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The resilience of agricultural systems in the face of drought has improved over the decades, but the ongoing
COVID-19 pandemic presents a new and unexpected challenge to the agriculture sector. The combination of
drought and COVID-19 can lead to a compounding impact on farming sectors, including crop yield. This study in-
vestigated the potential impact of drought, COVID-19, and their compound effect on three major crop yields in
2020. The analysis was carried out using the Geographically Weighted Regression (GWR) concept to model
the spatially varying relationship between Standardized precipitation evaporation index (SPEI), COVID-19 inci-
dence rate, and three crop yields (corn, soybeans, and wheat) across the counties located in the USA. The GWR
model was suitable for capturing local scale crop variability, and the potential hotspots are identified where
the compound effect is dominant. Although the drought in 2020 was not extreme compared to the past events,
themedian crop yield during 2020 for the three crop yields was lower than their historical (1980–2020)median
values, which highlights the potential role of COVID-19 on reduced crop yields. The compound effect of drought
and COVID-19 seem to vary in terms of crop and region wise. For example, the compound effect on corn was
prominent in Central California and several counties in Midwest USA. In contrast, the effect was more in eastern
South Dakota, Colorado, and more scattered for wheat.
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1. Introduction

The Sustainable Development Goals (SDGs) of the United Nations
(United Nations, 2015) emphasize global food security by promoting
sustainable agriculture, empowering small farmers, and ending rural
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poverty. However, both droughts and pandemics (e.g., COVID-19) can
cause significant disruption to global food supply chains (Mishra et al.,
2021). The long-lasting droughts can significantly impact farmers and
farmworkers; for example, the 2001–2009 droughts in Australia
(Edwards et al., 2009) greatly affected agriculture and allied sectors.
Drought is a primary concern for society, and its impacts can vary in
space and time at local (e.g., counties), regional (e.g., states), and global
scales. The drought impacted crop yield in almost three-quarters of the
global harvested land (454 million hectares) between 1983 and 2009,
translating to a significant economic loss of approximately $166 billion
(Kim et al., 2019;Mishra et al., 2021). The droughts are also themost ex-
pensive natural disasters affecting agriculture sectors in the USA
(Mishra and Singh, 2010). In the USA, the 2012 drought event caused
an economic loss of $30 billion (Smith andMatthews, 2015), mainly af-
fecting the agriculture sector. Similarly, another historic drought in
1988 caused extensive losses to the agriculture sector with 40% of the
total economic loss (Smith and Katz, 2013).

The farmers adopt different technologies to improve the adverse im-
pact of droughts on crop yields (Sumner et al., 2015;Mishra et al., 2021).
These technologies include access to alternativewater sources, adapting
drought-resistant crops, adopting water-conservation technologies
(Schoengold and Zilberman, 2007), advancing agronomical practices
(Olen et al., 2016; Burke and Emerick, 2016; Hagerty et al., 2020), or
adopting water-conservation technologies (Schoengold and
Zilberman, 2007). Therefore, the impact of the drought will vary be-
tween the regions (e.g., counties) depending on the technologies
adopted in the agriculture sector. Droughts affect both rain-fed and irri-
gated agriculture. In rain-fed agriculture, severe droughts may directly
reduce or eliminate yields, resulting in crop failure, nutritional and rev-
enue deficits. In irrigated agriculture, the impact of drought depends on
the availability of water from storage facilities. Different statistical
methods are used to study the effect of drought on agriculture yield,
such as locally weighted regression models (LOWESS), spline functions
(Lobell et al., 2014; Lu et al., 2017), correlation analysis (Liu et al., 2018;
Lu et al., 2017; Tian et al., 2018).

In addition to the drought, the COVID-19 pandemic substantially im-
pacted the agriculture sector (Manzanedo andManning, 2020). The key
challenges that triggered the crisis are the travel restrictions on agricul-
ture workers, change in consumer demand, lowered production of food
facilities, import or export ban on foods, and financial stress on the sup-
ply chain (Mishra et al., 2021). The agriculture supply chain is impacted
(Gregorioa andAncog, 2020) bymovement restrictions of transport and
labor of farm inputs, produce, and increased food prices. For example,
the COVID-19 infections count stood at around 1.9 million during the
beginning of June and reached 6.3 million by the end of the crop grow-
ing season in August 2020, amore than three-fold increase in infections.
This upsurge in infections can lead to a labor shortage and financial
stress on farmers, leading to reduced crop production and yield in im-
pacted areas. A recent study investigated the influence of climate vari-
ables on COVID-19 risk (Jha et al., 2021). In another study, spatial
regression models were used to understand the relationship between
the COVID-19 outbreak with 35 environmental, socio-economic, and
demographic variables (Mollalo et al., 2020). Their study used the
models such as Geographically weighted regression (GWR) and
Multiscale GWR to identify local variations in the spatial dependence.

