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ABSTRACT. Recent work of Inna Zakharevich and Jonathan Campbell has fo-
cused on building machinery for studying scissors congruence problems via alge-
braic K-theory, and applying these tools to studying the Grothendieck ring of
varieties. In this paper we give a new application of their framework: we con-
struct a K-theory space that recovers the classical SK (“schneiden und kleben,”
German for “cut and paste”) groups for manifolds on m, and we construct a
derived version of the Euler characteristic.
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1. INTRODUCTION

The classical scissors congruence problem asks whether given two polyhedra with
the same volume P and @ in R3, one can cut P into a finite number of smaller
polyhedra and reassemble these to form . Precisely, P and () are scissors congruent
if P=J", P and Q = J", Qs, where P; = Q; for all ¢, and the subpolyhedra in
each set only intersect each other at edges or faces. There is an analogous definition
of an SK (German “schneiden und kleben,” cut and paste) relation for manifolds:
Given a closed smooth oriented manifold M, one can cut it along a separating
codimension 1 submanifold ¥ with trivial normal bundle and paste back the two
pieces along an orientation preserving diffeomorphism ¥ — ¥ to obtain a new
manifold, which we say is “cut and paste equivalent” or “scissors congruent” to it.
We give a pictorial example of this relation:

1. Start with T? 2. Cut along four copies of S* 3. Paste back along boundaries

FIN RGeS

FiGURE 1. Example of a cut and paste operation

Zakharevich has formalized the notion of scissors congruence via the notion of an
assembler—this is a Grothendieck site with a few extra properties, whose topology
encodes the cut and paste operation. She constructs an associated K-theory spec-
trum, which on 7y recovers classical scissors congruence groups [Zak17b]. Specific
examples of assemblers recover scissors congruence groups for polytopes and the
Grothendieck ring of varieties, as mg of their corresponding K-theory spectra. The
higher K-groups encode further geometric information. Independently, Campbell
has introduced the formalism of subtractive categories, a modification of the def-
inition of Waldhausen categories, to define a K-theory spectrum of varieties that
recovers the Grothendieck ring of varieties on mp [Cam19]. Though the approaches
to encoding scissors congruence abstractly are different, the resulting spectra of
Zakharevich and Campbell are shown to be equivalent in [CZ19].
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The focus of Zakharevich and Campbell has been to construct and study a K-
theory spectrum of varieties, and this spectrum level lift of the Grothendieck ring of
varieties has led to a fruitful research program to better understand varieties. For
example, an analysis of K for the K-theory spectrum of varieties allowed Zakhare-
vich to elucidate structure on the annihilator of the Lefschetz motive [Zak17a], and
Campbell, Wolfson and Zakharevich use a lift of the zeta function for varieties to
show that m of the K-theory spectrum for varieties contains nontrivial geometric in-
formation [CWZ19]. Studying cut and paste relations for manifolds via K-theoretic
machinery remains as of yet unexplored. We start this exploration in this paper.

Unfortunately, the framework from [Zak17b, Cam19] does not directly apply to
the case of manifolds. The problem is that if one tries to find a common refinement
of two different SK-decompositions of a manifold, one might have to cut boundaries
and one gets manifolds with corners. This makes some of the axioms in both the
assembler approach and the subtractive category approach break down. However,
work in progress of Campbell and Zakharevich on “K-theory with squares,” KU,
a further synthetization of scissors congruence relations as K-theory that general-
izes Waldhausen K-theory, does give the right framework to construct the desired
scissors congruence K-theory for manifolds. Encompassing the manifold example
was also one of the motivations behind Campbell and Zakharevich’s development of
“K-theory with squares”.

The study of SK-invariants and SK-groups in [KKNO73] focuses on closed man-
ifolds. However, in order for the KT-theoretic scissors congruence machinery to
apply, we need to work in the category of manifolds with boundary, since the pieces
in an SK-decomposition have boundary. This is not well-explored classically, as
most of the existing work on SK-groups is for closed manifolds. We generalize the
notion of SK-equivalence to the case of manifolds with boundary and denote the
corresponding group by SK,‘?. Our definition of SKg is different from the one men-
tioned in [KKNO73] in that we insist that every boundary along which we cut gets
pasted, and this is crucial for the further application of the K-theoretic technology.

