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Analytical functions that describe the spatial heterogeneity in polycrystalline me-
dia are highly desirable. These mathematically tractable descriptors can be readily
implemented in physical models of static and dynamic material behavior, including
wave propagation. This paper explores the suitability of von Kéarman spatial corre-
lation functions (SCF) to describe polycrystalline media with a distribution of grain
sizes. The empirical two point statistics are compared to the von Karman and other
commonly reported SCFs. The von Karman function is shown to be more accurate
than the exponential function, and more tractable that the sum of exponentials form.
The impact of the SCF on wave propagation and scattering is studied by employing a
well-defined analytical model for attenuation. The attenuation varies by over a factor
of two for the aluminum case considered. These results provide preliminary insights
into the suitability of a closed-form von Karman SCF to describe polycrystalline

media with increasingly complex microstructures.
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I. INTRODUCTION

Microstructure is known to directly impact the physical properties of heterogeneous ma-
terials. In general, the structure is characterized by simple metrics such as average grain
size and shape. However, these approaches fail to capture sufficient details to enable recon-
struction of the original microstructure. These intricate variations may also affect dynamic

1 and nonlinearity.? The

parameters associated with wave propagation such as attenuation
material microstructure can be more rigorously characterized by using n-point spatial cor-
relations. In their simplest form, one-point correlations capture the volume fractions of
constituent phases. A single order increase in complexity through two-point correlations,
the spatial distribution of heterogeneities in the microstructure can be captured. Most

importantly, these two-point correlations have proved useful in reconstructing the original

microstructure®, which is a critical step in design for performance optimization.*

Different approaches have been explored to obtain these spatial statistics. At the fore-
front of these efforts was Berryman®, who presented a digital image processing approach to
calculate one-, two- and three-point correlations. In more recent years, Kalidindi et al.® have
significantly contributed to the identification of critical features from microstructural images
and their representation as spatial correlations. For example, Altschuh et al.” explored data
science approaches for feature identification. As previously mentioned, these empirical rep-
resentations of the microstructure have shown to be critical in predicting properties and
performance.®4® However, a gap in accurately connecting these efforts to other methods of

microstructure characterization remains.

More specifically, the nondestructive characterization of polycrystalline media through
ultrasonic methods has seen significant advances in recent years. For example, recent ad-
vances have linked ultrasonic attenuation to stress and strain in polycrystals.” However,
most analytical models of ultrasonic attenuation and scattering, rely on mathematically
tractable functions to describe the propagation medium. Initial models of wave propagation
in polycrystalline media assumed an exponential form for the two point correlations (or spa-
tial correlation functions), which relied on Poisson statistics to describe the cord lengths.”
Later models enabled introduction of other analytical functions to represent the spatial
statistics''12, but they still elected the exponential form given the simplicity of its power

spectrum. More recently, these models have been expanded to include a distribution of sizes
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through analytical functions' while others have explored the use of synthetic polycrystals

d13716 17,18

to describe the spatial statistics in polycrystals with equiaxe and irregular grains.
However, comparisons to analytical models when using synthetic media rely on overdeter-
mined fitting functions to represent the empirically obtained spatial statistics. Tractable,
analytical forms of the two point spatial correlation function are still a significant gap, as

many inversion efforts still rely on simple parameters such as grain size.!%?

Here, we explore the use of a von Karmén spatial correlation function (SCF) to describe
the morphology of grains in polycrystalline media. The von Karman SCF has been used in

geoscience to describe velocity inhomogeneities in the earth,?!:?2

a highly complex hetero-
geneous medium. However, its suitability to describe polycrystalline microstructures, such
as those found in metals, at ultrasonic frequencies has yet to be explored. The paper is or-
ganized as follows: Section II presents the theoretical framework for the spatial correlation
function beginning with the conventional exponential approach and the details of the von
Karman option. In addition, a model for elastic wave attenuation is presented. Section III
evaluates the feasibility of the various correlation functions to describe the spatial statistics
of synthetic polycrystals with a distribution of grain sizes. Synthetic microstructures are
generated using DREAM.3D given the increased accuracy in representing grain structures
when compared to other tessellation approaches.?? The results are expanded to describe the

impact on longitudinal and shear ultrasonic attenuation when compared to other commonly

used analytical representations of the two point statistics.