The previous discussion highlighted the impact of individual drought
and COVID-19 on crop yields; however, their compound impact can trig-
ger more adverse effects on the agriculture sector (Mishra et al., 2021).
For example, in 2020, a combination of a natural disaster (drought) and
a human disaster (COVID-19) caused more significant damage (Mishra
et al., 2021) to the agriculture yield. A recent study highlighted the com-
pound impact of drought and COVID-19 on the agriculture and food sec-
tors (Mishra et al., 2021). Another study discusses the policy aspects to
minimize loss of life, preparedness to mitigate pandemics and droughts,
and other climate hazards (Phillips et al., 2020). However, most of these
studies focus on understanding the underlying causes and their potential
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implications on agriculture. Limited studies focus on identifying the po-
tential impact on a local scale (e.g., counties) and attributing their causes
to disasters such as COVID-19 and drought on agriculture yield.

Our study focuses on understanding the spatial variability of 2020
crop yield in the USA due to the compounding (drought and Covid-
19) event and identifying the hotspots. To the best of our knowledge,
this is one of the early studies investigating the spatial distribution of
crop yields across the counties in the United States during the pan-
demic. This study can aid agriculture policymakers and administrators
in identifying potential hotspots and their causes for yield reduction.
The overall objective of this study are: (a) to quantify the potential im-
pact of drought, COVID-19, and their compound effect on three major
crops (Corn, Wheat, and Soybeans) yields in the year 2020, and (b) to
identify the potential hotspots where the compound effect is dominant
and to highlight the possible reasons for yield variations across the
counties located in the USA. We applied the statistical regression-
based concept to address these two research questions.

This study intends to test the hypothesis that a compound drought
and COVID-19 events are likely to have a higher impact on agriculture
crop yields than individual events. However, this compound impact
may vary among the regions, which can be attributed to technology ad-
aptation strategy, socio-economic background of the farmers, drought-
resistant crops,water availability, and source of irrigationwater.We im-
plemented a Geographically Weighted Regression approach to test this
hypothesis by capturing the influence of drought and COVID-19 inci-
dence rate and their compound impact on crop yields.

2. Study area and data

The USDA (United States Department of Agriculture) provides crop
yield data at the county level and on an annual basis for field crops,
and we selected three crops (corn, soybeans, and wheat). The study
area comprises counties located in the USA with crop yield data avail-
able for 2020. In this study, we used the Standardized Precipitation
Evapotranspiration Index (SPEI) as the drought index. We collected
monthly precipitation and temperature data from European Centre for
Medium-RangeWeather Forecasts Reanalysis 5 (ERA5, 2021). Potential
evapotranspiration computation carried out using the Thornthwaite ap-
proach (Thornthwaite, 1948) with temperature as a critical input. The
ERA5 product used in this study is an improvement over the previous
version ERA-Interim in terms of variation in data quality over spatial
and temporal resolution. One of the key improvements of ERA5 dataset
over the previous iteration is its ability to represent the balance be-
tween global precipitation and evaporation. It represents precipitation
over the land more accurately around the boundaries of tropical zones
(Hennerman and Guillory, 2021).

For COVID-19 data, we used time-series data at the county level pro-
vided by the New York Times (https://github.com/nytimes/covid-19-
data). We selected this dataset due to its good quality (Ives and Bozzuto,
2021); thedata is curated by theNewYork times by collecting information
from various states and local health officials across the USA. In the USA,
COVID-19 infections surged by the end of March 2020 and extended
until almost the first week of June, and the second wave lasted until Sep-
tember 2020 (Vahabi et al., 2021). Overall, the first twowaves of the pan-
demic in the USA coincide with crop growing periods of significant crops.
We calculated the incidence rate at each county by standardizing infection
count during crop growing season (by crop)with thepopulation following
the recent studies (Mollalo et al., 2020; Paramasivam et al., 2020). Then,
we use the incidence rate as a proxy to quantify the geographical distribu-
tion of the pandemic among counties in the USA.

3. Methodology

The climate variables precipitation and temperature are generated
at the county level using an area-weighted method to transfer gridded
information to county polygons. We used the transformed variables
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for subsequent SPEI calculations. In addition, the COVID-19 incidence
rate is available at daily resolution for each county in the USA. Therefore,
we use the monthly drought index and COVID-19 incidence rate calcu-
lated during crop growing season for respective crops to examine their
association with crop yield. Following previous study (Lu et al., 2020),
we selected June to August for corn, June to September for soybeans,
and May to July for wheat crops in the USA as critical periods.

3.1. Drought index

Various studies used different drought indices to quantify drought
severity, such as standardized precipitation index (SPI), SPEI, and self-
calibrating Palmer drought severity index (sc-PDSI). This study used
SPEI (Vicente-Serrano et al., 2010) as it incorporates precipitation and
potential evapotranspiration information and is more relevant to the
agriculture sector. The SPEI can be appropriate for predicting agriculture
drought due to its highest associationwith crop yield (Tian et al., 2018).
The steps used for calculating SPEI is provided below (Vicente-Serrano
et al., 2010):

1) Calculate the water surplus or deficit: Di = Pi − PETi, where Pi is the
monthly precipitation and PETi is the potential evapotranspiration.

