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Abstract—Contact planning is crucial to the locomotion per-
formance of limbless robots. Typically, the pattern by which
contact is made and broken between the mechanism and its
environment determines the motion of the robot. The design of
these patterns, often called contact patterns, is a difficult problem.
In previous work, the prescription of contact patterns was derived
from observations of biological systems or determined empirically
from black-box optimization algorithms. However, such contact
pattern prescription is only applicable to specific mechanisms,
and is challenging to generalize. For example, the stable and
effective contact pattern prescribed for a 12-link limbless robot
can be neither stable nor effective for a 6-link limbless robot.
In this paper, using a geometric motion planning scheme, we
develop a framework to design, optimize, and analyze contact
patterns to generate effective motion in the desired directions.
Inspired by prior work in geometric mechanics, we separate the
configuration space into a shape space (the internal joint angles),
a contact state space, and a position space; then we optimize
the function that couples the contact state space and the shape
space. Our framework provides physical insights into the contact
pattern design and reveals principles of empirically derived
contact pattern prescriptions. Applying this framework, we can
not only control the direction of motion of a 12-link limbless
robot by modulating the contact patterns, but also design effective
sidewinding gaits for robots with fewer motors (e.g., a 6-link
robot). We test our designed gaits by robophysical experiments
and obtain excellent agreement. We expect our scheme can be
broadly applicable to robots which make/break contact.

I. Introduction

Limbless locomotion is achieved by properly coordinating

body curvatures to interact with environment and generate self-

propulsion [28]. One of the most common limbless locomotion

patterns is a traveling wave of body curvatures propagating

from head to tail (lateral undulation) [17], which enables effec-

tive locomotion of most biological snakes. However, limited

by the number of joints [19] and the availability of sensors

[28], limbless robots often struggle when just using lateral

undulation, especially in isotropic environments. Therefore,

many robotic limbless locomotors use an alternative strategy of

sidewinding, which generates robust and effective locomotion

by regulating the body contact pattern (periodically making

and breaking environmental contact) in addition to the lateral

undulation [3, 4, 14, 22, 29]. Despite the advantages in making

and breaking environmental contact, it comes with cost in

additional degrees-of-freedom (DoF) to control the contact,

which, if not properly controlled, can lead to unstable [7] or

uncoordinated [22] locomotion.

Given the importance of contact pattern design, contact
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Fig. 1. Sidewinding limbless robot with varied number of motors. (a) A
6-link limbless robot, and (b) a 12-link limbless robot.

planning for limbless robots has been extensively researched

[3, 7, 10, 22, 27]. A popular approach to contact pattern

design is to take biological inspiration [9]. Specifically, contact

planning is decomposed into two levels: in the higher level, the

contact pattern is pre-determined using biologically inspired

dynamics (e.g., the sinusoidal vertical wave [3]). At the lower

level, the controller adapts the pre-determined contact patterns

to the environment [4]. Another popular approach to contact

pattern design is to use black-box controllers or algorithms

[10] to optimize the contact patterns.

While existing approaches have demonstrated their efficacy

in various robots, little is known about the principles behind

contact planning. For example, it remains unclear why certain

contact patterns are effective, and what happens if we perturb

the contact pattern (e.g., delay the landing/lifting of some body

segments). This lack of understanding of principles can limit

our capability to (1) transfer contact planning insights gained

in one robot to another, and (2) modulate the contact pattern

to achieve high maneuverability (e.g., control the direction of

motion, degree of rotation, etc) [3].

The field of geometric mechanics has been developed as a

general scheme to link locomotor performance to arbitrary pat-

terns of “self-deformation” [5, 15, 20, 25, 31, 33]. Specifically,

the motion of a locomoting system is separated into a shape

space (the internal joint angle space) and a position space

(position and orientation of locomotor in the world frame).