We formulate a suitable notion of a category with squares Mfdg, that fits into the
K-theory with squares framework, and whose distinguished squares exactly encode
the “cut-and-paste” relations for n-dimensional manifolds with boundary. We show
that the K-theory space obtained from the construction of Campbell and Zakhare-
vich, applied to Mfdg, which we denote by K D(Mfdg), recovers the SKg as its zeroth
homotopy group:

Theorem A. There is an isomorphism K3 (MfdJ) = SK?

n

where K5 (Mfd?) is mo
of a scissors congruence K -theory space KD(Mfdg).
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Scissors congruence invariants for manifolds (SK-invariants) are abelian group
valued homomorphisms from the monoid of manifolds under disjoint union, which
factor through the SK-group. It is well known classically that for closed manifolds
the Euler characteristic, the signature, and linear combinations thereof, are the only
SK-invariants, and these are also SK-invariants of manifolds with boundary. In this
paper, we show that the Euler characteristic as a map to Z, viewed as the zeroth
K-theory group of Z, is the 7 level of a map of K-theory spaces from the scissors
congruence space for manifolds with boundary that we define. In future work, we
plan to also investigate the signature map to the zeroth L-theory group of Z.

Theorem B. There is a map of K-theory spaces
K5 (Mfd?) — K(7Z),

which on my agrees with the Fuler characteristic for smooth compact manifolds with
boundary.

All the scissors congruence space constructions are in fact infinite loop spaces, and
it is not hard to see that all of our maps of K-theory spaces lift to the spectrum level.
The spectrum level elborations will appear in future work of Campbell, Zakharevich
and collaborators.

The paper is organized as follows. In Section 2 we introduce the definition of SK-
groups for smooth compact manifolds with boundary and we prove that they are
related to the classical SK groups for smooth closed manifolds via an exact sequence.
In Section 3 we review the set-up of categories with squares and their K-theory as
defined by Campbell and Zakharevich. In Section 4 we construct the category of
squares for smooth compact manifolds with boundary and prove Theorem A, and
in Section 5 we prove Theorem B.

Conventions. All manifolds in this paper are smooth, compact and oriented. We
will distinguish between closed manifolds and manifolds with boundary. We will use
the notation M for the manifold M with reversed orientation.
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2. SCISSORS CONGRUENCE GROUPS FOR MANIFOLDS WITH BOUNDARY

2.1. SK-groups for closed manifolds. We start by reviewing the definitions of
the classical scissors congruence groups of smooth closed oriented manifolds, namely
the SK,,-groups introduced in [KKNO73]. The “scissors congruence” or “cut and
paste” relation on smooth closed oriented manifolds is given as follows: cut an n-
dimensional manifold M along a codimension 1 smooth submanifold ¥ with trivial
normal bundle that separates M in the sense that the complement of ¥ in M is a
disjoint union of two components M; and Ms, each with boundary diffeomorphic
to X. Then paste back the two pieces together along an orientation preserving
diffeomorphism ¢: ¥ — X. We say M and M7 Ug Ms are “cut and paste equivalent”
or “scissors congruent.”

Note that for a codimension 1 submanifold ¥ with trivial normal bundle that
does not separate M (for example the inclusion of S! x {0} into S x S!) we can
take the union with a second copy of ¥ embedded close to it, and the disjoint union
> UY then separates M.

Definition 2.1. Two smooth closed manifolds M and N are SK-equivalent (or
scissors congruent or cut and paste equivalent) if N can be obtained from M by a
finite sequence of cut and paste operations.
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Example 2.2. In Figure 2 we can see that 72 # 72 11S? is SK-equivalent to 7272,

=

FIGURE 2. Example of an SK-relation

Let M,, be the monoid of diffeomorphism classes of smooth closed oriented n-
dimensional manifolds [M] under disjoint union. The SK,-group from [KKNO73] is
defined to satisfy the universal property that any abelian valued monoid map from
M, which respects SK-equivalence (also called an SK-invariant) factors through it.

Definition 2.3. The scissors congruence group SK,, for smooth closed oriented n-
dimensional manifolds is the quotient of the Grothendieck group Gr(M,,) by the
SK-equivalence relation.

Explicitly, SK,, is the free abelian group on diffeomorphism classes [M] modulo
the following relations:

(1) [MUN] = [M]+ [NJ;
(2) Given compact oriented manifolds M;, My and orientation preserving diffeo-
morphisms ¢,y : OM; — OMo,

[My Ug Ma] = [My Uy My,

where M, is My with reversed orientation.

