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The deep learning (DL) training process consists ofmultiple phases—data
augmentation, training, and validation of the trainedmodel. Traditionally, these phases
are executed either on the central processing units or graphics processing units in a
serial fashion due to lack of additional computing resources to offload independent
phases of DL training. Recently,Mellanox/NVIDIA introduced the BlueField-2 data
processing units (DPUs), which combine theadvanced capabilities of traditional
application-specific-integrated-circuit-based network adapterswith an array of ARM
processors. In this article, we explore how to take advantage of the additional ARMcores
on the BlueField-2 DPUs.Wepropose and evaluatemultiple novel designs to efficiently
offload the phases of DL training to theDPUs. Our experimental results show that the
proposed designs are able to deliver up to 17.5% improvement in overall DL training time.
To the best of our knowledge, this is thefirstwork to explore the use of DPUs to
accelerateDL training.

The hyperscale data centers have been using
smart network interface cards (NICs) to offload
a variety of functions from the host processor.

These functions typically include data and control
plane switching, network function virtualization, intru-
sion detection, encryption, and compression. This
trend is effective since it relieves the host processor
cores to focus entirely on user workloads and applica-
tions, leading to better return on investment.

More recently, smart NICs (or intelligent NICs) like
BlueField-2 data processing units (DPUs) have been
introduced in the high performance computing (HPC)
community to enable offloading high-value communica-
tion and compute operations. Unlike the data center
community, the exploration of these DPUs as additional
processing elements—along with central processing
units (CPUs) and graphics processing units (GPUs)—is
still in its infancy. One approach1 is to offload message
passing interface (MPI) communication functionality on
DPUs.While this is promising, it is also possible to offload
subsets of computation on DPUs in addition to commu-
nication functions. Table 1 depicts relative speedups

achieved using CPUs and GPUs—with K80, P100, and
V100 GPUs—as compared to using CPUs alone. In the
context of this article, we aim to optimize CPU perfor-
mance of deep learning (DL) workloads using DPUs as
additional processing elements.

Distributed DL has become the default approach to
achieve models with high accuracy in areas like natural
language processing, computer vision, and recommenda-
tion systems. Distributed deep neural network (DNN)
training can be categorized into three approaches: 1) data
parallelism2; 2) model parallelism3; and 3) hybrid parallel-
ism.4 Data parallelism creates a model replica on each
processing element and conducts forward and backward
passes simultaneously. At the end of the backward pass,
themodel is synchronized using an allreduce operation.

DISTRIBUTED DL HAS BECOME THE
DEFAULT APPROACH TO ACHIEVE
MODELSWITH HIGH ACCURACY IN
AREAS LIKE NATURAL LANGUAGE
PROCESSING, COMPUTER VISION,
AND RECOMMENDATION SYSTEMS.

DL uses DNNs to learn the relationship between
input and output by training it on a large corpus of
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data.5 However, training DL models is a compute-
intensive and time-consuming task as it can take
weeks or months. Therefore, state-of-the-art DL mod-
els like AmoebaNet and GPT-3 are trained on multiple
computing nodes using distributed DNN training. In
recent years, Intel has optimized its processors
for DNN training using the Math Kernel Library-Deep
Neural Network (MKL-DNN). Hence, CPU-based DNN
training is gaining a lot of traction in the community.
In this article, we explore the possibility of offloading
different phases of DL training to DPUs for data
parallelism.

CONTRIBUTIONS
In this article, we optimize various parameters such as
OMP_NUM_THREADS, the number of processes per
node, and the batch size for the PyTorch DL frame-
work to get good performance on CPU and DPU. We
use multiple process multiple data support of MPI to
run DL training on heterogeneous architectures (Intel
and ARM cores). Based on our characterization, we
explore the possibility of offloading different DNN
training phases to DPUs to accelerate CPU-based
DNN training. To the best of our knowledge, this is the
first work to explore the use of DPUs to accelerate DL
training on a multinode heterogeneous CPU+DPU
cluster.

To summarize, this article provides the following
contributions:

› Proposing multiple novel designs for offloading
different phases of DL training to the BlueField-2
DPUs.

› Performance evaluations, with weak and strong
scalability analysis, of the proposed designs
with multiple convolution neural network (CNN)
and transformer models (ResNet-20, ResNet-56,
ShuffleNet, and DistilBERT) with four data sets.

› Obtained speedup improvements up to 15%,
12.5%, 11.2%, and 8.6% for training the ResNet-20
model on the CIFAR-10 data set, ShuffleNet
model on the Tiny ImageNet data set, ResNet-56
model on the SVHN data set, and DistilBERT for
sentiment analysis, respectively.

