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Abstract

Systems biology models are typically considered across a spectrum from mechanistic to abstracted
description; however, the lines between these forms of modeling are increasingly blurred.
Ever-increasing computational power is providing novel opportunities for bridging time and
length scales. Furthermore, despite biological mechanisms or network topology often ill-defined,
the acquisition of high-throughput data leaves modelers with the desire to leverage available
measurements. This review surveys modeling tools in which two or more mathematical forms are
blended to describe time-dependent processes in a multivariate system. While most commonly
manifested as continuous/discrete description, other forms such as mechanistic/inference or
deterministic/stochastic hybrid models can be generated. Recent innovations in hybrid modeling
methodologies and new applications illustrate advantages for combining model formats to gaining
biological systems level insight.

1. Introduction

Biosystems modeling has been beautifully framed in terms of assignment of mathematical approaches in
alignment with level of mechanistic modeling. Ideker and Lauffenburger assigned modeling on a spectrum
with abstracted/high-level on one end of statistical/inference modeling and specified/low-level with
mechanistic ordinary differential equation (ODE) modeling [1]. Often times, knowledge of a system
varies—in terms of timescales, interacting components, or nature of regulation—and hybridization of
mathematical description would be useful. We define hybrid modeling for the purposes of this discussion as
computational modeling in which the information is passed across common variables to reconcile multiple
forms of mathematical description, such as those spanning the axes in figure 1: abstracted/mechanistic;
continuous/discrete; steady-state/dynamic. We note that other comprehensive reviews discuss modeling
types individually [2, 3] and/or discuss hybridization within a broader discussion of classification [4],
computational tools [5], or model simplification and reduction [6]. Here, this review aims to selectively
highlight computational implementation of blended modeling forms for biosystems applications and
provide diverse, creative hybridized modeling examples in systems biology; see table 1 for an overview of
some of these examples.

2. Types of hybrid models

2.1. ODE hybrids

ODEs have historically played an important role in the development of predictive systems biology models,
building upon enzyme kinetic theory. These ODE models provide quantitative predictions for a variety of
biochemical reaction systems and can be directly compared with measurements from common experimental
methods such as flow cytometry, longitudinal microscopy imaging with fluorescent reporter proteins, etc.
Soon after the advent of signal transduction modeling (see early landmark examples such as [22-24])
biochemical systems dynamics with mass action kinetics were expanded to larger systems [25, 26] and have
continued to grow in complexity. Nonetheless, ODE models are often limited by the need to identify and
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Figure 1. Examples in this review that span across multiple domains of modeling. For simplicity only three axes are depicted, but
others categories, such as deterministic/stochastic, could be included. See table 1 for more details.

Table 1. Guide for examples included this review. An asterisk (*) indicates that the computational tool is discussed in this review.

Reference Hybrid model description Biological application Associated tools

(7] Piecewise linear differential equations ~ Cyclin synthesis and degradation

(8] ODE/Boolean Bacteria diauxic shift

(9] ODE/multi-state logic E2F1 regulation of genotoxic drug CellNetAnalyzer”
responses,

[10] ODE/Boolean Metabolic regulation of hepatocytes ProMoT, CellNetAnalyzer™,

PottersWheel

[11] SSA/ODE Budding yeast cell cycle

[12-14] ODE/PDE/ABM Multi-scale model of Mycobacterium GranSim
tuberculosis-immune cell interactions

[15] ABM/constraint-based modeling Biofilm growth under oxygen MatNet™
limitations

[16] Boolean/FBA Escherichia coli growth with lac operon  FlexFlux™

[17] Gene state probabilities/FBA Regulation of metabolism in E. coliand PROM"
M. tuberculosis

[18] Gene regulatory network Bacteria diauxic shift CoRegFlux”

influence/FBA

[19] SSA/PLSR T cell receptor activation

[20] Boolean cell cycle/FBA Budding yeast cell cycle progression BooleanNet™, COBRApy

[21] Petri net/Boolean Transcriptional regulation of glucose

metabolism, yeast osmoregulation

properly estimate parameters such as equilibrium and rate constants [3]. These parameters may be unknown
in context-specific situations due to noise in measurements or a general lack of the necessary data.

