

1 **Numerically enhancing daytime radiative cooling performance of
2 random dielectric microsphere coatings by hollow structures**

4 **Meijie Chen ^{a,*}, Shuang Li ^a, Dan Pang ^a, Yanwei Zhao ^a, Yuan Yang ^{b,*}, Hongjie Yan ^{a,*}**

5 ^a School of Energy Science and Engineering, Central South University, Changsha 410083, China

6 ^b Department of Applied Physics and Applied Mathematics, Columbia University, New York 10027, United
7 States

8 **Abstract.** Dielectric microsphere coatings for passive daytime radiative cooling (PDRC) are gaining attention
9 owing to their low cost and potential for mass production. The cooling performance could be further enhanced to
10 effectively reflect solar radiation and emit thermal radiation to the cold sky by designing microspheres suitable for
11 PDRC applications. In this study, hollow dielectric structures were numerically designed to enhance the PDRC
12 performance of dielectric microsphere coatings. The maximum solar reflectance ($\bar{R}_{\text{solar}} = 0.96$) was obtained with
13 a fill rate $f = 0.6$, outer radius $r_{\text{out}} = 0.5 \mu\text{m}$, core–shell rate $\varphi = r_{\text{in}}/r_{\text{out}} = 0.3$, thickness $t = 300 \mu\text{m}$, and thermal
14 infrared emittance $\bar{\varepsilon}_{\text{LWIR}} = 0.90$. Furthermore, by controlling the multi-size sphere distribution within $\varphi = 0.1$ –
15 0.5, the cooling performance at $t = 300 \mu\text{m}$ was enhanced to $\bar{R}_{\text{solar}} = 0.98$, $\bar{\varepsilon}_{\text{LWIR}} = 0.95$, and a net cooling power
16 of 77 W/m^2 was achieved at a temperature of 25°C , which was approximately 38% higher than that achieved with
17 the single-size sphere coating ($\varphi = 0.3$) and approximately 64% higher than that of the solid SiO_2 sphere coating
18 ($\varphi = 0$). These results indicate that hollow structures can effectively enhance the cooling performance of dielectric
19 microsphere coatings by increasing the number of interfaces between the air and dielectric materials.

20 **Keywords:** radiative cooling, dielectric, hollow sphere, solar reflectance, thermal emittance

21

23 **1 Introduction**

25 The demand for cooling is rising as a result of global warming, population growth, industrial
26 development, and higher living standards ¹. However, the current refrigeration process based
27 on thermal cycles consumes a significant amount of energy, and the consumption of non-
28 renewable fossil energy increases carbon emissions, which contribute to global warming ². In
29 addition, refrigerant emissions can cause new environmental problems, such as: the greenhouse
30 effect ³. Therefore, the development of new ecofriendly cooling technologies has become an
31 urgent issue ⁴.

* To whom correspondence may be addressed. E-mail: chenmeijie@csu.edu.cn (M. C.); yy2664@columbia.edu (Y. Y.); s-rfy@csu.edu.cn (H. Y.)

32 Passive daytime radiative cooling (PDRC) technology can be used to achieve energy-
33 intensive cooling, which transfers excess heat to the outer space through thermal radiation
34 without any energy consumption ^{5,6,7}. It uses a large temperature difference between the Earth
35 (approximately 300 K) and outer space (same as that of the black body radiation spectrum at
36 2.7 K ^{8,9}) and radiates infrared heat from the Earth's surface through the atmosphere to the outer
37 space to achieve the cooling effect. The surface coating of a PDRC device must have a high
38 solar reflectance (\bar{R}_{solar}) in the solar spectrum (0.3–2.5 μm) to avoid the solar heating, and a
39 strong thermal emittance ($\bar{\varepsilon}_{\text{LWIR}}$) in the long-wave infrared (LWIR) transmission window (8–
40 13 μm) of the atmosphere to lose heat to the cool sky. Thus, even during the day, the energy
41 loss to the cold sky by thermal radiation through the atmospheric LWIR window is significantly
42 greater than that from sunlight; thus, electricity-free and spontaneous cooling is achieved ^{10,11}.

43 Recently, various PDRC coatings with high solar reflection and thermal LWIR emittance
44 in the atmospheric window, such as: photonic structures ⁵, polymers ¹², dielectrics ^{13,14}, and
45 dielectric-polymer composites ¹⁵, have been developed. The intrinsic absorptance of polymer
46 and dielectric materials can usually provide high emittance in the atmospheric LWIR window.
47 Thus, to achieve near-perfect solar reflectance is significant to achieve PDRC. In the past
48 decade, various strategies have been proposed to reflect solar radiation and achieve high-
49 performance PDRC, including coating a bulk polymer on a highly solar reflective metal, such
50 as: Ag and Al ^{16,17}, and using porous or microsphere structures where the sphere interface, such
51 as: SiO₂-air, air-polymer, and SiO₂-polymer interfaces, amplifies the solar scattering ^{18–21}.
52 Dielectric sphere-based radiative cooling coatings are gaining popularity owing to their low
53 cost, potential for mass production, and applicability to large systems ¹⁵. However, to achieve
54 effective solar reflection, the coating must have a large thickness, or a solar reflector should be
55 placed at the bottom of the PDRC device. By designing microspheres suitable for PDRC

56 applications, cooling performance can be improved further to effectively reflect solar radiation
57 and emit thermal radiation to the cold sky.

58 Therefore, hollow glass spheres ²² or hollow SiO₂ spheres ²³ were prepared to enhance the
59 solar reflectance using multi-scattering interfaces. However, the relationship between the
60 hollow sphere parameters and PDRC performance still needs to be clarified. In this study,
61 hollow microsphere parameters, such as: radius, core-shell ratio, fill rate, and thickness, were
62 first discussed to clarify the relationship between these geometric parameters and the cooling
63 performance. Then, a multi-type sphere distribution was investigated to enhance the cooling
64 performance of the dielectric sphere coating. Finally, the cooling powers of the hollow multi-
65 type microsphere coatings were calculated and compared with those of the solid microsphere
66 and single-type microsphere coatings.

67 2 Concept and model

68 2.1 Concept of random hollow dielectric microsphere coating

69 Fig. 1a shows the concept of a random hollow dielectric microsphere coating for PDRC.
70 The outer and inner radii of the hollow sphere are r_{out} and r_{in} , respectively, with a core-shell
71 ratio $\varphi = r_{\text{in}}/r_{\text{out}}$. The thickness and fill rate of the coating are defined as t and $f (> 0.55$, owing
72 to the random stacked structures).

73 To enhance the maximal net cooling performance during the day, the coating should have
74 a value of $\bar{R}_{\text{solar}} = 1$ to reflect all solar radiation in the solar spectrum (0.3–2.5 μm) and $\bar{\varepsilon}_{\text{LWIR}}$
75 = 1 to emit thermal radiation in the atmospheric LWIR transmittance window (8–13 μm). Thus,
76 the bulk material used for this coating should be transparent without absorption in the solar
77 spectrum and have a strong intrinsic absorption in the atmospheric LWIR window. Dielectric
78 spheres (such as: SiO₂) are excellent candidates for PDRC because they have strong scattering
79 abilities in the UV-visible light region and large emittance in the infrared region owing to their

80 intrinsic absorptance. Fig. 1b shows the refractive indices of SiO₂ based on previous studies
81 ^{24,25}, and it can be observed that the bulk SiO₂ material exhibits minimal absorption in the solar
82 spectrum, although it exhibits strong absorptance in the atmospheric window.

83 To further understand the effect of single sphere (solid or hollow) and dispersed dielectric
84 environment (polymer or air) on the scattering performance, the scattering efficiency of the
85 single microsphere was calculated in Fig. 1c. Electromagnetic (EM) field propagation around
86 a single sphere can be described by the Helmholtz equation, which can be solved by finite
87 element method (FEM):

$$88 \quad \nabla \times (\mu_r^{-1} \nabla \times \mathbf{E}) - k_0^2 \epsilon_r \mathbf{E} = 0 \quad (1)$$

89 where \mathbf{E} is the electric field of the medium, μ_r is the relative magnetic permeability, k_0 is the
90 wave number, ϵ_r is the relative dielectric function, which is calculated as $\epsilon_r = (n - ik)^2$, n and
91 κ are the complex refractive indices. The scattering power can be obtained by the Poynting
92 vector. More detail of FEM can be found in the previous work ^{26,27,28}.