2) A Log-logistic distribution with probability density function:

f xð Þ ¼ β
α

x−γ
α

� �β−1 1þ x−γ
α

� �β� �−2
is applied to Di time-series. Where

α, β, and γ are scale, shape, and origin parameters, respectively.
3) The probability distribution function of the D series is given by:

F xð Þ ¼ 1þ α
x−γ

� �β
 !−1

4) Using F(x), the SPEI can easily be obtained as the standardized values
of F(x). Following the classical approximation of Abramowitz and
Stegun (1965), the SPEI is calculated as:

SPEI ¼ W−
C1 þ C2 W þ C3 W

1þ d1W þ d2W
2 þ d3W

3

where,W=− 2 ln (P) for P ≤ 0.5, P is the probability of exceeding a de-
termined D value, P = 1- F(x).
If P>0.5, then the P is replacedwith (1− P) and sign of SPEI is reversed.
The constant values are defined as: C0= 2.515, C1= 0.802, C2 = 0.010,
d1 = 1.432, d2 = 0.189, d3 = 0.001.
3.2. Geographically weighted regression (GWR) method

We constructed a geographically weighted regression (GWR)model
at the county level using the crop yield as the dependent variable, while
the drought index and COVID-19 incidence rates are independent vari-
ables. The coefficients of theGWRmethod represent the localweights of
each independent variable. The GWR applied on geo-tagged county-
level datasets estimates local coefficients (Wheeler and Páez, 2010;
Wolf et al., 2018) to visually interpret and identify the spatial changes
to the regression model.

In the GWR approach, weights are allocated based on a distance
criterion at each county for which a local regressionmodel is developed
by selecting neighboring counties. The selection of appropriate kernel
function helps estimate the weights based on the distance criteria to
reduce the influence of counties far away from the local county.

yi ¼ βi0 þ∑m
j¼1βij Xij þ εi, i ¼ 1, 2, . . . ,n ð1Þ

where yi stands for yield during 2020 at county i, intercept term is
defined using βi0, the summation term is used to define the jth

explanatory variable Xij and εi is a random error term (Brunsdon et al.,
1998). Parameter estimation can be done by solving the following
equation.
3

bβ ið Þ ¼ X0 W ið ÞX� �−1 X0 W ið Þ y� � ð2Þ

Here, bβ is a vector containing parameter estimates (m x 1); X repre-
sents the explanatory variables (n x m); W(i) is the spatial weight ma-
trix (n × n); y is the vector of observations of the dependent variable
(m × 1). To calculate W(i), a kernel function and bandwidth should be
specified. The bandwidth is usually determined based on Euclidean dis-
tance or the number of nearest neighbors. The selection of neighbor-
hoods will be affected depending on the different bandwidths at
which local weighting is considered. We used Akaike Information
Criteria with a correction (AICc) for selecting the bandwidth
(Fotheringham et al., 2000) to be used in the GWR method. We also
compared the GWR results with ordinary least square (OLS) regression
using various statistics including AIC (with no correction).

4. Results

4.1. Revisiting drought, COVID-19 infections, and agriculture yield

The spatial distribution of average drought severity during the sum-
mermonths (June to August) for the selected counties for the year 2020
is provided in Fig. 2(a). We calculated the number of counties affected
by the droughts over the past three decades (1980–2020) to further un-
derstand the severity of drought during 2020 compared to the past
years (Fig. 2b). The United States experienced severe drought in most
counties during 2012 (highlighted in the blue bar, Fig. 2b). In compari-
son, the year 2020 is considered one of the driest in the last seven years,
except for the southeastern part of the USA, which received ample rain-
fall caused by the North Atlantic hurricane system. The year 2020 can be
considered as the above-average drought year concerning spatial ex-
tents of drought severity. According to the National drought mitigation
center (NDMC), nearly 40% of the counties experiencedmoderate to ex-
ceptional drought, with 8% of the country facing exceptional drought in
August 2020. The year 2020 witnessed a higher drought in most areas
other than the southeastern USA. The southern tip of Texas and most
of southern Florida showed wet spells due to the tropical weather sys-
tems experienced by these regions. This process extended to most of
the southeast USA.

We noted extreme droughts during the summer months of 2020
across many counties in the USA (Fig. 2a). The severity of the drought
also changed drastically between the states located in the northeastern
and midwestern USA. Similarly, the southwest region except Texas,
Oklahoma, and California indicated these extreme dry patterns.