A hybrid system or hybrid automaton is a model which organizes a set of continuous descriptions of the
same dynamical system (e.g. ODE sub-models) into a larger modeling scheme governed by discrete controls
[27]. The discrete controls can incorporate non-determinism and are typically formulated as a set of logical
conditions that indicate which ODE sub-model is being employed at any given time point. In practice, this
model tends to be organized into a set of nodes or ‘states’ connected by transition edges associated with the
discrete controls, hence the association with automata. Because the discrete controls governing a hybrid
system can depend on the variables associated to its ODE sub-models and/or other (continuous or discrete)
variables under consideration, this model allows for systems to be represented at different scales using both
quantitative and qualitative data simultaneously. Hybrid systems have been studied extensively over the last
thirty years since their original formalization [28] and include commonly known constructions like systems
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of piece-wise linear and piecewise-affine differential equations [2, 5, 7]. We refer the reader to the work by
Singhania et al for an example of a piece-wise linear differential equation model of mammalian cell cycle
regulation [7]. This example demonstrates how a hybrid systems model can be quantitatively built from and
compared against experimental data (e.g. flow cytometry measurements) while employing fewer kinetic
constants than those typically required in an ODE model. In this way, this type of hybrid model balances the
advantages of both quantitative and qualitative modeling, respectively.

To showcase the diversity of hybrid system models, we discuss recent work by Liu and Bockmayr on using
a hybrid system framework to study regulatory and metabolic interactions in the context of carbon catabolite
repression [8]. Constraint-based models are traditionally used to analyze metabolic networks, and hybrid
models involving constraint-based descriptions offer a natural way to incorporating such networks into
broader contexts (see section 2.4). Liu and Bockmayr instead propose a hybrid systems framework in which
molecular species are described with continuous variables while the discrete states of the framework
correspond to all of the gene expression states for the associated proteins within the biological system. The
species are thus governed by ODEs within each discrete state while transitions between these states rely on
the amounts of each species [8]. The advantages of adopting such a framework for modeling metabolic and
regulatory network interplay lie primarily in the insight from using and producing quantitative data and the
fact that there are several computational tools for solving resulting hybrid systems models (see section 3).
The authors apply their framework to model the diauxic shift in carbon catabolite repression within E. coli,
extracting some parameters from prior work in the literature. While the model in this study is relatively small
and abstract, the simulations are still able to partially capture the experimentally observed relationship
between the length of time a cell grows in a preferred carbon source and the lag phase of the shift. However, a
larger and more realistic model would need to be developed in order to provide novel insight within this
context.

2.2. Boolean and multi-valued logic model hybrids
Fully discrete models such as Boolean networks or Petri nets use different representations for the flow of
information or mass through a system. Boolean networks represent biological mechanisms through binary
output on/off states as a function of combinatorial binary input values. These models tend to be
deterministic and hence can be evaluated for fixed points, sensitivity, and stability [31] using tools such as
BoolNet [32], MaBoSS [33], and PlantSimLab [34] even when several mechanisms are at work. The
coarse-grained description of Boolean networks is particularly useful in gene regulatory network
applications, where logic gates nicely represent how combinatorial transcription factor binding on promoter
regions initiates changes in gene expression. On the other hand, Boolean networks tend to be ill-suited for
modeling systems involving time-dependent processes (e.g. systems with fast and slow processes) and
systems with processes which strongly depend on the concentration of certain biomolecules (e.g. systems
with feedback loops) [3]. While some of these limitations can be mitigated by generalizing the binary
variables within these models to allow for multiple states and multi-valued logic, mechanistic models tend to
be preferred over such generalized logic models when available.

A Petri net is a discrete model whose purpose is to describe the flow of information/resources throughout
a network. Petri nets are typically visualized as bipartite, directed graphs with two disjoint sets of nodes,
‘places’ and ‘transitions), through which ‘tokens’ (e.g. molecules of a species) move in accordance with a set of
rules. Though originally used to describe chemical processes, Petri nets have become more frequently used in
the context of systems biology over the last three decades given the intuitive way in which they combine
qualitative relationships with quantitative analysis (i.e. the change in token distribution with respect to time)
[2, 5]. Petri nets may be deterministic or stochastic in nature, though stochastic implementation of this
model requires a propensity function that is probabilistic. In this case, model simulations may execute the
Gillespie algorithm (see section 2.3) numerous times and average together outputs to represent a single
discrete time increment of the next state. Hybridizing deterministic Boolean and stochastic Petri net
descriptions together offers advantages of developing extremely large-scale, multi-omics simulations with
minimal parameterization. In an early example [21], the integration of two disjoint modeling forms was
performed through the assignment of triplets, in which the places in the Petri net were associated with
variables in the Boolean system. The drawback of such ‘stitching’ is that the Petri-to-Boolean conversion
requires an assigned threshold for conversion between 1 and 0. Furthermore, the Boolean-to-Petri
conversion (largely representing the lag in transcription and translation resulting in changes in metabolite
and protein levels) must handle difference in timescales of the networks; Berestovsky et al introduced delays
by queuing the triplet for evaluation at a delayed time before updating the Boolean variable.