93 It can be identified that a polymer matrix, such as: PDMS, with a similar refractive index
94 as SiO₂ (1.39 vs. 1.44) ²⁹ would weaken the scattering performance of SiO₂ spheres in the
95 polymer (SiO₂-PDMS) in the solar spectrum. The hollow sphere in the polymer (air@SiO₂-
96 PDMS) can slightly enhance the scattering ability of the sphere, which is still much lower than
97 that of the porous polymer structure (air-PDMS). However, a hollow sphere in air can achieve
98 a stronger scattering ability in the solar spectrum owing to the presence of multiple interfaces
99 with different refractive indices, which can increase the reflectivity or scattering probability of
100 photons and enable the realization of a higher solar reflectance. Therefore, in this study, hollow
101 SiO₂ microspheres randomly distributed in the air were selected as the PDRC coating, and the
102 sphere fill rate was >0.55 so that a sphere-stacked structure could be achieved ^{18,30}.

103 *2.2 Simulation model of the microsphere coating*

104 The microsphere coating with an outer radius r_{out} was built by randomly distributing spheres
105 (N) in a square (width w and thickness t). The position of microsphere was firstly determined
106 by a random number. Then it would be further restricted to ensure that the sphere is in connect
107 with at least one existing spheres since spheres are stacked together. The fill rate f and effective
108 thickness t_e were determined as:

109
$$f = \frac{N\pi r_{\text{out}}^2}{wt}, \quad (2)$$

110
$$t_e = \frac{N\pi r_{\text{out}}^2}{w} = ft, \quad (3)$$

111 Here t_e means that the thickness of a nonporous solid film with the same amount of materials
112 as the porous film to study.

113 Direct 3D simulation of microsphere coatings is extremely expensive due to its non-
114 repeatable nature. For example, with a volume of $10 \times 10 \times 100 \mu\text{m}^3$ and a mesh size of $\sim 10 \text{ nm}$,
115 the mesh number reaches ~ 10 billions, which is very challenging to solve. Hence, a 2D
116 simulation based on FEM was conducted to reduce the computational load, which is expected
117 to capture key features in 3D light scattering, since individual 2D and 3D pores show similar
118 scattering efficiency as a function of pore radius at different wavelengths, suggesting that the
119 optimal pore sizes for \bar{R}_{solar} , $\bar{\varepsilon}_{\text{LWIR}}$ and radiative cooling should be similar in 2D and 3D³¹.

120 To simplify the simulation, periodic boundary conditions are used at the left and right sides.
121 A plane wave is excited from the port on the top side of the unit cell with a power of 1 W. EM
122 transfer equation can be solved by FEM using non-homogeneous Helmholtz equation in Eq.
123 (1). The reflected and transmitted powers can be monitored by integrating from the bottom and
124 top ports. The absorbed power can be achieved by integrating the heat power density with the
125 coating. More details and model verification can be found in our previous studies^{32,33}. Finally,
126 the emittance ε (i.e., absorptance A), reflectance R , and transmittance τ can be calculated

127 using the absorbed, reflected, and transmitted power, respectively, divided by the incident
128 power.

129 The solar reflectance (\bar{R}_{solar}) can be calculated as the ratio of the reflected solar intensity
130 across the solar spectrum ($\lambda = 0.3\text{--}2.5\text{ }\mu\text{m}$), as shown below:

131

$$\bar{R}_{\text{solar}} = \frac{\int_{0.3\mu\text{m}}^{2.5\mu\text{m}} I_{\text{solar}}(\lambda)R(\lambda)d\lambda}{\int_{0.3\mu\text{m}}^{2.5\mu\text{m}} I_{\text{solar}}(\lambda)d\lambda}, \quad (3)$$

132 where $I_{\text{solar}}(\lambda)$ represents the ASTM G173-03 global solar intensity spectrum at AM 1.5 and
133 $R(\lambda)$ represents the spectral reflectance of the coating.

134 Similarly, the thermal emittance $\bar{\varepsilon}_{\text{LWIR}}$ is expressed as follows:

135

$$\bar{\varepsilon}_{\text{LWIR}} = \frac{\int_{8\mu\text{m}}^{13\mu\text{m}} I_{\text{bb}}(T,\lambda)\varepsilon(T,\lambda)d\lambda}{\int_{8\mu\text{m}}^{13\mu\text{m}} I_{\text{bb}}(T,\lambda)d\lambda}, \quad (4)$$

136 where $I_{\text{bb}}(T,\lambda)$ represents the spectral intensity emitted by a standard blackbody with a
137 temperature of T , and $\varepsilon(T,\lambda)$ represents the spectral emittance of the coating.

138 Due to computational load, the directional reflectance or emittance is used to calculate the
139 cooling performance since reflectance or emittance does not depend on angle in a wide region,
140 which can be verified by simulation data or experimental results^{12,31,34}. When the coating is
141 exposed to a daytime sky, it is subject to both solar radiation and atmospheric thermal radiation
142 (corresponding to the ambient air temperature T_{atm}). The net cooling power $P_{\text{cool}}(T)$ of such
143 a radiative cooler is provided without the consideration of the thermal convection and
144 conductivity:⁵

145

$$P_{\text{cool}}(T) = P_{\text{rad}}(T) - P_{\text{atm}}(T_{\text{atm}}) - P_{\text{sun}}, \quad (3)$$

146 where $P_{\text{rad}}(T)$, $P_{\text{atm}}(T_{\text{atm}})$, and P_{sun} represent the radiation power, absorbed power from the
147 incident atmospheric irradiation, and solar irradiation, respectively, which can be integrated
148 based on the emittance of the coating and the radiative power of the blackbody^{5,31}. $T = T_{\text{atm}} =$
149 $25\text{ }^{\circ}\text{C}$ was considered for the cooling power calculation.

150 **3 Results and discussion**

151 To achieve a high solar reflectance, a thickness of approximately 300 μm is usually
152 required; such a thickness would require more computational load. In addition, \bar{R}_{solar} and
153 $\bar{\varepsilon}_{\text{LWIR}}$ increase monotonically with thickness³¹. Thus, a thickness of 20 μm was used to
154 investigate the effect of different parameters (core-shell ratio, sphere radius, fill ratio, and size
155 distribution), and the cooling performance was evaluated at 300 μm .

156 *3.1 Effect of core–shell ratio on the cooling performance*

157 For the hollow structure, the effect of the core–shell ratio $\varphi = r_{\text{in}}/r_{\text{out}}$ on the cooling
158 performance is illustrated in Fig. 2. First, the scattering properties of a single hollow sphere
159 were calculated, as shown in Fig. 2a, where the scattering region becomes narrow and shows a
160 blue-shift tendency with increasing φ in the solar spectrum. The reflectance spectrum of the
161 coating becomes narrow with strong peaks with increasing φ in the solar spectrum, and the
162 maximum \bar{R}_{solar} can be achieved as 0.58 at $\varphi = 0.3$ (Figs. 2b and 2d). While the emittance
163 spectrum is similar at small values (0–0.4) of φ , the emittance region becomes narrow and the
164 peaks become weak when φ increases from 0.5 to 1.0, resulting in slight changes in
165 $\bar{\varepsilon}_{\text{LWIR}}$ (approximately 0.86) when $\varphi = 0$ –0.4; however, $\bar{\varepsilon}_{\text{LWIR}}$ drops rapidly from 0.85 to 0.33,
166 when φ increases from 0.5 to 1.0 (Figs. 2c and 2d). Therefore, φ can be selected as 0.3 to
167 achieve the maximum solar reflectance, although the thermal LWIR emittance changes slightly
168 at this value (Fig. 2).

169 *3.2 Effect of sphere radius on the cooling performance*

170 In PDRC applications, the sphere radius (r_{out}) is critical for reflecting solar radiation. Thus,
171 the effect of the sphere radius on cooling performance was investigated. According to the Mie
172 scattering theory, for a single sphere, the scattering peak usually undergoes a red shift with
173 increasing sphere size. For random microsphere coatings, increasing r_{out} would also lead to a

174 red shift of the reflectance spectrum, as shown in Fig. 3a. The emittance (i.e., absorptance)
175 spectrum is almost the same when r_{out} ranges from 0.1 μm to 0.5 μm , as shown in Fig. 3b.

176 The larger value of r_{out} would also lead to a small change in the emittance spectra. Therefore,
177 based on the solar radiation spectrum (0.3–2.5 μm) and atmosphere transmission spectrum (8–
178 13 μm), the calculated $\bar{\varepsilon}_{\text{LWIR}}$ changes minimally, ranging between 0.84 and 0.89, while \bar{R}_{solar}
179 first increases from 0.37 to 0.58 when r increases from 0.1 μm to 0.5 μm and then drops to 0.29
180 at $r_{\text{out}} = 2 \mu\text{m}$, as shown in Fig. 2c. The sphere radius in this region has a minimal effect on
181 $\bar{\varepsilon}_{\text{LWIR}}$, which is mainly determined by the effective thickness of the bulk SiO_2 material because
182 the size of the sphere is much smaller than the infrared wavelength (8–13 μm). Because solar
183 radiation mainly occurs in the 0.3–1.5 μm wavelength range, the reflectance spectrum of the
184 SiO_2 coating with the sphere $r_{\text{out}} = 0.5 \mu\text{m}$ matches well with the solar spectrum. Furthermore,
185 this coating achieves the largest $\bar{R}_{\text{solar}} = 0.58$ at $t = 20 \mu\text{m}$, and its $\bar{\varepsilon}_{\text{LWIR}}$ is as large as 0.86.
186 Therefore, to enhance the solar reflectance while maintaining a high thermal emittance in the
187 atmosphere LWIR transmission window, an optimal outer sphere radius of 0.5 μm should be
188 used.

