
2021 IEEE 28th International Conference on High Performance Computing, Data, and Analytics (HiPC)

Large-Message Nonblocking MPI_Iallgather and
MPI Ibcast Offload via BlueField-2 DPU

II. CONTRIBUTIONS

BlueField-2 is becoming widely adopted in new datacenter
deployments because of its ability to offload managerial tasks
such as access control, intrusion detection, online compression,
and transport layer security (TLS) encryption using the on-
chip dedicated ASIC. However, using the DPU to offload
MPI communication is still nascent. In this paper, we take
on this challenge by introducing novel nonblocking broadcast
and allgather algorithms which take advantage of the DPU. To
demonstrate the effectiveness of the algorithms, we compare

I. INTRODUCTION AND MOTIVATION

Over the last decade, supercomputing systems have grown
as a result of modern multi-core/many-core architectures and
the availability of low-latency and high-bandwidth commodity
interconnects such as InfiniBand [1] (IB). Running on such
systems are scientific applications predominantly written with
the Message Passing Interface (MPI) [2] parallel programming
model. MPI offers point-to-point and collective primitives
which allow the application programmer to orchestrate com-
munication between processes in a convenient and effective
manner.
Before the MPI-3 standard introduced nonblocking collec-

tive primitives, processes in a (blocking) collective needed to
stay within the MPI library until their role in the commu-
nication was complete. However, programs modified to use
nonblocking collectives will first initiate the communication,
then perform useful computation which does not depend on the
communication initiated, and then finally call the MPI_Wait0
routine (or a variant of it) to finalize the communication. If
there was enough overlap, the communication is completely
hidden.
While the application is doing the useful computation, there

must be progress on the communication, e.g. polling the under-
lying network fabric for completion notifications, responding

Nick Sarkauskas, Mohammadreza Bayatpour
Tu Tran, Bharath Ramesh, Hari Subramoni, Dhabaleswar K. Panda

The Ohio State University
{sarkauskas.l,bayatpour.l,tran.839,ramesh.113,subramoni.l,panda.2}@osu.edu

Abstract-Since the introduction of nonblocking collectives in to incoming control messages, managing internal MPI library
the MPI-3 standard, communication has been progressed by buffers, etc. Progress can happen by the application itself
several mechanisms. One such mechanism includes modifying the calling MPI_TestO to reenter the MPI library, or it can be
application code to periodically call MPI_Test to enter the MPI done by a separate entity such as an extra thread or a hardware
library. Another launches an extra thread per core to progress
communication asynchronously. Communication progression can mechanism.
also be offloaded to the Host Channel Adapter (HCA) using Modifying the application to call MPI_TestO requires sig-
the latest hardware. In this paper, we explore this last option nificant programmer effort to find the optimal location and fre-
by using the Data Processing Unit (DPU) shipped with the quency of calls within the application and is thus not desired.
BlueField-2 SmartNIC adapter to offload progression of non- Using a separate thread to progress communication in the
blocking MPI_Ibcast and MPI_Iallgather collectives. For both
collectives, we present several designs which take advantage of background is also not desired as it takes compute resources
the DPU. We demonstrate the efficacy of our proposed designs away from the application, requires context switching between
through microbenchmark evaluations. At the microbenchmark threads, and is susceptible to OS noise.
level, total execution time of the osu_ibcast microbenchmark can Hardware mechanisms such as SHARP [3] and hardware
be reduced by up to 54% using our DPU-based Ibcast designs. tag-matching [4] are desirable since they reduce the amount
Total execution time of the osu_iallgather microbenchmark can
be reduced by up to 43%. To the best of our knowledge, this is of CPU resources needed to progress communication and
the first work to optimize nonblocking broadcast and allgather thus increase amount of resources spent on useful scientific
collectives on emerging BlueField DPUs. computation. However, SHARP can only offload reduction
Index Terms-BlueField, SmartNIC, MPI, Collective, Offload collectives, and hardware tag-matching cannot be used to