Aside from hybrid systems (see section 2.1), other works have explored combining ODE models and
discrete logic models in order to simultaneously address limitations from both approaches. For example,
Khan et al developed a hybrid model incorporating ODE and multi-valued logic components in order to
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Figure 2. Data for the same network may vary widely in degree of detail depending on the availability of preexisting information,
the accessibility of tools for accurate measurement, and/or the use of external controls. For example, the morphogen data in this
network can be measured continuously while data for downstream regulation is primarily collected via coarse-grained
observations. Rather than attempting to model all of the variables in this network discretely to accommodate for the lack of
downstream precision, the output of ODE functions may be converted into input for multi-valued logic functions through the
use tools like CellNetAnalyzer [29]. In this manner, the richness of the morphogen data can still be used to analyze the network as
a whole. Figure made using BioRender [30].

study the regulation of chemoresistance by a large regulatory network centered on transcription factor E2F1
[9]. Previous work by Vera et al [35] and others used ODE models to investigate small-scale regulation
circuits (i.e. ‘modules’) involving or influencing E2F1 in specific contexts (e.g. in cells whose DNA had been
damaged). ODE models proved suitable for these investigations because of the presence of non-linear
behavior and feedback loops; however, extending such models to include larger, downstream networks
would prove difficult due to a lack of necessary data like rate constants for various interactions. To address
this issue, Khan et al divided their hybrid model into three parts: (a) a core module of a network regulating
E2F1 which incorporated experimentally observed feedback loops, (b) a module capturing the expression of
target genes downstream from the core module, and (c) a module of target phenotypic responses including
chemoresistance. While the core module is an ODE model adapted from prior work, the latter two modules
were constructed using several multi-valued logic functions, twenty-four of which regulate the target genes
in the second module. In order to connect the core ODE model with the multi-valued logic functions in the
second module, the authors developed a pipeline involving MATLAB and CellNetAnalyzer [29] which
incorporates an interface for discretizing variables produced by the core module based on manual training.
See figure 2 for a visualization of this hybrid modeling approach. While the resulting hybrid model captures a
larger network than previous ODE models have, the training required for the discretization rules still
requires extensive data acquisition. Nonetheless, the hybrid model is better suited for capture certain
feedback behaviors and estimating associated thresholds when compared to a fully discrete model in which
the authors replaced the ODE system in the core module with a multi-valued logic system. Others have
developed similar hybrid approaches using compartmental models, including the approach by Ryll et al in
which a kinetic (ODE) sub-model of metabolic processes communicates with a logical sub-model of
signalling and/or gene-regulatory networks in order to capture and study information at both levels [10].

2.3. Stochastic approximation model hybrids

The Gillespie algorithm (stochastic simulation algorithm or SSA) is an explicit physical description of
discrete stochastic events and thus can represent any time evolution of a chemical reaction. SSA is rarely used
for complex networks without approximation methods such as tau leaping due to the shear computational
expense. There are many biological processes where stochasticity at a molecular level plays a critical role in
higher order behavior. Quantal neurotransmitter release, stochastic gene expression, and fluctuations in
calcium transport from endoplasmic reticulum stores are examples of how noise and randomness are
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leveraged in biological systems to improve dynamic range of responses or initiate positive feedback
dynamics. To streamline simulations, it is desirable to explicitly incorporate stochastic processes for only the
mechanisms where necessary; therefore, hybridizing with other types of mathematical description is
attractive for large systems models.