II. THEORY

Heterogeneity in polycrystalline media can be described using statistical parameters per-
taining to the fluctuations from the mean response. For example, we may define dC as
the modulus fluctuations about the average elastic modulus (C) such that the covariance

function given by?*

AZT (%,%) = (0Cij81 (%) 0Clapns (X)), (1)

contains all relevant statistical information regarding the inhomogeneity. Statistical homo-
geneity, where the covariance is dependent only on the distance between x and x’, r = x—x/,

is commonly assumed. Further, when the crystallites are randomly oriented, the spatial and
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tensorial components are decoupled, yielding
s —apys
AT () = E50W (x), (2)

where E?ﬁ]é is the eighth-rank covariance of the elastic modulus tensor and W (r) is the

two point spatial correlation function (SCF), which gives a statistical measure of the spatial
scale of the heterogeneity. Here, the SCF denotes the probability that two points separated
by a distance r lie within the same crystallite (or grain). Empirically, this probability may

be defined as'*

Np

W(T)ZFP;I(%,%—FT) (3)
where [ equals 1 when positions z,, and z, + r lie in the same grain and zero otherwise.
Modeling efforts of the medium’s response often necessitate analytical representations of the
heterogeneity. To this end, in Sec. IT A, we define mathematically tractable SCFs that may
be used to describe polycrystalline media. Then, in Sec. II B, the power spectral densities

of the SCF's are implemented to define the attenuation of said media.

A. Spatial Correlation Function

Statistical approaches enable us to treat heterogeneous media as a continuum. In the
geophysical literature, Earth heterogeneities are commonly described using the von Karméan

SCF?>25, This model describes the medium using two parameters as follows??

W) = 555 () 5 (5) @

where I'(k) is the gamma function, K, is the modified Bessel function of the second kind

of order k, L is the correlation length, related to the typical size of heterogeneities (or
grains in the polycrystalline case), and k is the Hurst number (0 < xk < 1), related to the
“roughness” of the medium.?” With increasing Hurst number, von Kdrman media display
smoother spatial variations. A value of Kk = 0 corresponds to a smooth Euclidean field, while
k = 1 represents a space-filling medium. Because the Hurst number is associated with the
fractal dimension of a stochastic field, it may be suitable for representing complex physical
features in polycrystalline microstructures.

A special case of Eq. (4) occurs when xk = 0.5,
W(r)=e"/L. (5)
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This exponential form of the SCF was shown to be physically realizable by Torquato®%

and is commonly employed to describe wave propagation in polycrystalline media given the
simplicity of its spectral representation, first shown by Stanke and Kino'2. The exponential
SCF assumes the cord lengths describing the spatial statistics of the microstructure have
Poisson statistics. Further, this form of the SCF assumes that the microstructure can
be described by a single characteristic length, L. Others have attempted to capture the
microstructural complexities of polycrystals with a distribution of grain sizes by considering

a weighted sum of exponential functions as follows*’

W(r) = Z Age /b (6)

where A; and L; are fitting coefficients of the measured two point statistics for a polycrystal
and N is the number of terms in the sum. Van Pamel et al.?® specify that individual
terms of the series do not hold physical meaning (e.g., the individual A; coefficients may be
negative). However, physical constraints are imposed on the sum such that Zi\il A = 1.
Others have attempted to attribute physical meaning to the weighting coefficients by linking
to the volume fraction of the individual grain sizes!. Yet, least squares fitting of the resulting
integral expressions is challenging. In this paper, we evaluate the validity of the von Karmén,
exponential, and summed exponential correlation functions to describe the morphology of

polycrystalline media.

B. Ultrasonic Attenuation

Based on the theory of Weaver!!, we may write the longitudinal and shear attenuation

in a polycrystalline medium as

ap = apr +apr,

ar = Qrr +CYTL, (7)

respectively, where «;; represent the contributions of longitudinal, L, and shear/transverse,

T, scattering modes. The first index corresponds to the incident wave, while the second
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index corresponds to the scattered wave mode. These contributions are explicitly given by

a ki /ﬁ(@ ) L (6,5) sin 6,,,d0
LL — s s s s
4[)26% D P psUUp
kim 5 :
arr = 123 or 1 (Ops) [M (0ps) — L (Ops)] sin 05l
kin . :
arp = 8p2cicr, 1 (6ps) [M (0ps) — L (Ops)] sin 0505
kim . .
orr = gy [[100) [NV (0) = 20 (B) + L (0,.))sin 0 (5)

where L, M, and N are related to the inner products of the covariance with the prop-
agation (k) and displacement (&) directions (l%’alz;(;é%évl%ﬂ%mé;ékEfnifg). These terms were
explicitly defined by Kube and Turner?! for a statistically isotropic medium with crystallites
of arbitrary symmetries. Weaver’s'! derivation is employed herein as it accounts for spatial
variations in the microstructure through its use of an SCF. Unlike the solution presented by
Stanke and Kino'2, Weaver ignores phase velocity dispersion to obtain explicit expressions
for the attenuation coefficients, limiting the applicability to the Rayleigh and stochastic fre-
quency regimes. Exceptions to the equivalency between Stanke and Kino'? and Weaver’s!!
models were presented by Kube®?.

