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Numerically enhancing daytime radiative cooling performance of
random dielectric microsphere coatings by hollow structures
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Abstract. Dielectric microsphere coatings for passive daytime radiative cooling (PDRC) are gaining attention
owing to their low cost and potential for mass production. The cooling performance could be further enhanced to
effectively reflect solar radiation and emit thermal radiation to the cold sky by designing microspheres suitable for
PDRC applications. In this study, hollow dielectric structures were numerically designed to enhance the PDRC
performance of dielectric microsphere coatings. The maximum solar reflectance (Rgq1a,= 0.96) was obtained with
a fill rate /= 0.6, outer radius 7ou = 0.5 pum, core—shell rate = rin/rour = 0.3, thickness # = 300 um, and thermal
infrared emittance € yr = 0.90. Furthermore, by controlling the multi-size sphere distribution within ¢ = 0.1-
0.5, the cooling performance at £ =300 um was enhanced to Rggpar = 0.98, &.wir = 0.95, and a net cooling power
of 77 W/m? was achieved at a temperature of 25 °C, which was approximately 38% higher than that achieved with
the single-size sphere coating (¢ = 0.3) and approximately 64% higher than that of the solid SiO, sphere coating
(¢ =0). These results indicate that hollow structures can effectively enhance the cooling performance of dielectric

microsphere coatings by increasing the number of interfaces between the air and dielectric materials.

Keywords: radiative cooling, dielectric, hollow sphere, solar reflectance, thermal emittance

1 Introduction

The demand for cooling is rising as a result of global warming, population growth, industrial
development, and higher living standards !. However, the current refrigeration process based
on thermal cycles consumes a significant amount of energy, and the consumption of non-
renewable fossil energy increases carbon emissions, which contribute to global warming 2. In
addition, refrigerant emissions can cause new environmental problems, such as: the greenhouse
effect 3. Therefore, the development of new ecofriendly cooling technologies has become an

urgent issue *.

* To whom correspondence may be addressed. E-mail: chenmeijie@csu.edu.cn (M. C.); yy2664@columbia.edu (Y. Y.); s-

rfy@csu.edu.cn (H. Y.)
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Passive daytime radiative cooling (PDRC) technology can be used to achieve energy-
intensive cooling, which transfers excess heat to the outer space through thermal radiation
without any energy consumption >, It uses a large temperature difference between the Earth
(approximately 300 K) and outer space (same as that of the black body radiation spectrum at
2.7 K %) and radiates infrared heat from the Earth's surface through the atmosphere to the outer
space to achieve the cooling effect. The surface coating of a PDRC device must have a high
solar reflectance (Rgjar) in the solar spectrum (0.3-2.5 pm) to avoid the solar heating, and a
strong thermal emittance (& wr) in the long-wave infrared (LWIR) transmission window (8—
13 um) of the atmosphere to lose heat to the cool sky. Thus, even during the day, the energy
loss to the cold sky by thermal radiation through the atmospheric LWIR window is significantly
greater than that from sunlight; thus, electricity-free and spontaneous cooling is achieved '*!!,

Recently, various PDRC coatings with high solar reflection and thermal LWIR emittance

1314 and

in the atmospheric window, such as: photonic structures °, polymers '2, dielectrics
dielectric-polymer composites '°, have been developed. The intrinsic absorptance of polymer
and dielectric materials can usually provide high emittance in the atmospheric LWIR window.
Thus, to achieve near-perfect solar reflectance is significant to achieve PDRC. In the past
decade, various strategies have been proposed to reflect solar radiation and achieve high-
performance PDRC, including coating a bulk polymer on a highly solar reflective metal, such
as: Ag and Al '®!7_and using porous or microsphere structures where the sphere interface, such
as: SiOz-air, air-polymer, and SiO2-polymer interfaces, amplifies the solar scattering 872!,
Dielectric sphere-based radiative cooling coatings are gaining popularity owing to their low
cost, potential for mass production, and applicability to large systems !°. However, to achieve

effective solar reflection, the coating must have a large thickness, or a solar reflector should be

placed at the bottom of the PDRC device. By designing microspheres suitable for PDRC
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applications, cooling performance can be improved further to effectively reflect solar radiation
and emit thermal radiation to the cold sky.