A clear gain of hybrid modeling over stochastic simulations of an entire biochemical network is the
drastic increase in computational efficiency by streamlining rate laws that are well-described by stochastic
differential equations (SDEs) with the chemical Langevin equation (CLE) description. Imposing biological
insight into the modeling context is an important step in this case. For example, Liu et al used biological
intuition to assume that most of the intrinsic noise within cell cycle regulation arises at the gene expression
level due to the low numbers of molecules of genes and mRNAs [36]. Scales of reactions and populations
were categorized into four classes. Reactions that occur with low propensity and with small numbers of
participating species were found to best represented with SSA. Reactions with large numbers of
reactants/products that occur on either fast or slow timescales were best approximated with ODEs. Fast
reactions that occur with low number of participating species were represented by SDEs without
compromising the error of the computation if the species in this category did not react with one another
(coupled reactions) and were occurring much faster than the SSA description. The resultant hybrid system
with partitioned reactions reduced computational time from 11.6 h to 22 min with minimal compromise in
model dynamics. Ahmadian et al used a similar approach with SSA and ODE descriptions within their
hybrid model of the molecular mechanisms regulating the budding yeast cell cycle [11]. As in [36], the
authors separated reactions into categories based propensity and abundance and employed the appropriate
sub-model for each category, building on an existing ODE model for the cycle with over sixty species and a
hundred reactions [37]. The resulting hybrid model captures important features of the cycle (e.g. cycle time
and volume at division), matches experimental data for over a hundred phenotypes of mutant cases, and
improves overall computational speed. The systematic approach of binning reaction types and determining
contextual appropriateness of computational description is a useful strategy for modelers to take when
simplifying computationally expensive simulations.

Hybrid models are also advantageous in blending high-resolution data of biological systems with
course-grained knowledge. SSA is typically applied in situations where stochastic reaction mechanisms are
necessary and falls on the ‘mechanistic’ side of figure 1 in the sense that molecular stochasticity of
binding/unbinding events are reflected by this formalism. In contrast, course-grained correlative
relationships between biological components may be known but not at the level of detail necessary to build
mathematical description such as SSA or ODE (abstract side of figure 1). In these latter cases, statistical
modeling using partial least squares regression (PLSR) may be suitable for describing multivariate
relationships, such as activation of a signaling kinase associated with cell fate decisions such as apoptosis or
gene transcription. PLSR relates a dataset of predictor variables to response variables without prior
knowledge about the network structure. The associated algorithms rely upon creating latent variables that
maximize variance captured the predictor dataset while simultaneously optimizing a linear relationship with
one or more dependent variables within a multidimensional space. In systems biology applications [38, 39],
the successful use of PLSR to describe cue-signal-response phenomenon of cells may be partially attributed
to the sampling of receptor-initiated signaling at ‘bowtie’ points in biochemical cascades [40] that are highly
informative of later downstream events. For example, comprehensive measurements of T cell receptor
signaling found that phosphorylation patterns in Erk and Akt better reflected the avidity of antigen peptide
than receptor-proximal proteins such as Zap70 [41].

Ideally, mechanisms of signal initiation due to an external cue detailed in early, upstream events could be
combined with the abstracted statistical approaches found to be useful for less refined knowledge of cell fate
decisions. Furthermore, many of the ‘macro-level’ dependent variables such metrics of transcription,
proliferation, or apoptosis are measured on long time scales (i.e. from hours to days) and are quantified with
a variety of cellular and molecular techniques while initial stochastic signaling events are pertinent on short
time scales (i.e. from seconds to hours). Mayalu and Asada described an approach for hybridizing receptor-
ligand mass action kinetics with multivariate modeling of cellular response as a ‘white-box/black-box’
methodology [19]. Outputs from an SSA sub-model of T cell receptor activation and signaling were
empirically correlated to downstream behaviors (i.e. the observable output space) by PLSR to yield a
lower-order, nonlinear model. First, the input space was augmented with a mechanistic map generated by a
stochastic forward Kolmogrov equation model. Multiple stochastic time trajectories of signaling molecules
were generated to create a nonlinear dynamic stochastic mapping of external cues of TCR peptide
presentation, resulting in a model-generated predictor variable dataset for PLSR using a dependent variable
of IL-2 transcription. Akaike’s information criterion (AIC) was used as a metric to truncate latent variables.
See figure 3 for a visualization of this hybrid modeling approach. While an attractive approach, this hybrid
methodology has not been tested in integrated responses from combinatorial cues, a context in which
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Figure 3. A receptor signaling network can be modeled by stochastic simulation algorithms (SSA) for the detailed mechanism of
receptor ligation (A), and/or kinase activation cascades (B), (C). Downstream cellular processes, such as gene transcription, may
occur on longer timescales and without knowledge of all molecular players and dynamics. Multivariate statistical modeling can
use SSA model features from upstream dynamics (B), (C) as predictor-block variables to fit correlative relationships to dependent
outputs (D). Figure made using BioRender [30].

distinct cytokine receptor ligation and common kinase cascade activation (e.g. MAPK) could benefit from
hybrid-based discrimination of distinct cellular outputs [42].