By establishing the mapping between velocities in shape and

position spaces, geometric mechanics offers tools to allows

us to visually analyze, design and optimize gaits. Despite

recent efforts to extend geometric mechanics to mixed-contact

systems [6, 8, 27], the scheme has limitations in designing and

optimizing the contact patterns.
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Fig. 2. Vector fields and height functions for an 8-link robot on granular
media and hard ground with continuous contact. (a) The sketch, vector
field, and height function for an 8-link robot moving on granular media (poppy
seeds). The height function has a large magnitude. (b) The sketch, vector field,
and height function for a 8-link robot moving on hard ground. The axes of
all shape space are identical. The color bar of height functions in (a) and (b)
are identical. The unit of color bar in height function is BL/π2.

In this paper, we extend the geometric mechanics framework

to design, analyze and optimize contact patterns in limbless

sidewinding robots of arbitrary number of motors. One of

our major contributions is to formulate contact pattern design

problem using geometric mechanics framework. Specifically,

we consider each contact state as an independent map con-

necting the shape space and position space. We then seek the

optimal “switching” points between these maps that lead to

the desired motion. Using the Hodge-Helmholtz theorem, we

show that we can find the globally optimal transition points in

the shape space. We then apply our framework to design gaits

for limbless robots. As a result, we show that we can design

effective sidewinding gait for robots with few motors (i.e., a

6-link limbless robot, Fig. 1.a) to achieve speed comparable

to those with more motors (e.g., a 12-link limbless robot, Fig.

1.b). In addition, we show that we can modulate the angle

of motion (the angle of displacement w.r.t. the axis to of

limbless robot) for a sidewinding limbless robot moving in

isotropic environment. Our theoretical predictions are verified

by robophysical experiments.

II. Method

A. Geometric Mechanics

In this subsection, we provide an overview of the geometric

tools, which build the foundation of the framework introduced

in this paper. For a more detailed and comprehensive review,

we refer readers to [6, 12, 21, 35]. The geometric mechanics

gait design framework separates the configuration space of

a system into two spaces: a position space and a shape

space. The position space represents the location (position

and rotation) of a system in the world frame, while the shape

space denotes the internal shape of the system. The geometric

mechanics framework then establishes a functional relationship

to map the velocities in the shape space to the velocities in

the position space; this functional relationship is often called

a local connection.

1) Kinematic Reconstruction Equation: In kinematic sys-

tems where inertial effects are negligible, the equations of

motion ([21]) can be approximated as:

ξ = A(r)ṙ, (1)

where ξ = [ξx, ξy, ξθ]
T denotes the body velocity in the for-

ward, lateral, and rotational directions; r denotes the internal

shape variables (joint angles); A(r) is the local connection

matrix, which encodes environmental constraints and the con-

servation of momentum. While there has been research ex-

tending geometric mechanics to higher dimensions [6, 26], the

analysis and visualization power of geometric mechanics are

particularly effective when the shape variable is 2-dimensional,

i.e., r ∈ R2. In the applications where there are more than 2

joints (e.g. N degrees-of-freedom), we use two shape basis

functions [11] to reduce the dimensionality of the system:

w =
[
βT

1 , β
T
2

]
r,

where β1, β2 ∈ RN are called the shape basis functions. In

the application to snake robots, the shape basis functions are

often chosen to be:

β1(i) = sin
(
2π fs

i
N − 1

)
,β2(i) = cos

(
2π fs

i
N − 1

)
, 1 ≤ i ≤ N,

where fs is the spatial frequency of the snake undulation, i
denotes the joint index, and N is the total number of joints.

2) Numerical Derivation of Local Connection Matrix: The

local connection matrix A can be numerically derived using

resistive force theory (RFT) to model the ground reaction force

[16, 32, 34]. In this section, we provide a brief derivation of

the local connection matrix needed for this paper.

The ground reaction force (GRF) experienced by the lo-

comotor is the sum of the GRF experienced by each body

segment. RFT decomposes the resistive force experienced by

a body segment of a locomotor into two components: thrust

(perpendicular) and drag (parallel), i.e.,

F =
∑
i∈I

(Fi
‖ + Fi

⊥),

where Fi
‖ and Fi

⊥ respectively denote forces parallel and per-

pendicular to the module i; I is the collection of all the modules

that are instantaneously in contact with the environments. In

many applications, the attack angle (the angle of body velocity

w.r.t. the orientation of body segment) determines the F‖ and

F⊥ on this body segment, i.e.,
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Fig. 3. Example of mixed contact pattern. (a-c) The vector fields and
height functions for three contact states I1, I2, and I3. Corresponding robot
links which are in contact with the environment are denoted by red, black and
grey. The color bar of height functions in (a), (b), and (c) are identical. (d.1)
The contact pattern prescribed by Eq. (6). (d.2) The vector field prescribed by
Eq. (7). (d.3) The corresponding height function. The axes of all shape space
are identical. The unit of color bar in height function is BL/π2.