Remark 2.4. It is shown in [KKNO73, Corollary 1.4] that any SK-invariant for
smooth oriented manifolds is a linear combination of the Euler characteristic and
the signature.

2.2. SK-groups for manifolds with boundary. We note that in order to define
a scissors congruence K-theory, we need to work in a category of manifolds with
boundary since the pieces in the cut and paste relation are manifolds with boundary.
Therefore, we introduce a definition of SK-groups for manifolds with boundary; these
are the groups which we will recover as my of a scissors congruence K-theory space.
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We define the “cut and paste relation” on smooth compact manifolds with bound-
ary analogously to that on closed manifolds: cut an n-dimensional manifold M along
a codimension 1 smooth submanifold ¥ with trivial normal bundle, which separates
M, and for which ¥ N M = (). Then paste back the two pieces together along
an orientation preserving diffeomorphism ¢: ¥ — 3. We emphasize that we do not
allow boundaries to be cut, and we require that all boundaries which come from
cutting to be pasted back together, leaving the existing boundaries of a manifold
untouched by the cut and paste operation.

Definition 2.5. Two smooth compact manifolds with boundary will be called SK-
equivalent if one can be obtained from the other via a finite sequence of cut and
paste operations in the sense described above.

Remark 2.6. Our definition of the cut and paste relation for manifolds with bound-
ary is different than the one in [KKNO73, Chapter 5], where My Ug Mo ~ M; U M.
Namely, they allow pieces that are cut to not be pasted back together. In order
to apply the K-theoretic machinery to obtain the SKg—group as mo of a K-theory
space, it is important to use our definition of SKg.

Definition 2.7. Let M2 be the monoid of diffeomorphism classes of smooth com-
pact oriented n-dimensional manifolds with boundary under disjoint union. The
SCiSSoTs congruence group SKg for smooth compact oriented manifolds is the quo-
tient of the Grothendieck group Gr(M?2) by the SK-equivalence relation.

Explicitly, SKQ is the free abelian group on diffeomorphism classes of smooth
compact oriented n-dimensional manifolds (with or without boundary) modulo the
following relations:

(1) [MUN]~ [M]+ [N];
(2) Given compact oriented manifolds My, M, closed submanifolds ¥ C 9M;
and ¥’ C dMs, and orientation preserving diffeomorphisms ¢, : ¥ — ¥/,
[Ml U¢ MQ] = [Ml Uw MQ]

Example 2.8. In Figure 3 we see an example of an SK9-relation.
Proposition 2.9. The Euler characteristic and the signature are SK°- invariants.

Proof. That the signature of manifolds with boundary is a SK%-invariant follows
from Novikov additivity [Nov70] and the fact that in our definition of the SK?-
relation the boundary components of SK%-equivalent manifolds remain unchanged
by the cut and paste operation.

The argument that shows that the Euler characteristic is a SK%-invariant is an
exact analog to the argument for closed manifolds.
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o
Ay

FIGURE 3. Example of an SK%-relation

e SK?

0

2.3. Exact sequence for SK and SK?. We now relate our definition of SK? with
the classical SK,, via an exact sequence. Denote by C,, the Grothendieck group of
the monoid of diffeomorphism classes of smooth closed oriented n-dimensional null-
cobordant manifolds under disjoint union. Note that C), is a free abelian group for
the following reason. The Grothendieck group Gr(M,,) is a free abelian group on
diffeomorphism classes of connected n-manifolds. Due to the cancellation property,
the inclusions of the monoid of diffeomorphism classes of n-dimensional nullcobor-
dant manifolds into its Grothendieck group and into Gr(M,,) are injective. Hence
the Grothendieck group C,, is a subgroup of Gr(M,,) and therefore is free abelian.

Theorem 2.10. For every n > 1 the following sequence is exact

F) B

n Cn—l —_— 0,
[N]—[oN]

0 —— SK,, —2— SK
[M]—[M]

Proof. Note that the map «: SK,, — SKg taking a class of manifolds in SK,, to a
class containing the same manifolds in SKg is well-defined, since every relation from
the definition of SK,, is also a relation in the definition of SKg. The map (5 that takes
a class of manifolds to the diffeomorphism class of the boundary is well-defined, since
the equivalence relation from the definition of SKg preserves the boundary.