2.4. Constraint-based model hybrids

Constraint-based modeling is a widely-used strategy for analyzing metabolic networks, in which knowledge
of the stoichiometry matrix of reaction substrates/products to define network architecture is leveraged on a
large scale (typically genome-wide). Through assumptions of steady-state, a flux vector is rapidly calculated
without the need for kinetic parameterization. The solution to a system of linear equations is typically
over-determined; the use of biological objective functions (e.g. maximization of ATP production or biomass)
is often used to restrict the solution space. Dynamic or unsteady flux balance analysis (uFBA) relies in
piecewise linearization of metabolic time series data in discrete intervals to define ranges of non-zero
derivatives [43]. Because FBA and uFBA modeling are limited to metabolism (where stoichiometry and
conservation of mass can be defined/upheld), hybrid methods in which gene regulation or dynamic signal
transduction can be integrated into model description are desirable. Typically, timescales of metabolic
change are assumed to be rapid and reaching steady-state for updates at each discrete time step of the other
biological process.

One example of linking a constraint-based model to other cellular processes was executed in the
description of Pseudomonas aeruginosa biofilm formation. The tool MatNet was used to combine an
agent-based model (ABM) with FBA modeling [15]. An ABM is a computational model in which
autonomous agents (e.g. molecules, cells, etc) interact with their environment and with one another
according to a set of rules. The purpose of an ABM is to study how dynamic, local interactions give rise to
complex, system-level behaviors such as the formation of structures or patterns [2, 5, 44, 45]. While the
flexibility of defining an ABM’s rules allows this model to readily include multi-scale data, the computational
cost of running ABM simulations can climb drastically depending on the level of detail with which the model
is constructed. In [15], constraints for each cell’s (i.e. agent’s) extracellular nutrients are limited to local
concentrations. These concentrations are used to solve FBA within each cell via MATLAB and then passed
back for updating the cell through rules for growth, cell division, and extracellular diffusion. This exchange is
made possible using MatNet, a tool which connects MATLAB with the NetLogo platform [46] used to
develop and simulate the associated ABM. Thus, the collective development of biofilm as a function of
oxygen or nitrate limitations can be evaluated in a tractable manner.

In another example, metabolic regulation by cell cycle proteins in yeast was analyzed by hybridizing a
genome-scale constraint-based model of metabolism with an off-the-shelf Boolean model of interactions
among three cyclins (CIb2, Clb3 and CIb5) and an inhibitor of cyclin/Cdk1 kinase activity [20]. The Boolean
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model yields the expected sequential activation of cyclins, which drives periodic cell cycles. The metabolic
and cell-cycle models are linked because metabolic enzyme activities influence the formation of cyclin
complexes and cyclin complexes, in turn, inhibit metabolic reactions. Flux distributions at a given time step
are converted into Boolean on/off states and updated in the cyclin network. Likewise, activation status of the
cyclin network can inhibit or augment metabolic fluxes. A limitation of this example was the assumption of
new connections between metabolism state and cyclin dynamics that were not based upon the authors’
literature curation, which only found one such relationship. Despite this, hybridizing cell cycle Boolean
nodes with AND/OR logic gates with the yeast metabolic FBA model results in new predictions of metabolic
fluctuations specific to G1, S, G2/M phase. Future additions of boundary influx constraints and weighted
edges for interactions instead of logical operators may extend the utility of this hybrid approach for systems
biology applications. It should be noted that in both of the above examples, previously published models that
had been rigorously validated were used as the starting point for blending two models together.

Modeling the interactions between gene regulatory networks and metabolism has often relied upon
constraint-based modeling as a common platform. While this approach can hybridize multiple levels of
biological processes, constraint-based models typically simplify genes and reaction fluxes to binary on/off
representation. Scaling the rules of interaction (which have to be manually curated) across the entire
genome/metabolome is currently impractical. Chandrasekaran and Price developed a hybrid framework of
probabilistic regulation of metabolism (PROM) to integrate transcriptional regulation with metabolic
constraint-based models in an automated fashion [17]. Conditional probability is used in PROM to
represent gene states as well as gene-transcription factor interactions. This strategy is advantageous because
modelers can easily leverage microarray data to quantify conditional probabilities. Furthermore,
gene-knockout mutants are readily simulated; turning off transcription of a metabolic gene will result in a
constraint on the enzymatic reaction encoded by the gene. Instead of Boolean representation, PROM’s use of
conditional probabilities allows for intermediate levels of regulation. Furthermore, specific knowledge of
kinetic parameters is not required. Objective functions must satisfy constraints on flux distributions through
the metabolic stoichiometric network with the additional ‘soft’ conditions of penalizing deviations from
constraints imposed by the regulation.