We also evaluated the spatial changes in three crop yields during
2020 (Fig. 3). The corn yield during the year 2020 showed the highest
spatial variability, with counties in the lowerMississippi, Nebraska,Mis-
souri, Indiana, Ohio, Michigan experiencing higher yields of more than
150 bushels (BU)/acre. We compared the median long-term average
county-level yield with the 2020 yield using violin plots (Fig. 3d to f).
The crop yield in 2020 was lower than the historical yields, and we ob-
served a lower median yield for three crops across the counties. For ex-
ample, the spatial variability of corn yield has a range of 10 to 225 BU/
acre, with a median value around 150 BU/acre. However, during the
year 2020, the median value is much lower (60 BU/acre) compared to
historical median amounts. Few states like South Carolina, Kansas, and
Colorado observed mixed crop yields. Lower corn yield (<50 BU/acre)
states in 2020 include California, NewYork, Pennsylvania, NorthDakota,
Iowa, Minnesota, and Wisconsin (Fig. 3a). We observed that the soy-
beans yield during 2020 reduced significantly (median value: 37 BU/
acre) than the historical analysis, where the median yield value was
50 BU/acre (Fig. 3a). However, the overall variability in crop yield across
the USA during 2020 remained subtle (around 25 to 50 BU/acre). Texas,
Oklahoma, North Dakota, South Carolina, and North Carolina, the north-
ern part of Minnesota, the Western part of South Dakota, Southeastern
Kansas experienced relatively lower yields during 2020.



Fig. 1. COVID-19 infections are represented at county level across the continental United States on a log10 scale during crop growing season (June to August 2020).
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From historical analysis, we noticed a lower yield (40 BU/acre) for
wheat during 2020 compared to the historical average of around 55
BU/acre. Except for few states in the western part of the USA, most of
the states with wheat cultivation showed lower yields. The states
close to the west coast, such as California, Arizona, Idaho, Oregon, and
Washington, indicate higher yield during 2020. States such as Wiscon-
sin, Michigan, Illinois, Indiana, and Ohio experienced medium yield for
wheat during 2020.

During the growing season months, we used COVID-19 pandemic
incidence to identify the hotspots that might impact agriculture yield
(Fig. 1). As pandemics highly related to the human population, the
urban areas experienced the most severe COVID-19 infections due to
population density and their interactions. The states such as California,
Washington, Texas, followed by most of the states in the southeast re-
gion, saw a higher infection. The midwestern states of North Dakota,
South Dakota, Nebraska, Kansas saw the lowest COVID-19 infections.
Even though states such as NewYorkwitnessed the highest COVID inci-
dence, the peak infections reached around the 2nd week of April in
2020, which is much before the crop growing season. Therefore, the as-
sociation with COVID-19 could be negligible in this state.

The impact of the pandemic on crop yield might be a result of labor
shortage due to fear of infection or fatality caused by thepandemic. Also,
the pandemic can indirectly have a cascading effect on agriculture due
to the severe financial stress it causes on farmers (Mishra et al., 2021).
Pandemics can hinder the capacity of farmerswith essential agricultural
and livestock contributions such as quality seeds, fertilizer, and feeds
(Ehui, 2020).

The irrigation practices vary among the counties. Previous results
show that irrigation significantly reduces the detrimental impact of
droughts in maize and soybean but not in wheat (Zhang et al., 2015).
The pandemic can have an impact due to labor shortage affecting
labor-intensive field management practices such as operating farmma-
chinery, applying fertilizers (pesticides), irrigating the crops, and har-
vesting crops. Furthermore, the labor shortage along with difference in
irrigation practices can potentially influence the compound impact of
drought and COVID-19 on agriculture sectors.

4.2. Correlation between drought and crop yields

We performed spatial correlation analysis to understand the poten-
tial relationship between the drought index and crop yields for 2020. In
correlation analysis, the hypothesis testing identifies if the correlation
between any two variables is significantly different from zero. Table 1
4

(Case 1: no threshold) represents the correlation statistics (and statisti-
cal significance) between independent variables and crop yields. The
positive correlation of SPEI with the corn yield suggested a positive ef-
fect on the yield, indicating that the drought index's lower magnitude
(i.e., drought events) reduces crop yields. In contrast, positive magni-
tude (i.e., wet periods) may increase crop yields. For soybeans, the cor-
relation analysis with drought indicated a statistically significant
negative correlation (−0.08). This negative correlation broadly indi-
cates that crop water requirements and irrigation practices might differ
for soybeans from other crops. However, thewheat yield suggests a sig-
nificant correlation (0.17) with the drought index (Table 1) based on
our analysis of 975 counties in the USA. The SPEI revealed a statistically
significant (<0.05) relationship with three crop yields as a drought
index. However, soybeans showed the most drought-resistant charac-
teristic among the three crops.

The drought index consists of wet and dry spells; therefore, we fur-
ther classified drought into various categories using thresholds
(Table 1). We followed SPEI drought classification based on (Vicente-
Serrano et al., 2010). The thresholds are selected based on the probabil-
ity of occurrences; for example, extreme drought (SPEI ≤ −2) has an
event probability of 2.3%. As the drought threshold increased, the num-
ber of counties impacted by drought reduces (Table 1).

