
Layout-aware Hardware-assisted Designs for
Derived Data Types in MPI

Kaushik Kandadi Suresh, Bharath Ramesh, Chen Chun Chen, Seyedeh Mahdieh Ghazimirsaeed,
Mohammadreza Bayatpour, Aamir Shafi, Hari Subramoni, Dhabaleswar K.Panda

Department of Computer Science and Engineering

The Ohio State University

Columbus, USA

{kandadisuresh.1,ramesh.113, chen.10252, ghazimirsaeed.3, bayatpour.1, shafi.16, subramoni.1, panda.2}@osu.edu

Abstract—Modern MPI-based scientific applications frequently
use derived datatypes (DDT) for inter-process communication.
Designing scalable solutions capable of dynamically adapting
themselves to the complex communication requirements posed
by DDT-based applications bring forth several new challenges.
In this work, we address these challenges and propose solutions
to efficiently improve the performance of hardware-assisted
datatype transfers. Further, we design a layout-aware DDT
scheme that dynamically adapts the datatype processing to the
communication requirements of the datatype layouts used by
the application. The proposed layout-aware adaptive scheme is
able to dynamically switch between different host-based and the
proposed hardware-assisted schemes to deliver the best perfor-
mance and scalability while hiding the communication overheads.
The experimental evaluations on multiple HPC systems including
Frontera at TACC and Expanse at SDSC show that our proposed
designs achieve up to 22% improvement in performance over
state-of-the-art MPI libraries at the micro-benchmark level.
We also evaluate our designs with various scientific application
kernels such as MILC, WRF, and applications such as miniGhost
and demonstrate up to 9% improvement in performance at 128
nodes for the miniGhost application.

I. INTRODUCTION

Modern High-Performance Computing (HPC) systems are
enabling domain scientists to solve “grand challenge” prob-
lems in their respective fields. With the end of Moore’s law in
sight, these application scientists are relying on parallelism—
by running larger jobs—offered by such HPC systems to push
the performance envelope. The Message Passing Interface
(MPI) [9] standard is a popular defacto parallel programming
model that aids the development of such high-performance
scientific applications on large-scale HPC systems.

Many scientific codes define and perform computations
on complex, application-specific data structures. For instance,
while solving systems of non-linear equations, an application
might need to communicate specific columns of a matrix or
lower/upper triangular matrix. The challenge here is that these
structures are not contiguous in memory. A naive solution is
that the application developers pack the data into a temporary
contiguous buffer, send it over, and then unpack it on the
receiver side. This is not always an efficient approach since

*This research is supported in part by NSF grants #1818253, #1854828,
#1931537, #2007991, #2018627, #2112606, and XRAC grant #NCR-130002

it creates multiple copies of data, which is time-consuming
and also increases the memory footprint of the application.
Moreover, this approach has poor productivity since it re-
quires application developers to handle packing/unpacking
and managing the temporary buffers. Therefore, to improve
performance and productivity, the MPI standard provides a
mechanism called Derived Datatype (DDT) for expressing
custom data types—these include contiguous, vector, indexed,
and struct. The MPI DDT provides the opportunity to com-
municate non-contiguous data in a portable manner. The DDT
communication schemes currently used in the state-of-the-
art MPI libraries (such as Open MPI [2], IntelMPI [1], and
MVAPICH [11]) or those proposed in literature [6], [8], [15],
[20] can be broadly classified into two categories: “host-based”
schemes, and “hardware-assisted” schemes.

In host-based schemes, the host CPU is responsible for
packing/unpacking the non-contiguous data by copying all the
memory segments to/from a contiguous buffer. State-of-the-art
MPI libraries pre-allocate and pre-register a pool of contiguous
buffers and then they use this set of internal buffers for
packing the data and transferring them through the network.
To tackle the overheads of the pack/unpack operations, modern
Host Channel Adapters (HCA) such as NVIDIA/Mellanox
Infiniband adapters have included the ability to drive non-
contiguous datatype transfers on behalf of the host CPU. These
supports are generally in form of Scatter and Gather Lists
(SGL), where the underlying interconnect hardware provides
mechanisms to scatter/gather the non-contiguous data directly
to/from host memory.

While such hardware-assisted features in InfiniBand en-
able the MPI library to hide the copy operations overhead
included in the host-based schemes, they cannot be used as
a universal solution due to various performance bottlenecks.
For instance, in hardware-assisted schemes, the application
buffers are directly registered with the HCA at run-time,
imposing an overhead every time an application uses a DDT
with a new address and layout. If the application reuses
the same set of buffers, then there is an overhead regarding
maintenance and usage of InfiniBand registration cache in
the critical path as well as memory layout transfer between
sender and receiver. As we characterize the hardware-assisted

302

2021 IEEE 28th International Conference on High Performance Computing, Data, and Analytics (HiPC)

2640-0316/21/$31.00 ©2021 IEEE
DOI 10.1109/HiPC53243.2021.00044

20
21

 IE
EE

 2
8t

h 
In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 H
ig

h 
Pe

rf
or

m
an

ce
 C

om
pu

tin
g,

 D
at

a,
 a

nd
 A

na
ly

tic
s (

Hi
PC

) |
 9

78
-1

-6
65

4-
10

16
-8

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

HI
PC

53
24

3.
20

21
.0

00
44

Authorized licensed use limited to: The Ohio State University. Downloaded on June 21,2022 at 13:05:15 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I
COMPARISON OF DIFFERENT DDT SCHEMES PROPOSED IN LITERATURE

Design Features Host-based
Schemes

Hardware-
assisted
Schemes

Zero-copy
Communica-
tion

Adaptive
Scheme
Selection

Scalability Layout-aware
Registration
Cache

Gopal et al ! " " ! ! !

Schneider et al " ! ! ! " !

Traff et al " ! ! ! " !

Girolamo et al ! " ! ! ! !

Prabhu et al " ! ! ! " !

LAH (proposed) " " " " " "

schemes, we also realize that there are performance limitations
in the hardware for certain datatypes and memory layouts.
Furthermore, the current state-of-the-art SGL-based designs
suffer from scalability issues due to the usage of an extra
connection resource for every peer process [15].

These observations show that while hardware-assisted DDT
schemes are useful in certain scenarios, MPI libraries need
to address several challenges to mitigate their performance
bottlenecks to provide an integrated and high-performance
solution.

Table I provides an overview of different state-of-the-art
DDT schemes and compares them with the proposed Layout-
aware scheme in this paper. As we can see here, there is no
solution that enhances the performance bottlenecks regarding
the hardware-assisted SGL-based DDT transfers and covers
various pillars of sophisticated DDT transfer designs. For in-
stance, Santhanaraman et al [15] propose zero-copy hardware-
assisted schemes with scatter-gather lists (SGL). However,
their scheme involves expensive layout exchange operations
and suffers from scalability issues. Furthermore, it does not
hide the performance bottlenecks within hardware, making
the performance worse than host-based designs for certain
communication scenarios. We address these issues by propos-
ing layout-aware communication transfers whilst minimizing
the amount of information exchanged between processes and
guarantee scalability. Schneider et al. [17] use run-time com-
pilation techniques to generate efficient and optimized pack
code for MPI datatypes at commit time. Prabhu et al [14]
propose a declarative language and optimized data movement
routines using Just-in-time compilers. The focus of our work is
on optimizing network transfers for datatypes, and optimized
pack/unpack routines complement our design by accelerating
the packing of data in host-based schemes.