We show exactness at the middle term. It is clear from the definition that Im o C
ker 3. Let us show the reverse inclusion. Let x € ker 8. Every element of SKZ can
be written in the form = = [M]| — [N], where M, N are compact smooth oriented
n-manifolds with boundary (not necessarily connected).

Let M be the copy of M with the opposite orientation and let DM be the double
of M, i.e. DM = M Ujq M. Note that DM is a closed manifold. Since C,,_; is a
free abelian group and 3(z) = [0M] — [ON] = 0 we conclude that the M and ON
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are diffeomorphic. Hence we may glue M to N along the boundary. We will call
this gluing diffeomorphism ¢ (it does not have to be unique, we just pick one) and
denote by L the closed manifold, which is the result of this gluing. Therefore,

DM = M Uy M,

and
L=NUgM.
Hence in SK?,
[N]+[DM] = [N U (ON x [0,1])] + [M Usq M]
[N Ug M] + [(ON x [0,1]) Uy M]
=[]+ [M].

Consequently,
x = [M] — [N] = [DM] — [L] € Ima.

See Figure 4 for an illustration of such an element.

Finally, let us show injectivity of the map «. Let R, be the subgroup of Gr(M,,)
generated by the SK-relation [M; Uy Ma] — [M7 Uy, Ms), so that SK,, = Gr(M,,)/Ry,.
Note that the set of elements that generate this relation is closed under summation,

([My Ug Ma] — [My Uy Mo]) + ([M] Uy M3] — [M] Uy M)
= [(M1 U M) UL (M2 U Mj)] — [(My U M) Upuy (M2 U M),
Thus R, is precisely the set of elements of this form, and similarly for the subgroup
R? of Gr(M3), which generates the SK-relation for manifolds with boundary. Sup-
pose that [M] — [N] € R? N Gr(M,). Since [M] — [N] € R?, by Proposition 2.9
we have that M ~gro N, and thus they have the same Euler characteristic and

signature. Since by Remark 2.4 the Euler characteristic and signature are the only
SK-invariants, it follows that M ~gx N. Therefore,

R% N Gr(M,) = Ry,

and injectivity of « follows. O

Scholium 2.11. Classically, there is a more refined relation than that of cutting and
pasting called SKK (“scheiden und kleben, kontrollierbar”=*“controllable cutting
and pasting”) in which we keep track of the gluing diffeomorphisms. The SKK-
equivalence relation is:

[My Ug Mj] — [My Uy M{] = [MyUg Mj] — [My Uy Mj]
for compact oriented manifolds My, M| and Mo, M} such that OM; = dMy and
OM{ = OM}, and orientation preserving diffeomorphisms ¢,v: My — OMj. The

resulting SKK,-groups obtained by modding out by the SKK-equivalence relation
have been interpreted as Reinhardt vector field bordism groups in [KKNO73] and
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-0 - 0668@

NU¢M L 6N><IU¢M

10 0 ®-
U
5O -

FIGURE 4. Example of an element in Im(a: SK,, — SK?)

have also been shown to arise as my of the Madsen-Tillman spectra MTSO(n)
[Ebel3]. If we define an SKK? relation analogously but allow M, M{, Ma, M} to be
manifolds with boundary, ¥ C 9M; and ¥’ C 9M] closed submanifolds for ¢ = 1,2,
and ¢,1: X — ¥/ orientation preserving diffeomorphisms, then we would have

(M1 Uy M} — [MiUp Mj] = [SxTUsY xI]—[Sx U, Y xIJ,
where the latter is zero. Thus if we defined an SKK? group by modding out by

this relation, we would have SKK? = SK? in contrast to the classical case where
1

we have a surjective map SKK,, — SK,, which is not an isomorphism.

3. K-THEORY OF CATEGORIES WITH SQUARES

3.1. Overview of Campbell and Zakharevich’s squares K-theory. This sub-
section is an exposition of the definitions and results from Campbell and Zakhare-
vich’s work in progress on K-theory of categories with squares.

IThis observation is due to George Raptis.
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Definition 3.1. A category with squares is a category C equipped with a choice of
basepoint object O, two subcategories ¢C and fC of morphisms referred to as cofi-
brations (denoted > ) and cofiber maps (denoted — ), and distinguished

squares
A— B
| = |
C ——D

satisfying the following conditions:

1) C has coproducts and distinguished squares are closed under coproducts.