For Case 2 (SPEI threshold <0), this case indicated dry spell periods
with all the counties falling in this category impacted by at least minor
drought. The drought criteria indicated most northern states and most
eastern USA states except few counties in Northwestern states to be
drought-impacted regions. For corn yield, California, Minnesota, and
Iowa indicated a high correlation with drought. The northeastern states
of Pennsylvania and New York yields were low and prone to drought,
showing a good correlation. In Texas, the correlation of drought with
corn yield seemed lower than in other low yield regions. States of Mon-
tana, South Dakota, further south till Oklahoma indicated a lower corre-
lationwith drought index and low yield forwheat crop. For soybeans, as
discussed earlier, the drought association is overall weak. However, the
state of North Dakota indicated a strong impact due to drought. Other
states such as South Dakota, Kansas, Oklahoma showed lower yield
drought in about 5–10 counties. Even though subject to drought, most
of the other soybeans-growing states presented higher yields, indicat-
ing strong drought resistance capability of soybeans.

The relationship is similar for different ranges of drought severity
(case 3 and 4); hencewe used the entire drought index range for further
analysis. The multi-year SPEI drought might be more correlated with
crop yields (Lund et al., 2018); this might explain the negative



Fig. 2. (a) Spatial distribution of SPEI drought index during June to August of 2020 at county level inwithin continental United States (b) Historical drought perspective of 2012 (blue) and
2020 (red) drought severity based on the number of counties affected by moderate to extreme drought during summer months (June to August) of each year (1980–2020).
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correlation of yield with the drought index for soybeans. Also, the re-
sults from our study are consistent with previous studies in quantifying
correlation (Lu et al., 2017; Tian et al., 2018) between yield and drought
index. The spatial variability of agriculture yield depends on numerous
localized factors ranging from best management practices (BMP) used
by farmers in each state or county across the United States. The yield
also changes with several other factors, such as socio-economic factors
surrounding farming which play a crucial role in crop productivity dur-
ing the growing season.

4.3. COVID-19 impact on crop yield

During a pandemic, socio-economic conditions might impact labor
shortage for farming needs. In addition, the financial stress encountered
due to contagion could indirectly affect the ability to produce higher
yields due tomany factors that hinder usual farming practices.We iden-
tified this impact by using the COVID-19 incidence rate during the pan-
demic year 2020. The incidence rate from pandemics such as COVID-19
will most likely have a very localized effect on agriculture activities. The
effect can propagate to a regional scale following the harvesting period
due to the weakening of supply chain systems.

Correlation analysis indicated a statistically significant relationship
between infections and agriculture yield for corn and wheat, as
displayed in Table 1. For corn, the counties in California and most
counties in Texas showed higher infections in regions of lower corn
yield. Also, states such as Minnesota and Iowa showed similar linkage.
Few counties in Montana, North Dakota, where wheat crop indicated
lower yield, are also affected by high COVID-19 incidence. In Kansas
and Oklahoma, the lower yield coincides with a higher COVID-19 inci-
dence rate combination. The relationship between COVID-19 incidence
and soybeans yield demonstrates an insignificant relationship. As a re-
sult, it was not included in the further analysis as this studyprimarily fo-
cuses on the pandemic impact on agriculture.
5

4.4. Compound impact of COVID-19 and drought on crop yield

Here we performed the ordinary least square (OLS) and GWR re-
gression models to quantify the compounding impact of drought and
COVID-19 on crop yields. We further compared the statistics between
these two selected regression methods. In this analysis, the crop yield
is selected as a predictand and the predictors include drought index
(i.e., SPEI) and COVID-19 incidence cases. Overall, the OLS model did
not perform well based on the low correlation coefficients (R = 0.22)
forWheat yield and R=0.28 for Corn yield (Table 2). The lower perfor-
mance is also reflected based on the higher AICmagnitude compared to
the GWR model.

GWR uses a cross-validation approach to select the bandwidth used
to identify neighboring counties (i.e., surrounding areas) to fit the local-
ized linear regression model. This bandwidth is the maximum distance
GWRmodel will search to filter surrounding counties in local linear re-
gression. In GWR, the bandwidth size is chosen by either distance (fixed
kernel) or the number of neighboring observations (adaptive kernel).
The adaptive kernel selection process considers the density of observa-
tions and returns an optimal proportion of neighborhood observations
value at each regression location (Bidanset and Lombard, 2014). We
considered the adaptive kernel suitable for this study as the counties
are heterogeneous in size and distribution across the USA. Finally, we
calculated the geographical weights using the bi-square distance
weighting method to assign weights to the neighboring units.