II. BACKGROUND

This section provides the background material for our work.
Registration Cache : Infiniband requires memory regions

to be registered with the HCA before they can be used for
data transfers. Every memory registration with the HCA using
the ibv reg mr function returns an “lkey”, which is a local
key used as an identifier for a memory region. Posting sends
using Infiniband verbs requires this lkey along with other
information such as the memory address and buffer size. To
amortize the cost of expensive memory registrations, MPI
libraries employ the use of a registration cache. When an
MPI Isend is invoked by a process for a new buffer, the
MPI library registers the send buffer with the HCA and adds

the generated lkey, buffer address, and buffer size to the
registration cache. If a process invokes MPI Isend again with
the same buffer, the MPI library queries the registration cache
using the address as a key and uses the value obtained for
posting sends, thereby avoiding repeated registration costs.
The registration cache resides in the host memory. Typically,
MPI libraries use a Binary Search Tree (BST) to cache the
entries (indexed by memory addresses). More details are
explained in [10].

SGL-based Transfers : Scatter Gather List or SGL refers
to the hardware-assisted feature to exchange non-contiguous
data. It is defined in the InfiniBand (IB) Architecture’s chan-
nel semantics. The HCA at the sender’s side gathers data
from source memory locations and receiver HCA scatters the
data to the destination memory locations. The combination
of the lkey, buffer address and buffer size are referred to
as a Scatter Gather Entry (SGE). Multiple such entries are
grouped together to form Scatter-Gather List which is used
to post non-contiguous sends/receives to the HCA. In this
paper, we use SGL as the hardware-assisted scheme. However,
the observations and the proposed designs in SGL can be
applied to other hardware-assisted schemes such as User mode
Memory Registration (UMR) 1.

Dynamic Connected (DC) Transport : Dynamic Con-
nected transport is a reliable transport protocol in which
a single queue pair (called an Initiator) can dynamically
establish a connection with any end-point (called a DC target).
It drastically reduces the number of queue pairs required for
communication when compared to the Reliable Connected
(RC) transport protocol, as one DC initiator can connect to
multiple DC targets.

III. CHARACTERIZATION AND MOTIVATION

Motivation 1: HPC applications can exhibit diverse mem-
ory layouts. Figure 1 shows the approximate representation
of memory layouts in some HPC applications obtained by
profiling the DDT layouts they use. The blue boxes represent
blocks, which contain data relevant to the application. The
stride by which we access these layouts is essentially the size
of the current block plus the gap between the current block and
the next block. We use the term “DDT layout” to denote the
physical descriptions of the DDT, including starting addresses
and lengths for all blocks/segments that are part of the DDT,
whereas “Memory layout” refers to the structure/organization

1In the rest of the paper, we refer to SGL and the hardware-assisted scheme,
interchangeably.

303

Authorized licensed use limited to: The Ohio State University. Downloaded on June 21,2022 at 13:05:15 UTC from IEEE Xplore.  Restrictions apply. 



of the DDT in memory. In other words, a DDT layout is a
specific instance of a memory layout. As shown in this figure,
block lengths, the number of segments and the stride/gap
between blocks tend to show huge variability. These factors,
along with the number of times a DDT layout is used at
run-time (the frequency), make it difficult to have a one size
fits all communication transfer approach. This leads us to
the following motivation: Can we propose a comprehensive
DDT design that achieves the peak performance for various
communication scenarios and applications?

D��^ŝŽ

&&dϮ�
^tϰůŝƚĞ
D/>�

�ůŽĐŬƐ�ŝŶ�ƚŚĞ�ůĂǇŽƵƚ
'ĂƉƐ�ďĞƚǁĞĞŶ�ďůŽĐŬƐ�ŝŶ�ƚŚĞ�ůĂǇŽƵƚ

�ƉƉůŝĐĂƚŝŽŶ��d�ůĂǇŽƵƚƐ�ŝŶ�ŵĞŵŽƌǇ

Fig. 1. Application memory layouts. All blocks shown in the figure represent
relative sizes and are not drawn to scale.

Motivation 2: Memory registration is a major run-time over-
head for hardware-assisted schemes, with a Binary Search Tree
(BST) based cache used to amortize repeated registration costs.
The number of elements in this BST (N) is proportional to the
number of distinct memory addresses which can range from
hundreds to several thousand. To register a non-contiguous
layout, we need to register all the contiguous segments that
are part of the layout. Therefore, the cost of lookup for
each segment, and the insertion of entries into a BST-based
registration cache would be O(log(N)). First, we study the
impact of using a BST-based registration cache for registering
all the blocks/segments of different non-contiguous layouts.
We wrote a simple MPI-based ping-pong benchmark that
exchanges layouts found in HPC applications. Figure 2 shows
the breakdown of the total registration time for 100 iterations
for three different representative application layouts—which
includes the cost of registration using ibv reg mr in the first
iteration (shown in dark blue), and the cost of cache accesses
in subsequent iterations. We observe that the cache access
itself represents up to 20% of the total registration time. This
problem is exacerbated by increasing the number of times
a given DDT layout is used. Thus, we motivate the need
to amortize this cost even further, with a goal to provide
constant lookup time after registration is complete for memory
regions in a given datatype layout. This leads us to the next
motivation: Can we reduce the registration cache overheads
in hardware-assisted schemes to get efficient performance?

Motivation 3: Figure 3 shows the values of performance of
hardware-assisted scheme normalized to host-based scheme
for varying block length and frequency in a verbs level DDT
layout based ping-pong benchmark. Values less than one are
red where the hardware-assisted scheme performs better and
values greater than one are blue where the host-based scheme
performs better. As shown in the figure there is no clear
boundary between the two schemes, showing a non-trivial
dependence on the latency, frequency, and block size.

  0%

  20%

  40%

  60%

  80%

  100%

SW4Lite MiniGhost FFT2D

T
o
ta

l R
e
g
 T

im
e

Application Layouts

 reg−cache−access
 reg−mr

Fig. 2. Registration cache overhead for selected application layouts for 100
accesses

Fig. 3. Impact of block length and layout frequency on the relative perfor-
mance of Hardware-Assisted scheme with Host-based scheme.

Figure 4 shows an example communication pattern for six
processes. The host-based scheme being used is represented
using black edges and the hardware-assisted scheme (HA)
is represented using orange edges. The tuple between arrow
brackets represent the average block length and frequency
of the DDT layout being communicated for three pairs of
communicating processes : 0-3, 1-4, 2-5. The leftmost figure
shows the default case, where all processes use the host-based
scheme for all layouts. The figure in the middle shows a
tuned case based on the block length threshold, where we
select a host-based scheme for any block length less than the
threshold (say, 4 KB in this case) and the HA scheme for
all average block lengths greater than the threshold. This is
an issue for the communicating pair 1-4 in this example as it
will not hide the registration cost and end up using the HA
scheme for low-frequency communication (which will turn out
to be expensive). The figure on the right represents the best
selection of algorithms that dynamically adapt to the given
communication pattern. Thus, a simple scheme that tunes and
selects either a host-based or hardware-assisted mechanism
depending on the layout may not always work. There is a
need for a scheme that can dynamically give the best possible
latency for any DDT layout type and any frequency. This
leads us to the last motivation: Is it possible to design a
layout-aware scheme that can dynamically select between

