. The impact

of the SCF on measurable ultrasonic parameters underscores the importance of accurately

characterizing polycrystalline microstructures and the challenges posed when seeking to use

said metrics as a nondestructive mean of characterization.
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