The final term to define in Eq. (8) is the heterogeneity power spectrum, given by the
spatial Fourier transform of the SCFs defined in Sec. ITA. We first consider the power

spectrum for the von Karman SCF,

. mPT(k+3/2) L3
ilk) = (k) (1 + k2L2) 32 ©)

which for the exponential function, when x = 0.5, simplifies to

L3

ii(k) = Yo (10)

We may write this more generally as a function of the angle between the incident and
scattered waves 0, as
L3

1 9 s) — )
M) = T (2 T K2 1 2k cos 0,

(11)

where k£ and £’ are the wave numbers for the incident and scattered waves, respectively. The
von Karman spectrum may be written analogously. Note that for the summed exponentials

SCF, the power spectrum may be written as a sum of Eq. (11) over all terms in the function.
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III. RESULTS

Microstructural complexity can take many forms in polycrystalline media. Here, the
applicability of the von Karman SCF is tested on synthetic microstructures with varying
grain size distributions, known to impact the linear! and nonlinear? ultrasonic response of
polycrystals. First, the fitting error for the three analytical functions presented in Sec. IT A
is evaluated as a function of grain size distribution width. Then, the resulting correlation
lengths are compared to the spatial statistics for the corresponding microstructures. Fi-
nally, the different analytical fits are employed to calculate longitudinal and shear ultrasonic

attenuation and the resulting differences are discussed.

A. Synthetic Polycrystalline Microstructures

Four 1 mm? volumes were generated in DREAM.3D?? through the Pennsylvania State
University’s Institute for Computational and Data Sciences’ Roar supercomputer using the
sample pipeline provided by Norouzian and Turner'#. The input mean grain diameter was
30 wm and the standard deviation varied from 6 to 21 um, expected to result in log-normal
distribution widths ranging from 0.25 < ¢ < 1. The output statistics for the grain size
distributions for each of the generated volumes are provided in Table I, where u and o are
the unbiased estimates of log-normal distribution parameters (i.e., the mean and standard
deviation of logarithmic values, respectively). Note that the last two cases did not strictly
follow a log-normal distribution because a large number of small grains were present to
ensure volume filling. Because the total volume of the synthetic microstructures was fixed,
the total number of grains decreased with increasing distribution width, . Sample cross

sections of each microstructure are given in Fig. 1.

FIG. 1. Sample 1 mm x 1 mm cross sections for synthetic polycrystalline microstructures with

increasing standard deviations of 6.87, 12.72, 16.74, and 20.59 from left to right.

A subroutine to calculate the SCF empirically was implemented in MATLAB (R2021b).

The microstructural data, along with the aforementioned statistics, was exported from

7
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TABLE I. Output statistics for the grain size distribution parameters for synthetic microstructures

generated using DREAM.3D.

] o Mean (pm) Standard Deviation (um) Number of Grains
3.37 0.23 29.96 6.87 60905
3.36 0.41 31.41 12.72 37235
3.23 0.63 29.94 16.74 33221
3.07 0.87 29.01 20.59 26073

DREAM.3D as a 3D matrix where each voxel belonging to a given grain was assigned a
unique identifier. This designation enabled direct application of Eq. (3) where pairs of
points were randomly placed at increasing separation distances. The resulting empirical

SCFs are given in Fig. 2.

B. Spatial Correlation Function

Fitting parameters for each SCF in Sec. II A were found using an unconstrained nonlin-
ear optimization in MATLAB (R2021b) set to a maximum of 10° iterations and function
evaluations. For the exponential and von Karman SCF's, the initial guess for the correlation
length was a random integer between 0 and 30 pm, noting that the mean grain diameter for
all tested microstructures was below 32 um and the correlation length for the exponential
fit was expected to be near the mean grain radius®. The initial guess for the Hurst number,
k, was selected as a random number between 0 and 1, per the constraints of the SCF. Given
the limited number of fitting parameters for these two functions, the minimization solution
was unique, confirmed through 100 iterations of initial conditions. The resulting fits are
graphically depicted in Fig. 2. The minimization routine for the summed exponentials SCF
required additional constraints to obtain optimal fits. The initial guesses for the pseudo
correlation length arguments in the exponents were still constrained to be between 0 and
30 um. The initial guess for the weighting factors were constrained between -1000 to 1000.
Given there are a total of 16 fitting parameters for an eight-term summed exponentials fit,
the minimization problem is ill posed. Therefore, through 100 iterations with arbitrary ini-
tial guesses, 100 distinct fits were obtained. The correlation lengths were then calculated as