189 *3.3 Effect of sphere filling rate on the cooling performance*

190 The fill rate (f) is another critical parameter of the random stacked structure and should be
191 determined for PDRC applications. Because f in this stacked structure increases from 0.6 to
192 0.67, the cavity between the spheres reduces, and more photons can be transmitted with less
193 travel length, leading to a decrease in reflectance in the solar spectrum ($\lambda = 0.3–2.5 \mu\text{m}$), as
194 shown in Fig. 4a. On the one hand, increasing f would slightly improve the emittance in the
195 infrared region ($\lambda = 8–13 \mu\text{m}$), as shown in Fig. 4b, resulting in a gradual increase in $\bar{\varepsilon}_{\text{LWIR}}$
196 from 0.84 to 0.88 when f increases from 0.55 to 0.76. On the other hand, \bar{R}_{solar} increases
197 slightly from 0.55 to 0.58, when f increases from 0.55 to 0.60, and then drops to 0.49, at $f =$

198 0.76, (Fig. 4c). Therefore, to balance \bar{R}_{solar} and $\bar{\varepsilon}_{\text{LWIR}}$, f can be optimized to 0.60 to achieve
199 the maximum $\bar{R}_{\text{solar}} = 0.58$, while $\bar{\varepsilon}_{\text{LWIR}} = 0.86$ only decreases slightly.

200 *3.4 Effect of thickness on the cooling performance*

201 As discusses above, a thickness of 20 μm was used to investigate the effect of different
202 parameters (core-shell ratio, sphere radius, fill ratio, and size distribution) by reducing the
203 computation load. In this section, three thicknesses (20 μm , 40 μm , and 60 μm) in Fig. 5 are
204 firstly calculated to justify it. It can be found that the dependences of \bar{R}_{solar} and $\bar{\varepsilon}_{\text{LWIR}}$ on r_{out}
205 and fill rate are the same at different thicknesses. Therefore, the results at a thickness of 20 μm
206 can be extended to thicker films.

207 Based on the optimal r and f derived above ($\varphi = 0.3$, $r_{\text{out}} = 0.5 \mu\text{m}$, and $f = 0.6$), the
208 thickness (t) of the coating should be determined. With increasing t , the probability of incident
209 photons being scattered by the hollow sphere would be enhanced, resulting in enhanced
210 reflectance in the solar spectrum ($\lambda = 0.3\text{--}2.5 \mu\text{m}$) (Fig. 6a). In addition, a large t would further
211 increase the effective thickness of the bulk SiO_2 material, leading to enhanced emittance in the
212 infrared region ($\lambda = 6.0\text{--}14 \mu\text{m}$), as shown in Fig. 6b. Hence, both \bar{R}_{solar} and $\bar{\varepsilon}_{\text{LWIR}}$ increase
213 rapidly from 0.366 to 0.840 and 0.726 to 0.959, respectively, when t increases from 10 μm to
214 100 μm ; then, \bar{R}_{solar} increases slowly to 0.961, and $\bar{\varepsilon}_{\text{LWIR}}$ decreases slightly to 0.945 at $t =$
215 300 μm , as shown in Fig. 6c. Therefore, to balance the cooling performance and material cost,
216 the thickness t at 200–300 μm is better based on the hollow SiO_2 sphere coating.

217 *3.5 Effect of sphere radius distribution on the cooling performance*

218 The above studies focused on single-size spheres; however, spheres with different size
219 distributions may further enhance the cooling performance. A small dielectric sphere can
220 effectively scatter or reflect ultraviolet light, and large spheres can scatter more light at longer

wavelengths. On the contrary, hollow dielectric spheres with different φ values also exhibit different scattering performances in the solar spectrum, as shown in Fig. 2a. Thus, tuning the sphere size or core–shell ratio distribution by mixing different spheres may be used to enhance \bar{R}_{solar} . Under these conditions, $\bar{\varepsilon}_{\text{LWIR}}$ would not weaken because it is mainly determined by the effective thickness of the bulk SiO_2 material. Therefore, coatings with different spheres were considered. The total fill rate of the hollow sphere was set to 0.6, and the different blending fill rates were tuned to understand the effect of sphere size or core–shell ratio distribution on the cooling performance (Figs. 7 and 8).

First, two kinds of spheres ($\varphi = r_{\text{in}}/r_{\text{out}} = 0.3$) with $r_{\text{out}} = 0.2 \text{ }\mu\text{m}$ and $0.5 \text{ }\mu\text{m}$ were investigated (Figs. 7a to 7c). Because the fill rate of the sphere ($r = 0.5 \text{ }\mu\text{m}$) $f_r = 0.5$ was increased, the reflectance in the ultraviolet region of $0.3\text{--}0.4 \text{ }\mu\text{m}$ increased gradually, owing to a decrease in the fraction of spheres with $r = 0.2 \text{ }\mu\text{m}$ or $f_r = 0.2$, as shown in Fig. 3a; however, the reflectance in the visible region increased as more spheres with $r_{\text{out}} = 0.2 \text{ }\mu\text{m}$ could scatter light in this region (Fig. 3a). However, the reflectance at $1.1\text{--}1.8 \text{ }\mu\text{m}$ decreased with increasing $f_r = 0.2$, as shown in Fig. 7a. Thus, \bar{R}_{solar} is similar, located within the $0.56\text{--}0.58$ range. Because the total fill rate of these two spheres was constant (0.6) based on the above studies, the emittance spectrum was almost the same for different blending fill rates (Fig. 7b), which agrees with the above discussion regarding the thermal emittance. Thus, tuning the fill rate distribution at the same total fill rate has a small effect on $\bar{\varepsilon}_{\text{LWIR}}$, which remains $0.84\text{--}0.87$, as shown in Fig. 7c.

Second, two different spheres ($r_{\text{out}} = 0.5 \text{ }\mu\text{m}$) with $\varphi = r_{\text{in}}/r_{\text{out}} = 0$ and 0.3 were also considered (Figs. 7d to 7f). The reflectance spectra exhibit a similar tendency, and \bar{R}_{solar} increases slightly from 0.54 to 0.58 when $f_{\varphi} = 0.3$ increases from 0 to 0.6, indicating that the hollow structure can reflect solar radiation effectively. The emittance spectra are also similar, resulting in small variations in $\bar{\varepsilon}_{\text{LWIR}}$ ($0.84\text{--}0.86$). As discussed above, it was identified that mixing two kinds of spheres with different sizes or core–shell ratios have a minimal effect on

246 \bar{R}_{solar} and $\bar{\varepsilon}_{\text{LWIR}}$, and better cooling performance at $t = 20 \mu\text{m}$ can be achieved as $\bar{R}_{\text{solar}} =$
247 0.58 and $\bar{\varepsilon}_{\text{LWIR}} = 0.86$ for single-size hollow spheres with $r_{\text{out}} = 0.5 \mu\text{m}$, $\varphi = r_{\text{in}}/r_{\text{out}} = 0.3$, and
248 $f = 0.6$.

249 To further understand the effect of the outer radius r_{out} and core–shell ratio φ distributions
250 on the cooling performance. Gaussian distribution $N(\mu, \sigma^2)$ of r_{out} and φ are firstly
251 calculated in Fig. 8, where μ and σ are the expectation and standard deviation for r_{out} or φ .
252 It can be found that Gaussian distribution of r_{out} with a larger σ would weak \bar{R}_{solar} while
253 enhance $\bar{\varepsilon}_{\text{LWIR}}$ slightly, which is also similar to the effect of Gaussian distribution φ . At the
254 optimal $r_{\text{out}} = 0.5 \mu\text{m}$ and $\varphi = 0.3$, the small fluctuations (i.e., $\sigma \leq 0.05$) have little effect on
255 \bar{R}_{solar} and $\bar{\varepsilon}_{\text{LWIR}}$ in Fig. 8, indicating the optimal result is acceptable in the practical scenario.