/^�͛ϭϳ ϭEĞƚǁŽƌŬ��ĂƐĞĚ��ŽŵƉƵƚŝŶŐ�>ĂďŽƌĂƚŽƌǇ

WƌŽĐĞƐƐ

ϯ ϰ ϱ

�ĞĨĂƵůƚ�;ŚŽƐƚͲďĂƐĞĚͿ
ŶŽŶͲĂĚĂƉƚŝǀĞ

фϮϱϲ͕�ϭϬх фϴ<͕�ϭϬх фϴ<͕�ϭϬϬϬх
Ϭ ϭ Ϯ

dƵŶĞĚ�;ďĂƐĞĚ�ŽŶ�ďůŽĐŬ�ůĞŶŐƚŚͿ
�ĚĂƉƚŝǀĞ�;ĚǇŶĂŵŝĐĂůůǇ�
ĂĚĂƉƚ�ƚŽ�ďŽƚŚ�ĨƌĞƋƵĞŶĐǇ�
ĂŶĚ�ďůŽĐŬ�ůĞŶŐƚŚͿ

фϮϱϲ͕�ϭϬх фϴ<͕�ϭϬх фϴ<͕�ϭϬϬϬх фϮϱϲ͕�ϭϬх фϴ<͕�ϭϬх фϴ<͕�ϭϬϬϬх

dƵƉůĞ�с�фĂǀĞƌĂŐĞ�ďůŽĐŬ�ůĞŶŐƚŚ͕�ĨƌĞƋƵĞŶĐǇх�ĨŽƌ�ĞĂĐŚ�ƉĂŝƌ
,��^ĐŚĞŵĞ,��^ĐŚĞŵĞ ,ŽƐƚ��ĂƐĞĚ�ƐĐŚĞŵĞ

ϯ ϰ ϱ

Ϭ ϭ Ϯ

ϰ

ϭ

ϱ

Ϯ

ϯ ϰ ϱ

Ϭ ϭ Ϯ

ϱ

Ϯ

Fig. 4. Selection of data transfer schemes for a given communication pattern

304

Authorized licensed use limited to: The Ohio State University. Downloaded on June 21,2022 at 13:05:15 UTC from IEEE Xplore.  Restrictions apply. 



host-based and hardware-assisted schemes depending on
the frequency of communication and the datatype layout
used?
A. Contributions

In this paper, we tackle these questions and demonstrate that
neither hardware nor host-based DDT schemes can provide the
best performance for various communication scenarios. Thus,
an integrated and hybrid design that can take advantage of
both these approaches and adapt to the application’s com-
munication requirements is essential. This can guarantee the
best performance for any communication scenario. We propose
multiple solutions to efficiently improve the various phases in
the state-of-the-art hardware-assisted schemes while efficiently
augmenting the hardware-schemes with host-based schemes.

To summarize, we make the following contributions in this
paper:

1) Thorough characterization of state-of-the-art hardware-
assisted DDT transfers and identifying the major bottle-
necks of current non-contiguous data transfer schemes
and the impact of different data layouts on their perfor-
mance.

2) Evaluating the shortcomings of registration cache mech-
anisms in current hardware-assisted schemes and pro-
pose an efficient hardware-assisted design that signifi-
cantly reduces the cost of registration.

3) Proposing a mechanism to minimize exchanging the
layout information required for every send/receive op-
eration in zero-copy hardware-assisted schemes.

4) Extending the hardware-assisted schemes to take ad-
vantage of many benefits of the DC transport protocol,
including memory efficiency, scalability, and reliability.

5) Proposing a layout-aware derived datatype design that
considers various parameters (e.g. message size, data
layout, the frequency of the layouts, etc.) to dynami-
cally select the best scheme for each layout during the
application’s run time.

6) Demonstrate the benefits of the proposed designs on
various applications and microbenchmarks.

The experimental evaluations on multiple HPC systems
including Frontera at TACC and Expanse at SDSC show that
our proposed designs achieve up to 22% improvement in
performance over state-of-the-art MPI libraries at the micro-
benchmark level. We also evaluate our designs with various
scientific applications such as miniGhost and application ker-
nels such as MILC, and WRF and we demonstrate up to 9%
improvement in performance at 128 nodes.

IV. DESIGN AND IMPLEMENTATION

Figure 5 shows an overview of the proposed designs
in the MPI software stack. The proposed hardware-assisted
cache (HA-cache) scheme is built on top of hardware-assisted
SGL-based transfers and provides multiple enhancements and
optimizations to improve its performance. These optimiza-
tions include layout-based registration cache, optimized layout
exchange design, and DC-based non-contiguous data trans-
fers. We discuss these designs in detail in this section. As

�������	�	

�������	������



���
��������
���
�

�������	�� ��������	������
�����

�����

	�
�

����������
	�
�
�
�����
�������


���
�
�
	��������
�������
��
�
��

���	���������

���������������
�����
�������

����
��

������
����� 	��
�


Fig. 5. An overview of the proposed designs

seen in figure 5, the HA-cache and host-based schemes are
components of the proposed layout-aware hardware-assisted
(Proposed-LAH) scheme which is discussed in detail in Sec-
tion IV-C.

A. DC-based Hardware-assisted Non-Contiguous Data Trans-

fers (HA)

In this section, we propose a mechanism to take advantage
of the DC transport protocol [18] to improve the scalability
of the SGL scheme. For non-contiguous datatypes, designing
an RC-based solution would require an additional set of end-
points for each source [15], which would be detrimental
for large-scale runs as systems can run out of memory.
This motivates the need for a DC-based non-contiguous data
transfer scheme.

In this scheme, the sender first sends an Request-to-Send
(RTS) to the receiver. The receiver maintains a pool of avail-
able DC targets. Once the receiver receives RTS, it selects an
available DC target from the pool and marks it as unavailable.
Then, the receiver sends the target number to the sender
through the Clear-to-Send (CTS) packet. The sender receives
the DC target and posts all the sends to it. When all the receive
operations are done, the receiver makes the associated DC
target available. If the receiver does not have any available DC
target when it receives a RTS, it queues the RTS request. Once
a DC target becomes available, the receiver sends the target
number to the sender and removes the associated RTS request
from the queue. In the above design, the receiver avoids the
case where two different senders post requests to the same DC
target. With this scheme, we can provide a scalable DC-based
non-contiguous data transfer while ensuring data validity.

B. Optimized DC-based Hardware-assisted Non-Contiguous

Data Transfers (HA-cache)

In this section, we describe the design and features of HA-
cache—An optimized version of the HA scheme explained in
Section IV-A.

1) Layout-based Registration Cache: A DDT layout can be
registered block by block (at a page-level granularity) or the
entire memory region (including the gaps) can be registered.
Since the second approach may fail in certain scenarios [7],
we have considered the first approach in this paper. MPI
implementations amortize the registration cost through the use
of a registration cache, indexed by memory addresses.

Since blocks in a DDT layout are registered one by one and
then added to the BST-based cache, the number of elements in

305

Authorized licensed use limited to: The Ohio State University. Downloaded on June 21,2022 at 13:05:15 UTC from IEEE Xplore.  Restrictions apply. 



the cache (typically implemented as Balanced Binary Search
Tree (BST)) is bounded by O(l×count), where l is the number
of distinct data layouts and count is the maximum number of
blocks amongst all layouts. As a result, the cost for accessing a
single block is O(log(l×count)) and the total cost of querying
an entire DDT layout is O(count× log(l×count)). To reduce
query costs with large tree sizes, we propose a layout-based
registration cache, which is another layer of cache that aug-
ments the existing BST-based registration cache. Implemented
as a hash table, this design provides a constant time lookup
for each block in a DDT layout. In the following paragraph,
we discuss the details of the layout-based registration cache
design.