We selected an optimal bandwidth of 205 km to fit the GWRmodel
based on the cross-validation approach for corn yield prediction. The
GWRmodel performed significantly well with a higher correlation coef-
ficient (R=0.86) (Table 2). The GWRmodel captured the local variabil-
ity of corn yield during 2020. The lower magnitude of AIC (1657) for
corn also highlights the better performance of the GWR model, com-
pared to the OLS model (AIC: 18610). Using the GWR model for the
wheat yield, the model parameters were as follows: the bandwidth of



Fig. 3. (a to c) County-level crop yield distribution during 2020 for three crops: Corn, Soybeans, andWheat; (d to e) for same crops, corresponding crop yield (Bushels/acre) during 2020
compared with historical averages at the county level across the continental United States.
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around 1029 km, overall R is about 0.91, and an AIC 2715. The higher
correlation coefficient signaled a significant improvement as compared
against the OLSmodel (R of 0.22; AIC of 8415). The lower correlation co-
efficient (R) indicated local variations are not captured well in an OLS
model. Additional goodness-of-fit statistics, such as root means square
error (RMSE) and mean absolute error (MAE), also indicated superior
performance for the GWR model. Thus, our analysis used GWR model
to understand the spatial variability of the crop yields using drought
and COVID-19 as predictors. The GWR coefficients help understand
the effects of individual dependent variables' contribution to crop
yield at each county and identify significant drivers that influence crop
yield. Later, we also focus on the spatial distribution of performance of
the GWR model using the correlation metric between the predicted
and observed yield.

Weuse theGWRmodel coefficient to understand the association be-
tween crop yield and drought, as indicated in Fig. 4.We noticed a strong
spatial relationship with the drought coefficient during 2020, where
yield is lowest for the corn yield (e.g., in Pennsylvania). Similarly, in
the counties located on the east coast, such as Virginia and North Caro-
lina, the drought presented a substantial factor in predicting corn yield.
In the northern part of Texas with low yields, the drought explains the
spatial variability in the yield appropriately. The GWRmodel could not
capture the spatial variability for the counties located in transition re-
gions between Minnesota and Iowa, where the yield changes were
abrupt for the corn crop. The GWR model's poor performance for
these regions is attributed to the additional exogenous factors, such as
unemployment, irrigation practices, and other local factors not
accounted for by the two independent variables used in this study.
The states of Washington, Idaho showed decent predictability with
SPEI. The relationship of drought for lower yield is well characterized
by SPEI drought index along the western states (Washington, Idaho,
6

and California) of the USA for the corn crop (Fig. 4). The drought coeffi-
cients are more prominent in California, where it is considered a pre-
dominant factor as we move toward northern counties. We also
identified counties highly impacted by drought resulting in reduced
yield. These counties include Pennington county within Minnesota,
Bowman, Bottineau, Stark County in North Dakota, and Huntingdon in
Pennsylvania.

The states with lower wheat yields, such as Oklahoma, Kansas, Ne-
braska, parts of North Dakota, South Dakota, Montana, and Minnesota,
showed a good relationshipwith the drought, indicating the higher var-
iability with drought than COVID-19. Washington and Oregon states
show the strongest association with drought index. On the other hand,
the positive drought coefficient presented by the GWR model repre-
sents a strong relationship with yield in the counties with higher yields.
The counties of Marrow, Gilliam, Wasco in Oregon state, Klickitat, and
Douglas in Washington state showed the highest impact on wheat
yield in 2020 due to drought.

Further, we analyze the COVID-19 coefficients from the GWRmodel
to identify regions where the pandemic impacts the corn yield. It was
observed that COVID-19 significantly affects many counties in the
USA. Also, there are regions where we noticed an overall inverse rela-
tionship with yield. For example, the counties in North Dakota, Califor-
nia, Iowa-Illinois boundary counties, Northeastern counties in
Wisconsin showed a significant adverse effect due to COVID-19 inci-
dence rate. These regions also offer significantly lower yields, as
shown in Fig. 5.

For corn yield, the COVID-19 has a milder impact on the counties lo-
cated in Alabama, Virginia, Southern Texas, SouthwesternMissouri, and
eastern Kentucky (Fig. 5). One more prominent feature is the relatively
lower prediction capability in regionswhere countieswith higher yields
and lower yields are next to each other. This rapid transition of the crop



Fig. 4. The spatial map of SPEI drought index coefficients generated based on the GWRmodel for (a) Corn, and (b) Wheat yield.
[Note: The GWRmodel is developed based on the SPEI and COVID-19 incidence, this plot only presents coefficients associated with SPEI. Each point represents a county in the continental
United States.]
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yields between the nearby counties indicates higher spatial variability,
which the GWR model may not adequately capture. For example, such
a pattern is evident in Minnesota and Iowa, as shown in crop yield spa-
tial distribution. We also identified counties with the highest impact
due to COVID-19 incidence rate for corn crops based on GWR coeffi-
cients. We noted impact in Swift county in Minnesota, Madison in
New York, Cambria in Pennsylvania, and Chickasaw county in Iowa.
The compound impact of drought and COVID-19 is evident on corn
yield inHubbard, Roseau inMinnesota, Cambria county in Pennsylvania,
Marion, Appanoose counties in Iowa.