256 In addition, a random uniform distribution of φ within a certain region in the coating is
257 considered for $r_{\text{out}} = 0.5 \mu\text{m}$, $t = 20 \mu\text{m}$, and $f = 0.6$, as shown in Fig. 9. First, one end of the
258 random φ distribution was set as 0.3 in Figs. 9a to 9c. As φ in the region approaches 0.3 ,
259 \bar{R}_{solar} gradually increases while $\bar{\varepsilon}_{\text{LWIR}}$ remains almost the same (0.86 – 0.88), indicating that
260 the hollow dielectric sphere with $\varphi = 0.3$ is better for reflecting solar radiation, which agrees
261 well with the results discussed φ in Section 3.1. Thus, to enhance solar reflectance, the center
262 of the region with random distributions of φ was set to 0.3 (Figs. 9d to 9f). The results revealed
263 that the maximum \bar{R}_{solar} that can be achieved is 0.59 , in the range of $\varphi = 0.1$ – 0.5 , while
264 $\bar{\varepsilon}_{\text{LWIR}}$ is almost the same (0.84 – 0.87).

265 *3.6 Net cooling power for optimized microsphere coating*

266 As discussed above, the thickness considered is small, resulting in a small value of \bar{R}_{solar}
267 $\bar{\varepsilon}_{\text{LWIR}}$. Thus, a thicker coating with $t = 300 \mu\text{m}$ was calculated based on the optimal sphere with
268 a multi-core–shell ratio ($\varphi = 0.1$ – 0.5) and compared to that of the sphere with a single core–
269 shell ratio ($\varphi = 0.3$) (Fig. 10). In the solar spectrum, the hollow sphere coating with multi- φ

270 has better reflectance performance in the solar spectrum than a single- φ hollow sphere coating
 271 (Fig. 10a), which agrees well with the findings shown in Fig. 9. However, in the thermal LWIR
 272 spectrum, the emittance of the multi-hollow φ sphere coating was higher than that of the single-
 273 φ hollow sphere coating, as shown in Fig. 10b. Thus, \bar{R}_{solar} and $\bar{\varepsilon}_{\text{LWIR}}$ of the multi-sphere φ
 274 coating are 0.98 and 0.95, respectively, which are higher than those of the single-sphere φ
 275 coating ($\bar{R}_{\text{solar}} = 0.96$ and $\bar{\varepsilon}_{\text{LWIR}} = 0.90$) and solid sphere coating ($\bar{R}_{\text{solar}} = 0.95$ and $\bar{\varepsilon}_{\text{LWIR}} =$
 276 0.92), indicating that the optimal hollow sphere coating with the multi-core–shell ratio exhibits
 277 a better performance.

278 However, for the bulk sphere coating discussed above, the transmittance is not zero at $t =$
 279 $300 \mu\text{m}$. To conservatively evaluate the cooling performance of the bulk coating without the
 280 substrate, the reflectance spectrum was used to calculate the solar heating power P_{sun} , and the
 281 emittance spectrum was used to calculate the radiation power from the coating to the sky P_{rad}
 282 and the radiation from the atmosphere to the coating P_{atm} . Thus, under typical atmospheric
 283 conditions and the standard AM 1.5 solar spectrum, the net cooling power of the solid sphere
 284 ($\varphi = 0$) coating is $P_{\text{cool}} = P_{\text{rad}} - P_{\text{sun}} - P_{\text{atm}} = 47 \text{ W/m}^2$. The hollow sphere with $\varphi = 0.3$ further
 285 enhanced the net cooling power to $P_{\text{cool}} = 56 \text{ W/m}^2$. Finally, the maximum P_{cool} was 77 W/m^2
 286 for the hollow SiO_2 microsphere coating with $\varphi = 0.1\text{--}0.5$, as shown in Table 1. These results
 287 indicate that a random hollow dielectric microsphere coating can be used to achieve effective
 288 radiative cooling performance.

289 **Table 1** Cooling powers of hollow microsphere coatings with different core–shell ratios at $T = 25 \text{ }^\circ\text{C}$, $t = 300$
 290 μm , $r_{\text{out}} = 0.5 \mu\text{m}$, and total $f = 0.6$.

Sphere ($r_{\text{out}} = 0.5 \mu\text{m}$)	P_{rad}	P_{sun}	P_{atm}	P_{net}
$\varphi = 0$ (solid)	285	46	192	47
$\varphi = 0.3$ (single)	279	35	188	56
$\varphi = 0.1\text{--}0.5$ (multi)	288	19	192	77

291 **4 Conclusion**

292 In summary, a hollow dielectric structure was introduced to enhance the daytime cooling
 293 performance of a dielectric sphere coating. It can be observed that the hollow dielectric sphere
 294 in air can scatter more light in the solar spectrum. For the single-size hollow sphere coating, it
 295 can be observed that the maximum \bar{R}_{solar} can be achieved at $f = 0.6$, $r_{\text{out}} = 0.5 \mu\text{m}$, and $\varphi =$
 296 $r_{\text{in}}/r_{\text{out}} = 0.3$, while $\bar{\varepsilon}_{\text{LWIR}}$ changes little because of the small size compared with the infrared
 297 wavelength. Increasing the thickness of the hollow microsphere coating based on the single-
 298 size hollow sphere coating can enhance both \bar{R}_{solar} and $\bar{\varepsilon}_{\text{LWIR}}$ while gradually reaching
 299 saturation. Thus, the radiative cooling performance based on single-size sphere coating can be
 300 obtained as $\bar{R}_{\text{solar}} = 0.96$ and $\bar{\varepsilon}_{\text{LWIR}} = 0.90$, when $t = 300 \mu\text{m}$. Furthermore, by controlling the
 301 core-shell ratio distribution, the cooling performance of bulk coatings ($t = 300 \mu\text{m}$) can be
 302 enhanced to $\bar{R}_{\text{solar}} = 0.98$ and $\bar{\varepsilon}_{\text{LWIR}} = 0.95$ when $\varphi = 0.1\text{--}0.5$, resulting in a net cooling
 303 power of 77 W/m^2 , which is approximately 38% higher than that of the optimal single-size
 304 hollow sphere coating ($\varphi = 0.3$), and approximately 64% higher than that of the optimal solid
 305 SiO_2 sphere coating ($\varphi = 0$). These results indicate that the hollow structure can effectively
 306 enhance the cooling performance of dielectric microsphere coatings by increasing the number
 307 of interfaces between the air and dielectric.

308

Nomenclature

<i>A</i>	Absorptance	κ	Imaginary part of refractive index
<i>E</i>	Electric field, V/m	λ	Wavelength
<i>f</i>	Fill rate	μ_r	Magnetic permeability
<i>I</i>	Spectral intensity, W/m^3	τ	Transmittance
<i>n</i>	Real part of refractive index	φ	Core-shell ratio
<i>N</i>	Number	<i>Subscript</i>	
<i>P</i>	Absorbed power, W/m^2	atm	Atmospheric
<i>r</i>	Radius, μm	bb	Blackbody

R	Reflectance	cool	Net cooling
\bar{R}_{solar}	Averaged solar reflectance	e	Effective
t	Thickness, μm	in	Inner
T	Temperature, K	out	Outer
w	Width, μm	rad	Radiation
<i>Greek</i>		<i>Abbreviation</i>	
ε	Emittance	PDRC	Passive daytime radiative cooling
$\bar{\varepsilon}_{\text{LWIR}}$	Averaged thermal emittance	FEM	Finite-element method
ϵ	Dielectric function	LWIR	Atmosphere's long-wave infrared

309

310 *Acknowledgments*

311 M.C. would like to acknowledge support from the Central South University and the
 312 National Natural Science Foundation of China (Grant No. 52006246). Y.Y. acknowledges
 313 support from the National Science Foundation (Award No. 2005747).

314 *Code, Data, and Materials Availability*

315 The data that support the findings of this study are available upon reasonable request from
 316 the authors.

317 *References*

- 318 1. M. Isaac and D. P. van Vuuren, “Modeling global residential sector energy demand for heating
 319 and air conditioning in the context of climate change,” *Energy Policy* **37**(2), 507–521 (2009)
 320 [doi:10.1016/j.enpol.2008.09.051].
- 321 2. The Guardian, “World set to use more energy for cooling than heating | Environment | The
 322 Guardian,” in *The Guardian* (2015).
- 323 3. J. Steven Brown and P. A. Domanski, “Review of alternative cooling technologies,” *Appl.
 324 Therm. Eng.* **64**(1–2), 252–262 (2014) [doi:10.1016/j.applthermaleng.2013.12.014].

325 4. J. Chen et al., "Development of a new spectral selectivity-based passive radiative roof cooling
326 model and its application in hot and humid region," *J. Clean. Prod.* **307**, 127170, Elsevier Ltd
327 (2021) [doi:10.1016/j.jclepro.2021.127170].

328 5. A. P. Raman et al., "Passive radiative cooling below ambient air temperature under direct
329 sunlight," *Nature* **515**(7528), 540–544 (2014) [doi:10.1038/nature13883].

330 6. J. Liu et al., "Research on the performance of radiative cooling and solar heating coupling
331 module to direct control indoor temperature," *Energy Convers. Manag.* **205**, 112395 (2020)
332 [doi:10.1016/j.enconman.2019.112395].