Therefore, hollow glass spheres ?? or hollow SiO2 spheres ?* were prepared to enhance the
solar reflectance using multi-scattering interfaces. However, the relationship between the
hollow sphere parameters and PDRC performance still needs to be clarified. In this study,
hollow microsphere parameters, such as: radius, core-shell ratio, fill rate, and thickness, were
first discussed to clarify the relationship between these geometric parameters and the cooling
performance. Then, a multi-type sphere distribution was investigated to enhance the cooling
performance of the dielectric sphere coating. Finally, the cooling powers of the hollow multi-
type microsphere coatings were calculated and compared with those of the solid microsphere

and single-type microsphere coatings.

2 Concept and model

2.1 Concept of random hollow dielectric microsphere coating

Fig. 1a shows the concept of a random hollow dielectric microsphere coating for PDRC.
The outer and inner radii of the hollow sphere are rout and rin, respectively, with a core—shell
ratio ¢ = rin/rout. The thickness and fill rate of the coating are defined as ¢ and /(> 0.55, owing
to the random stacked structures).

To enhance the maximal net cooling performance during the day, the coating should have
a value of Ryyar = 1 to reflect all solar radiation in the solar spectrum (0.3-2.5 pm) and & wir
=1 to emit thermal radiation in the atmospheric LWIR transmittance window (8—13 pum). Thus,
the bulk material used for this coating should be transparent without absorption in the solar
spectrum and have a strong intrinsic absorption in the atmospheric LWIR window. Dielectric
spheres (such as: SiO2) are excellent candidates for PDRC because they have strong scattering

abilities in the UV-visible light region and large emittance in the infrared region owing to their
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intrinsic absorptance. Fig. 1b shows the refractive indices of SiO2 based on previous studies
2435 and it can be observed that the bulk SiO2 material exhibits minimal absorption in the solar
spectrum, although it exhibits strong absorptance in the atmospheric window.

To further understand the effect of single sphere (solid or hollow) and dispersed dielectric
environment (polymer or air) on the scattering performance, the scattering efficiency of the
single microsphere was calculated in Fig. 1c. Electromagnetic (EM) field propagation around
a single sphere can be described by the Helmholtz equation, which can be solved by finite
element method (FEM):

Vx 'V xE)-keE=0 (1)
where E is the electric field of the medium, ;. is the relative magnetic permeability, &, is the
wave number, €, is the relative dielectric function, which is calculated as ¢, = (n - izc)z, n and
k are the complex refractive indices. The scattering power can be obtained by the Poynting
vector. More detail of FEM can be found in the previous work 262728,

It can be identified that a polymer matrix, such as: PDMS, with a similar refractive index
as SiO2 (1.39 vs. 1.44) » would weaken the scattering performance of SiO2 spheres in the
polymer (SiO2-PDMS) in the solar spectrum. The hollow sphere in the polymer (air@SiO2-
PDMS) can slightly enhance the scattering ability of the sphere, which is still much lower than
that of the porous polymer structure (air-PDMS). However, a hollow sphere in air can achieve
a stronger scattering ability in the solar spectrum owing to the presence of multiple interfaces
with different refractive indices, which can increase the reflectivity or scattering probability of
photons and enable the realization of a higher solar reflectance. Therefore, in this study, hollow
Si02 microspheres randomly distributed in the air were selected as the PDRC coating, and the

sphere fill rate was >0.55 so that a sphere-stacked structure could be achieved '8,%.

2.2 Simulation model of the microsphere coating
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The microsphere coating with an outer radius rout was built by randomly distributing spheres
(N) in a square (width w and thickness ¢). The position of microsphere was firstly determined
by a random number. Then it would be further restricted to ensure that the sphere is in connect
with at least on existing spheres since spheres are stacked together. The fill rate f and effective

thickness ¢ were determined as:

: 2)

le = = ft, (3)

Here t, means that the thickness of a nonporous solid film with the same amount of materials
as the porous film to study.