› Scaled proposed designs to 16 nodes, studied the
impact of underlying filesystem, and achieved
consistent improvement up to 17.5% for multi-
node experiments.

PROPOSED ADVANCE
OFFLOADING DESIGNS

DL training consists of several phases and steps.
Each training epoch consists of fetching training
data, data augmentation, forward pass, backward
pass, weight update, and model validation. Forward
and backward passes are the most compute-inten-
sive operations. However, other operations also con-
tribute to the overall time per epoch. In this section,
we explore the possibility of offloading these opera-
tions to DPUs and propose advanced offloading
designs. The basic offloading design that offloads the
entire DNN training pipeline to DPUs has been dis-
cussed in the earlier version of this article6 and has
been omitted here.

Design 1: Offload Data Augmentation
(O-DA)
We offload the reading of training data from memory
and data augmentation on input data to DPUs (see
Figure 1). There are two types of processes: 1) training
process and 2) data augmentation process. The training
process on CPU does forward/backward pass, gradient
synchronization (for data parallelism), weight update,
andmodel validation steps. The data augmentation pro-
cess on DPUs fetch the training data from storage,
applies user-defined data augmentation functions, and
sends the batch of input and output to the training pro-
cess on CPU. Since DPUs have eight cores, we limit the
number of processes per CPU/DPU to eight.

Training process: We create two buffers of the
same size as input and output to overlap commutation
overhead with forward and backward passes of DNN
training on CPUs. One buffer is used to receive the
next batch from the data augmentation process and
another buffer is used to perform forward and back-
ward passes.

Data augmentation process:We divide the training
data among processes on DPUs using PyTorch’s “Dis-
tributedSampler” class. Each data augmentation pro-
cess initializes a set of circular buffers to overlap
communication with computation on DPUs. If a free
buffer is available, it fetches the next batch, applies
data augmentation functions, and posts an isend to
the training process.

TABLE 1. Speedup on CIFAR-10 data set relative to CPU.

Model NVIDIA K80 NVIDIA P100 NVIDIA V100

ResNet-20 1.12X 3.8X 5.8X

ResNet-56 0.55X 1.9X 3.3X
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Design 2: OffloadModel Validation
(O-MV)
Instead of offloading data augmentation to DPU, we
offload model validation to the DPUs. Model validation
is a less compute-intensive task compared to training.
It is similar to the inference using a trained model. We
overlap the calculation of validation loss and accuracy
for epoch i with the training of epoch iþ 1. Figure 2
shows the offloading of model validation to DPU for
one CPU and DPU process. We create two types of
processes in this design: 1) the training process on
CPU and 2) the testing process on DPU.

Training process: In this strategy, the training process
fetches the training data frommemory, applies data aug-
mentation, and performs forward/backward pass, and
weight update. After performing training on all the train-
ing samples, the training process sends parameters to

the corresponding DPU process using point-to-point
communication primitives. It moves to the next epoch
after sendingweights to the testing process.

Testing process: For every training process on the
CPU, a testing process is initialized on DPUs. The testing
process waits for the weights from the corresponding
training process for epoch i. Since DPUs are slower than
CPUs, we expect the model validation part on DPUs to
take equal or less time than the training part on CPUs.

In our evaluation, we found that model validation on
DPUs may take more time than the forward/backward
pass on CPUs. This leads to degradation as time per
epoch is the maximum of the model validation on DPU
and the forward/backward pass on CPUs. Therefore, for
such cases, we do not offload the model validation to
DPUs completely. We divide the testing data between
CPU and DPU to balance the total time and achieve

FIGURE 1. Flowchart of the proposed offload data augmentation (O-DA) design. It offloads the reading of data from memory and

data augmentation functions to DPU.
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good overlap. We use an analytical model to distribute
validation data between CPU and DPU. First, we calcu-
late time per batch for training on CPU and time per
batch for validation on CPU and DPU; then, we estimate
the total training time for an epoch on CPU and divide it
with the time per batch for testing on DPUs. Further, we
found that Horovod initializes a background thread to
progress the communication. Testing processes do not
use Horovod; therefore, we initialize the Horovod on a
subset of all the processes (training processes only). This
small optimization improved the time per batch for vali-
dation onDPUs by 30%–40%.

Design 3: Offload Hybrid (O-Hy)
We combine offloading of data augmentation and
model validation to achieve better speedup for the

model that spent a significant amount of time in for-
ward and backward passes (training). We create
three types of processes: 1) forward/backward pro-
cess on CPU; 2) data augmentation process on
DPU; and 3) testing process on DPU. Figure 3 shows
the flow diagram of hybrid offloading to DPU.