333 7. W. Huang et al., "Scalable Aqueous Processing-Based Passive Daytime Radiative Cooling
334 Coatings," *Adv. Funct. Mater.* **2010334**, 1–7 (2021) [doi:10.1002/adfm.202010334].

335 8. D. J. Fixsen, "The temperature of the cosmic microwave background," *Astrophys. J.* **707**(2),
336 916–920 (2009) [doi:10.1088/0004-637X/707/2/916].

337 9. B. Zhao et al., "Radiative cooling: A review of fundamentals, materials, applications, and
338 prospects," *Appl. Energy* **236**, 489–513 (2019) [doi:10.1016/j.apenergy.2018.12.018].

339 10. D. Zhao et al., "Radiative sky cooling: Fundamental principles, materials, and applications," in
340 *Applied Physics Reviews* **6**(2), p. 021306 (2019) [doi:10.1063/1.5087281].

341 11. J. Liu et al., "Field investigation and performance evaluation of sub-ambient radiative cooling
342 in low latitude seaside," *Renew. Energy* **155**, 90–99 (2020)
343 [doi:10.1016/j.renene.2020.03.136].

344 12. J. Mandal et al., "Hierarchically porous polymer coatings for highly efficient passive daytime
345 radiative cooling," *Science* **362**(6412), 315–319 (2018) [doi:10.1126/science.aat9513].

346 13. S. Y. Jeong et al., "Field investigation of a photonic multi-layered TiO₂ passive radiative
347 cooler in sub-tropical climate," *Renew. Energy* **146**, 44–55 (2020)
348 [doi:10.1016/j.renene.2019.06.119].

349 14. R. A. Yalçın et al., "Daytime radiative cooling with silica fiber network," *Sol. Energy Mater.
350 Sol. Cells* **206**, 110320 (2020) [doi:10.1016/j.solmat.2019.110320].

351 15. Y. Zhai et al., “Scalable-manufactured randomized glass-polymer hybrid metamaterial for
352 daytime radiative cooling,” *Science* **355**(6329), 1062–1066 (2017)
353 [doi:10.1126/science.aai7899].

354 16. E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-
355 performance daytime radiative cooling,” *Nano Lett.* **13**(4), 1457–1461 (2013)
356 [doi:10.1021/nl4004283].

357 17. Z. Chen et al., “Radiative cooling to deep sub-freezing temperatures through a 24-h day-night
358 cycle,” *Nat. Commun.* **7**, 13729 (2016) [doi:10.1038/ncomms13729].

359 18. S. Atiganyanun et al., “Effective Radiative Cooling by Paint-Format Microsphere-Based
360 Photonic Random Media,” *ACS Photonics* **5**(4), 1181–1187 (2018)
361 [doi:10.1021/acsphotonics.7b01492].

362 19. H. Bao et al., “Double-layer nanoparticle-based coatings for efficient terrestrial radiative
363 cooling,” *Sol. Energy Mater. Sol. Cells* **168**, 78–84 (2017) [doi:10.1016/j.solmat.2017.04.020].

364 20. Y. Chen et al., “Colored and paintable bilayer coatings with high solar-infrared reflectance for
365 efficient cooling,” *Sci. Adv.* **6**(17), eaaz5413 (2020) [doi:10.1126/sciadv.aaz5413].

366 21. Z. Huang and X. Ruan, “Nanoparticle embedded double-layer coating for daytime radiative
367 cooling,” *Int. J. Heat Mass Transf.* **104**, 890–896 (2017)
368 [doi:10.1016/j.ijheatmasstransfer.2016.08.009].

369 22. X. Nie et al., “Cool White Polymer Coatings based on Glass Bubbles for Buildings,” *Sci. Rep.*
370 **10**(1), 1–10 (2020) [doi:10.1038/s41598-020-63027-2].

371 23. S. Atiganyanun, “Use of hollow silica and titanium dioxide microparticles in solar reflective
372 paints for daytime radiative cooling applications in a tropical region,” *J. Photonics Energy*
373 (2021) [doi:10.1117/1.jpe.11.022103].

374 24. R. Kitamura, L. Pilon, and M. Jonasz, “Optical constants of silica glass from extreme
375 ultraviolet to far infrared at near room temperature,” *Appl. Opt.* **46**(33), 8118–8133 (2007)
376 [doi:10.1364/AO.46.008118].

377 25. J. Kischkat et al., “Mid-infrared optical properties of thin films of aluminum oxide, titanium
378 dioxide, silicon dioxide, aluminum nitride, and silicon nitride,” *Appl. Opt.* **51**(28), 6789–6798
379 (2012) [doi:10.1364/AO.51.006789].

380 26. X. Chen et al., “Systematically investigating solar absorption performance of plasmonic
381 nanoparticles,” *Energy* **216**, 119254, Elsevier Ltd (2021) [doi:10.1016/j.energy.2020.119254].

382 27. X. Chen et al., “Modeling the solar absorption performance of Copper@Carbon core–shell
383 nanoparticles,” *J. Mater. Sci.* **56**(24), 13659–13672, Springer US (2021) [doi:10.1007/s10853-
384 021-06114-7].

385 28. Z. Chen et al., “Enhanced solar thermal conversion performance of plasmonic gold dimer
386 nanofluids,” *Appl. Therm. Eng.* **178**(January), 115561, Elsevier (2020)
387 [doi:10.1016/j.applthermaleng.2020.115561].

388 29. X. Zhang et al., “Complex refractive indices measurements of polymers in infrared bands,” *J.*
389 *Quant. Spectrosc. Radiat. Transf.* **252**, 107063, Elsevier Ltd (2020)
390 [doi:10.1016/j.jqsrt.2020.107063].

391 30. George Y. Onoda; Eric G. Liniger, “Random Loose Packings of Uniform Spheres and the
392 Dilatancy Onset,” *Phys. Rev. Lett.* **64**(22), 2727 (1990).

393 31. M. Chen et al., “Designing Mesoporous Photonic Structures for High-Performance Passive
394 Daytime Radiative Cooling,” *Nano Lett.* **21**(3), 1412–1418 (2021)
395 [doi:10.1021/acs.nanolett.0c04241].

396 32. M. Chen et al., “A Scalable Dealloying Technique to Create Thermally Stable Plasmonic
397 Nickel Selective Solar Absorbers,” *ACS Appl. Energy Mater.* **2**(9), 6551–6557 (2019)
398 [doi:10.1021/acsaem.9b01112].

399 33. M. Chen and Y. He, “Plasmonic nanostructures for broadband solar absorption based on the
400 intrinsic absorption of metals,” *Sol. Energy Mater. Sol. Cells* **188**(August), 156–163, Elsevier
401 B.V. (2018) [doi:10.1016/j.solmat.2018.09.003].

402 34. M. Chen et al., “Investigating the effective radiative cooling performance of random dielectric
403 microsphere coatings,” *Int. J. Heat Mass Transf.* **173**, 121263, Elsevier Ltd (2021)
404 [doi:10.1016/j.ijheatmasstransfer.2021.121263].

405

406 A list of figure captions

407 **Fig. 1** (a) Concept of the random hollow dielectric microsphere coating to reflect solar radiation and emit infrared
408 thermal radiation. (b) Refractive indices (0.3–20 μm) of SiO_2 based on the previous studies ^{24,25}. (c) Scattering
409 efficiency of SiO_2 sphere, pore, and hollow SiO_2 sphere ($r = 0.5 \mu\text{m}$) in different dielectric environments (air or
410 PDMS).

411

412 **Fig. 2** Effect of $\varphi = r_{\text{in}}/r_{\text{out}}$ on the cooling performance for random hollow microsphere coatings. (a) Scattering
413 efficiencies of a SiO_2 microsphere with different φ in air. (b) Simulated reflectance spectra of microsphere
414 coatings with different φ in the solar spectrum ($\lambda = 0.3\text{--}2.5 \mu\text{m}$). (c) Simulated emittance (i.e., absorptance)
415 spectra of microsphere coatings with different φ in the infrared region ($\lambda = 6\text{--}20 \mu\text{m}$). (d) Calculated \bar{R}_{solar} and
416 $\bar{\varepsilon}_{\text{LWIR}}$ with different φ . $r_{\text{out}} = 0.5 \mu\text{m}$, $f = 0.6$, and $t = 20 \mu\text{m}$ in (b) to (d).

417

418 **Fig. 3** Effect of microsphere radius r_{out} (0.1–2 μm) on the cooling performance for random hollow microsphere
419 coatings. (a) Simulated reflectance spectra of microsphere coatings with different r_{out} in the solar spectrum ($\lambda =$
420 $0.3\text{--}2.5 \mu\text{m}$). (b) Simulated emittance (i.e., absorptance) spectra of microsphere coatings with different r_{out} in the
421 infrared region ($\lambda = 6\text{--}14 \mu\text{m}$). (c) Calculated \bar{R}_{solar} and $\bar{\varepsilon}_{\text{LWIR}}$ with different sphere radii. $\varphi = r_{\text{in}}/r_{\text{out}} = 0.3$, $f =$
422 0.6 , and $t = 20 \mu\text{m}$.