2) Distinguished squares are commutative squares in C and compose horizontally
and vertically.

3) Both ¢C and fC contain all isomorphisms of C.

4) If a commutative square satisfies the property that either both horizontal maps
or both vertical maps are isomorphisms, then the square is distinguished.

A map of categories of squares is a functor that preserves distinguished basepoint
objects and distinguished squares.

Campbell and Zakharevich developed the framework of categories with squares
in order to describe a generalized construction of K-theory spaces, inspired by the
Waldhausen construction. We review their construction of K-theory for a category
with squares. Let [k] denote the category 0 — 1 — -+ — k.

Definition 3.2. Let C be a category with squares. Define C*) to be the subcategory
of Fun([k],C) whose objects are sequences of cofibration maps

Cor—Crr—= - = C,

and whose morphisms are natural transformations in which every commutative
square is distinguished.

Varying over k by composing cofibrations and distinguished squares, we get a
simplicial category, denoted C®. The squares K-theory of C is defined, analogously
to the definition for Waldhausen categories, as follows:

Definition 3.3. Let C be a category with squares. The squares K-theory space of
Cis

KB(C) ~ Qp|NC*|
where o is the based loop space, based at the distinguished object O € NyC©.,



12 R. S. HOEKZEMA, M. MERLING, L. MURRAY, C. ROVI, AND J. SEMIKINA

The following computation of K for categories with squares is due to Campbell
and Zakharevich; the proof will appear in upcoming work. We record the result
here since we will need it later on.

Lemma 3.4 (Campbell-Zakharevich). Let C be a category with squares with base-
point O satisfying:

(1) O is initial or terminal in cC.
(2) O is initial or terminal in fC.
(8) For all objects A, B € C, there exists some object X € C and distinguished

squares:
O— A O——B
o] o]
Br— X Ar— X

K (C) = Z{ohC}/ ~

Then

where ~ s the equivalence relation generated by

(1) [0] =0

A—— B
(2) [A]l + [D] = [B] + [C] for every distinguished square l 0 l .
C»——D

The proof that the K-theory space K" (C) is an infinite loop space will also appear
in upcoming work of Campbell, Zakharevich, and collaborators.

3.2. Category with squares from a Waldhausen category. The idea of Camp-
bell’s and Zakharevich’s squares K-theory is to provide a generalization of both
Waldhausen and subtractive categories. In particular, given a Waldhausen cate-
gory C one can associate to it a category with squares such that the Waldhausen
and squares K-theories agree. Actually, there are two different choices of categories
with squares that one can associate to a Waldhausen category, and here we describe
the one that will serve our purposes in Section 5. We comment on our choices in
Remark 5.3 below.

Definition 3.5. Let C be a Waldhausen category. Define an associated category
with squares C” in the following way. The horizontal maps are the cofibrations —
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in C, and the vertical maps are all maps. The distinguished squares are the squares
A— B
| o |
C>——D

with the property that the unique map C Uy B — D is a weak equivalence. The
distinguished basepoint object is the zero object.

Proposition 3.6. The category C” satisfies the axioms of a category with squares
from Definition 3.1.

Proof. We check the four axioms. For (1), C has coproducts because it is a Wald-
hausen category. Suppose that

CUsB = Dand C'Uy B = D'
Note that since pushouts and coproducts commute with each other, and since
CUsBUC' Uy B = DuD

by the gluing axiom ([Wal87, p. 326]), distinguished squares are closed under co-
products.

To check axiom (2), suppose we compose two distinguished squares horizontally

A B»——F
| o] o]
C > D»>—— F

We have a chain of weak equivalences
CULE=(CUsB)UgE = DU E = F,

where the first weak equivalence is by the gluing axiom.

Now suppose we compose two distinguished squares vertically

A—— B
C D
E F

U
—
O
—

Similarly, we have

EUsB=FEUc(CUsB) = EUc D = F,
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where again the first weak equivalence is by the gluing axiom.

Axiom (3) is immediate since the isomorphisms are contained in the cofibrations
in a Waldhausen category, and we don’t have any restrictions on the vertical maps.

To check axiom (4), suppose first that the two vertical morphisms in a commuting

square in C
A B
C D

are isomorphisms. Then C Us B = B = D and the square is a pushout square.
Similarly, if the horizontal maps are isomorphisms, C'U4 B = C' = D, and again the
square is a pushout. ]

—
|

—

Proposition 3.7. The Waldhausen K-theory KW“*4(C) agrees with the K-theory
KB(CP) of the associated category with squares from Definition 3.5.