the weighted sums of the exponents per Ref.3*.
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As expected, the summed exponentials SCF provides the lowest fitting error of the empir-
ical data given the large number of fitting parameters, as shown in Figs. 2 and 3. However,
this function is highly dependent on the initial conditions used in the optimization routine,
particularly for the larger correlation distances, r. The error when using the von Kéarméan
correlation function is improved over the exponential case by nearly an order of magnitude
on average. This result is significant given that only one additional fitting parameter is
necessary and the fitting solution is unique. Overall, the error is practically independent of

distribution width with a slight minimum for a standard deviation ~13 pm.

FIG. 2. Empirical spatial correlation functions (SCFs) for synthetic polycrystalline microstructures
with standard deviations of (a) 6.87, (b) 12.72, (c) 16.74, and (d) 20.59 um with corresponding

function fits for exponential, von Karmén, and summed exponential analytical SCFs.

FIG. 3. Sum of squares error for analytical function fits of spatial statistics for various synthetic
polycrystalline media as a function of standard deviation. The errorbars for the summed exponen-
tial fit corresponds to the minimum and maximum error for 100 iterations of initial guesses for the

function fits.

As discussed in Sec. I, correlation length and parameters describing the two point statis-
tics of the microstructure are critical in predicting various material properties®®. We compare
the fitting parameters for the various functions and analyze them relative to the grain size
statistics for each microstructure. The correlation length for the summed exponential fits is

calculated as the weighted sum of the exponents, as described by Huang et al®*. First, note
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that as the distribution width increases, the correlation length proportionally increases for
all fitting functions, as shown in Fig. 4. Interestingly, the summed exponentials fits result in
correlation lengths practically identical to the single exponential case. Such finding is rele-
vant given the representation for the correlation length in this case has no physical basis. In
other words, although the fitting error is minimum for this function, the resulting correlation
length does not provide unique information about the microstructure morphology relative
to the single exponential function. The von Karméan correlation length was ~5 pm lower
on average independent of distribution width. The second fitting parameter, x, decreased
sharply as the standard deviation increased from 5 to 13 um but remained relatively con-
stant thenceforth. Recall that the Hurst number represents the roughness of the medium,
with a k = 1 corresponding to a smooth medium. Despite the microstructure with the
lowest standard deviation resulting in a larger total number of sharp grain boundaries, the
magnitude of the exponent suggests that the uniformity in the grain size can be treated as
smoother perturbations. As the standard deviation increases and the number of small grains
rises to ensure volume filling, the Hurst number sharply decreases. Although the number
of small grains continues to increase for the larger standard deviations, we hypothesize the
presence of the sharper perturbations is accounted for as soon as the grain size distribution

deviates from uniformity:.

Next we consider the correlation lengths relative to the statistical parameters describing
the grain morphology. As expected, for the exponential fit, the correlation length is closest
to the mean grain radius (~15 pm) for the smallest grain size distribution width (i.e., for the
microstructure with the most uniform grain size)'?33. It is important to note, however, that
this is also the distribution width with the greatest fitting error. The correlation lengths
quickly deviate from the mean grain radius as the distribution width increases. Therefore,
modeling of material response will be significantly impacted if the mean grain radius is
used as the correlation length for nonuniform distributions of sizes, as reported elsewhere!2.
Other distribution parameters such as the median, mode, and volumetric mean as defined by
Arguelles and Turner!, were also evaluated to determine associations with the correlation
length, but none of them were predictive or strongly correlated. Coincidentally, the von
Karman correlation length closely follows the standard deviation for each distribution width.
However, this finding is not expected to hold for other mean grain sizes or distribution

widths.

10
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FIG. 4. Correlation lengths and von Karman coefficients for best fit solutions of analytical SCFs

to empirical data as a function of standard deviation.

C. Ultrasonic Attenuation

Using the analytical fits of the two point statistics, we calculated the attenuation for
statistically homogeneous polycrystals with the spatial characteristics obtained from the
synthetic polycrystals. In order to confirm that the results were independent of single
crystal anisotropy, the attenuation was calculated for two materials with highly different
cubic crystal anisotropy, aluminum and lithium. Because the results were nearly identical,
only the aluminum results are presented in this section, which were calculated assuming
c11 = 108, ¢1p = 62, cyy = 28.3 GPa, and p = 2700 kg/m?3.