423

424 **Fig. 4** Effect of the microsphere fill rate f (0.55–0.67) on the cooling performance for random hollow microsphere
425 coatings. (a) Simulated reflectance spectra of microsphere coating with different f in the solar spectrum ($\lambda = 0.3\text{--}$
426 $2.5 \mu\text{m}$). (b) Simulated emittance (i.e., absorptance) spectra of microsphere coating with different f in the infrared
427 region ($\lambda = 6\text{--}14 \mu\text{m}$). (c) Calculated \bar{R}_{solar} and $\bar{\varepsilon}_{\text{LWIR}}$ with different fill rates. $\varphi = r_{\text{in}}/r_{\text{out}} = 0.3$, $r_{\text{out}} = 0.5 \mu\text{m}$,
428 and $t = 20 \mu\text{m}$.

429

430 **Fig. 5** Calculated \bar{R}_{solar} and $\bar{\varepsilon}_{\text{LWIR}}$ with different outer radii r_{out} (a) and fill rates f (b) at thicknesses of 20 μm ,
431 40 μm , and 60 μm . $\varphi = r_{\text{in}}/r_{\text{out}} = 0.3$, and $f = 0.6$ in (a); $\varphi = r_{\text{in}}/r_{\text{out}} = 0.3$, and $r_{\text{out}} = 0.5 \mu\text{m}$ in (b).

432

433 **Fig. 6** Effect of thicknesses (0 – 300 μm) on the cooling performance for hollow SiO_2 coatings. (a) Simulated
434 reflectance spectra of coatings with different thicknesses in the solar spectrum ($\lambda = 0.3\text{--}2.5 \mu\text{m}$). (b) Simulated

435 emittance spectra of coatings with different thicknesses in the infrared region ($\lambda = 6.0 - 14 \mu\text{m}$). (d) Calculated
436 \bar{R}_{solar} and $\bar{\varepsilon}_{\text{LWIR}}$ with different thicknesses. $\varphi = r_{\text{in}}/r_{\text{out}} = 0.3$, $r_{\text{out}} = 0.5 \mu\text{m}$ and $f = 0.6$ here.

437

438 **Fig. 7** (a) to (c) Effect of two-size spheres ($\varphi = r_{\text{in}}/r_{\text{out}} = 0.3$) with two different outer radii (0.2 μm and 0.5 μm)
439 on the cooling performance of hollow SiO_2 coatings. (a) Simulated reflectance ($\lambda = 0.3 - 2.5 \mu\text{m}$) and (b) emittance
440 ($\lambda = 6 - 14 \mu\text{m}$) of coatings with different fill rates of these two spheres in the simulated spectrum. (c) Calculated
441 \bar{R}_{solar} and $\bar{\varepsilon}_{\text{LWIR}}$ based on (a) and (b). (d) to (f) Effect of two-size spheres ($r_{\text{out}} = 0.5 \mu\text{m}$) with two different core-
442 shell rates ($\varphi = r_{\text{in}}/r_{\text{out}} = 0.3$ and $\varphi = r_{\text{in}}/r_{\text{out}} = 0$) on the cooling performance for SiO_2 coatings. (d) Simulated
443 reflectance ($\lambda = 0.3 - 2.5 \mu\text{m}$) and (e) emittance ($\lambda = 6 - 14 \mu\text{m}$) of coatings with different fill rates of these two
444 spheres in the simulated spectrum. (f) Calculated \bar{R}_{solar} and $\bar{\varepsilon}_{\text{LWIR}}$ based on (d) and (e). $t = 20 \mu\text{m}$ and total $f =$
445 0.6.

446

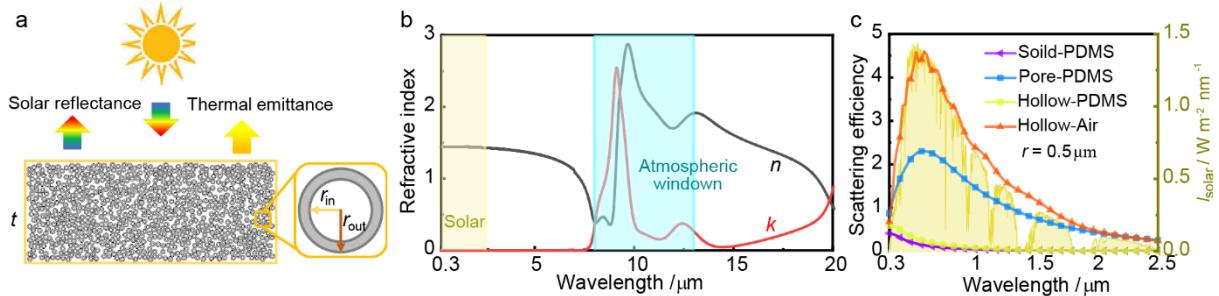
447 **Fig. 8** (a) to (c) Effect of Gaussian distribution $N(\mu, \sigma^2)$ of the outer radius r_{out} on the cooling performance ($\mu =$
448 $r_{\text{out}} = 0.5 \mu\text{m}$, $\varphi = 0.3$). (a) Simulated reflectance ($\lambda = 0.3 - 2.5 \mu\text{m}$) and (b) emittance ($\lambda = 6 - 14 \mu\text{m}$) of coatings
449 with different standard deviations σ . (c) Calculated \bar{R}_{solar} and $\bar{\varepsilon}_{\text{LWIR}}$ based on (a) and (b). (d) to (f) Effect of
450 Gaussian distribution $N(\mu, \sigma^2)$ of the core-shell ratio φ on the cooling performance ($\mu = \varphi = 0.3$, $r_{\text{out}} = 0.5$
451 μm). (a) Simulated reflectance ($\lambda = 0.3 - 2.5 \mu\text{m}$) and (b) emittance ($\lambda = 6 - 14 \mu\text{m}$) of coatings with different
452 standard deviations σ . (c) Calculated \bar{R}_{solar} and $\bar{\varepsilon}_{\text{LWIR}}$ based on (a) and (b). $t = 20 \mu\text{m}$, and total $f = 0.6$.

453

454 **Fig. 9** Uniform distributions of the core–shell ratio φ : (a) to (c) Effect of multi-size spheres with different random
455 uniform distributions of the core–shell ratio φ (one end of the range is set as $\varphi = 0.3$) on the cooling performance
456 of hollow SiO_2 coatings. (a) Simulated reflectance ($\lambda = 0.3 - 2.5 \mu\text{m}$) and (b) emittance ($\lambda = 6 - 14 \mu\text{m}$) of coatings
457 with different fill rates of these two spheres in the simulated spectrum. (c) Calculated \bar{R}_{solar} and $\bar{\varepsilon}_{\text{LWIR}}$ based on
458 (a) and (b). (d) to (f) Effect of multi-size spheres with different random uniform distributions of the core–shell ratio
459 φ (the center of the range is set as $\varphi = 0.3$) on the cooling performance of SiO_2 coatings. (d) Simulated reflectance
460 ($\lambda = 0.3 - 2.5 \mu\text{m}$) and (e) emittance ($\lambda = 6 - 14 \mu\text{m}$) of coatings with different fill rates of these two spheres in the
461 simulated spectrum. (f) Calculated \bar{R}_{solar} and $\bar{\varepsilon}_{\text{LWIR}}$ based on (d) and (e). $r_{\text{out}} = 0.5 \mu\text{m}$, $t = 20 \mu\text{m}$, and total $f =$
462 0.6.

463

464 **Fig. 10** Cooling performance for the optimized hollow SiO_2 microsphere coatings. (a) Simulated reflectance, and
465 (b) emittance spectra of microsphere coatings without substrate. $t = 300 \mu\text{m}$, $r_{\text{out}} = 0.5 \mu\text{m}$, and total $f = 0.6$.