Proof. By definition, K"(C") is the realization of the bisimplicial set with (p, q)-
simplices given by

Agp > Ao1 > > Aop
O O O

Ajg — Aq1q > > A1p
O O O
O O O

Ay A s Ay

in which each square is distinguished. Thus it is the nerve of the category whose
objects are sequences of cofibrations

Ag o Ay r o A,
and morphisms maps of such diagrams that satisfy the condition that for every ¢ < j

the induced map
AUy, Aj— A;
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is a weak equivalence. Thus the above is precisely the bisimplicial set obtained by
applying the nerve to Thomason’s simplicial category wT.C defined in [Wal87, page
334].

By Thomason-Waldhausen, there is a zig-zag of equivalences via some intermedi-
ate construction

wlC+—= wTT.C —= s wS.C.

Therefore, via a zig-zag, we have an equivalence of K-theory spaces

KB(CP) ~ kWald (), O

Remark 3.8. Campbell and Zakharevich noticed that for a Waldhausen category
C, one can also associate to it a category with squares where the vertical maps are
cofiber maps, and they prove directly that the square K-theory of this category is
equivalent to KW#4(C). Therefore, it is also equivalent to the square K-theory of
the category from Definition 3.5.

4. K-THEORY OF MANIFOLDS WITH BOUNDARY

In this section we use the framework described in Section 3 to define a K-theory
space for the category of n-dimensional compact smooth manifolds with boundary,
which recovers as my the scissors congruence group SKg.

4.1. The category with squares for manifolds with boundary. We start by
defining a category with squares structure on the category Mfdg of smooth compact
n-dimensional manifolds with boundary and smooth maps.

Definition 4.1. Let Mfdg be the category of smooth compact n-dimensional man-
ifolds with boundary and smooth maps. We define the subcategories chd‘?L of
horizontal maps (denoted ~—) and and fMfd? of vertical maps (denoted <) to both
be given by the morphisms in Mfd?Z which are smooth embeddings of manifolds with
boundary f: N — M such that ON is mapped to a submanifold with trivial nor-
mal bundle, and such that each connected component of the boundary 0N is either
mapped entirely onto a boundary component or entirely into the interior of M. We
define distinguished squares to be those commutative squares in Mfd?l

N»— M

[ [

M — M Uyxy M.

that are pushout squares, i.e. such that M Uy M’ is a smooth manifold. The chosen
basepoint object is the empty manifold.
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Example 4.2. Figure 5 gives pictorial examples of distinguished squares in Mfd‘z .

28 —e [—»
5o — .

F1GURE 5. Two examples of distinguished squares
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Lemma 4.3. The category Mfdg with the structure from Definition 4.1 satisfies the
axioms of a category with squares from Definition 3.1.

Proof. The coproduct in Mfdz is given by disjoint union of manifolds, and the
collection of distinguished squares is closed under disjoint union. Pushout squares
are commutative and compose horizontically and vertically. Consider the diagram

A‘+ B

If j/ is an isomorphism then we can define the map ! uniquely as fj'~'; similarly

if 7/ is an isomorphism. Therefore in both cases this is a pushout diagram. Hence
Mfdg satisfies the definition of a category with squares. O

4.2. The computation of Ko(Mfd?l). Using Lemma 3.4 for the category with
squares Mfdg defined above, we show that the K-group agrees with the SKg—group.

Theorem 4.4. For the manifold category with squares Mfd?Z from Definition 4.1,
K5(Mfd?) = SK?.

Proof. The empty set is initial in both chdg and fod?l. Moreover, for all objects
M and N in Mfdg7 there exist pushout squares

) — N 0 — M
[ = ] [ = |
My>— MUN N »— MUN.

Therefore Mfdz satisfies the conditions of Lemma 3.4, which gives a description of
the relations of the left hand side.

First, assume that the relations from KOD hold. To show that these imply the
relations in SKQ, we first need to check that the generating objects are compatible
(note that SK? is generated by diffeomorphism classes of manifolds, whereas Ky a

priori is generated by manifolds). Consider a diffeomorphism M % M’. Then
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O — M
O >— M’

is a distinguished square; and so the relations in KOD give that:

[M] + [0] = [M'] + [0]

Next, consider the square

0 r——-- M

[ = ]

M — MU M.