F‖ = F‖(χ), F⊥ = F⊥(χ),

where χ is the attack angle. F‖ and F⊥ are approximately

independent of the magnitude of the velocity in granular and

frictional systems [34]. Depending on the substrate, we can

choose the corresponding RFT functions to approximate the

ground reaction forces.

The attack angles χ of each segment can be calculated from

the body velocity ξ, body shape r, and shape velocity ṙ [24].

By assuming quasi-static motion, we consider the total net

force applied to the system is zero at any instant in time:

F =
∑
i∈I

[
Fi
‖ (ξ, r, ṙ) + Fi

⊥ (ξ, r, ṙ)
]
= 0. (2)

At a given body shape r, Eq.(2) connects the shape velocity

ṙ to the body velocity ξ. Therefore, by implicit function theo-

rem and the linearization process, we can numerically derive
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Fig. 4. Illustration of a contact pattern optimization. (a) The vector field
and its curl-free component and divergence-free component by the Hodge-
Helmholtz decomposition. (b) The potential functions for P1, P2 and P3. Note
that, in curl-free components, the line integral is path-independent, allowing
us to compute the potential function to estimate the line integral between any
points. (c) The potential function difference for Pγ = P2 − P1, Pα = P3 − P2,
and Pβ = P1 − P3. The axes of all shape spaces are identical.

the local connection matrix A(r). In our implementation, we

compute the solution of Eq.(2) using the MATLAB function

fsolve.

3) Connection Vector Fields and Height Functions: Each

row of the local connection matrix A corresponds to a

component direction of the body velocity. Each row of the

local connection matrix, over the shape space, then forms a

connection vector field. In this way, the body velocities in the

forward, lateral, and rotational directions are computed as the

dot product of connection vector fields and the shape velocity

ṙ.

The displacement along the gait path ∂φ can be obtained by

integrating the ordinary differential equation ([13]) below:

g(T ) =

∫
∂φ

TeLg(r) A(r)dr, (3)

where g(r) = [x(r), y(r), α(r)]T represents the position and

rotation of body frame viewed in the world frame at position



r [24], T is the time period of a gait cycle, and g(T ) =

[Δx,Δy,Δα]T denotes the translation and rotation of the body

frame (w.r.t. the world frame) in one gait cycle. Note that TeLg

is the left-lifted action with respect to the coordinates of g:

TeLg =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
cos(α) − sin(α) 0

sin(α) cos(α) 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .

The integral of Eq. (3) can be approximated to the first order

by: ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Δx

Δy

Δθ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
∫
∂φ

A(r)dr =
∫
∂φ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Ax(r)

Ay(r)

Aθ(r)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ dr, (4)

where Ax, Ay, Aθ are the three rows of the local connections

respectively. The accuracy of the approximation in Eq. (4) can

be optimized by properly choosing the body frame [13, 18].

According to Stokes’ Theorem, the line integral along a closed

curve ∂φ is equal to the surface integral of the curl of A(r)

over the surface enclosed by ∂φ:∫
∂φ

A(r)dr =
�
φ

∇ × A(r)dr1dr2, (5)

where φ denotes the surface enclosed by ∂φ. The curl of the

connection vector field, ∇ × A(r), is referred to as the height

function [13]. The three rows of the vector field A(r) can

thus produce three height functions in the forward, lateral,

and rotational direction respectively.
With the above derivation, the gait design problem is simpli-

fied to drawing a closed path in the shape space. Displacement

can be approximated by the integral of the surface enclosed

by the gait path. Hence, the maximization of the integral leads

to the maximization of displacement.
4) Effect of Drag Anisotropy: Locomotion effectiveness can