Direct 3D simulation of microsphere coatings is extremely expensive due to its non-
repeatable nature. For example, with a volume of 10x10x100 um? and a mesh size of ~10 nm,
the mesh number reaches ~10 billions, which is very challenging to solve. Hence, a 2D
simulation based on FEM was conducted to reduce the computational load, which is expected
to capture key features in 3D light scattering, since individual 2D and 3D pores show similar
scattering efficiency as a function of pore radius at different wavelengths, suggesting that the
optimal pore sizes for Rggjar, £Lwir and radiative cooling should be similar in 2D and 3D 3'.

To simplify the simulation, periodic boundary conditions are used at the left and right sides.
A plane wave is excited from the port on the top side of the unit cell with a power of 1 W. EM
transfer equation can be solved by FEM using non-homogeneous Helmholtz equation in Eq.
(1). The reflected and transmitted powers can be monitored by integrating from the bottom and
top ports. The absorbed power can be achieved by integrating the heat power density with the
coating. More details and model verification can be found in our previous studies *2,**. Finally,

the emittance € (i.e., absorptance A), reflectance R, and transmittance 7 can be calculated
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using the absorbed, reflected, and transmitted power, respectively, divided by the incident
power.
The solar reflectance (Rg)4,) can be calculated as the ratio of the reflected solar intensity

across the solar spectrum (4 = 0.3-2.5 um), as shown below:

2.5
_ 0.351:? Isolar(MR(A)dA

Rsolar - f2-5um
0.3um

: 3)

Isolar ()L)d/1

where I, (1) represents the ASTM G173-03 global solar intensity spectrum at AM 1.5 and

R(A) represents the spectral reflectance of the coating.

Similarly, the thermal emittance &y 1s expressed as follows:

fsl,f,',ﬁm Ipp (T, e(T,)dA

ELWIR = [T
sum

: (4)

Ipp (T,A)dA
where I,,(T,A) represents the spectral intensity emitted by a standard blackbody with a
temperature of 7, and &(T, 1) represents the spectral emittance of the coating.

Due to computational load, the directional reflectance or emittance is used to calculate the
cooling performance since reflectance or emittance does not depend on angle in a wide region,
which can be verified by simulation data or experimental results '>*!**, When the coating is
exposed to a daytime sky, it is subject to both solar radiation and atmospheric thermal radiation
(corresponding to the ambient air temperature T, ). The net cooling power P.,o(T) of such
a radiative cooler is provided without the consideration of the thermal convection and
conductivity: °

Peoot(T) = Prag(T) = Pagm (Tagm) — Psuns 3)
where Poyq(T), Paom(Tatm), and Py, represent the radiation power, absorbed power from the
incident atmospheric irradiation, and solar irradiation, respectively, which can be integrated
based on the emittance of the coating and the radiative power of the blackbody °>!. 7= Tam =

25 °C was considered for the cooling power calculation.

6
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3 Results and discussion

To achieve a high solar reflectance, a thickness of approximately 300 um is usually
required; such a thickness would require more computational load. In addition, Ryyj,, and
gLwir increase monotonically with thickness 3!. Thus, a thickness of 20 pm was used to
investigate the effect of different parameters (core-shell ratio, sphere radius, fill ratio, and size

distribution), and the cooling performance was evaluated at 300 um.