This is a distinguished square, which means that
[M] + [M'] = [M U M'] + (0]
=[Mu M.

For the other relation in SKg7 consider compact oriented manifolds M, M’, closed
submanifolds ¥ C M and ¥’ C OM’, and orientation preserving diffeomorphisms
¢, 3 — Y. We want to show that

[M Ug M’] = [M Uy M/]

Consider (X x €) where € = [0, ¢] for some small ¢ > 0. We can extend the maps
¢, v by the identity to maps ¢, from (X x €) to (X’ X €), which we consider inside
M and M’ respectively as collars of the boundary components. This is possible as
the boundary has trivial normal bundle. We have that M Uy M’ is diffeomorphic to
MU 3 M'. Using the maps ¢, 1), consider the squares

(Exe) r— M (Exe)—— M

{ o | { o |

M —— MUy M’ M —— MUy M.
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The relation given by distinguished squares implies:
[M Ug M'] +[(2 x €)] = [M] + [M]
— [M Uy, M +[(S x )]
Thus, [M Uy M'] = [M Uy M'].

In the other direction, assume that the relations for SK? hold. Consider relation
(1) in Definition 2.7 applied to the following:

0L 0] = (0] + [0]
[0] = [0)

Thus, for (), the initial object in our category with squares, we have [()] = 0.

Finally, for relation (2) of Definition 2.7, suppose the following is a distinguished
square:

A—— B

[ o]

C»——D
Define N := ANncl(B — A) C 0A, where cl(B — A) is the closure of the complement
of Ain B, i.e. N is the part of the boundary of A that is mapped to the interior of
B. We define

M :=cl(B—-A)U (N xe),

M =AUC.
Let id : NUN — N U N be the identity map; let 7: NUN — N U N be the twist
map. Note that M Uig M’ = BUC and M U, M' = AU D. Then the fact that
[M Uiq M'] = [M U; M’] gives the relations

[BUC]=[AUD],
[B] + [C] = [A] + [D]. O

5. THE DERIVED EULER CHARACTERISTIC FOR MANIFOLDS WITH BOUNDARY

The Euler characteristic map x: Mg — Z from the monoid of diffeomorphism
classes of smooth compact manifolds is an SK-invariant, since x(MUsx N) = x(M)+
X(N) — x(2); thus it factors through SK?. We show that the Euler characteristic
map x: SKg — Z lifts to a map of K-theory spaces. The strategy will be to
construct a map of categories with squares from the category of smooth compact
oriented manifolds with boundary to the category with squares from Definition 3.5
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associated to the Waldhausen category of homologically bounded Z-chain complexes.
The main theorem we prove in this section is the following.

Theorem 5.1. There is a map of K-theory spaces
KS(Mfd?) — K(7Z),

which on my agrees with the Fuler characteristic for smooth compact manifolds with
boundary.

We first prove the propositions we need in the next section and give the proof of
the theorem at the end of the final section.

5.1. The lift of the singular chain functor. Let Ch" be the Waldhausen cate-
gory of homologically bounded chain complexes, i.e., those complexes that are quasi-
isomorphic to bounded finitely generated Z-complexes, with cofibrations given by
levelwise injective maps and weak equivalences given by quasi-isomorphisms. Con-
sider the associated category with squares (Chi”)™ as defined in Definition 3.5.

Consider the singular chain functor
S: Mfd? — ChiP

which sends a compact manifold with boundary to its singular chain complex. The
homology of this complex is finitely generated in each degree and bounded since our
manifolds are compact.

Proposition 5.2. The map S is a map of categories with squares

S: Mfd? — (ChE”)

Proof. Suppose we have a distinguished square
A—— B

| =]

C —D

in Mfd?, and we apply S to it. In the resulting square in Ch%b, the horizontal maps
are levelwise injective, as required. So in order to show that it is a distinguished
square, it remains to show that the map

S(B) US(A) S(C) — S(D)

is a quasisomorphism.