be highly dependent on the ground reaction force. Specifically,

while limbless robots can achieve good mobility on granular

media using lateral undulation, they often struggle on hard

ground [2]. We compare the height function for an 8-link snake

robot (with fs = 1.5) moving on surface of a model granular

media (poppy seeds) and hard ground (Fig. 2).
The ground reaction forces governing the interaction of

body segments and granular media are well studied when

moving on a granular surface. The forces F⊥ and F‖ [23]

can be approximated by:

f⊥ = C sin (χ), f‖ = A cos (χ) + B(1 − sin (χ)) + F0,

where χ is the attack angle; C = 0.66, A = 0.27, B = −0.32,

F0 = 0.09 is the empirically fitted function to characterize the

granular media resistance force [1, 30]. From structure and

magnitude of its height function (Fig. 2.a), we see that, with

proper gaits, the robot can move effectively on granular media

as discussed in [30].
The ground reaction force between the body segments and

the hard ground can then be modelled by dry Coulomb kinetic

friction: f⊥ = f0 sin (χ), f‖ = f0 cos (χ),

where f0 = μF is the magnitude of the Coulomb kinetic

friction, μ is the coefficient of friction and F is the magnitude

of the normal supporting force. The height function (Fig. 2.b)

suggests that the robot has almost negligible speed regardless

of the choices of gaits. However, it is important for limbless

robots to move effectively on hard ground. Inspired by the

sidewinding snakes [28], limbless robots can greatly improve

the maneuverability by properly controlling their contact pat-

terns [3].

B. Contact Scheduling
In the previous section, because dealing with lateral undu-

lation and continuous contact, we made an assumption that

there is no change in contact states throughout the gait. In

other words, I is independent of r. In this section, we show

that if we relax this assumption and incorporate a second wave,

we can greatly improve the maneuverability of locomotion.
1) Single Contact State: Consider a 12-link limbless robot

moving on hard ground. We assign a binary variable to each

link, c(i), such that c(i) = 0 denotes link i in swing phase

(no contact) and c(i) = 1 denotes link i in stance phase (full

contact). Therefore, I = {i | c(i) = 1}. As we will discuss

in Sec. III.A, the structure of the robot restricted that c(2i) =
c(2i−1), i.e., the contact state between two consecutive vertical

joints are identical.
We consider three distinct contact states: I1, I2, and I3:

Contact state
c(1) c(3) c(5) c(7) c(9) c(11)

c(2) c(4) c(6) c(8) c(10) c(12)

I1 1 0 1 1 0 1

I2 1 1 0 1 1 0

I3 0 1 1 0 1 1

The choice of the contact states Ii is based on the stability

and the symmetry of the systems, such that two thirds of the

modules are on the ground. Note that none of these contact

states are dependent on r. Their realizations can be visualized

in Fig. 3.(a-c). For each contact state, we compute its vector

field and height function in lateral direction (Fig. 3.(a-c)). We

observe that in all the cases, the height functions do not have

regular patterns and their magnitude is low, which indicates

limited mobility when a limbless robot uses a single contact

state.
2) Mixed Contact State: Although each individual contact

state cannot lead to effective displacement, previous work

demonstrated that their combination can enable new motion

behaviors. In this section, we evaluate the locomotion perfor-

mance of mixed contact state.
Inspired by [27], we construct the contact state as:

I(r1, r2) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
I1, if atan2(r2, r1) ∈ (7π/6, 11π/6]

I2, if atan2(r2, r1) ∈ (π/2, 7π/6]

I3, if atan2(r2, r1) ∈ (−π/6, π/2]

, (6)

where atan2 is the four-quadrant inverse tangent operator. In

this way, we can rewrite the local connection as:



A(r1, r2) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
A1, if atan2(r2, r1) ∈ (7π/6, 11π/6]

A2, if atan2(r2, r1) ∈ (π/2, 7π/6]

A3, if atan2(r2, r1) ∈ (−π/6, π/2]

. (7)

Its realization is shown in Fig. 3.d.1. We then obtain the

vector field and height function using Eq. (6) in Fig. 3.d(2-3).