3.1 Effect of core—shell ratio on the cooling performance

For the hollow structure, the effect of the core—shell ratio ¢ = rin/rour on the cooling
performance is illustrated in Fig. 2. First, the scattering properties of a single hollow sphere
were calculated, as shown in Fig. 2a, where the scattering region becomes narrow and shows a
blue-shift tendency with increasing ¢ in the solar spectrum. The reflectance spectrum of the
coating becomes narrow with strong peaks with increasing ¢ in the solar spectrum, and the
maximum R, can be achieved as 0.58 at ¢ = 0.3 (Figs. 2b and 2d). While the emittance
spectrum is similar at small values (0—0.4) of ¢, the emittance region becomes narrow and the
peaks become weak when ¢ increases from 0.5 to 1.0, resulting in slight changes in
ELwir (approximately 0.86) when ¢ = 0-0.4; however, & wr drops rapidly from 0.85 to 0.33,
when ¢ increases from 0.5 to 1.0 (Figs. 2¢ and 2d). Therefore, ¢ can be selected as 0.3 to
achieve the maximum solar reflectance, although the thermal LWIR emittance changes slightly

at this value (Fig. 2).

3.2 Effect of sphere radius on the cooling performance

In PDRC applications, the sphere radius (7out) is critical for reflecting solar radiation. Thus,
the effect of the sphere radius on cooling performance was investigated. According to the Mie
scattering theory, for a single sphere, the scattering peak usually undergoes a red shift with

increasing sphere size. For random microsphere coatings, increasing rout would also lead to a
7
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red shift of the reflectance spectrum, as shown in Fig. 3a. The emittance (i.e., absorptance)
spectrum is almost the same when rout ranges from 0.1 um to 0.5 um, as shown in Fig. 3b.

The larger value of 7out would also lead to a small change in the emittance spectra. Therefore,
based on the solar radiation spectrum (0.3—-2.5 um) and atmosphere transmission spectrum (8—
13 um), the calculated & g changes minimally, ranging between 0.84 and 0.89, while Rqjar
first increases from 0.37 to 0.58 when 7 increases from 0.1 um to 0.5 um and then drops to 0.29
at rout = 2 pm, as shown in Fig. 2c. The sphere radius in this region has a minimal effect on
ELwir, Which is mainly determined by the effective thickness of the bulk SiO2 material because
the size of the sphere is much smaller than the infrared wavelength (8—13 um). Because solar
radiation mainly occurs in the 0.3—1.5 um wavelength range, the reflectance spectrum of the
Si0:2 coating with the sphere rout = 0.5 um matches well with the solar spectrum. Furthermore,
this coating achieves the largest Ry, = 0.58 at £ = 20 um, and its & ;g i as large as 0.86.
Therefore, to enhance the solar reflectance while maintaining a high thermal emittance in the
atmosphere LWIR transmission window, an optimal outer sphere radius of 0.5 um should be

used.

3.3 Effect of sphere filling rate on the cooling performance

The fill rate (f) is another critical parameter of the random stacked structure and should be
determined for PDRC applications. Because 1 in this stacked structure increases from 0.6 to
0.67, the cavity between the spheres reduces, and more photons can be transmitted with less
travel length, leading to a decrease in reflectance in the solar spectrum (4= 0.3-2.5 um), as
shown in Fig. 4a. On the one hand, increasing f would slightly improve the emittance in the
infrared region (4= 8-13 um), as shown in Fig. 4b, resulting in a gradual increase in & wr
from 0.84 to 0.88 when f increases from 0.55 to 0.76. On the other hand, Ry, increases

slightly from 0.55 to 0.58, when f increases from 0.55 to 0.60, and then drops to 0.49, at /=
8
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0.76, (Fig. 4c). Therefore, to balance Ry, and &g, f can be optimized to 0.60 to achieve

the maximum R, = 0.58, while &g = 0.86 only decreases slightly.

3.4 Effect of thickness on the cooling performance

As discuses above, a thickness of 20 um was used to investigate the effect of different
parameters (core-shell ratio, sphere radius, fill ratio, and size distribution) by reducing the
computation load. In this section, three thicknesses (20 um, 40 um, and 60 pum) in Fig. 5 are
firstly calculated to justify it. It can be found that the dependences of Rgyj,r and & ywir ON Fout
and fill rate are the same at different thicknesses. Therefore, the results at a thickness of 20 pm
can be extended to thicker films.