progress collectives.
The NVIDIAIMellanox BlueField-2 is the latest devel-

opment in hardware offload mechanisms. The BlueField-2
is a programmable hardware offload solution for software-
defined networking, virtualization, security, and storage within
the datacenter. The Data Processing Unit (DPU) within the
BlueField aims to be a new class of processor that is ideal
for handling large amounts of incoming/outgoing data to the
host, reclaiming CPU cycles and thus increasing the amount of
compute available for end-users in the datacenter. Moreover,
the DPU has been characterized in previous work [5] to
transfer large amounts of data with the same communication
latency as the host. Along with its offloading capabilities, this
provides opportunities to explore designs which provide good
communication performance as well as overlap of compute
and communication.

This research is supported in part by NSF grants #1818253, #1854828,
#1931537, #2007991, #2018627, #2112606, and XRAC grant #NCR-130002

2640-0316/21/$31.00 ©2021 IEEE
DOII0.II09/HiPC53243.2021.00054

388

20
21

 IE
EE

 2
8t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 H
ig

h
Pe

rf
or

m
an

ce
 C

om
pu

tin
g,

 D
at

a,
 a

nd
 A

na
ly

tic
s (

Hi
PC

) |
 9

78
-1

-6
65

4-
10

16
-8

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

HI
PC

53
24

3.
20

21
.0

00
54

Authorized licensed use limited to: The Ohio State University. Downloaded on June 17,2022 at 17:55:58 UTC from IEEE Xplore. Restrictions apply.

and provide a detailed analysis of results at the microbench-
mark level using OSU MicroBenchmarks.
To summarize, this paper makes the following contributions:

• Identify bottlenecks and shortcomings of existing nonblock-
ing MPI_Ibcast and MPI_Iallgather algorithms.

• Propose, design and implement novel nonblocking
MPI_Ibcast and MPI_Iallgather algorithms using the
DPU as an offload mechanism that provides maximal
overlap while providing low pure communication latency
comparable to CPU-based schemes.

• Analyze performance of the proposed DPU-based broadcast
and allgather algorithms at the microbenchmark level with
OSU MicroBenchmarks (OMB) [6].

BlueField

Fig. 1. BlueField Smart NIC Architecture (Courtesy [5])

III. BACKGROUND

A. Capabilities of SmartNIC Adapters

SmartNIC adapters tend to come in three types: ASIC-
based, FPGA-based, and multi-core microcontroller-based [7].
ASIC-based SmartNICs are cost-effective, but they are inflexi-
ble with regards to their function. FPGA-based SmartNICs are
flexible, but are relatively inaccessible due to the prerequisite
VHDL knowledge necessary to program them. Lastly, multi-
core microcontroller-based SmartNICs such as the BlueField
are shipped with a fully-programmable system-on-chip to
accelerate arbitrary network functions. The cores are typically
weaker (ARM or MIPS) in an effort to keep costs low.

B. BlueField-2 DPU

BlueField SmartNIC models come in two versions, Blue-
Field SmartNIC for Ethernet and BlueField SmartNIC for Eth-
ernet and Infiniband. The latter model uses Mellanox's Virtual
Protocol Interconnect (VPI) to support incoming packets of
either Infiniband or Ethernet protocols. The latest generation
(BlueField-2) ships with the ConnectX-6 network controller.
Versions of the DPU can be further categorized into Crypto-
Enabled and Crypto-Disabled. A Crypto-Enabled DPU will
include an ASIC for accelerating public-key cryptography as
well as a random number generator.

389

Figure 1 shows a block diagram of the BlueField architec-
ture. The DPU is a system-on-chip with 8 mesh-connected 64-
bit ARMv8 A72 cores, 16 GB of DDR4 memory, a ConnectX
network controller, and an integrated PCIe switch.
Each DPU can be configured to run in one of two modes of

operation: Separated Host and Embedded CPU Function Own-
ership (SmartNIC) mode. Separated Host mode configures the
ARM cores to behave as if they were another host on the
network entirely. The ARM cores and the x86 host both share
the same PCIe physical function and thus share bandwidth. In
this paper, we base our designs off of the BlueField DPU with
both ports configured to Separated Host mode.
Embedded CPU Function Ownership mode is an alternative

configuration that forces packets going to the host to be first
routed through the ARM cores for processing. The physical
PCIe function is controlled by the ARM cores and can be
used to offload common datacenter tasks like access control
and packet inspection. [8].