Note that by our construction of distinguished squares in Mfd? the union of the
interiors of B and C covers D. Let S, (B + C) be the subgroup of S, (D) consisting
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of n-chains that are sums of n-chains in B and n-chains in C'. By the standard
Mayer-Vietoris argument, the following sequence is exact

0 —— Sp(d) —— Sp(B)® Sp(C) ——— Sp(B+C) —— 0
o (2, —) (y,2)—y+2z :

Hence the chain complex S.(B + C) is a pushout S.(B) Ug,4) S«(C). On the
other hand by [Hat02, Proposition 2.21], the inclusions S, (B + C) — S, (D) induce
isomorphisms on homology groups, which finishes the proof. O

Remark 5.3. The reason for the choices in our Definition 3.5 of a category with
squares associated to a Waldhausen category is precisely to make the above propo-
sition work. Note that we allow all maps as vertical maps as opposed to only the
cofiber maps, which is the other way one could associate a category with squares to
a Waldhausen category. This more relaxed definition of the distinguished squares is
crucial in allowing us to show that distinguished squares in the category of manifolds
map to distinguished squares in the category of chain complexes.

5.2. Recovering the FEuler characteristic on mj. Lastly, we claim that
K(ChE”) ~ K(Z) via an isomorphism under which S(M) corresponds to x (M)
on 7o for a smooth compact oriented manifold M.

Denote by Ch% the category of bounded complexes of finitely generated Z-
modules; the homologically complexes are those that are quasi-isomorphic to com-
plexes in ChY. Note that Chy C ChE and moreover by the discussion in [Weil3,
V. 2.7.2] (or alternatively directly by the Waldhausen approximation theorem) this
inclusion, which we denote by j, induces an isomorphism j, on K-groups. A similar
argument for cohomology appears in [CWZ19, Lemma 2.8].

Consider the following chain of maps of K-theory spaces

K(Z) = K (Modb™) é G(Z) :K(Modfzg) % K(Ch)) % K (Chib),

where Mod%mj is the category of finitely generated projective Z-modules, Modeg is
the category of finitely generated Z-modules. Let i, be the map induced by the
inclusion of categories i: Modzroj — Modfzg. Let ¢: Modeg — ChY be the inclusion
of categories that sends a module M to the chain complex with M in degree 0 and
zeroes in all other degrees. For a regular noetherian ground ring, in particular for
Z, the map i, is an isomorphism on K-groups by the resolution theorem [Weil3,
Theorem V.3.3.]. By the Gillet-Waldhausen theorem [Weil3, Theorem V.2.2.] t,
is a homotopy equivalence and hence induces an isomorphism on K-groups. The
map jy is also a homotopy equivalence by the Waldhausen approximation theorem
[Weil3, V.2.7.4.].
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The next proposition describes an inverse of j, on the zeroth K-groups.

Proposition 5.4. The map q: Ko(Ch2) — Ko(Chb) sending a chain complex C.
to the class of the corresponding quasi-isomorphic chain complex H(C,) € Ch% 18
well-defined and is an isomorphism.

Proof. The map is well-defined since quasi-isomorphic chain complexes have iso-
morphic homology, and it is surjective because of the inclusion Ch% C Ch%b. On
the other hand if Y = ¢(X) vanishes in K(Ch%) then we may identify X with
Y in Ko(Ch2") and it will also vanish there, because the set of defining relations
(which we quotient out in the presentation for Ko) of Ko(ChP) contains the defining
relations of Ko(Ch). O

Now, recall that the map ¢: Ko(Chb) — Ko(Z) given by [Ci] — x(C\) =
>~ (=1)![C;] is an isomorphism [Weil3, Proposition 11.6.6.] and coincides with the
composition i, ' ot on the zeroth K-groups [Weil3, Theorem 11.9.2.2.]. By an easy
exercise using the additivity property, the Euler characteristic of a bounded complex
only depends on its homology and x(Cy) = >_,(—1)![H;(C.)]. Thus the composi-
tion ¢ o q: Ko(Chl®) — Ky(Z) is also an isomorphism and maps [C] to x(C,) =
S (1) [H;(CL)]. Tt coincides with the composition iy ! o t71 o jrt: Ko(Chl®) —
Ky(Z).

Proof of Theorem 5.1. From Proposition 5.2, the singular chain functor S Mfdg —
(Ch%b)D is a map of categories with squares when the right hand side is given the
structure of a category with squares from Definition 3.5. This then induces a map
on K-theory spaces

K2 (Mfd?) — K7 ((Chi”)").
By Proposition 3.7 the target is K(Z). By Proposition 5.4 and the discussion fol-
lowing it, the map on 7y agrees with the Euler characteristic. O
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