Based on the optimal » and f derived above (¢ = 0.3, rout = 0.5 um, and f =0.6), the
thickness () of the coating should be determined. With increasing ¢, the probability of incident
photons being scattered by the hollow sphere would be enhanced, resulting in enhanced
reflectance in the solar spectrum (4 = 0.3-2.5 um) (Fig. 6a). In addition, a large # would further
increase the effective thickness of the bulk SiO2 material, leading to enhanced emittance in the
infrared region (A = 6.0—-14 pm), as shown in Fig. 6b. Hence, both R, and &g increase
rapidly from 0.366 to 0.840 and 0.726 to 0.959, respectively, when ¢ increases from 10 um to
100 um; then, Ry, increases slowly to 0.961, and & g decreases slightly to 0.945 at ¢ =
300 pm, as shown in Fig. 6¢. Therefore, to balance the cooling performance and material cost,

the thickness ¢ at 200300 pum is better based on the hollow SiO2 sphere coating.

3.5 Effect of sphere radius distribution on the cooling performance

The above studies focused on single-size spheres; however, spheres with different size
distributions may further enhance the cooling performance. A small dielectric sphere can

effectively scatter or reflect ultraviolet light, and large spheres can scatter more light at longer
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wavelengths. On the contrary, hollow dielectric spheres with different ¢ values also exhibit
different scattering performances in the solar spectrum, as shown in Fig. 2a. Thus, tuning the
sphere size or core—shell ratio distribution by mixing different spheres may be used to enhance
Ro1ar- Under these conditions, &g Would not weaken because it is mainly determined by
the effective thickness of the bulk SiO2 material. Therefore, coatings with different spheres
were considered. The total fill rate of the hollow sphere was set to 0.6, and the different blending
fill rates were tuned to understand the effect of sphere size or core—shell ratio distribution on
the cooling performance (Figs. 7 and 8).

First, two kinds of spheres (¢ = rin/rout = 0.3) with rour = 0.2 um and 0.5 pm were
investigated (Figs. 7a to 7c¢). Because the fill rate of the sphere (= 0.5 um) £ - 0.5 was increased,
the reflectance in the ultraviolet region of 0.3—-0.4 um increased gradually, owing to a decrease
in the fraction of spheres with » = 0.2 um or f-=o0.2, as shown in Fig. 3a; however, the reflectance
in the visible region increased as more spheres with rout = 0.2 um could scatter light in this
region (Fig. 3a). However, the reflectance at 1.1-1.8 um decreased with increasing f = 0.2, as
shown in Fig. 7a. Thus, Rg),, is similar, located within the 0.56-0.58 range. Because the total
fill rate of these two spheres was constant (0.6) based on the above studies, the emittance
spectrum was almost the same for different blending fill rates (Fig. 7b), which agrees with the
above discussion regarding the thermal emittance. Thus, tuning the fill rate distribution at the
same total fill rate has a small effect on &g, Which remains 0.84—0.87, as shown in Fig. 7c.

Second, two different spheres (rour = 0.5 pm) with @ = rin/rour = 0 and 0.3 were also
considered (Figs. 7d to 7f). The reflectance spectra exhibit a similar tendency, and Rgqjar
increases slightly from 0.54 to 0.58 when f,, _ o3 increases from 0 to 0.6, indicating that the
hollow structure can reflect solar radiation effectively. The emittance spectra are also similar,
resulting in small variations in & wr (0.84-0.86). As discussed above, it was identified that

mixing two kinds of spheres with different sizes or core—shell ratios have a minimal effect on
10
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Rgo1ar and & wir, and better cooling performance at £ = 20 um can be achieved as Rgopar =
0.58 and & ywr = 0.86 for single-size hollow spheres with rout= 0.5 um, @ = rin/rout = 0.3, and
f=0.6.