C. BluesMPI Communication Offload Framework
Processes running on the BlueField-2 DPU set up in Sepa-

rated Host mode are roughly analogous to processes running
on the host, only they are running on the SmartNIC ARM
cores (DPU) rather than the host CPU. Since all processes are
shielded from unauthorized access from one another on the
HCA via InfiniBand Protection Domains, it is not possible to
directly issue RDMA commands on the DPU which operate
on memory that was registered by processes on the host. This
is because during normal operation, an InfiniBand HCA will
return an lkey for local access and an rkey for remote access
when the host registers a memory region with it. In order for
the DPU to directly progress communication on behalf of the
host, it would need to post verbs operations using the lkey of
the host process' memory region. Since this lkey was intended
for the Protection Domain associated with the host process,
this would return an access violation error. Therefore, in our
previous work in BluesMPI offload framework [5], we send
task objects containing the buffer address and rkey information
of all buffers (send and receive on all processes) on each host
to each process running on all DPUs. The DPU processes
are programmed to unpack the task object, read the buffer
address and rkey information, and finally perform the required
communication on behalf of the host by first reading the data
into a temporary staging buffer in DPU memory and then
writing it to the destination. The DPU spends a vast majority
of its runtime in this last step performing the RDMA read and
write operations to orchestrate communication. This fosters a
large design space that is the subject of this paper.

IV. PROPOSED MPI_IBCAST DESIGNS
In this section, we detail our proposed nonblocking DPU-

based broadcast algorithms.

A. Proposed Flat MPI_Ibcast
In the Flat algorithm for MPI_Ibcast, we program the

DPU to carry out the following steps once it receives the

Authorized licensed use limited to: The Ohio State University. Downloaded on June 17,2022 at 17:55:58 UTC from IEEE Xplore. Restrictions apply.

buffer addresses and key information it needs to progress
communication. Since the exchange of buffer information has
an overhead, we target large message sizes where collectives
are bandwidth-bound. Figure 2 illustrates the steps in this
algorithm.
1) Read Stage: DPU rank 0 (in DPU world) will perform

an RDMA read on the host root's sendbuf, staging the buffer
in its memory.
2) Blocking Broadcast Stage: Blocking MPI_Bcast is then

called on DPU world (a communicator with all DPU processes
in the job) to stage the buffer on all DPUs. Since this broadcast
is only among the DPUs, the hosts are still doing application
computation.

•••••••••

3) Writeback to Node-Leaders: The buffer staged on each
DPU is now RDMA written to a shared memory region on
node-level leaders.
4) Completion Notification: The DPU processes then per-

form an RDMA write to set the completion flag on each of
its host processes.
5) Copy from Shared Memory to Recvbuf· Once the com-

pletion flag is set, the hosts can start copying the buffer
from shared memory to their respective recvbufs. This step
exclusively takes place during MPI_Wait. After the memcpy
completes, the broadcast is finished.

V. PROPOSED MPI_IALLGATHER DESIGNS

In this section, we detail our proposed DPU-based
MPI_Iallgather algorithm. We propose two designs (flat and
hierarchical) to implement the collective.

Fig. 2. Proposed Flat Broadcast With 3 Host Processes

3) Writeback to host: When the blocking MPI_Bcast fin-
ishes, the buffer is ready on each DPU and now must be
written back to the host processes recvbuf. The DPUswill
then perform these RDMA writes to the processes on its host.
4) Completion Notification: The DPU processes then per-

form a final RDMA write to set a completion flag on each of
its host processes. The hosts poll on this flag during MPI_Wait
until it is set. Once it is, they exit the MPI library and resume
executing the application.
This method is appealing because each of the blocking

broadcast algorithms within MVAPICH2-X has been well-
researched and highly optimized since the inception of the
project.