Interestingly, the new height function has high magnitude and

exhibits regular patterns (dark region along the boundary).

C. Optimal Contact Scheduling

Note that Eq. (6) is manually designed, inspired by biology

and empirical experience [27]. Thus, the optimality of Eq.

(6) remains unclear. To explore the optimization of contact

patterns, we formulate the following optimization problem. To

simplify our problem, we limit the number of contact states

to be 3.

Problem 1. Given 3 vector fields Ax
1, A

x
2, A

x
3 in a shape space

M, let p be any partition M = Mp
1
∪ Mp

2
∪ Mp

3
and it induces

the vector field Ax
p(r) such that for i = 1, 2, 3,

Ax
p(r) = Ax

i (r) if r ∈ Mp
i .

Let Lp be the set of closed loops l in M such that for
i = 1, 2, 3, and assume that the intersection l ∩ Mp

i is simply
connected. The optimization problem is

max
l,p

�
l

Ax
p(r)dr ∀ l ∈ Lp.

Since each l∩Mp
i is simply connected, any two of them have

a unique intersection point. We may define the following:

l1 = l ∩ Mp
1
, l2 = l ∩ Mp

2
, l3 = l ∩ Mp

3

{qβ} = l1 ∩ l3, {qγ} = l1 ∩ l2, {qα} = l2 ∩ l3. (8)

Then

�
l

A(r)dr =
3∑

i=1

∫
li

Ax
i (r1, r2)dr. (9)

Note that in Eq. (9), each component is path-dependent,

which is not desirable. From the Hodge-Helmholtz theorem,

any vector field can be decomposed into the sum of a curl-free

component, (Ax
1)c, and a divergence-free component, (Ax

1)d. In

other words,

Ax
1 = (Ax

1)c + (Ax
1)d.

Note that in our applications, the curl-free component has a

much greater magnitude than the divergence-free component

(Fig. 4.a). Therefore, we approximate the line integral in

the original vector field by the line integral in the curl-

free component from Hodge-Helmholtz decomposition. Note

that in the case where the divergence-free component has

comparable magnitude as the curl-free component, we can

use the divergence-free components to determine the paths

connecting the intersections once we determined the partition.

For curl-free vector fields the line-integral is path-

independent. Suppose the corresponding potential functions of

the curl-free components are Px
1
, Px

2
, Px

3
, respectively (Fig. 4.b).

By the Fundamental Theorem of Calculus, we have

∫
l1

Ax
1(r1, r2)dr ≈

∫
l1

(Ax
1)c(r1, r2)dr = Px

1(qβ) − Px
1(qγ).

The other two terms in (9) are decomposed similarly. Then

our objective function becomes

�
l

A(r)dr ≈
(
Px

1(qβ) − Px
1(qγ)
)
+
(
Px

2(qγ) − Px
2(qα)

)

+
(
Px

3(qα) − Px
3(qβ)
)

=
(
Px

3 − Px
2

)
(qα) +

(
Px

1 − Px
3

)
(qβ) +

(
Px

2 − Px
1

)
(qγ)

= Px
α(qα) + Px

β(qβ) + Px
γ(qγ), (10)

where Px
α := Px

3
−Px

2
, Px
β := Px

1
−Px

3
, and Px

γ := Px
2
−Px

1
are the

potential function difference (PFD) (Fig. 4.c). Note that our

objective function has separated parameters - the coordinates

of qα, qβ, qγ. In addition, the choices of p and l imply that all 3

intersection points could be arbitrary points in M. As a result,

when (10) is optimized, so are the 3 individual terms in (10).

Therefore, qα is the point in M that optimizes the univariate

function Px
α. Parameters qβ, qγ are characterized similarly.

Since the vector fields Ax(r) are given, so are the PFDs

Px
α, P

x
β, P

x
γ. Thus we can find the optimal contact scheduling by

solving these 3 individual optimization problems. In practice,

if we discretize values of Px
α, P

x
β, P

x
γ, we can apply numerical

algorithms to solve these optimization problems.