To further understand the effect of the outer radius rout and core—shell ratio ¢ distributions
on the cooling performance. Gaussian distribution N(u,02) of row and ¢ are firstly
calculated in Fig. 8, where u and o are the expectation and standard deviation for rout or .
It can be found that Gaussian distribution of rou with a larger ¢ would weak Rgq),, While
enhance & ywir slightly, which is also similar to the effect of Gaussian distribution ¢. At the
optimal rout = 0.5 um and ¢= 0.3, the small fluctuations (i.e., ¢ < 0.05) have little effect on
Ryolar and & wir in Fig. 8, indicating the optimal result is acceptable in the practical scenario.

In addition, a random uniform distribution of ¢ within a certain region in the coating is
considered for rout = 0.5 um, # = 20 um, and /= 0.6, as shown in Fig. 9. First, one end of the
random ¢ distribution was set as 0.3 in Figs. 9a to 9c. As ¢ in the region approaches 0.3,
Rgolar gradually increases while &g remains almost the same (0.86-0.88), indicating that
the hollow dielectric sphere with ¢ = 0.3 is better for reflecting solar radiation, which agrees
well with the results discussed ¢ in Section 3.1. Thus, to enhance solar reflectance, the center
of the region with random distributions of ¢ was set to 0.3 (Figs. 9d to 9f). The results revealed

that the maximum Rg,,, that can be achieved is 0.59, in the range of ¢ = 0.1-0.5, while

ELwir 18 almost the same (0.84-0.87).

3.6 Net cooling power for optimized microsphere coating

As discussed above, the thickness considered is small, resulting in a small value of R¢g)ar
ELwir- Thus, a thicker coating with # =300 um was calculated based on the optimal sphere with
a multi-core—shell ratio (¢= 0.1-0.5) and compared to that of the sphere with a single core—

shell ratio (¢= 0.3) (Fig. 10). In the solar spectrum, the hollow sphere coating with multi-¢

11
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has better reflectance performance in the solar spectrum than a single-¢ hollow sphere coating
(Fig. 10a), which agrees well with the findings shown in Fig. 9. However, in the thermal LWIR
spectrum, the emittance of the multi-hollow¢ sphere coating was higher than that of the single-
¢ hollow sphere coating, as shown in Fig. 10b. Thus, Ry, and &.wr of the multi-sphere ¢
coating are 0.98 and 0.95, respectively, which are higher than those of the single-sphereg
coating (Rgolar = 0.96 and & wr = 0.90) and solid sphere coating (Rgo1ar = 0.95 and & g =
0.92), indicating that the optimal hollow sphere coating with the multi-core—shell ratio exhibits
a better performance.

However, for the bulk sphere coating discussed above, the transmittance is not zero at ¢ =
300 um. To conservatively evaluate the cooling performance of the bulk coating without the
substrate, the reflectance spectrum was used to calculate the solar heating power Psun, and the
emittance spectrum was used to calculate the radiation power from the coating to the sky Prad
and the radiation from the atmosphere to the coating Pam. Thus, under typical atmospheric
conditions and the standard AM 1.5 solar spectrum, the net cooling power of the solid sphere
(¢ = 0) coating is Pcool = Prad — Psun — Patm = 47 W/m?. The hollow sphere with ¢ = 0.3 further
enhanced the net cooling power to Pcool = 56 W/m?. Finally, the maximum Peool was 77 W/m?
for the hollow SiO2 microsphere coating with ¢ = 0.1-0.5, as shown in Table 1. These results
indicate that a random hollow dielectric microsphere coating can be used to achieve effective

radiative cooling performance.

Table 1 Cooling powers of hollow microsphere coatings with different core—shell ratios at 7= 25 °C, ¢ = 300
pum, 7o = 0.5 um, and total /= 0.6.