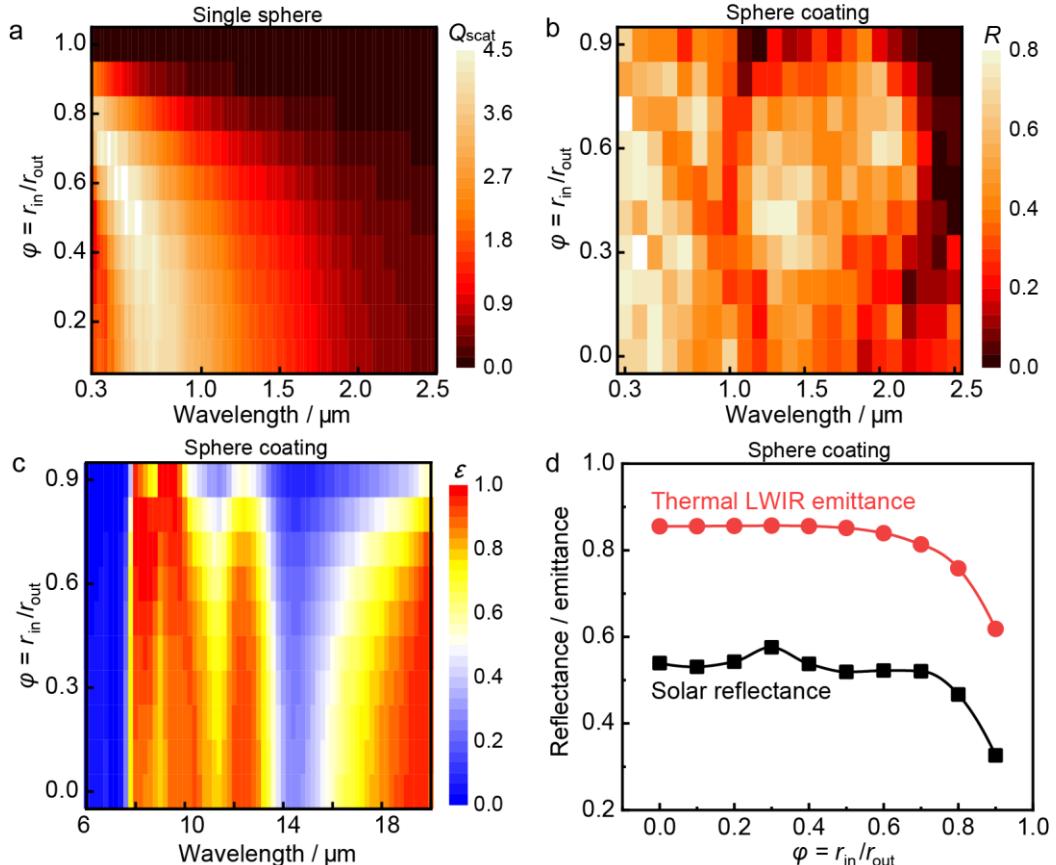

466

467

468

Figures

469



470

Fig. 1

471

472

473

Fig. 2

474

475

476

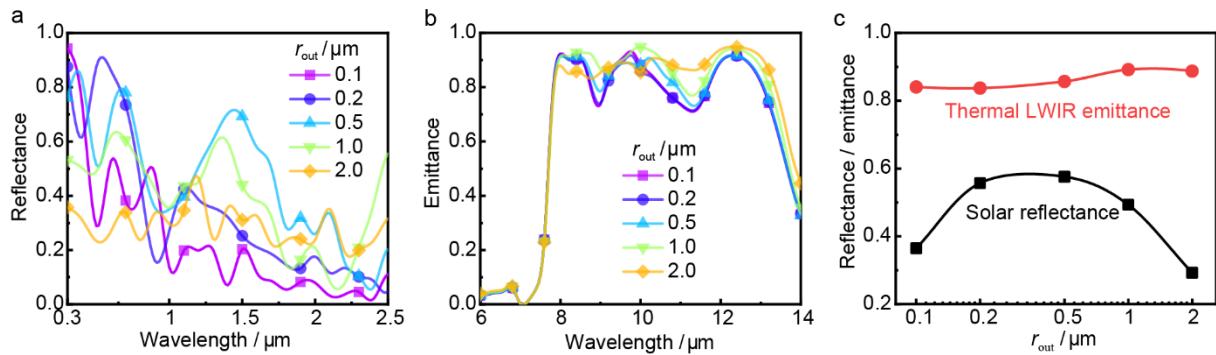


Fig. 3

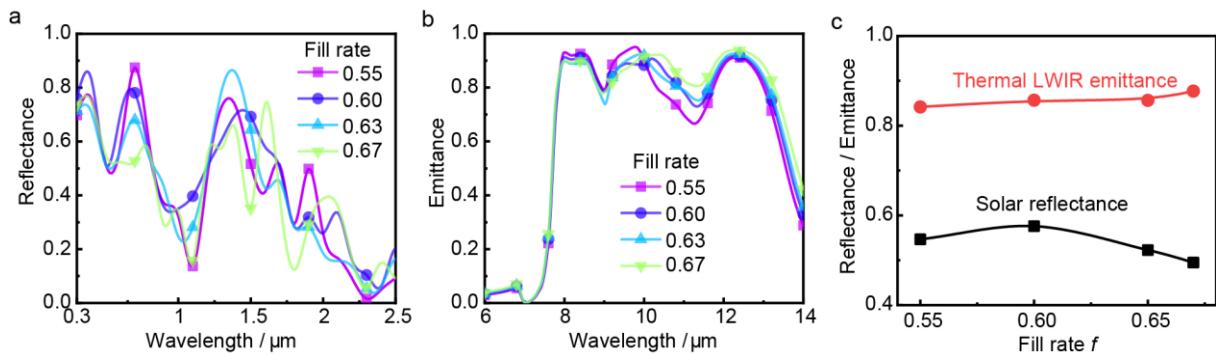


Fig. 4

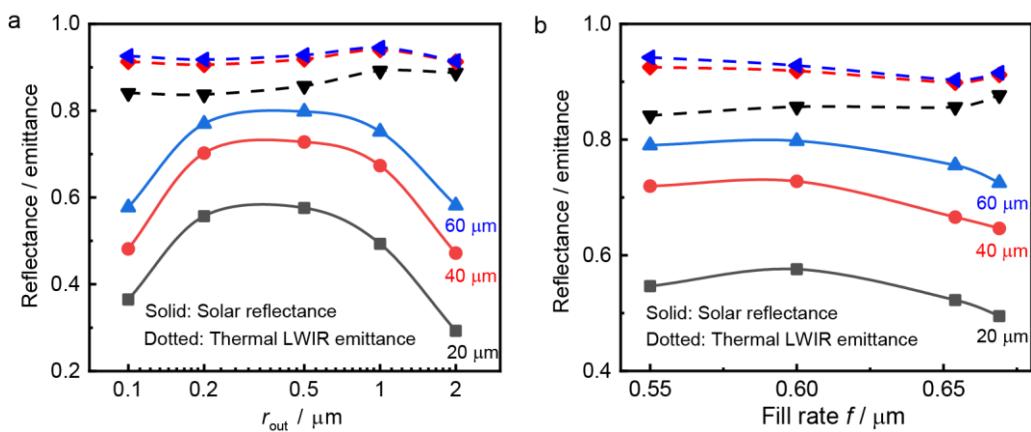
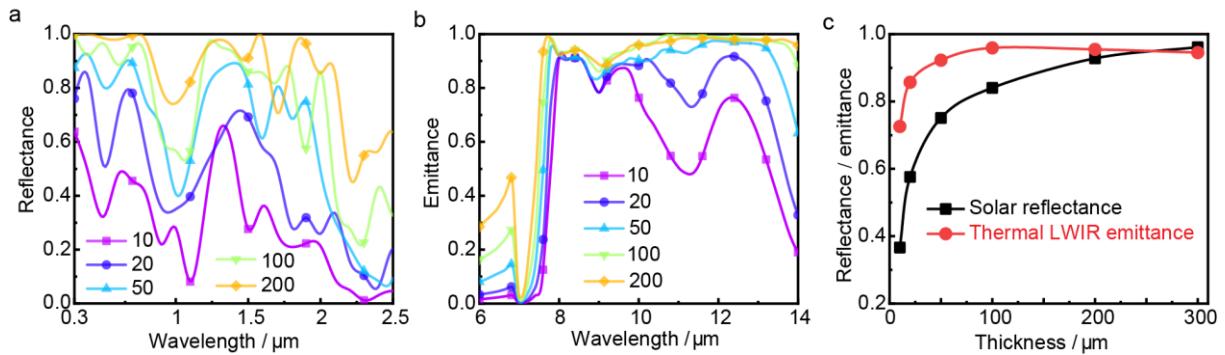