Once qα, qβ, qγ are found, we can then choose a generic

point q0 (in practice, q0 can be chosen to be the origin) in M,

and extend a curve connecting q and qα to the boundary of M,

which serves as the boundary between Mp
2

and Mp
3
. The other

two boundaries are obtained by connecting and extending q, qβ
and q, qγ, and we obtain the partition p, which leads to the

optimal contact scheduling.

Note that our methods can be applied to systems with more

than 3 states. Consider an undirected graph G(V, E), where

vi ∈ V denotes a contact state i, and {vi, v j} ∈ E denotes that

the transition from contact state i to contact state j is feasible.

Then for each cycle, oi, in G, we can use our method to

determine its optimal transition points in the shape space Q(oi)

and the corresponding displacement D(oi). Then the optimal

in G is then maxi D(oi).

III. Results

A. Experimental Setup

We carried out robophysical experiments with a modu-

lar limbless robot composed of identical actuated modules

(Dynamixel AX-12A servo motors). The number of modules

varied according to the gait tested, but the arrangement of

modules always followed the convention that the rotation axes

of two neighboring modules were perpendicular to each other

(Fig. 1). Thus, all rotation axes of odd modules lie in the same



plane and the same is true for even modules. In experiments,

odd modules were actuated to control the body shape in the

horizontal plane and even modules were for the vertical plane.

Experiments were conducted on flat, hard ground, with

the assumption that the ground reaction forces are given by

dry Coulomb kinetic friction with friction coefficient μ =
0.35 ± 0.06. The joints of the robot were controlled by direct

joint angle set-point commands. We conducted three repeat

experiments for each gait we tested. In a single experiment,

the robot executed three complete gait cycles.

To track the robot’s motion in its position space, 6 IR

reflective markers were attached along the body of the robot

with equal distance along the body. An OptiTrack motion

capture system with 6 OptiTrack Flex 13 cameras was used.

3D positions of the markers were tracked at 120 FPS frame

rate. The motions of the robot executing 3 cycles of gait were

collected from the robot formed the first configuration until

the robot reached the last configuration.

We measured the angle of motion and displacement from the

robot motion data we collected. To calculate the angle of mo-

tion for one experiment (3 complete gait cycles), we selected

the first and the last sets of marker positions, which correspond

to the initial and the ending robot configurations, respectively.

We then calculated the averaged geometric center of the body

for two configurations by taking the mean of the position of

markers. Thus, the trajectory of the geometry center in the

world frame can be determined by connecting the starting and

ending geometric centers. Similarly, the angle of motion can

be measured by the angular difference between the geometry

center trajectory and the horizontal axes (perpendicular to the

starting body axis). The displacement can also be measured

by the projection of the geometry center trajectory onto the

horizontal axes.

B. Modulating Angle of Motion

In previous work [3, 7], the sidewinding gait for limbless

robots is decomposed into two waves in the horizontal plane

and the vertical plane, respectively. In this way, the formulas

of locomotion are prescribed as:

θ(2 j − 1, t) = Ah sin

(
2πK

2 j − 1

N
+ 2π f t

)
, (11)

θ(2 j, t) = Av sin

(
2πK

2 j
N
+ 2π f t + φ0

)
, (12)

where j = 1, 2, ...,N/2; θ(2 j − 1, t) and θ(2 j, t) refer to the

yaw joint angles and the pitch joint angles respectively; K is

the spatial frequency of the sidewinding gaits; Ah and Av are

the amplitude of the horizontal wave and the vertical wave

respectively; f defines the temporal frequency; and φ0 is the

phase lag between the horizontal and the vertical waves.