Forward/backward process: Processes running on
CPUs are called forward/backward processes in this
design. They receive augmented training data from the
data augmentation process on the DPU and perform
forward pass, backward pass, and weight update for the
given training batch. At the end of the training epoch, it
sends weights of DNN to a testing process onDPU.

Data augmentation process:We run four data aug-
mentation processes on each DPU that fetch training
data from memory, augment the data, and send it to

FIGURE 2. Flowchart of the proposed offload model validation (O-MV) design. It offloads the validation of the model on the testing

data set and overlaps the computationwith the training of the next epoch.
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the forward/backward process on CPU. In hybrid
design, each data augmentation process sends data
to two forward/backward processes on the CPU using
asynchronous communication.

Testing process: Testing processes validate the DL
model on the validation/testing data set. They overlap
the validation with the training of the next epoch. We
divide testing data among testing processes and use

the same optimizations as discussed in the “Design 2:
Offload Model Validation (O-MV)” section.

EVALUATING PERFORMANCE OF
PROPOSED OFFLOADING
APPROACHES

This section provides a comprehensive performance
evaluation of our proposed offloading designs using a
variety of DL models and data sets. These proposed
approaches include Design #1: O-DA, Design #2: O-MV,
and Design #3: O-Hy. We also add No Offload to our eval-
uation in order to provide baseline performance in the
absence of DPUs.

Experimental Setup
We used the HPC Advisory Council High-Performance
Center (HPCAC) cluster for our evaluation. HPCAC
has 32 nodes with BlueField-2 network adapters

FIGURE 3. Offload hybrid (O-Hy) (data augmentation and model validation) to DPU.

TABLE 2. Speedup of the proposed offloading designs over

CPU on a single node.

Model (data set) O-DA O-MV O-Hy

ResNet-20 (CIFAR-10) 13.8% 3.1% 0%

ResNet-56 (SVHN) 7% 5.5% 10.1%

ShuffleNet (Tiny-ImageNet) 12.5% 1.2% 8.9%
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equipped with eight ARM cores. Each BlueField-2
adapter is equipped with Mellanox MT41682 EDR Con-
nectX-5 HCAs (100-Gb/s data rate) with PCI-Ex Gen3
interfaces. The host is equipped with the Broadwell
series of Xeon dual-socket, 16-core processors operat-
ing at 2.60 GHz with 128-GB RAM.

DNN: ResNet,7 ShuffleNet, and DistilBERT.
Data set: CIFAR-10, Street View House Numbers
(SVHN) Data set, and Tiny ImageNet.
Software libraries: PyTorch v1.9, Horovod v0.21,8

HuggingFace v4.9.1, TorchVision v0.11, MPI4py
v3.0.3, and MVAPICH2 2.3.6 MPI library

CNN Experiments
This section presents performance evaluation of our
proposed designs using various CNNs and data sets
on a single and multiple nodes. The idea here is to
understand the performance on a single node and the
scaling behavior of our proposed design on various
data sets. We launched eight MPI processes on the
host processor and eight additional MPI processes on
the BlueField-2 DPU to fully exploit the available eight
ARM cores. These eight MPI processes are used for
different purposes in our proposed designs.

Single node: Table 2 show the performance of pro-
posed designs for various CNNs. Experiments demon-
strate that O-DA achieves better performancewhen data
preprocessing is significant to provide overlap to DNN
training executing on the host processor. The other two
designs, namely O-MV and O-Hy, achieve good perfor-
mance if DNN training time—that includes forward and
backward passes—dominate the total execution time.

Weak scaling: Figure 4 shows the weak scaling
experiments for CNNs used in single node experi-
ments. We make use of the lessons learned from sin-
gle node comparisons and appropriately choose the
best-performing design for a particular DL model and
data set. We report a consistent speedup for weak

scaling experiments. We achieved the maximum
speedup of 15% on four nodes for ResNet-20 on the
CIFAR-10 data set for four nodes.

Strong scaling: In weak scaling, the batch size per
process remains, while in strong scaling, the global
batch size remains the same. Weak scaling is good for
scalability, while strong scaling is good for achieving
better training/validation loss. Therefore, we present
results for both weak and strong scaling. Figure 5
shows the speedup for strong scaling with 2048 and
4096 batch sizes on the Tiny ImageNet data set.