Since the development of PROM, subsequent efforts have focused on eliminating the need of a priori
knowledge of transcription factor:gene targets relationships and the quality of curated networks. Algorithms
such as CoRegFlux [18] infer gene regulatory networks as regulators and target sets. Influence scores
calculate the effect of regulators on its targets (both activation or inhibition), reducing thousands of gene
expression measurements to tens or hundreds of scores. A linear regression model then trains gene
expression of targets (and correspondingly metabolic enzyme activity in a reaction flux) as a function of its
regulators’ influences. Feedback between metabolic processes and gene regulation have subsequently been
explored with inclusion of protein-protein interaction data to simulate network failure in metabolic systems
due to perturbations at the genetic level [47].

An alternative approach for describing FBA models interactions with transcriptional regulation is by
converting discrete, qualitative states of the regulatory networks (e.g. gene regulation and/or protein signal
transduction as integer states) into user-defined continuous intervals (upper/lower flux bounds deemed by
the modeler to be physiologically relevant). In the FlexFlux software package [16], flux constraints on a
metabolic network are realized by mass balance of the system, user-defined objective functions, and
translation of the regulatory network steady states into new flux constraints on metabolism. For the latter
step, linkages are made by user-defined gene-protein-reaction associations in SBML (see section 3.1).
Seeking out attractor states is performed by synchronously updating the regulatory network until a steady
state is reached or a cyclic attractor is found. Unfortunately, cyclic attractors are simply averaged together in
order to define flux constraints under these conditions. The FlexFlux methodology is useful for small
metabolic FBA systems and simple modes of transcriptional regulation, such as bacterial operon which yield
concomitant changes of pathway enzymes. In complex genome-scale models, randomized sampling from
initial conditions may be applied to seek out dominant steady-state attractors but pose challenges in the size
of the search space. Finally, the hybridization of modeling is unidirectional, in that the qualitative description
of gene regulation imposes constraints on the metabolic fluxes, but this is not related back to subsequently
impact the regulation.

2.5. Multi-format models

In 2012, a monumental achievement in systems biology was accomplished by Covert et al through simulation
of a simple unicellular organism, Mycoplasma genitalium, through an entire life cycle of replication [48]. The
complexity of describing whole-cell metabolism, generation of nucleotides and amino acid building blocks,
DNA replication and protein translation required interfacing multiple modeling modules together. The
whole-cell model is established by defining 16 cellular states (analogous to state variables) and 28 cellular
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processes (analogous to ODEs). An example of a cell state would be “Total Cell Mass = Chromosome + RNA
+ Protein Monomer + Protein Complex + Transcript + Polypeptide + Metabolite’. Evolution of the cell
state at each time step is through evaluation of each cellular process sub-model with allocation of the state
variables across the processes, assuming independence for each sub-model update. Common sub-model
inputs—such as metabolites like ATP that are utilized across numerous cellular processes—were estimated
for expected consumption and computationally allocated as a shared resource. The process of Metabolism
serves as the primary interface between the external environment and the other processes. Instantaneous flux
of each metabolic reaction is calculated at each point of integration to update the molecule count of each
metabolite and collectively provide an instantaneous cellular growth rate. Finally, stochastic processes are
used to describe initiation of transcription, DNA damage and repair, protein misfolding, and termination of
ribosomal translation. Collectively, the integration of multiple quantitative modeling formats together for
whole-cell modeling provided an unprecedented opportunity to identify global distribution of energy and
examine the role of interactions across multiple levels of cellular organization, such as DNA-protein binding.