B. Proposed Hierarchical MPI_Ibcast
In the hierarchical algorithm for MPI_Ibcast, we program

the DPU to perform these steps which are similar to the
flat algorithm except that the DPUs write only to node-
level leaders, and the host processes perform a memcpy in
MPI_Wait:
1) Read Stage: Like the flat algorithm, DPU rank 0 will

perform an RDMA read on the host root's sendbuf into DPU
memory.
2) Blocking Broadcast Stage: Blocking MPI_Bcast is then

called on DPU world. In MVAPICH2-X, scatter allgather
blocking broadcasts are chosen for large messages. Binomial
tree based broadcast is used for small messages.

Write Buffer to Host

@(I)(I)@(I)(I)

DPUReadsI sendbuf from
Host Root

@PU ~~
Root 0v

Stage 1

Broadcast on DPUWorld

Stage 2

I I

Stage 3

I

390

A. Proposed Flat MPI_Iallgather

For the flat allgather, we present a similar algorithm to the
flat broadcast. The allgather version is modified to read each
host process' unique contribution to the final allgather recvbuf.
In this design, each sendbuf is buffered in the DPUs with an

initial RDMA read. The DPUs will then write directly to the
receive buffer of every host process in a round-robin fashion
starting from its own host to avoid network contention. The
algorithm is thus broken down into the following stages:
1) Initial Read: Each DPU process begins by reading the

sendbuf at each one of the host processes running on its node,
for a total of processes per node (PPN) RDMA reads. This is
akin to a node-level gather to the DPU.
2) Write to Recvbuf· For each host process, the DPU writes

the gathered buffer into the appropriate index into the recvbuf.
For example, in a 2 PPN job, the DPU responsible for host
ranks 0 and 1 would write the combined buffers to indices 0
and 1 in each host process' recvbuf. The DPU responsible for
host ranks 2 and 3 would write directly to indices 2 and 3,
and so on. Since each DPU does this same task for different
ranks, the recvbuf has the complete allgathered buffer once
they finish. Figure 3 illustrates this step with 3 host processes.
In the figure, each color represents the sendbuf for that node in
a 1 PPN job, or the gathered buffer for that node in a multiple
PPN job.
3) Completion Notification: The DPUs will send a com-

pletion notification to each of their host process using another
RDMA write. Once the hosts see the flag is set during the call
to MPI_Wait, they are free to return to the application.

B. Proposed Hierarchical MPI_Iallgather

The following steps illustrate the proposed hierarchical
DPU-based allgather algorithm.
1) Read Stage: Each DPU process reads the send buffer at

each one of the host processes running on the node, for a total
of PPN RDMA reads. This is akin to a node-level gather to
the DPU.

Authorized licensed use limited to: The Ohio State University. Downloaded on June 17,2022 at 17:55:58 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Write to Recvbuf Step of the Proposed Flat Allgather
Algorithm with 3 Processes

A. Experimental Setup
We use the HPC Advisory Council High-Performance Cen-

ter (HPCAC) [9] cluster for our evaluation. The Thor cluster
at HPCAC has 32 nodes, each equipped with a BlueField-
2 SmartNIC as well as a separate ConnectX-6 HCA. The
SmartNIC adapters have an array of 8 ARM cores operating
at 2 GHz and 16 GB of RAM. All BlueField-2 adapters are

VI. MICROBENCHMARK LEVEL EVALUATIONS

In this section, we discuss the experimental results of
running the MPI_Iallgather and MPI_Ibcast primitives using
OSU MicroBenchmarks (OMB) [6] for 32 node jobs using
up to 32 processes per node (PPN), for a maximum of 1024
process jobs.
The proposed algorithms discussed in IV and V are im-

plemented inside the MVAPICH2-X v2.3 MPI library with
the BluesMPI framework [5] for sending buffer information
(addresses and rkeys) to each DPU. We compare our designs
with the default nonblocking allgather and broadcast algo-
rithms from MVAPICH2-X v2.3. The reported results are the
average of 3 experiments. We also set OMB to run each test
1,000 times for each message size.