The Layout Based Registration cache works as follows:
When a sender/receiver process encounters a datatype handle
in MPI Isend/MPI Irecv, it combines the datatype handle,
base address of the buffer, and message size to generate a
composite key, which is used to then query the layout cache.
If a miss occurs, the sender flattens the datatype layout (using
the handle) to get a list of a structure containing the starting
address and the length of each block. Then, the sender/receiver
uses the BST-based registration cache to register each block
and obtains a list of registration cache entries. This list is added
to the layout cache as an entry identified by the generated com-
posite key. On a layout cache hit, the sender/receiver queries
the layout cache to get the list of registration cache entries,
instead of flattening the layout and querying the registration
cache for every block. This reduces the query cost on a cache
hit to O(count) as compared to O(count × log(l × count))
in the BST-based registration cache design.

Eviction occurs when 1) a datatype layout is freed (by
using MPI Type free) or 2) a memory region is freed. All
the associated BST-based registration cache entries are evicted
first, followed by the eviction of layout-based registration
cache entries.

2) Optimized Layout Exchange Design: In the past, re-
searchers [15] have used full layout information exchange to
decide on the size and the number of work requests for DDT
layout exchange. The problem with this approach is that the
amount of layout information exchange and memory usage
increase dramatically as we increase the number of blocks in
the layout. To deal with these issues, we propose an optimized
layout exchange design.

Figure 6 shows the details of a hardware-assisted design
using the optimized layout exchange design. The layout-
based registration cache behavior works exactly as explained
in Section IV-B1. The Optimized Layout Exchange Design
works by exchanging the minimum of all layout segment/block
lengths in RTS and CTS messages. The sender first sends
its minimum segment length (IOV smin) in the RTS mes-
sage. The receiver uses this value, and its own minimum
segment length (IOV rmin) to compute minWQE = m ∗
MIN(IOV smin, IOV rmin). This value is then sent back to
the sender in the CTS message. This forms a global agreement
between the processes. Thus, the optimized layout exchange
design performs a minimal amount of layout information ex-

change and is complemented by the layout-based registration
cache described in Section IV-B1. After receiving the CTS
message, the sender registers memory regions and initiates
SGL based transfers (based on the agreed chunk size) directly
to the receive buffers. The last send is posted as an immediate
send to indicate the completion of the transfer to the receiver.

03,B5HFY��/U��
^ĞŶĚĞƌ ZĞĐĞŝǀĞƌ03,B6HQG��/V��

CTS

LC Miss for Ls1

ଵݎ݁ݐݏ݅݃݁ݎ
LC Miss for Lr1

CTS

LC Hit for Ls1 LC Hit for Lr1

03,B6HQG��/V�� 03,B5HFY��/U��

flatten fully flatten fully
register, post 

sgl recvsݎ݁ݐݏ݅݃݁ݎଶ
post sgl recvs

LC:Layout Cache
/V��VHQGHU¶V�OD\RXW��
/U��UHFHLYHU¶V�OD\RXW��

Fig. 6. Hardware-assisted optimized scheme using SGL (HA-cache)

C. Layout-aware Hardware-assisted Design (Proposed-LAH)

In this section, we propose a layout-aware scheme that tries
to address the challenges mentioned in Section III to provide
efficient data transfers for any DDT layout.

  0

  100

  200

  300

  400

  500

  600

64 128 512 1K 2K 4K 8K

L
a

te
n

cy
 (

u
s)

Block Length

 Frontera−Host−Based
 Frontera−Hardware−Assisted
 Expanse−Host−Based
 Expanse−Hardware−Assisted

(a) Comparison of Host vs Hardware
Assisted on Frontera and Expanse
systems for different block lengths

  1

  10

  100

  1,000

  10,000

  100,000

2 32 64 512
1K 2K 4K 8K 16K

512K
1M 8M

B
a
n
d
w

id
th

 (
M

B
/s

)

Message Size

(b) One-way bandwidth using verbs
level benchmark on Expanse

Fig. 7. Experiments to understand differences between host and HA schemes.

1) Comparison of the Host-Based and HA Scheme: Figure
7(b) shows the one-way bandwidth of sending data for differ-
ent message sizes. Since small messages do not saturate the
bandwidth (as shown in Figure 7(b)), it is beneficial to pack the
message (as done in the host-based scheme) to a large enough
size in order to saturate the network bandwidth. However, for
large block lengths, packing leads to sub-optimal utilization
of bandwidth since the peak network bandwidth can already
be achieved through direct transfers (without packing). To un-
derstand this further, we show the performance of host-based
transfers and Hardware Assisted transfer on an MPI level ping-
pong benchmark in Figure 7(a) for two different architectures
(for details refer section VI) . We observe that after a threshold,
the HA scheme starts performing better. The threshold after
which the Hardware Assisted scheme performs better depends
on the processor, memory, and the HCA. The correct block
length threshold for a given system is tuned for different
architectures and stored in a table. Standard MPI libraries use
such an approach for architecture-dependent parameters like
the eager threshold, collectives algorithm selection etc. We
use this predefined threshold T in our adaptive design.

306

Authorized licensed use limited to: The Ohio State University. Downloaded on June 21,2022 at 13:05:15 UTC from IEEE Xplore.  Restrictions apply. 



2) Adaptive Switching between transfer schemes:

Algorithm 1: Layout-aware Scheme (Main Thread)

Input : DDT layout L1, block length threshold T , layout
cache LC

Output: Selected scheme S
// Scheme selection and initiate RTS

(sender)
1 Function Send(L1, dst rank):
2 S = SelectLocalScheme(L1, LC, T )

SendRTS(dst rank, S)

// RTS handler function called by the
receiver.

3 Function RTSHandler(L1, src rank, src S):
4 S = SelectLocalScheme(L1, LC, T );
5 if src S == HA-scheme and S == HA-scheme then
6 Final Scheme=HA-scheme;

7 else
8 Final Scheme=host-based;

9 SendCTS(src rank, Final Scheme)

// CTS handler function (sender)
10 Function CTSHandler(L1, Final Scheme, dst rank):
11 if Final Scheme == HA-scheme then
12 doHATransfer(dst rank, L1);

13 else
14 doHostTransfer(dst rank, L1);

15 Function SelectLocalScheme(L1, T , LC):
16 is hit ← query LC for L1;
17 l ← average segment length of L1;
18 if is hit then
19 if l > T then
20 Lock();

// f depicts if L1 was registered
by the registration thread

21 f= read registration flag of L1 in LC;
22 Unlock();
23 if f==1 then
24 S=HA-scheme;

25 else
26 S= host-based;

27 else
28 S= host-based;

29 else
30 S = host-based;
31 flatten L1;
32 Add L1 to LC;
33 if l > T then
34 Wake up registration thread;

35 return S

Using the observations made on the impact of the block
length threshold from IV-C1, we design a communication
scheme that dynamically adapts to account for factors de-
scribed in Section III. In our design, the main thread takes
care of using this threshold to decide how to switch between
communication schemes. However, hardware-assisted schemes
require memory regions to be registered with the HCA before
data transfer can happen, which is an expensive operation. This
motivates the need for an additional asynchronous thread, that
takes care of registering memory regions in the background

and in parallel, up to which the main thread can only use
host-based schemes. We refer to this asynchronous thread as
the “registration” thread.