Rieser et al. [27] showed that the track angle (the angle

between the direction of motion and the trajectories of the

“tracks” made by body-environment contact) can be modulated

by the amplitude of the horizontal wave, Ah. On granular

media, the measure of track angle can give an approximation
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Fig. 5. Experiments on angle of motion modulation. (a.1) Snapshots
of robot implementing sidewinding gaits with different amplitudes using
sinusoidal templates (Eq. (11,12)). Solid yellow arrow indicates the direction
of motion lt and dashed blue line, lc indicate the central body axis. The

angle of motion is computed as sin−1
(

lTt lc
|lt ||lc |
)
. (a.2) For the sidewinding

gaits using sinusoidal templates, the angle of motion is almost independent
of the amplitude for robot moving in isotropic environments. Blue solid
line represents simulation and black line with error bars is robophysical
experimental data. (b.1) Comparison of snapshots of the robot experiment
and the simulation implementing the gait to modulate the angle of motion.
(b.2) Modulation of the motion angle by controlling the convex coefficient ε.

to the angle of motion (the angle between the direction of

motion and the central axis of snake body). However, with our

analysis in Sec. II.A.(4), the net displacement of sidewinding

gaits on hard ground is predominantly in the lateral direction.

In this way, we tested the sidewinding gaits with a range

of amplitudes of the horizontal wave Ah, from 20 to 60

degrees, on a 12-link limbless robot moving on hard ground.

We found through experiments that the angle of motion is

almost independent of the amplitude (Fig. 5.a). Example

experiment videos for Ah = π/3 and π/9 can be found

in the supplementary video. Given the low effectiveness of

altering the horizontal amplitude heuristically on the motion

angle modulation, we sought to design a general control

scheme that would modulate this angle of motion in isotropic

environments.

We then applied our method to design sidewinding gaits

for a 12-link robot. Following the method introduced in Sec.

II, we computed the potential function difference in forward,

lateral, and rotation directions (Fig. 6). First, we identified the

three transitional points that maximized the displacement in

lateral directions, Qy = {qy
α, qy

β, qy
γ}. Note that we limited the

joint angle to π/3, i.e., ||[r1, r2]||2 < π/3. We then identified

the three transitional points that maximized the displacement
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Fig. 6. Modulating the angle of motion using contact pattern opti-
mization. The potential function difference (PFD) in forward (a), lateral (b)
and rotational (c) directions. The black circle indicate our joint angle limit:
||[r1, r2]||2 ≤ π/3. The set of extreme points (Qx = {qx
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to maximize the sum of PFD in forward directions. The set of extreme points
(Qy = {qy

γ, qy
α, qy

β, }) are chosen to maximize the sum of PFD in lateral

directions. The axes of all shape spaces are identical. The color bar of PFD
in (a) are identical.

in forward direction, Qx = {qx
α, qx

β, qx
γ}. We observed that

the transitional points Qy can only lead to pure translation

(i.e., zero in forward and rotational directions). Furthermore,

the transitional points determined by Qx can lead to effective

displacement in both forward and lateral directions, and thus

establish a finite angle. In this way, we propose to modulate

the angle of motion by a convex combination of Qy and Qx:

Q(ε) = εQx + (1 − ε)Qy, (13)

where ε ∈ [0, 1] is the coefficient of the convex combination,

and Q(ε) are the transition points determined by the convex

coefficient ε.

In this way, using Eq. (13), we formulated the equation

to modulate the angle of motion. As shown in Fig 5b, data

from robophysical experiments agreed with our predictions,

verifying the validity of our theoretical approach (an example

robophysical experiment video can be found in the supple-

mentary video). As such, we have shown that our method is

effective in modulating the angle of motion for limbless robots

b

Our method

Sine wave template

c

a

Shape change

Contact State Transition

Fig. 7. Sidewinding with fewer number of links. (a) Snapshots of a 6-link
robot implementing the sidewinding gait with the sinusoidal templates (Eq.
(11), (12)). (b) Snapshots of a 6-link robot implementing the sidewinding gait
with our optimization method. (c) The sidewinding speed (in unit BL per
cycle) as a function of link numbers (sidewinding gait is prescribed using the
sine wave template). Blue solid line represents simulation and black line with
error bars is robophysical experimental data. The speed decreases as the link
number decreases until N = 10. For N < 10, the configuration is unstable
and turning emerged. The speed of the gait with our optimization method is
highlighted as a diamond marker.

in isotropic environments.