B. Performance of MPI_Iallgather
In this section, we compare the performance of

MPI_Iallgather using the osu_iallgather benchmark from
the OSU Micro Benchmark suite. Figure 4 indicates the
communication latency of the benchmark, the overlap of
communication and computation, and the overall execution
time for each offload algorithm as well as the MVAPICH2-X
algorithm for 32 node, 16 PPN and 32 node, 1 PPN jobs.
The OMB nonblocking benchmark suite first measures the

amount of pure communication time by starting a timer, calling
MPI_Iallgather, and then immediately calling MPI_Wait. Once
the wait finishes, the timer is stopped. This value is the pure
communication latency (i.e., Comm. Latency in the figures)
without any computation.
The steps are repeated to measure overall execution time,

however in between calling MPI_Iallgather and MPI_Wait,
a dummy compute (matrix multiplication) is performed
for the same amount of time as the pure communica-
tion latency. In cases where overlap is 100%, the time
spent in MPI_Wait is thus close to zero, and computa-
tion is hidden. If there is 0% overlap-like in the CPU-
based algorithms requiring the CPU-then almost all of
the communication is performed during MPI_Wait. Since
the compute time is roughly similar to the communica-
tion time, the benchmark calculates the overlap by using
the formula overlap == MAX(O, 100 - (((overall_time -
compute_time)/pure_comm_time) * 100)).
With these measurements, the subfigures show that the pure-

host based algorithms are not able to provide any overlap. This
is because the communication is progressed in MPI_Wait0 by
the CPU after the computation is finished. However, using
the BlueField DPU to progress communication instead can
provide 100% overlap using the Proposed Flat Algorithm and
up to 62% using the Proposed Hierarchical Algorithm. The
Proposed Flat Algorithm completely offloads communication
to the DPU, allowing full overlap and retaining comparable
communication latency to MVAPICH2-X for 32 nodes 1 PPN
jobs. As a result, the Proposed Flat Algorithm achieves a 43%
reduction in overall execution time.
However, for the 32 node 16 PPN results, it can be seen in

Figure 4(c) that the flat algorithm actually does much worse
in latency and overall time than MVAPICH2-X. The reason
is that with large PPN counts, the shared memory channel is
much faster than going over the network. Even with 100%
overlap, if the communication latency is increased by a large
enough amount, the overall time will increase. With this in
mind, we choose the hierarchical algorithm for higher PPN
jobs and the flat algorithm for lower PPN jobs in order to keep
pure communication time comparable to the host, but retain as
much overlap as possible since the overlap is the main source

equipped with Mellanox MT41686 EDR ConnectX-6 HCAs
(100 Gbps data rate) with PCIe Gen4 interfaces [8]. The Thor
hosts are equipped with the Broadwell series of Xeon dual-
socket, 16-core processors operating at 3.40 GHz with 256 GB
RAM.

j k
Write 3

.......j•~.. k

Write 1 Write 2
R~cvbuf of Process i, j, and k

2) Writeback to Node-Leaders: For each node-level leader,
the DPU writes the gathered buffer into the appropriate index
into that leader's shared memory. In a 2 PPN job for example,
the DPU responsible for host ranks 0 and 1 would write the
combined buffers to indices 0 and 1, only instead of directly
to the recvbuf (like in the flat algorithm), it goes in each
node-level leader's shared memory. Since each DPU does this
same task for different ranks, shared memory has the complete
allgathered buffer once all of them finish.
3) Completion Notification: The DPUs will send a com-

pletion notification to each of their host process using another
RDMA write.
4) Copy from Shared Memory to Recvbuf· During

MPI_Wait, each host process will then copy the allgathered
buffer in parallel to its own receive buffer, completing the
collective.

391

Authorized licensed use limited to: The Ohio State University. Downloaded on June 17,2022 at 17:55:58 UTC from IEEE Xplore. Restrictions apply.

• MVAPICH2-X
Proposed-Hierarchical

.. ~r?P?se~~~I~t ...