The impact of drought and COVID-19 onwheat is different from corn
crops. For wheat crops, most of the locations show a decent correlation
with the drought. However, there are hotspots with a negative relation-
ship with COVID-19, as indicated in Fig. 5. Kansas showed the highest
impact of COVID-19 on wheat yield in counties Rawlins, Thomas, Sher-
man, Cheyenne, and Decatur. Despite mild drought conditions, few
counties in the northern California region showed lower yield, most
likely due to a higher COVID-19 case. In the northeast of Kansas, despite
a less than moderate drought, the impact on the wheat yield is higher
for the counties. Thus, it potentially indicates the possible effects of
COVID-19. Similarly, northern Missouri experienced lower yield,
where the drought index is close to zero value (no drought condition).
The lower yield for this region could be due to higher COVID-19
7

infections (a 2% incidence rate in this region). The compound impact
due to COVID-19 and drought seems to have the highest impact on
wheat yield inWashington, Lincoln, Cheyenne, Arapahoe county within
Colorado, and Harmon county in Oklahoma.

We further investigated the predictive power of the compound
drought and COVID-19 as predictors for the crop yields for GWR
model. For corn yield, the combination of drought and COVID-19 has a
stronger association as indicated by the correlation coefficient
(R > 0.70), which also implies that the GWR model explains more
than 49% (R2, coefficient of determination) of the variance in the corn
yield in most of the western states: California, Washington, Idaho, and
smaller areas around the central US. The regions around South Dakota,
Kansas, Indiana, Maryland, and Illinois showed the highest prediction
skill for GWR with R (>0.8). In addition, there are clusters of counties
with a high correlation coefficient (R > 0.70) around northern Texas,
Missouri, and Mississippi. We observed a relatively lower prediction
skill for the counties located in North Dakota, Minnesota, South Caro-
lina, and New York (R close to 0.50). In eastern parts of Nebraska and
South Dakota, we observed a low R. As illustrated in Fig. 6; we demon-
strate the spatial distribution of the R for the two crops analyzed.

For wheat, the GWRmodel offered a very high R of >0.80 among the
counties in the states: Oregon, Washington, Arizona, and western parts
of Montana, this indicated descent prediction in these areas. We found



Fig. 5. The spatial map of COVID-19 incidence rate coefficients generated based on the GWR model for (a) Corn, and (b) Wheat yield.
[Note: TheGWRmodel is developed based on the SPEI and COVID-19 incidence, this plot only presents coefficients associatedwith COVID-19 incidence rate. Eachpoint represents a county
in the continental United States.]

R. Yaddanapudi and A.K. Mishra Science of the Total Environment 807 (2022) 150801
an R of less than 0.7 in several counties around the Arkansas, Missis-
sippi, and Tennessee border. Illinois and Wisconsin border counties
also presented lower R. Most of the border counties in Illinois showed
poor model performance using the GWR approach. Few counties in
Kansas also showed very low R.

The 2020 drought-impacted agriculture yield in many regions of the
United States. However, the COVID-19 infections played an essential
role in further decreasing yield. It is worth highlighting that the agricul-
ture practices (e.g., application of technologies) significantly vary be-
tween counties. As a result, we expect that the performance of the OLS
model will deteriorate due to the difference in exogenous factors that
contributes to the local crop yield. On the other hand, the GWR model
can better represent the local effects of dependent variables, thereby ac-
counting for the spatial variability.

5. Discussion

This study investigated the potential influence of drought and
COVID-19 on the spatial distribution of the three crop yields. The
drought index (e.g., SPEI) can capture the variability of crop yields,
and similar findings are highlighted in previous studies (Leng and
Hall, 2019; Lu et al., 2017). However, the drought index includes the
wet spells (positive values) and may not capture the potential impact
8

of drought events. Besides using a drought index that captures wet
and dry spells, we further categorized the drought events during the
crop growing periods to analyze the influence of drought severity on
the crop yields.

Further, we also demonstrated that the predictability of crop yield
using drought index and COVID-19 using regression methods. It is es-
sential to select the regression models that can capture the local scale
crop variability. We analyzed the prediction skill using two regression
models (OLS andGWR), and the results highlighted the superior perfor-
mance of GWR models. The prediction accuracy of the models can vary
between the states or counties depending on the agricultural manage-
ment practices and can lead to a sudden transition in crop yields be-
tween neighboring counties.

The SPEI index indicated a stronger relationship with yield in the
western states, including California, Washington, and Idaho. Many
states experienced lower agriculture yield for wheat during 2020. For
example, Montana, South Dakota, toward the south till Oklahoma indi-
cated a lower association between drought and yield. However, the
states of Washington and Oregon indicated the strongest relationship
between crop yield and drought.

The impact of COVID-19 and crop yield seems to be localized com-
pared to the drought. The corn yield indicated a significant negative im-
pact due to COVID-19 infections for the counties witnessing lower yield,



Fig. 6. Performance evaluation of GWRmodel based on the correlation coefficient (R) between the observed and predicted yield for (a) Corn and (b) Wheat crop.
[Note: The GWRmodel is developed based on the SPEI and COVID-19 incidence. Each point represents a county in the continental United States.]