C. Sidewinding of a 6-link Robot

While limbless robots have advantages in confined spaces,

one of their major restrictions is longitudinal length. In other

words, in certain applications such as search and rescue in

obstacle-rich environments, it could be desirable to have robots

with short body length but high locomotive performance in

sidewinding. However, there is often a trade-off between the

body length and the locomotive performance for limbless

robots: if the size of the motor is fixed, it is only possible

to reduce the size of the robots by decreasing the number of

motors, i.e., decreasing the degrees of freedom. The disadvan-

tage of fewer motors can be the slower speed of the robot.

As shown in [19], even when executing the same gait, robots



with few motors resulted in significantly less speed than those

with adequate motors.

We conducted a series of experiments using the same motion

equations but different number of motors. Specifically, we

fixed the parameters Ah = π/3, Av = π/9, K = 1.5, and

f = 0.1 and evaluated the relationship between the speed and

the number of motors, N. The experimental results are shown

in Fig. 7. As expected, the displacement dropped as the number

of motors decreased until N = 10. Turning behavior emerged

at N < 10, which can be caused by the unstable configurations

in the gaits [7]. These unstable turning behaviors led to high

variability in their speed, which we attribute to stability. An

example of the unstable turning behavior for N = 6 can be

found in the supplementary video.

We then used our method to design the effective sidewinding

gaits for the 6-link robot. We first identified three stable contact

patterns for this 6-link robot such that the center of mass

is enclosed by the supporting polygon. Using the methods

introduced in Sec. II, we obtained the potential function

difference in lateral direction (Py
γ, Py

α, and Py
β) and rotational

directions (Pθγ, Pθα, and Pθβ). Interestingly, we noticed that the

magnitude of Py
β is significantly lower than those in Py

γ and

Py
α. Therefore, the lateral speed is almost independent of the

choice qβ; and given qγ and qα, we are free to choose qβ such

that the net rotation is zero.

Given the transitional points, we interpreted the boundary

of these contact states as the half line connection origin

and chosen transitional points. We can then compute the

corresponding vector field and height function.

We implemented our designed gaits in robot experiments.

The experimental data shows quantitative agreement with

the theoretical predictions. An example video of the 6-link

robot experiment can be found in the supplementary video.

Interestingly, we noticed that with proper design of the contact

pattern, the speed of 6-link robot can even out-perform those

with 12 links (Fig. 7.c).

IV. Conclusion

In this paper, we designed a framework to systematically op-

timize, analyze, and visualize the contact patterns that lead to

motion of a limbless robot sidewinding in the desired direction.

Specifically, we considered a single contact pattern as a local

connection that maps the velocities in the shape space to the

position space. We then formulated the optimal contact pattern

problem as finding the optimal boundary between each contact

state in the shape space. Using the Hodge-Helmholtz theorem,

we estimated the line integral in a vector field from its potential

functions. By taking the difference in potential functions, we

were able to search for the global optimal transitional points in

the shape space. Note that in the examples shown in the paper,

the curl-free component has a much greater magnitude than

the divergence-free component. In cases where the divergence-

free and curl-free components have comparable magnitude, we

can first determine the transitional points from the curl-free

components and design the trajectory connecting transitional

points using the divergence-free components.
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Fig. 8. Designing sidewinding gaits for a 6-link robot. (a) Three
stable contact patterns and their corresponding vector fields. (b) The PFD
of lateral and rotational directions. The color bars of PFD are identical in
three illustrations. The black circle indicates the robot’s joint angle limit:
||[r1, r2]||2 ≤ π/3. (c) The boundary of each contact state, the vector field,
and the height function with the optimal contact pattern, determined from the
obtained transitional points. The unit of color bar in height function is BL/π2.

We applied our framework to study sidewinding limbless

robots. We first used our methods to modulate the angle of mo-

tion for sidewinding robots moving in isotropic environments.

Robophysical experiments verified that we could modulate

the angle of motion by controlling the weights in convex

combination ε. We then applied our method to designing

sidewinding gait for a 6-link robot. We showed that with

proper contact design, the 6-link robot can achieve speeds as

good as those with adequate number of links (e.g., 12-link

snake robot). In this way, we expand the family of sidewinding

gaits to robots with fewer motors.

Our future work includes applying our methods to designing

optimal contact patterns for legged robots. In addition, we also

seek to extend our methods to designing contact patterns for

systems with more than 3 contact states.
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