Algorithm 1 and 2 show the proposed design for these
threads. In Algorithm 1, L1 represents the input layout that is
used to describe the data type used in MPI Send or MPI Recv
and the is hit variable indicates if the layout cache is a hit for
layout L1 or not. When MPI Send/MPI Recv is called, we
first query the layout cache. If a cache hit occurs, then we
retrieve the average block/segment length (l) from the layout
cache, and based on its value we decide whether to use the HA
scheme or not. Since popularly used applications that support
derived datatypes such as MILC, miniGhost, etc. do not have
a huge variation in segment length for a particular layout,
we consider the average segment length as the representative
segment length. If l is greater than a predefined threshold T ,
we check the registration flag (f ) for the entry corresponding
to L1 in the cache. The registration flag indicates if all the
blocks for layout L1 are registered or not. If the flag is set to
1, then we use the HA scheme, otherwise, we use the host-
based scheme. If a layout cache miss occurs, then we use a
host-based scheme, where we flatten the layout, pack it, and
perform the send in a pipelined manner. After flattening, the
main thread populates the layout-based registration cache and
wakes up the registration thread.

Algorithm 2 shows the logic of the registration thread. The
thread goes to sleep after entering the while loop. When the
registration thread is woken up by the main thread, it checks
if there are any unregistered entries in the cache. If such
an entry is found, it registers each and every block in that
cache entry, sets the registration flag to 1, and continues the
loop. Once it has checked all the entries, it goes back to
sleep. Since the registration happens asynchronously and is
overlapped with the main thread, the frequency of use of a
layout is implicitly factored into 1. This is because layouts
that are used repeatedly will eventually have all their blocks
registered during the course of the application, after which the
best scheme can be chosen based on the other factors to be
considered.

Algorithm 2: Proposed Layout-aware Scheme (Registra-

tion Thread)

Input : layout cache LC
Output: layout cache with updated registration flags

1 while true do
2 Sleep();
3 foreach Li in LC do
4 Lock();
5 f= read registration flag of Li in LC;
6 Unlock();
7 if f == 0 then
8 Register Li;
9 Lock();

10 Set f to 1;
11 Unlock();

307

Authorized licensed use limited to: The Ohio State University. Downloaded on June 21,2022 at 13:05:15 UTC from IEEE Xplore.  Restrictions apply. 



/^�͛ϭϳ ϭEĞƚǁŽƌŬ��ĂƐĞĚ��ŽŵƉƵƚŝŶŐ�>ĂďŽƌĂƚŽƌǇ

,��^ĐŚĞŵĞϬ ϭ

ϱ ϲ

ϳ Ϯ

ϰ ϯ

ZĞĂĚǇ�dŽ�^ǁŝƚĐŚ�

,ŽƐƚ��ĂƐĞĚ�;,�Ϳ�ƐĐŚĞŵĞdŝŵĞ�ƐŶĂƉƐŚŽƚ�ϭ dŝŵĞ�ƐŶĂƉƐŚŽƚ�Ϯ

dŝŵĞ�ƐŶĂƉƐŚŽƚ�ϯ dŝŵĞ�ƐŶĂƉƐŚŽƚ�ϰ

Ϭ ϭ

ϱ ϲ

ϳ Ϯ

ϰ ϯ

Ϭ ϭ

ϱ ϲ

ϳ Ϯ

ϰ ϯ

Ϭ ϭ

ϱ ϲ

ϳ Ϯ

ϰ ϯ

WƌŽĐĞƐƐ
ф,�͕,�х

ф,�͕,�х

ф,�͕,�х

ф,�͕,�х

ф,�͕,�х

ф,�͕,�х

ф,�͕,�х

ф,�͕,�х

ф,�͕,�х

ф,�͕,�х

ф,�͕,�х

ф,�͕,�х

ф,�͕,�х

ф,�͕,�х

^ĞůĞĐƚĞĚ�^ĐŚĞŵĞ
ф>ŽĐĂů͕&ŝŶĂůх

ф,�͕,�х

ф,�͕,�х

Fig. 8. Selection of schemes for an example communication pattern over four
time snapshots representing 0%, 25%, 75%, 100% of total run time.

V. DESIGN DISCUSSION

Figure 8 shows an example communication pattern. The
tuple representing “Local” and “Final” selected schemes are
the same as represented in Algorithm 1. At time snapshot
1, all processes use the host-based scheme (represented as
black edges). Registration begins to happen asynchronously at
this point and the threshold (T) is used to determine whether
the switch to the HA scheme (represented as red edges) is
necessary or not. At time snapshot 2, processes that frequently
communicate are ready to switch (edges are represented in
blue). This demonstrates the “adaptive” portion, where only
processes that communicate frequently at the application level
become candidates for switching. Time snapshot 3 shows
processes that switch to the HA scheme (others use the
host-based scheme) as well as processes that just completed
registration (ready to switch). Time snapshot 4 shows the
final schemes selected by every process for communication.
A manually “tuned” algorithm that picks the algorithm based
on the block-length threshold will not hide the registration
cost and end up using the HA scheme for low-frequency
communication (which will turn out to be expensive).

Even though an additional thread is used for reducing
the impact of registration costs, registration is a one-time
operation for any new layout due to which the thread will
not be active throughout the application’s run. Therefore, the
impact of such a thread on any other existing threads (say,
application compute threads using OpenMP) will be minimal
and amortized in the long run.

Thus, the layout-aware scheme provides an efficient solu-
tion to varying layout patterns in applications by taking the
frequency, block length, and the behavior of both host-based
and hardware-assisted schemes into account.

VI. EXPERIMENTAL EVALUATION

We implemented the proposed schemes in the MVA-
PICH2 MPI library. In this section, we compare the perfor-
mance of the proposed layout-aware hardware-assisted scheme
(proposed-LAH) and the enhanced hardware-assisted scheme
(HA-cache) with state-of-the-art communication runtimes:
MVAPICH2-2.3.5 (MVAPICH2), Intel MPI 2019 (Intel-MPI)
and OpenMPI-4.1 (OpenMPI), MPICH-3.4.1 (MPICH) with
datatype support. MVAPICH2 is our unmodified baseline.

We ran experiments on the TACC Frontera and SDSC
Expanse systems. The Frontera system has 8,008 compute
nodes with dual-socket Intel Cascade Lake processors running
at 2.7 GHz with 28 cores per socket, 192 GB of RAM, and
a Mellanox IB-HDR100 (100G) interconnect. The Expanse
system has 728 compute nodes with dual-socket AMD EPYC
7742 processors running at 2.25GHz with 64 cores per socket,
256GB of DDR4 RAM, and a Mellanox IB-HDR100 (100G)
interconnect.

For the micro-benchmark evaluations, we used a modi-
fied version of the osu latency benchmark. The osu latency
benchmark of OSU Microbenchmark Suite (OMB) [12] is a
simple ping-pong test that measures one-way latency averaged
over multiple iterations. We modified osu latency to add
MPI Type Vector derived datatype support (referred to as
the “vector benchmark” in Section VI-A). In the modified
version, each process sends and receives a regular layout with
a configurable block length, stride, and count. Each test was
run for 100 iterations and an average of 5 runs is reported.
In addition, we have added standard error as error bars in
the graphs which was calculated by dividing the standard
deviation by square root of the number of runs. Since the
variation is small, they are not visible in most of the graphs.
To evaluate the layouts used in real applications, we ran
DDT bench [16] which contains the kernel of many HPC
applications using MPI Derived Data Types. For large-scale
evaluations, we used FFT communication benchmarks and the
miniGhost application. For all evaluations of the Proposed-
LAH scheme on Expanse, the registration thread is bound to
a different core than the main process that spawned the thread.
On Frontera (CPUs with hyper-threading), the registration
thread is bound to the same core as the main process. The
switching threshold of the Proposed-LAH scheme is set to
2K.