Fig. 5

487

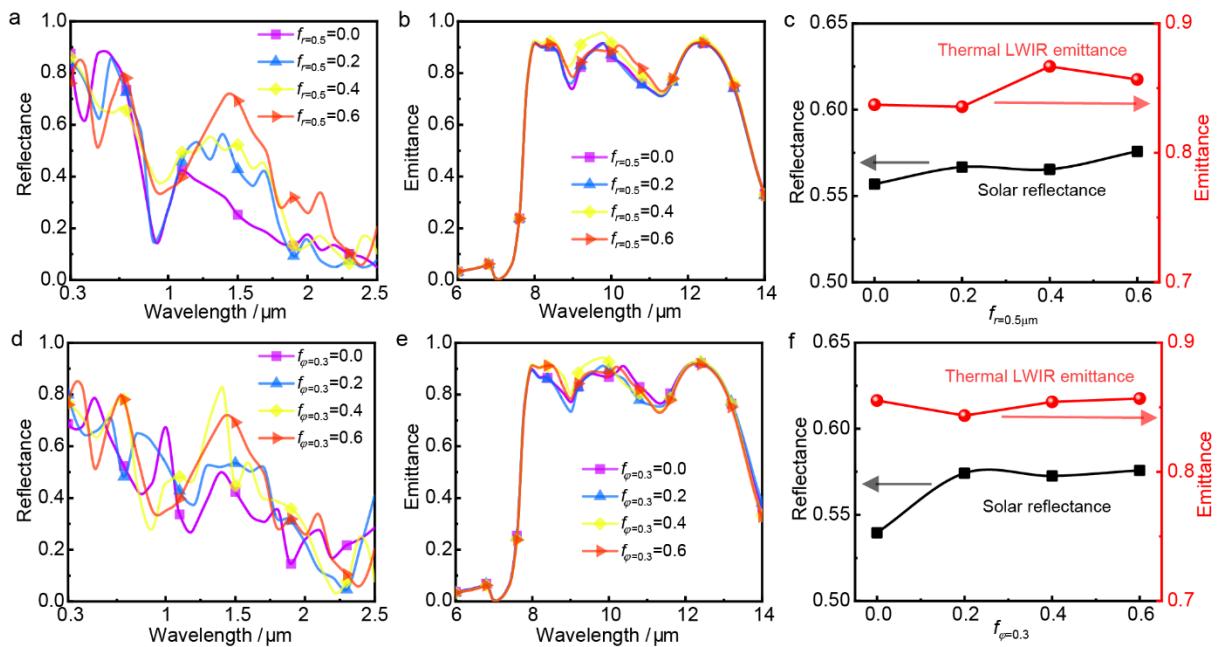

488

Fig. 6

489

490

491

492

Fig. 7

493

494

495

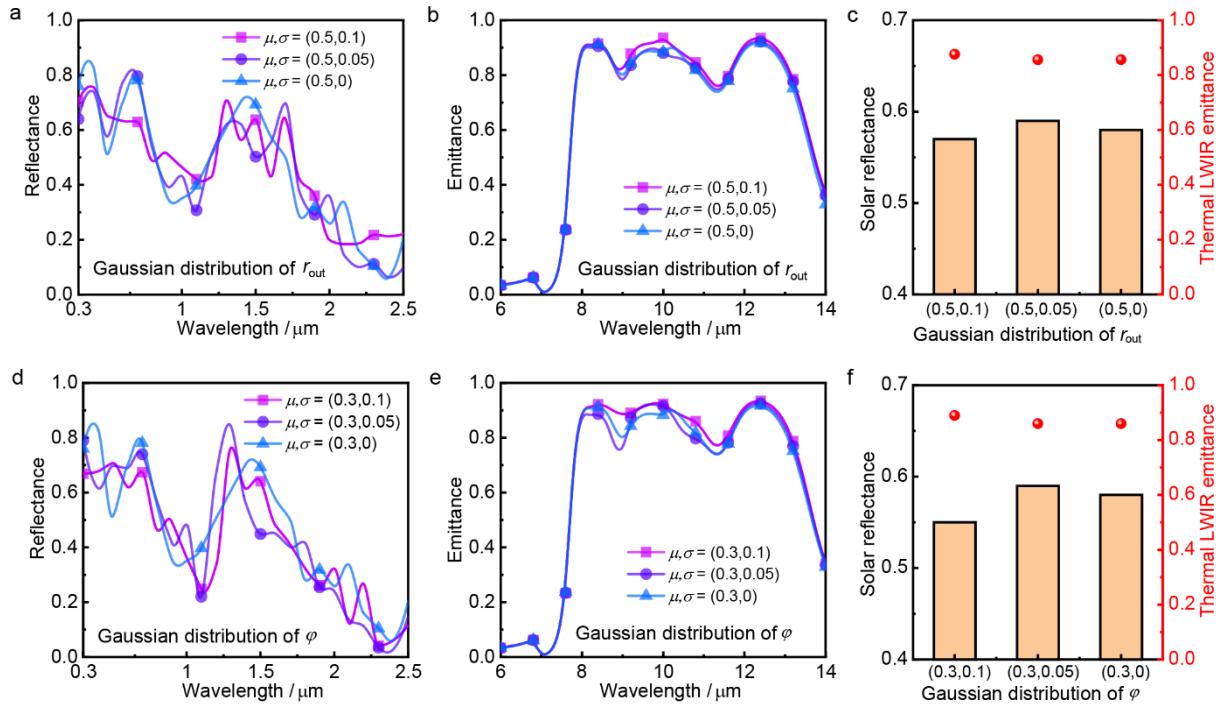


Fig. 8

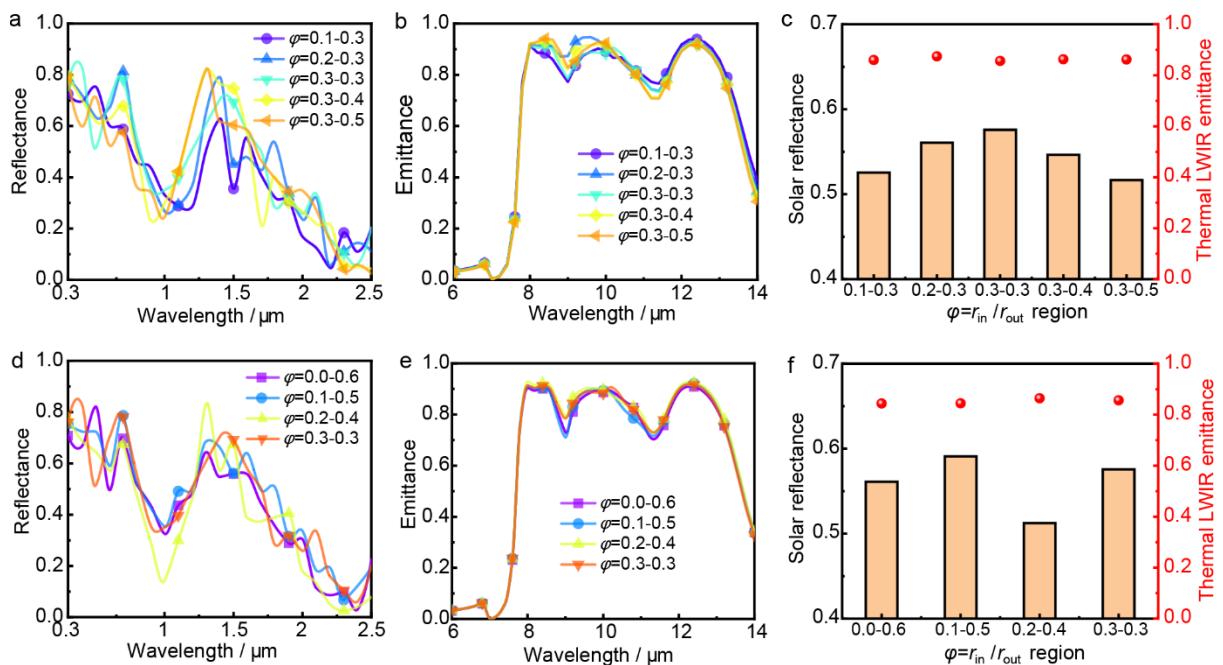
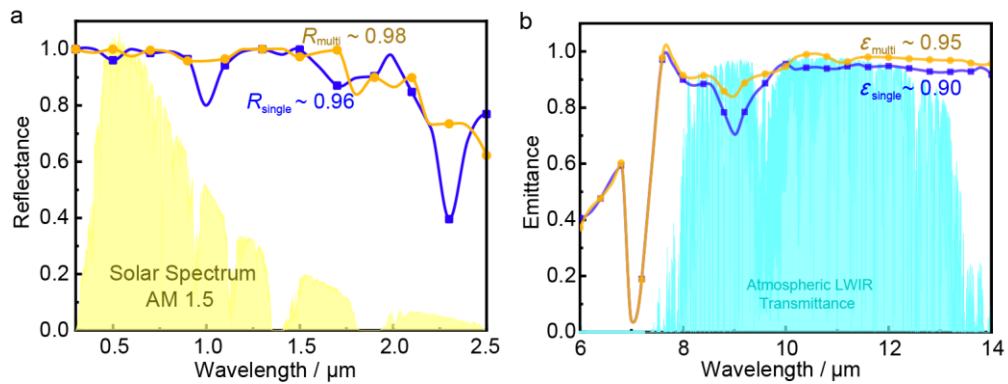



Fig. 9

503

504

Fig. 10

505

506