A large body of work by Denise Kirshner and Jennifer Linderman have pushed the frontiers of hybrid
modeling in ABMs to describe multi-scale processes in immunology in which discrete processes are blended
with continuum equations. A mixed population of immune cell (macrophages, T cells) and M. tuberculosis
bacterial agents migrate in a lattice field of soluble cytokines described by PDEs. The richness of this
multi-format hybrid model allows prediction of granuloma formation and tissue pharmacokinetics of
antibiotic therapies [12—14]. Reaction-diffusion kinetics of cytokines such as TNF-« binding to cell surfaces
initiates a set of coupled ODE kinetic cascades within each agent, which in turn feeds back into the death,
migration, and response of the agents [12]. This ABM/ODE/PDE multi-format model requires fast
integration of the ODEs and PDEs nested in the slower processes of discrete agent movement, growth,
cell-cell interactions, and state transitions. This multi-format model present challenges in aspects such
consistency of units. For example, soluble molecules are described volumetrically (molar) while
cell-associated species are in molecules/cell; thus a scaling factor is required assuming cell density within a
cubic microcompartment. Temporal operator splitting is performed in which the derivatives of shared
biochemical species are decoupled into an extracellular diffusion operator, agent-associated reactions, and
extracellular molecular degradation. Advantages of using a non-sequential splitting scheme over executing
each operator in series is detailed in [44].

3. Hybrid computational tools

In this section, we present some of the computational tools which have been developed or expanded in recent
years to implement and solve hybrid models. We refer the reader to works by Ghosh et al [49] and Tavassoly
et al [50], among others, for more comprehensive reviews of traditional computational methods, including
those involving older integrated platforms.

Following the formalization of hybrid systems [28], several software packages and pipelines have been
introduced for implementing and simulating these models [5]. While a number of these tools have been
developed to handle the numerical challenges of implementing hybrid systems generically (e.g. [51-53]) we
focus here on computational tools that have been specifically developed to facilitate hybrid modeling of
biological systems. BooleanNet is an early example of a Python-based tool for simulating Boolean networks
which is also capable of blending discrete network descriptions with continuous dynamics through
piece-wise linear differential equations [54]. This piece-wise linear formalism is accomplished by associating
each node with two variables—a discrete variable (e.g. activity) and a continuous variable (e.g.
concentration). A differential equation for change in the continuous variable is calculated by the balance of
synthesis and decay; synthesis incorporates the processing of discrete variable based upon threshold criteria,
whereas decay is an unregulated first order kinetic process. The output of BooleanNet employing this
formalism is smooth, and provides a finer level of detail than a Boolean network could; this is exemplified
with a case study modeling the effect of abscisic acid signaling on stomatal closure in plants [54]. Another
Python-based package, PyDSTool is a development environment aimed at simulating and analyzing
biological models involving dynamical systems. It makes use of hybrid systems as a means of model
reduction, simplifying traditional (e.g. ODE) models for systems which already exhibit an ability to be
separated into states/modules according to functionality or inherent structure [55]. In particular, PyDSTool
allows these modules to be defined as a sub-models and provides users with high-level tools for ease of
development, even allowing model descriptions to be imported from other packages which interpret markup
languages including SBML (see section 3.1). Moreover, it employs established solvers for sub-models and
supports the implementation of hybrid systems models whose discrete controls are more complex than just
simple conditional checks.
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We discussed a diverse set of computational tools built for hybrid models in section 2 which range from
general-purpose software to specialized pipelines. While ready-to-use programs like CoRegFlux [18] allow
users to quickly apply hybrid models to their work, pipelines like the ones developed by Khan et al [9] and
Liu et al [36] still serve as framework examples which can be adapted to different contexts. The pipeline by
Ahmadian et al [11] on the budding yeast cell cycle, which combines SSA and ODE sub-models, not only
serves as an example of multi-scale modeling but is itself inspired by the work from Liu et al on the
eukaryotic cell cycle (see section 2.3). And though the pipelines developed by Khan et al and Ryll et al [10]
make use of CellNetAnalyzer [29] as an interface between ODE and multi-valued logic sub-models (see
section 2.2), it is worth noting that CellNetAnalyzer also allows users the flexibility of incorporating
constraint-based sub-models as well [56]. In this way, CellNetAnalyzer has the capability of combining
metabolic network descriptions with those involving regulatory networks and/or signal transduction. As
detailed in section 2.4, the aforementioned fact means that CellNetAnalyzer is part of a growing group of
computational tools like CoRegFlux, PROM [17], MatNet [15], FlexFlux [16], and the pipeline by van der
Zee and Barberis [20] which include metabolic network descriptions as part of larger, more comprehensive
models. The availability of such general-purpose tools highlights the importance of the novel insight
provided by constraint-based hybrid models. Separately, we note that the ABM developed by Biggs and Papin
[15] is part of a growing number of custom-code ABMs which incorporate multi-scale modeling along with
some level of hybridization [44, 45]. And while there are numerous general-purpose platforms for ABM
development [57], some platforms have specifically been developed to facilitate hybrid modeling of
biological systems. In particular, PhysiBoSS is a recent platform which combines Boolean network
descriptions of intracellular signalling using MaBoSS [33] with PhysiCell [58], a multi-scale ABM platform
for simulating multicellular systems.