A. Microbenchmark Results

All experiments in this section were conducted on the
TACC Frontera system. First, we use the vector benchmark to
study the performance of different block lengths. Figures 9(a)
and 9(b) show the performance of proposed-LAH, hardware-
assisted schemes, and state-of-the-art implementations for rep-
resentative layouts with small (64 bytes) and large (4KB) block
lengths for a varying number of blocks/segments and compare
it against state-of-the-art implementations. We observe that
Hardware-Assisted schemes (HA, HA-cache) perform poorly
for small block lengths when compared to host-based schemes
implemented in MPI libraries. The trend reverses for relatively
large block length layouts (4KB), with hardware-assisted
schemes performing better than host-based schemes. The
Proposed-LAH scheme would select the host-based scheme
for a block-length of 64 bytes. Therefore, the performance
of the Proposed-LAH is almost 10X better than hardware-
assisted schemes. For large block length (4KB) layouts, we
observe that the Proposed-LAH scheme performs 23% better
than the Hardware-Assisted (HA) scheme and up to 16%
better than Hardware-Assisted with Layout cache (HA-cache).

308

Authorized licensed use limited to: The Ohio State University. Downloaded on June 21,2022 at 13:05:15 UTC from IEEE Xplore.  Restrictions apply. 



The Proposed-LAH scheme performs up to 30 % better than
OpenMPI, 3X better than Intel-MPI and 22 % better our
baseline (MVAPICH2). The reason for the improvement of the
proposed-LAH scheme comes from 1) selection of hardware-
assisted scheme for 4KB layout, 2) Reduction of the impact of
registration by switching to the hardware-assisted scheme after
the registration thread is done with the registration operation.

  0

  50

  100

  150

  200

  250

  300

512 1k 2k 4k 8k

L
a

te
n

cy
 (

u
s)

Number of Segments

 MVAPICH2
 HA
 HA−cache
 Proposed−LAH
 Intel−MPI
 OpenMPI
 MPICH

(a) Comparison of proposed schemes
with state-of-the-art MPI libraries for
64 byte block size.

  1

  10

  100

  1,000

  10,000

  100,000

512 1k 2k 4k 8k

L
a
te

n
cy

 (
u
s)

Number of Segments

 MVAPICH2
 HA
 HA−cache
 Proposed−LAH
 Intel−MPI
 OpenMPI
 MPICH

(b) Comparison of proposed schemes
with state-of-the-art MPI libraries for
4KB block size in log scale.

Fig. 9. Performance comparison of schemes for representative layouts with
small and large block length against state-of-the-art MPI libraries

Next, we study the impact of varying layout frequency on
the Proposed-LAH scheme. Figure 10(a) shows the perfor-
mance of a layout with a block length of 64 bytes for a
frequency ranging from 10 to 100. As discussed earlier, the
Proposed-LAH scheme selects the host-based scheme, and as
expected it performs better than hardware-assisted schemes.
Figure 10(b) shows the performance for the layout of the
4k block lengths. We observe that the performance of the
hardware-assisted scheme for low frequencies is poor because
of the high registration cost. As the frequency increases, the
hardware-assisted scheme starts improving as the registration
cost is amortized due to the enhanced layout cache designs.
Here, we observe that the Proposed-LAH scheme always per-
forms better than the Hardware-Assisted scheme. The reason
for this improvement is that the Proposed-LAH scheme starts
with the Host-Based scheme for the first few transfers then
switches to the Hardware-Assisted scheme for data transfer
after the registration thread completes registering the layout,
thereby picking the most effective usable scheme for any given
layout.

  0

  200

  400

  600

  800

  1,000

10 20 50 70 100

L
a

te
n

cy
 (

u
s)

Frequency of Layout Use

 MVAPICH2
 HA
 HA−cache
 Proposed−LAH
 Intel−MPI
 OpenMPI
 MPICH

(a) Impact of varying the frequency
of layouts for block of 64 and count
of 8192

  0

  500

  1,000

  1,500

  2,000

  2,500

10 20 50 70 100

L
a

te
n

cy
(u

s)

Frequency of Layout Use

 MVAPICH2
 HA
 HA−cache
 Proposed−LAH
 Intel−MPI
 OpenMPI
 MPICH

(b) Impact of varying the frequency
of layouts for block of 4k and count
of 512

Fig. 10. Performance comparison of proposed schemes for representative
layouts with different communication frequencies against state-of-the-art MPI
libraries

Finally, we study the impact of layout cache on the
hardware-assisted scheme. Figure 11 shows the performance

of the Hardware-Assisted scheme with and without layout
cache for a block length of 4K and frequency of 100. For each
block count, the figure shows the split-up registration time
(which includes one-time registration cost and the overhead
of registration/layout cache) and time to communicate. We
observe up to 10 % improvement in total latency which
directly comes from the reduction in the cache overhead.
The improvement is more prominent as the number of blocks
increase in the layout.

Figure 12 shows the OSU Latency benchmark comparison
of the proposed scheme with that of our baseline (which is
MVAPICH2). This shows that the scheme does not add any
overhead for basic datatypes.

We note that our scheme does similar/worse compared to
OpenMPI for those cases where the host-based scheme is
selected by our design (small block length layouts). The reason
for degradation is OpenMPI tends to have better datatype
processing engines and copy-based kernels than our library.
Our framework is complementary to an existing library’s
optimized host-based schemes. If applied to other libraries it
will still perform similar to or better than their current host-
based implementation.

12
14
16
18

H
A

H
A

−
cache

H
A

H
A

−
cache

H
A

H
A

−
cache

H
A

H
A

−
cache

L
a

te
n

cy
 (

m
s)

Number of Segments
512 1,024 5,120 10,240

Communication Cost
Registration Cost

0
2
4
6
8

10

Fig. 11. Impact of proposed layout
cache for block size of 4 KB with
varying counts

  0
  50

  100
  150
  200
  250
  300
  350
  400

32K 64K 128K
256K

512K
1M 2M 4M

L
a

te
n

cy
 (

u
s)

Message Size

 Baseline
 LAH

Fig. 12. OSU Latency benchmark
using contiguous data types for
baseline and Proposed scheme.

B. Application Layout Results using DDT bench

In this section, we evaluate the efficiency of the proposed
layout-aware adaptive design on the performance of various
applications layouts using DDT bench. The experiments in
this section were evaluated on the SDSC Expanse system.
MILC: It studies the integration of quarks and gluons using
Quantum Chromodynamics (QCD). The MILC su3 zd kernel
in DDTbench models the z-direction of the su3 rmd appli-
cation from the MILC code. It uses nested vector datatype
for 4D face exchanges. Figure 13(a) shows that the Proposed-
LAH scheme does more than 10× better compared to MVA-
PICH2 and Intel-MPI. The block lengths of the layouts used
range from 700 bytes to 12KB, and the count goes up to
128. The benefit comes from both the adaptive switching
of communication schemes (thereby hiding the registration
cost) and the layout cache. For this kernel, layout cache
contributes significantly because it makes sure that flattening
and registration happen only once. Due to the nesting of the
layouts, the flattening cost is high for this kernel.
NAS MG: It is a fluid dynamics application that does 3d face
exchanges in x,y,z directions with vector and nested vector
datatypes. For inputs selected as shown in figure 13(b), the
layout block length is 8 bytes for x-direction, and ranges from

309

Authorized licensed use limited to: The Ohio State University. Downloaded on June 21,2022 at 13:05:15 UTC from IEEE Xplore.  Restrictions apply. 