Transformer Model Experiments
Transformer represents a different spectrum of
state-of-the-art models for sequential data and tasks
like natural language processing and speech recogni-
tion. Our experiments found that real-time data aug-
mentation is negligible in transformers and model
validation takes a significant amount of time. There-
fore, we used the proposed O-MV design to acceler-
ate the training. We evaluated DistilBERT on a
synthetic data set similar to the IMDB movie review
data set. NLP has several large data sets with the
number of samples ranging from 10,000 to 1,000,000.
In our experiments, we limit the number of samples
to 100,000 as the size of the data set does not affect
the speedup in O-MV (training and validation data
split ratio remains the same).

Multinode experiments:We provide weak and strong
scaling performance numbers for the DistilBERT on 1–16
nodes. Our evaluations found that four PPN and
OMP NUM THREADS ¼ 2 give the best time per
batch for model validation on DPUs. We split validation
between CPU and DPU as validating the model on DPU
only takes more time than training on CPUs. Figure 6
shows weak and strong scaling speedup for the Distil-
BERT transformer model. We achieve up to 8.6%
improvement using the proposedO-MVdesign.

FIGURE 5. Multinode performance characterization of CNNs

on different data sets using strong scaling.

FIGURE 4. Multinode performance characterization of CNNs

on different data sets using weak scaling.
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Effect of File System on Data-Loading
We evaluate the effect of the filesystem (tmp and scratch)
on the overall DNN training. tmp is a temporary small file-
system exclusive to a computing node, while scratch is a
parallel filesystem accessible from all computing nodes.
Thus, smaller data sets can be copied to tmp to get better
performance, while larger data sets can only be placed
on scratch. Figure 7 shows the performance benefits of
the proposed O-DA design when the Tiny ImageNet
data set is kept on two different filesystems. scratch file-
system increases thedata reading time,which increases
the overall training time. However, O-DA offloads data
reading to DPUs, thereby negating the effect of
increased data reading time. We show up to 17.5%
improvement for ShuffleNet training when Tiny Image-
Net data set is stored in the scratch filesystem.

Discussion
While data loading and augmentation overhead
depends on the size of data samples, model validation
is also affected by the DNN as it involves forward
pass. However, if DNN is very large, then data loading
becomes insignificant. In addition, batch size is critical
for overall training time; nonetheless, its impact is

negligible on data loading as the same number of data
samples is loaded in each epoch. Since training is per-
formed on CPUs, batch size can be increased for very-
large DNNs due to sufficient host memory. The pro-
posed O-DA design improves training time when DNN
is small. O-Hy gives better performance for large DNN
as data loading overhead decreases. O-MV design
should be used when the data set does not need aug-
mentation and can be loaded directly to memory.

RELATEDWORK
Several studies2,9 have evaluated CPU and GPU-based
DNN training. Data preprocessing backends like
PyTorch’s Dataloader and TFRecord are implemented
by DL frameworks to facilitate DL applications. Several
solutions5,10 have been proposed to perform data pre-
processing for GPU-based DNN training using CPUs
and FPGAs. However, BlueField-2 DPUs present differ-
ent challenges as they lack support for unified and
shared memory. In this article, we explore different off-
loading designs for DPUs in CPU-based DNN training
and O-MV in addition to data preprocessing.

CONCLUSION
In this article, we characterized andexplored howone can
take advantage of the additional ARM cores on the Blue-
field-2 DPUs to intelligently accelerate different phases of
DL training.We proposed three designs: 1) O-DA; 2) O-MV;
and 3) O-Hy to offload different phases of DL training to
the Bluefield DPUs. The reported max speedup improve-
ments are 15%, 12.5%, 11.2%, and 8.5% for training the
ResNet-20 model on the CIFAR-10 data set, ShuffleNet
model on the Tiny Imagnet data set, ResNet-56 model on
the SVHN data set, and DistilBERT for sentiment analysis,
respectively. We showed consistent improvement for
CNNsand transformermodelswithweak and strong scal-
ing on multiple nodes. Further, we explored the effect of
the filesystem on overall training time and reported up to
17.5% improvementwith proposed designs. To the best of
our knowledge, this is the first work to explore the use of
DPUs to accelerateDL training.

IN THIS ARTICLE, WE CHARACTERIZED
AND EXPLORED HOWONE CAN TAKE
ADVANTAGE OF THE ADDITIONAL
ARM CORES ON THE Bluefield-2 DPUs
TO INTELLIGENTLY ACCELERATE
DIFFERENT PHASES OF DL TRAINING.

FIGURE 7. Effect of filesystem on data-loading and overall

training time.

FIGURE 6.MultinodeperformancecharacterizationofDistilBERT.
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