• MVAPICH2-X
Proposed-Hierarchical

II. }Jr()p()se~~J<lat

~3,SOO,----~-,----~-~-~~

83,000
~2,SOO
.§ 2,000
SI,SOOr................................ .••..•. _1

""§ 1,000 1- ···...1. -I

~ SOO 1-- =. •• . •••

o 0 '----~----.::=----____....____.. ~~___.J
128K2S6KS12K 1M 2M

2S ,-------,-----,---------,-------,------,---------,
g 20
8 IS

E::: 10r ~
SI-······················+

o"-------12L.....18--K----"2--S6.....K--S--IL.....12--K-----lM-----2L..JM------.J

3,SOO,----~-,----~-~-~~

~3,000
82,soo
';:2,000
g I,SOOI-····································· •• ·· • _1

~ 1,0001-··································-1
....:l SOO 1--...... ••·· •••1.-1

oL.-........-..----==------=::J____.. ~~___.J

128K2S6KS12K 1M 2M
Message Size (bytes) Message Size (bytes) Message Size (bytes)

(a) Overall Time: 32 Nodes, 16 PPN (b) Overall Time: 32 Nodes, 1 PPN (c) Comm. Latency: 32 Nodes, 16 PPN

i1MVAPICH2:":"X
Proposed-Hierarchical

• Proposed-Flat

• MVAPICH2-X
Proposed-Hierarchical

• Proposed-Flat

Message Size (bytes)
(f) Overlap: 32 Nodes, 1 PPN

200,____---,-----,-----------r----,-------,------,

~IS0

~1001-- ~ -
(j)o SO

o 128K2S6KS12K 1M 2M

• MVAPICH2-X
o Proposed-Hierarchical
• Proposed-Flat

Message Size (bytes)
(e) Overlap: 32 Nodes, 16 PPN

200,-------,-----,-----------r----,-------,------,

~IS0

~100 1-._ ~ _~ ~,_1
(j)o SOI-········.·········.

o 128K2S6KS12K 1M 2M

16 ,----~-,---------,--~-~-----,

14
,8/ 12- 10

81--··1
61--··1
41- .. ·...... ·...... ·.. ·· -(
2
oL....-12L....18--K----I2--S6--KL-S--IL....12--K------lM~--2L....1M----.J

Message Size (bytes)
(d) Comm. Latency: 32 Nodes, 1 PPN

Fig. 4. osu_iallgather Benchmark for the Proposed Allgather Algorithms Compared Against MVAPICH2-X

of benefit in our designs. The Proposed Hierarchical Algorithm
for a 32 nodes 16 PPN job is able to reduce overall execution
time by up to 38% compared to MVAPICH2-X.

C. Performance of MPI_Ibcast

Figure 5 shows the overlap of communication and compu-
tation, pure communication latency, and total execution time
of the osu_ibcast benchmark for each offload algorithm as
well as the MVAPICH2-X CPU-based broadcast. We measure
the performance using the osu_ibcast benchmark test, which
similarly to osu_iallgather, measures the nonblocking broad-
cast's pure communication latency and then posts another
nonblocking broadcast, performs a matrix multiplication for
the same amount of time as the communication latency, and
then calls MPI_Wait.
It is important to note that our DPU-based designs call the

default MPI_Bcast in MVAPICH2-X and at the same time,
the CPU-based baseline we compare to use similar algorithms
for MPI_Ibcast (i.e., both MPI_Bcast and MPI_Ibcast use a
scatter allgather for a large messages). Despite this, Figure 5(a)
shows there is up to 54% reduction in total execution time of
osu_ibcast for the 32 node 32 PPN case. The performance
gain in this case comes from the fact that there is 100%
overlap, but also the fact that the CPU-based results are doing
a broadcast on all 1024 processes versus just those in the DPU
communicator (1 DPU process per node-32x less processes).
The read and writeback to host steps of the algorithm do not
take long enough such that the overall time is increased.