256 bytes, and goes up to 5KB in the y-direction. Since this
kernel has both small and very large block lengths, the layout
aware scheme selects the appropriate approach for each class
of layouts. This, coupled with the adaptive scheme for large
block lengths, is the reason why we observe benefits up to
28% compared to MVAPICH2 and up to 2.5× improvements
over Intel-MPI.
WRF: It is a weather prediction system that models the
atmosphere as a 3-dimensional cartesian grid. The datatypes
used are struct of vectors or struct of subarrays, for both
x and y directions. We have used the struct of vectors in
the y-direction for our experimental evaluation. Figure 13(c)
shows the results for three different inputs whose block sizes
vary from 2KB to 6KB. We see improvements up to 1.75×
compared to MVAPICH2 and up to 2.5× improvements over
Intel-MPI.
SPECFEM3D GLOBE: It is a spectral-element application
that can simulate global seismic wave propagation through the
earth model. We used the SPECFEM3D mt kernel, which uses
vector and contiguous data types for data exchange. Figure
13(d) shows the comparison of Proposed-LAH with Intel-
MPI and MVAPICH2 for three input configurations. The block
lengths vary from 4KB to 12KB. The Proposed-LAH scheme
shows improvements up to 33% compare to MVAPICH2 and
up to 1.5× over Intel-MPI.

  0

  20

  40

  60

  80

  100

A B C D E

N
o

rm
a

liz
e

d
 L

a
te

n
cy

Input Configuration

 Intel−MPI
 Proposed−LAH
 MVAPICH2
 OpenMPI
 MPICH

(a) MILC. Grid dimensions are A =
(16,16,32,32), B = (32,32,32,32), C

= (64,32,32,32) ), D =
(64,64,32,32), E = (64,64,32,64).

  0

  20

  40

  60

  80

  100

A B C D

N
o

rm
a

liz
e

d
 L

a
te

n
cy

Input Configuration

 Intel−MPI
 Proposed−LAH
 MVAPICH2
 OpenMPI
 MPICH

(b) NASMG. Grid dimensions are
A = (256,32,32), B = (512,66,66), C
= (2048,66,120), D = (5120,92,120).

  0

  20

  40

  60

  80

  100

A B C

N
o

rm
a

liz
e

d
 L

a
te

n
cy

Input Configuration

 Intel−MPI
 Proposed−LAH
 MVAPICH2
 OpenMPI
 MPICH

(c) WRF. Input parameters (ims,
ime, is, ie) are A = (4,4014,8,4010),

B = (4,2060,8,2056), C =
(4,6012,8,6008).

  0

  20

  40

  60

  80

  100

A B C

N
o

rm
a

liz
e

d
 L

a
te

n
cy

Input Configuration

 Intel−MPI
 Proposed−LAH
 MVAPICH2
 OpenMPI
 MPICH

(d) SPECFEM3D mt. Grid
dimensions are A = (1024,2,512),
B=(2048,2,256), C=(3072,2,200)

Fig. 13. Normalized performance comparison of Proposed-LAH with state-of-
the-art solutions using application kernels for different input sizes. Latencies
are normalized with Intel-MPI value set to 100. Lower is better.

C. Large Scale Results

In this section, we provide large-scale results evaluating
the efficiency of the proposed design on the FFT benchmark
(evaluated on the Frontera cluster) from DDT-Bench, and the
MiniGhost application (evaluated on the Expanse cluster).

1) Benchmark-level evaluations: FFT: We used the fft

kernel of DDT bench [16], which runs MPI Alltoall with
vector and contiguous DDTs. We performed a weak scaling
experiment by starting with a problem size of 2048 and
doubling for every other node count. Figure 14(a) shows the
scaling numbers for this kernel up to 128 nodes. We observe
that the Proposed-LAH scheme performs up to 32% better
than Intel-MPI and 36% better than MVAPICH2.

2) Application-level evaluations : miniGhost: [3] performs
a 3-D nearest neighbor halo exchange that is present in popular
HPC codes. We used a modified version of the MiniGhost
application that uses MPI DDTs. Figure 14(b) shows the
total execution time of miniGhost application at scale for 1
process per node. The experiments are run with a problem
size (nx,ny,nz,nvars) = 30,30,30,3500. We observe that the
execution time of the Proposed-LAH scheme is up to 35%
better than Intel-MPI, 7.8% better than OpenMPI and 9%
better than MVAPICH2 at a scale of 128 nodes. As the scale
increases, the benefits of the Proposed-LAH scheme are more
prominent. The Figure also shows that the additional threads
used by the Proposed-LAH scheme have minimal impact on
the compute time of the application. Compute time is close
to the same across node counts because they are measured in
weak scaling experiments. We have omitted the MPICH results
for 64 and 128 nodes as we found that their performance was
worse compared to our proposed design which is also evident
from the microbenchmark results for large block length layouts
(see figure 9(b))

  0

  50

  100

  150

  200

8 16 32 64 128

N
or

m
al

iz
ed

 L
at

en
cy

Nodes

 Intel−MPI
 Proposed−LAH
 MVAPICH2
 OpenMPI
 MPICH

(a) Weak Scaling of FFT2D-Alltoall on
Frontera

M
P

IC
H

M
V

A
P

IC
H

2
O

penM
P

I
P

roposed−
LA

H
Intel−

M
P

I
M

P
IC

H
M

V
A

P
IC

H
2

O
penM

P
I

P
roposed−

LA
H

Intel−
M

P
I

M
P

IC
H

M
V

A
P

IC
H

2
O

penM
P

I
P

roposed−
LA

H

E
xe

cu
tio

n
 T

im
e
 (

s)

Number of Nodes
8 16 32 64 128

Communication
Computation

0
5

10
15
20
25
30
35
40
45

Intel−
M

P
I

M
P

IC
H

M
V

A
P

IC
H

2
O

penM
P

I
P

roposed−
LA

H
Intel−

M
P

I
M

P
IC

H
M

V
A

P
IC

H
2

O
penM

P
I

P
roposed−

LA
H

Intel−
M

P
I

(b) Weak Scaling of miniGhost upto 128 nodes on Expanse
Fig. 14. Execution time comparison of Proposed-LAH against state-of-the-art
MPI libraries at scale

VII. RELATED WORK

Researchers in the past have optimized various aspects of
MPI derived datatype-based transfers. Schneider et al. [17]
use runtime compilation techniques to generate efficient and

310

Authorized licensed use limited to: The Ohio State University. Downloaded on June 21,2022 at 13:05:15 UTC from IEEE Xplore.  Restrictions apply. 



optimized pack code for MPI datatypes at commit time. Traff
et al. [21] propose hybrid approaches that flatten sub-trees on
the fly during packing, thereby efficiently flattening the DDT.
Byna et al. [19] optimize the memory access time for packing
by providing mechanisms to efficiently re-use cache. Perry et
al. [13] proposed a compile-time transformation algorithm to
reduce the non-contiguous datatype entities inside the applica-
tion and avoid the copy overhead associated with pack/unpack
operation. Gropp et al. [5] proposed concise datatype patterns
and showed efficient implementation techniques for designing
them. All the above designs are aimed at optimizing DDT
costs such as packing, flattening which will optimize host-
based and/or HA scheme. Our design is complementary to the
above schemes as we choose the best scheme for a layout.