Sphere (r,  =0.5 pm) P P P P

out rad sun atm net

¢ =0 (solid) 285 46 192 47

@ = 0.3 (single) 279 35 188 56
@ =0.1-0.5 (multi) 288 19 192 77

4 Conclusion
12
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In summary, a hollow dielectric structure was introduced to enhance the daytime cooling
performance of a dielectric sphere coating. It can be observed that the hollow dielectric sphere
in air can scatter more light in the solar spectrum. For the single-size hollow sphere coating, it
can be observed that the maximum Ry, can be achieved at = 0.6, rou = 0.5 um, and @ =
rin/rout = 0.3, while & wir changes little because of the small size compared with the infrared
wavelength. Increasing the thickness of the hollow microsphere coating based on the single-
size hollow sphere coating can enhance both R, and &g While gradually reaching
saturation. Thus, the radiative cooling performance based on single-size sphere coating can be
obtained as Rgojar = 0.96 and & g = 0.90, when ¢ =300 pm. Furthermore, by controlling the
core-shell ratio distribution, the cooling performance of bulk coatings (t = 300 um) can be
enhanced to Rgyp,r = 0.98 and & g = 0.95 when ¢ = 0.1-0.5, resulting in a net cooling
power of 77 W/m?, which is approximately 38% higher than that of the optimal single-size
hollow sphere coating (¢ = 0.3), and approximately 64% higher than that of the optimal solid
Si0O2 sphere coating (¢ = 0). These results indicate that the hollow structure can effectively
enhance the cooling performance of dielectric microsphere coatings by increasing the number

of interfaces between the air and dielectric.

Nomenclature

A Absorptance K Imaginary part of refractive index
E Electric filed, V/m A Wavelength

f Fill rate Ur Magnetic permeability

I Spectral intensity, W/m? T Transmittance

n Real part of refractive index Q Core-shell ratio

N Number Subscript

P Absorbed power, W/m? atm Atmospheric

r Radius, pm bb Blackbody

13
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317

318
319
320
321
322
323
324

R Reflectance cool Net cooling

Reoar  Averaged solar reflectance e Effective

t Thickness, pm in Inner

T Temperature, K out Outer

w Width, pm rad Radiation

Greek Abbreviation

£ Emittance PDRC Passive daytime radiative cooling

&iwir  Averaged thermal emittance FEM Finite-element method

€ Dielectric function LWIR Atmosphere’s long-wave infrared
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A list of figure captions

Fig. 1 (a) Concept of the random hollow dielectric microsphere coating to reflect solar radiation and emit infrared
thermal radiation. (b) Refractive indices (0.3—20 pum) of SiO, based on the previous studies >#?. (¢) Scattering
efficiency of SiO; sphere, pore, and hollow SiO, sphere (» = 0.5 um) in different dielectric environments (air or

PDMS).

Fig. 2 Effect of ¢ = rin/rou On the cooling performance for random hollow microsphere coatings. (a) Scattering
efficiencies of a SiO, microsphere with different ¢ in air. (b) Simulated reflectance spectra of microsphere
coatings with different ¢ in the solar spectrum (4= 0.3-2.5 pum). (c¢) Simulated emittance (i.e., absorptance)
spectra of microsphere coatings with different ¢ in the infrared region (1= 6-20 um). (d) Calculated R, and

ELwir With different @. rope = 0.5 pm, f= 0.6, and ¢ =20 pm in (b) to (d).

Fig. 3 Effect of microsphere radius 7oy (0.1-2 pm) on the cooling performance for random hollow microsphere
coatings. (a) Simulated reflectance spectra of microsphere coatings with different .y in the solar spectrum (4 =
0.3-2.5 um). (b) Simulated emittance (i.c., absorptance) spectra of microsphere coatings with different 7oy in the
infrared region (A= 6-14 pum). (c) Calculated Ry, and &g With different sphere radii. @= rin/Fou = 0.3, f=

0.6, and ¢ =20 pum.

Fig. 4 Effect of the microsphere fill rate £(0.55-0.67) on the cooling performance for random hollow microsphere
coatings. (a) Simulated reflectance spectra of microsphere coating with different f'in the solar spectrum (4= 0.3—
2.5 um). (b) Simulated emittance (i.c., absorptance) spectra of microsphere coating with different f'in the infrared
region (A= 6-14 um). (c) Calculated R, and &g With different fill rates. @= rin/Four = 0.3, Four = 0.5 pm,

and =20 pm.