VII. RELATED WORK

In this paper, we explore the use of Mellanox BlueField-
2 DPU for offloading collective communication operations
for nonblocking MPI_Iallgather and MPI_Ibcast. Previous
research has been done for offloading collective operations

using other hardware-based schemes. Authors in [5] imple-
ment a nonblocking MPI_Ialltoall on DPUs and demonstrate
application-level benefits using a modified P3DFFT. Our paper
extends this research and proposes new designs for non-
blocking MPI_Iallgather and MPI_Ibcast. Authors in [10]
design an offload mechanism for personalized collectives using
RDMA primitives. For intra-node transfers, they use shared
memory for small message transfers and RDMA loopback
for large transfers to achieve overlap of communication and
computation, as the HCA can progress the RDMA transfer
in the background. The application of SmartNICs to the area
of systems has been explored in various contexts. Floem [11]
proposed a set of programming abstractions for the exploration
of NIC-offloading designs. They demonstrate the efficacy of
the system through key-value stores and distributed real-time
data analytics applications. Liu et al. [12] propose a framework
to offload distributed applications to SmartNICs using an actor
model. Subramoni et al. [13] use the ConnectX-2 to create
new communication primitives which can then be composed
to implement collective operations with a focus on latency
and overlap of communication and computation. Offloads for
compute have been widely studied in the literature, such as
with GPUs and coprocessors. MVAPICH2-MIC [14] offloads
computation to the Intel Xeon Phi coprocessor.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we programmed the BlueField-2 DPU to
offload several novel nonblocking broadcast and allgather
algorithms using the MVAPICH2-X MPI library and com-
pared each algorithm at the microbenchmark level. At the
microbenchmark level, we have demonstrated a reduction in
overall execution time of up to 43% for osu_iallgather and up
to 54% for osu_ibcast. These results show that the BlueField-2

392

Authorized licensed use limited to: The Ohio State University. Downloaded on June 17,2022 at 17:55:58 UTC from IEEE Xplore. Restrictions apply.

• MVAPICH2-X
Proposed-Hierarchical

• Proposed-Flat

60 r--~-.------r---.----,---

50 • ~~P~~~J~d~;archicalg 40.. Proposed-Flat
;>-. 30f-········· ····························· .. ··.t··.· .. ~g
B 20L................................. • -1
ro

....:l 10L .

o~1--=-M------..--2M-----4"--M------..--8M-----l--,..6M---

14 r--~-.------r-----r---,------,g 12
10

S 8
E::: 6f- j

4f-······ · · · · _
21--··········· .. ·····,...,o"-------~ ------..--=-- ~-----.J

60 ~~-~----r---.----,------,g 50
S 40

E::: 30L -j

'"§ 20L .
~ 101--······ · · ·-o 0~ ------.. -----.J

1M 2M 4M 8M 16M
Message Size (bytes) Message Size (bytes) Message Size (bytes)

(a) Overall Time: 32 Nodes, 32 PPN (b) Overall Time: 32 Nodes, 1 PPN (c) Comm. Latency: 32 Nodes, 32 PPN

200 r--~-.---------,------,-------,---------,

• MVAPICH2-X
Proposed-Hierarchical

• Proposed-Flat

1M 2M 4M
Message Size (bytes)

(f) Overlap: 32 Nodes, 1 PPN

200 ~~-.---------r------,-------,---------,

~150

~100 L·· .. ·_·········_············ ·._ ·· .. ·_,···-I;:::
Q)
;;>o

• MVAPICH2-X
. [J Proposed-Hierarchical
• Proposed-Flat

1M
Message Size (bytes)

(e) Overlap: 32 Nodes, 32 PPN

~150

~100 f- _ _ _ _, -1

Q)
;;>o

12~~-~-----,-------,---~-----,

10 • MVAPICH2-X
8 Proposed-Hierarchical

• Proposed-Flat
6L································· · ······ ...1
4L -- -- .. -- .. -- .
2L.. -- .. -- -- .. -- j

o~IL-M------.J--2M-----4"--M------..--8M-----l"--6M---

Message Size (bytes)

(d) Comm. Latency: 32 Nodes, 1 PPN

Fig. 5. osu_ibcast Benchmark for the Proposed Broadcast Algorithms Compared Against MVAPICH2-X

DPU can be an effective hardware offload mechanism for the
MPI_Iallgather and MPI_Ibcast nonblocking collectives.
For our future work, we plan to investigate offloading other

nonblocking collectives and study the benefits.