Researchers have also explored using network features to
improve the performance of derived data types. Santhanaraman
et al. [15] propose a new scheme called Send Gather Receive
Scatter (SGRS), to perform zero-copy datatype communication
over InfiniBand. However, they have addressed the schemes
for specific layouts and have not taken a holistic look at the
performance of schemes based on layout frequency and type.
Li et al. [8] leverage both UMR feature and RDMA func-
tionality on the IB network and propose designs to improve
MPI-derived datatype communications. However, the paper
doesn’t consider issues with registration and variability of
layouts. All designs in our paper can be extended to use UMR
instead of SGL, but we focus on SGL due to its widespread
availability on production HPC clusters. Some recent works
[4], [6] propose mechanisms to take advantage of zero-copy
MPI datatype processing for intra-node transfers.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we performed a thorough characterization of
state-of-the-art hardware-assisted schemes in driving the DDT
transfers. We highlighted the shortcomings of these schemes
with respect to registration caches, layout exchanges, and scal-
ability. We addressed these challenges and proposed solutions
to efficiently improve the performance of hardware-assisted
datatype processing. Furthermore, we designed an adaptive,
and layout-aware DDT scheme that dynamically adapts the
datatype processing to the communication requirements of the
datatype layouts used by the application. The proposed layout-
aware adaptive scheme can dynamically switch between dif-
ferent host-based and the proposed hardware-assisted schemes
to deliver the best performance and scalability while hiding the
communication overheads for any communication scenario.
The experimental evaluations on multiple HPC systems in-
cluding Frontera at TACC and Expanse at SDSC show that
our proposed designs achieve up to 22% improvement in
performance over state-of-the-art MPI libraries at the micro-
benchmark level. We also evaluated our designs with various
scientific application kernels such as MILC, WRF, and the
miniGhost application and demonstrated 9% improvement in
performance at 128 nodes. As part of future work, we plan
to evaluate the performance of the proposed layout-aware
schemes at larger scales and for more applications.

REFERENCES

[1] Intel MPI Library. http://software.intel.com/en-us/intel-mpi-library/.
[2] Open MPI: Open Source High Performance Computing.

http://www.open-mpi.org.
[3] R. F. Barrett, C. T. Vaughan, and M. A. Heroux. Minighost: a miniapp

for exploring boundary exchange strategies using stencil computations
in scientific parallel computing. Sandia National Laboratories, Tech.
Rep. SAND, 5294832:2011, 2011.

[4] S. Di Girolamo, K. Taranov, A. Kurth, M. Schaffner, T. Schneider,
J. Beránek, M. Besta, L. Benini, D. Roweth, and T. Hoefler. Network-
Accelerated Non-Contiguous Memory Transfers. In Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, pages 1–14, 2019.

[5] W. Gropp, E. Lusk, and D. Swider. Improving the Performance of MPI
Derived Datatypes. In Proceedings of the Third MPI Developer’s and
User’s Conference, pages 25–30. MPI Software Technology Press, 1999.

[6] J. M. Hashmi, S. Chakraborty, M. Bayatpour, H. Subramoni, and D. K.
Panda. FALCON: Efficient Designs for Zero-Copy MPI Datatype
Processing on Emerging Architectures. In 2019 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), pages 355–
364. IEEE, 2019.

[7] Jiseheng Wu, Wyckoff, and Panda. Supporting efficient noncontiguous
access in PVFS over InfiniBand. In 2003 Proceedings IEEE Interna-
tional Conference on Cluster Computing, pages 344–351, 2003.

[8] M. Li, H. Subramoni, K. Hamidouche, X. Lu, and D. K. Panda.
High Performance MPI Datatype Support with User-Mode Memory
Registration: Challenges, Designs, and Benefits. In Cluster Computing
(CLUSTER), 2015 IEEE International Conference on, pages 226–235.
IEEE, 2015.

[9] Message Passing Interface Forum. MPI: A Message-Passing Interface
Standard, Mar 1994.

[10] F. Mietke, R. Rex, T. Hoefler, T. Mehlan, and W. Rehm. Reducing the
Impact of Memory Registration in InfiniBand. In Proceedings of 2005
KiCC Workshop, Chemnitzer Informatik Berichte, Nov. 2005.

[11] Network-Based Computing Laboratory. MVAPICH: MPI over Infini-
Band, 10GigE/iWARP and RoCE. http://mvapich.cse.ohio-state.edu/.

[12] OSU Micro-benchmarks. http://mvapich.cse.ohio-
state.edu/benchmarks/.

[13] B. Perry and M. Swany. Improving MPI Communication via Data Type
Fission. In Proceedings of the 19th ACM International Symposium on
High Performance Distributed Computing, HPDC ’10, pages 352–355,
New York, NY, USA, 2010. ACM.

[14] T. Prabhu and W. Gropp. Dame: Runtime-compilation for data move-
ment. The International Journal of High Performance Computing
Applications, 32(5):760–774, 2018.

[15] G. Santhanaraman, J. Wu, and D. K. Panda. Zero-Copy MPI Derived
Datatype Communication over InfiniBand. In European Parallel Virtual
Machine/Message Passing Interface Users’ Group Meeting, pages 47–
56. Springer, 2004.

[16] T. Schneider, R. Gerstenberger, and T. Hoefler. Micro-applications for
Communication Data access Patterns and MPI datatypes. In European
MPI Users’ Group Meeting, pages 121–131. Springer, 2012.

[17] T. Schneider, F. Kjolstad, and T. Hoefler. MPI datatype processing using
runtime compilation. In Proceedings of the 20th European MPI Users’
Group Meeting, pages 19–24, 2013.

[18] H. Subramoni, K. Hamidouche, A. Venkatesh, S. Chakraborty, and D. K.
Panda. Designing MPI Library with Dynamic Connected Transport
(DCT) of InfiniBand: Early Experiences. In J. M. Kunkel, T. Ludwig,
and H. W. Meuer, editors, Supercomputing, pages 278–295, Cham, 2014.
Springer International Publishing.

[19] X.-H. Sun et al. Improving the performance of MPI derived datatypes
by optimizing memory-access cost. In 2003 Proceedings IEEE Interna-
tional Conference on Cluster Computing, pages 412–419. IEEE, 2003.

[20] V. Tipparaju, G. Santhanaraman, J. Nieplocha, and D. Panda. Host-
assisted Zero-copy Remote Memory Access Communication on In-
finiBand. In Parallel and Distributed Processing Symposium, 2004.
Proceedings. 18th International, page 31. IEEE, 2004.

[21] J. L. Träff, R. Hempel, H. Ritzdorf, and F. Zimmermann. Flattening on
the Fly: efficient handling of MPI derived datatypes. In European Par-
allel Virtual Machine/Message Passing Interface Users’ Group Meeting,
pages 109–116. Springer, 1999.

311

Authorized licensed use limited to: The Ohio State University. Downloaded on June 21,2022 at 13:05:15 UTC from IEEE Xplore.  Restrictions apply. 