Figure 5 depicts the normalized longitudinal attenuation where L represents the corre-
sponding correlation length for each fitted SCF. Most notably, for the widest distribution
given in Fig. 5(d), a number of the attenuation solutions have sudden drop-offs where the
attenuation values go negative. These results stem from the numerical instabilities in the
fitting procedure but are not identifiable simply by looking at the correlation function of the
resulting sum of squares error. One concern arises that these instabilities are only apparent
when a wide enough range of frequencies is considered. In other words, if the correlation
fit is not restricted for convergence, severe error in attenuation may result from seemingly

appropriate SCF fits.

FIG. 5. Normalized longitudinal attenuation for a statistically homogeneous, macroscopically
isotropic aluminum polycrystal with spatial statistics defined through synthetic polycrystalline

microstructures with standard deviations of (a) 6.87, (b) 12.72, (¢) 16.74, and (d) 20.59 pm.

11
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In order to enable more quantitative comparison of attenuation, the ratio of attenuations
relative to the exponential case are given in Figs. 6 and 7, for longitudinal and shear
attenuation, respectively. First, we note that the deviation in the predicted attenuation
from the exponential function varies as a function of distribution width, with the sharpest
difference observed as the standard deviation in grain size increases from 6.87 to 12.72 pum.
For the longitudinal case in Fig. 6, the minimum difference occurs when kL ~ 2, independent
of distribution width, with two instances denoting coinciding values of attenuation for both
the von Karman and summed exponential fits. As expected from the differences observed
in the SCF fits in Fig. 2, the attenuation using the summed exponentials fit shows the
greatest variation for the 12.72 um standard deviation in Fig. 6(b). These differences are
most apparent at low kL values, showing the impact of differences in the correlation function
at large r. The von Karman and summed exponential functions display inverse behavior in
relation to the single exponential function, thus, emphasizing the importance of an accurate

representation for the SCF when calculating ultrasonic parameters.

FIG. 6. Longitudinal attenuation ratios when using von Karméan and summed exponential SCFs
relative to a single exponential fit for an aluminum polycrystal with grain size standard deviations

of (a) 6.87, (b) 12.72, (c) 16.74, and (d) 20.59 pm.

The results for the shear attenuation ratios are given in Fig. 7. Interestingly, there
is nearly no difference in the attenuation values in the stochastic regime when employing
the summed exponentials function relative to the single exponential. In addition, the von
Karman function never coincides with the single exponential term, though the error is also
relatively constant in this frequency region. As with the longitudinal attenuation, the error
is greatest for the narrowest distribution, in accordance with the errors reported for the
SCF fits. It is important to note that in the Rayleigh regime, which is greatly relevant for
ultrasonic applications, the difference between the summed exponentials and von Karméan
functions for both longitudinal and shear attenuation can be nearly two-fold. It is imper-

ative that the absolute SCF is calculated in realistic materials to determine whether a two
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parameter function, such as the von Karman SCF, is suitable to represent the complexities
in the heterogeneity of these materials. This work represents a significant first step in this

analysis by considering the impact of SCF using realistic synthetic microstructures.

FIG. 7. Shear attenuation ratios when using von Karman and summed exponential SCF's relative
to a single exponential fit for an aluminum polycrystal with grain size standard deviations of (a)

6.87, (b) 12.72, (¢) 16.74, and (d) 20.59 pm.

IV. SUMMARY

Describing the microstructure of polycrystalline media through mathematically tractable
statistical models is equally desirable and challenging. By analyzing the accuracy of three an-
alytical spatial correlation functions, a critical evaluation of the suitability of these functions
to describe polycrystalline media was provided. In this article, synthetic microstructures
representative of real metallic polycrystals were generated using open source software. The
exact spatial statistics were calculated empirically for four volumes with increasingly wide
grain size distributions. Although the summed exponentials approach resulted in minimum
fitting error, the numerical instabilities associated with the ill-posed minimization problem
suggest more tractable approaches should be explored. To this end, the von Kdrman function
improved the fit of the two point statistics by nearly an order of magnitude. Furthermore,
using different analytical functions to represent the two point statistics resulted in mea-
surable discrepancies in the calculated attenuation exceeding a factor of two. The impact
of the SCF on measurable ultrasonic parameters underscores the importance of accurately
characterizing polycrystalline microstructures and the challenges posed when seeking to use

said metrics as a nondestructive mean of characterization.
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