Fig. 5 Calculated Ry, and &g With different outer radii 7oy (a) and fill rates f (b) at thicknesses of 20 um,

40 pum, and 60 pm. Q= rin/rou = 0.3, and f= 0.6 in (2); Q= rin/Fou = 0.3, and 7oy = 0.5 pum in (b).

Fig. 6 Effect of thicknesses (0 — 300 um) on the cooling performance for hollow SiO» coatings. (a) Simulated

reflectance spectra of coatings with different thicknesses in the solar spectrum (4= 0.3 — 2.5 um). (b) Simulated
18
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emittance spectra of coatings with different thicknesses in the infrared region (4= 6.0 — 14 pm). (d) Calculated

Rsolar and & wir with different thicknesses. @= rin/Four = 0.3, 7our = 0.5 pm and f'= 0.6 here.

Fig. 7 (a) to (c) Effect of two-size spheres (¢ = rin/Fou = 0.3) with two different outer radii (0.2 um and 0.5 um)
on the cooling performance of hollow SiO; coatings. (a) Simulated reflectance (4 =0.3-2.5 um) and (b) emittance
(A =6-14 pum) of coatings with different fill rates of these two spheres in the simulated spectrum. (c) Calculated
Rgolar and & g based on (a) and (b). (d) to (f) Effect of two-size spheres (rou = 0.5 um) with two different core-
shell rates (@ =rin/rour = 0.3 and @ =rin/rou = 0) on the cooling performance for SiO, coatings. (d) Simulated
reflectance (4= 0.3-2.5 um) and (e) emittance (1= 6—14 um) of coatings with different fill rates of these two

spheres in the simulated spectrum. (f) Calculated Rgojor and &g based on (d) and (e). £ = 20 um and total f=

0.6.

Fig. 8 (a) to (c) Effect of Gaussian distribution N(u, 02) of the outer radius 7o, on the cooling performance (u =
rour = 0.5 um, ¢@= 0.3). (a) Simulated reflectance (1= 0.3-2.5 um) and (b) emittance (1= 6—14 um) of coatings
with different standard deviations o. (c) Calculated Ry, and &g based on (a) and (b). (d) to (f) Effect of
Gaussian distribution N(u, %) of the core-shell ratio ¢ on the cooling performance (u = ¢ = 0.3, rou = 0.5
pm). (a) Simulated reflectance (4= 0.3-2.5 um) and (b) emittance (4= 6—14 um) of coatings with different

standard deviations &. (c) Calculated Ry, and &g based on (a) and (b). ¢ = 20 um, and total = 0.6.

Fig. 9 Uniform distributions of the core—shell ratio ¢: (a) to (c) Effect of multi-size spheres with different random
uniform distributions of the core—shell ratio ¢ (one end of the range is set as ¢ = 0.3) on the cooling performance
of hollow SiO; coatings. (a) Simulated reflectance (4= 0.3-2.5 um) and (b) emittance (1 = 6—14 um) of coatings
with different fill rates of these two spheres in the simulated spectrum. (c) Calculated Ryyj,r and &.wir based on
(a) and (b). (d) to (f) Effect of multi-size spheres with different random uniform distributions of the core-shell ratio
@ (the center of the range is set as ¢=0.3) on the cooling performance of SiO, coatings. (d) Simulated reflectance
(A=10.3-2.5 um) and (e) emittance (1 = 6—14 um) of coatings with different fill rates of these two spheres in the
simulated spectrum. (f) Calculated Ry, and & wir based on (d) and (e). 7o = 0.5 um, £ =20 pm, and total /=

0.6.
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Fig. 10 Cooling performance for the optimized hollow SiO, microsphere coatings. (a) Simulated reflectance, and

(b) emittance spectra of microsphere coatings without substrate. =300 pm, 7o, = 0.5 pm, and total /= 0.6.
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