3.1. Markup languages

It is worth considering how both traditional and hybrid models are actually described inside computational
platforms given that such tools are constantly in development and that hybrid modeling can naturally involve
communication across existing tools. To this end, we discuss markup languages: machine-readable formats
for encoding the information associated to biological system models. Markup languages have standardized
the formal descriptions of models over the last few decades in order to make implementing and solving these
models easier using external computational tools. And while there are several markup languages which are
commonly used for systems biology models (e.g. CellML [59, 60], ISML [61, 62], PNML [63, 64], SBRML
[65], and SED-ML [66, 67]), the most popular is the Systems Biology Markup Language (SBML) [68, 69]
with over 280 associated tools [70]. Because of its ubiquity, SBML has been the natural choice for the
development and/or use of several computational tools associated to traditional and hybrid models; it is also
often used alongside the Systems Biology Graphical Notation (SBGN) [71]. Computational tools for hybrids
models employing SBML include CellNetAnalyzer [29], FlexFlux [16], and pipelines such as the one
developed by van der Zee and Barberis [20]; see section 2 for details. There are several other examples of
computational tools employing SBML which have been built or suggested for hybrid models involving
ODEs, Boolean/multi-valued logic, stochastic approximation, and/or constraint-based descriptions; see

[3, 10, 55, 72, 73] for details.

As apparent from the number of tools highlighted in this section and the diversity of how we have
defined hybrid modeling in this review, there is not a singular ‘one-size-fits-all’ platform for spanning the
axes depicted in figure 1. Modelers should be cognizant of the challenges in model sharing for specialized
code and consider compatibility with SBML and SBGN [71, 74] such that pre-existing model repositories
originally designed for curation of ODE systems (such as the EMBL-EBI hosted BioModels database [75])
can be broadened to include the variety of biological models built for hybrid description.

4. Conclusion

New opportunities for systems biology modeling arise with the parallel processing made possible by
graphical processing unit (GPU) computing. Originally designed for enhancing player experiences in video
gaming, GPUs are now widely used in systems biology research to speed up complex simulations by parallel
execution of code. In particular, GPUs allow ABM:s to be applied in contexts once confined to single cell
scope, enabling description of complex multicellular dynamics of embryo morphogenesis and tissue
differentiation [45, 58]. Parallel processing also opens up enhanced opportunities for model optimization by
running numerous iterations of parameter assignment simultaneously. We note, however, that speed will
ultimately be dictated by the slowest step in sequential updating of a simulation. Furthermore, many of the
tools developed for hybrid modeling were not driven by a need for faster simulations, but rather a need to
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circumvent limits of knowledge of a network, of time-dependent changes, or of modes of communication
across modules or hierarchies in cellular systems.

Not only are computing resources rapidly changing, but in contemporary times biological datasets are
increasingly easy to acquire. Longitudinal data and broad coverage over many molecular components will
only continue to grow in acquisition, mandating analytical tools capable of ‘stitching’ together dynamic and
static detail. Multi-omics data mining is in wide use currently, but imposing prior knowledge with
mechanistic detail in the form of systems biology modeling is a more difficult task. Data integration and
simulation in microbial systems has pioneered hybrid modeling analyses due to the smaller genome sizes and
ability to obtain dynamic growth and response profiles readily in lab settings [15, 17, 48]; now, the
application space is expanding. We are now witnessing an exponential increase in publicly available human
health data which in turn is driving increasingly sophisticated modeling platforms. While certainly the trend
of data mining will continue, machine learning does not preclude the goals of improving hybrid systems
models which incorporate varied description of prior biological knowledge into mathematical form. The
example applications provide here illustrate the challenges in hybridizing systems analysis but also suggest
that the frontier of systems modeling lies at the interfaces of numerical approaches which provide
advantageous features of each modeling form.
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