REFERENCES

[1] "InfiniBand Trade Association," http://www.infinibandta.
com, 2017.

[2] "The mvapich project: Transforming research into high-
performance mpi library for hpc community," Journal of
Computational Science, p. 101208, 2020.

[3] R. L. Graham, D. Bureddy, P. Lui, H. Rosenstock,
G. Shainer, G. Bloch, D. Goldenerg, M. Dubman,
S. Kotchubievsky, V. Koushnir et ai., "Scalable hierarchi-
cal aggregation protocol (sharp): a hardware architecture
for efficient data reduction," in 2016 First International
Workshop on Communication Optimizations in HPC
(COMHPC). IEEE, 2016, pp. 1-10.

[4] Mellanox Corporation, "Understand-
ing Tag Matching for Developers,"
https://community.mellanox.com/s/article/understanding-
tag-matching-for-developers.

[5] M. Bayatpour, N. Sarkauskas, H. Subramoni, J. Hashmi,
and D. Panda, "Bluesmpi: Efficient mpi non-blocking
alltoall offloading designs on modern bluefield smart
nics," June 2021.

[6] http://mvapich.cse.ohio- state.edulbenchmarks.
[7] S. Choi, M. Shahbaz, B. Prabhakar, and M. Rosenblum,

"A-NIC: Interactive Serverless Compute on SmartNICs,"
in SIGCOMM Posters and Demos '19: Proceedings
of the ACM SIGCOMM 2019 Conference Posters
and Demos, 2019, pp. 151-152. [Online]. Available:
https://doi.org/l0.1145/3342280.3342341

[8] "Mellanox BlueField ." [Online]. Available: https:
//docs.mellanox.com/x/iQ03

[9] "High-Performance Center Overview [Online].
Available: https://www.hpcadvisorycouncil.com/cluster_
center.php

[10] H. Subramoni, A. A. Awan, K. Hamidouche,
D. Pekurovsky, A. Venkatesh, S. Chakraborty, K. Tomko,
and D. K. Panda, "Designing non-blocking personalized
collectives with near perfect overlap for rdma-enabled
clusters," in High Performance Computing, J. M. Kunkel
and T. Ludwig, Eds. Cham: Springer International
Publishing, 2015, pp. 434-453.

[11] P. M. Phothilimthana, M. Liu, A. Kaufmann, R. B.
Simon Peter, and T. Anderson, "Floem: A Programming
System for NIC-Accelerated Network Applications," in
Proceedings of the 2010 IEEE 26th Symposium on
Mass Storage Systems and Technologies (MSST). 13th
USENIX Symposium on Operating Systems Design and
Implementation, 2018.

[12] M. Liu, T. Cui, H. Schuh, A. Krishnamurthy, S. Peter,
and K. Gupta, "iPipe: A Framework for Building
Distributed Applications on SmartNICs," in SIGCOMM
,19: Proceedings of the ACM Special Interest Group
on Data Communication, 2019, pp. 318-333. [Online].
Available: https://doi.org/l0.1145/3341302.3342079

[13] H. Subramoni, K. Kandalla, S. Sur, and D. K. Panda,
"Design and evaluation of generalized collective com-
munication primitives with overlap using connectx-2
offload engine," in 2010 18th IEEE Symposium on High
Performance Interconnects, Aug 2010, pp. 40-49.

[14] S. Potluri, K. Hamidouche, D. Bureddy, and D. K.
Panda, "Mvapich2-mic: A high performance mpi library
for xeon phi clusters with infiniband," in 2013 Extreme
Scaling Workshop (xsw 2013), 2013, pp. 25-32.

393

Authorized licensed use limited to: The Ohio State University. Downloaded on June 17,2022 at 17:55:58 UTC from IEEE Xplore. Restrictions apply.