Table 1
Correlation analysis for different crop yields and drought severity (SPEI: Standardized pre-
cipitation evapotranspiration index) during crop growing season and COVID-19 (Corona-
virus disease 2019) incidence rate for the year 2020.

Drought
threshold

CROP Number of
counties

Correlation
between yield
and drought

Correlation
between yield
and COVID-19

Statistic p-Value Statistic p-Value

SPEI
(Case 1)

Corn 1684 0.26 0.00 0.17 0.00
Soybeans 1466 −0.08 0.00 −0.04 0.09a

Wheat 975 0.17 0.00 0.15 0.00

SPEI <0
(Case 2)

Corn 1154 0.18 0.00 0.19 0.00
Soybeans 1112 −0.13 0.00 0.00 0.99a

Wheat 687 0.05 0.08a 0.18 0.00

SPEI < −0.5
(Case 3)

Corn 579 0.19 0.00 0.19 0.00
Soybeans 685 −0.02 0.64a 0.03 0.38a

Wheat 318 0.10 0.09 0.23 0.00

SPEI < −1
(Case 4)

Corn 86 0.24 0.02 0.21 0.06a

Soybeans 244 0.23 0.00 0.20 0.00
Wheat 26 −0.04 0.86a 0.57 0.00

a [Represents statistical insignificance].
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and these states include North Dakota, California, parts of Texas, few
counties in Iowa-Illinois, northeast of Wisconsin. Despite normal
climate conditions, few northern California counties showed lower
yield, which could be due to COVID-19.

This study highlights that the COVID-19 indirectly aggravated the
impact of drought on agricultural crop yields, although the conse-
quences can differ between the crops. We estimate the compound im-
pact of drought and COVID-19 on crop yield to vary between counties
due to the spatial heterogeneity in agriculture management practices,
Table 2
Performancemeasures of Ordinary least squares (OLS) and GeographicWeighted Regres-
sion (GWR) models for crop yield prediction: Akaike information criterion (AIC), Correla-
tion ofmodel prediction (R), Rootmean square error (RMSE), Mean absolute error (MAE)
and Bandwidth (in kilometers).

Crop Model AIC R RMSE MAE Bandwidth (km)

Corn
OLS

18,610 0.28 59.0 49.4 –
Wheat 8415 0.22 17.8 13.5 –
Corn

GWR
1657 0.86 31.3 20.5 205

Wheat 2715 0.91 7.7 5.3 1029
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climate, biophysical conditions, economic activities, population density,
COVID-19 cases, a host of other socio-economic indicators (Mishra et al.,
2021). Even though the advanced technologies (e.g., drought resistance
seeds) can help minimize droughts' impact, the compound impact of
drought and COVID-19 is something new that needs more research for
developing resilience food security. The compound impact can be
significant in rural counties affected by the recession, social restrictions
leading to reduced labor and constraints on food products' movement,
and lower food demands.

6. Conclusions

This study is one of the early research investigating the potential in-
fluence of drought and COVID-19 on three crop yields in the USA. In ad-
dition to individual impact, we identify the hotspots impacted by the
compound drought and COVID-19. The results highlight that drought
andCOVID-19 can cause damage to the crop yield; together, their effects
can be more conspicuous. The potential impact of drought on crop
yields varies based on the type of crops. The results suggest that corn
and wheat yields are more impacted by drought and COVID-19 than
Soybeans. The drought severity during crop growing periods calculated
based on the dry spells can provide more meaningful information to
quantify the potential effects of drought on crop yields, and it will ex-
clude the influence of wet spells.

Based on the GWR model, the lower corn yield in 2020 in many
counties (e.g., California) can be attributed to the compound drought
and COVID-19 cases. For example, lower crop yield states, such as Min-
nesota, Montana, South Dakota, Nebraska, and Kansas, are positively as-
sociated with drought. Comparatively, the wheat crop showed a higher
association with the COVID-19 in explaining spatial variation in crop
yield. The soybean indicated an insignificant association with COVID-
19 incidence rates.

We identified the hotspots of COVID-19 and drought to assess their
influence on crop yield. We evaluated the predictive power of two re-
gression models (GWR and OLS); the results suggest the GWR model
better captures the local scale variability in crop yield than the OLS
model. The results can help identify the regions with lower crop yields
due to COVID incidence rate and aids agriculture planners in preparing
mitigation measures in case of any future pandemics.

This study used drought and COVID-19 as key influencing variables
of 2020 crop yield; however, future studies can include additional vari-
ables such as crop management practices, irrigation practices, and vari-
ous technologies used in different counties across the USA to identify
best strategies tominimize the impact of droughts. Besides, the addition
of socio-economic indicators impacted by COVID-10, such as unemploy-
ment rate and health-related information (e.g., percentage of old age
farmers affected) during the 2020 pandemic, can further help to im-
prove our understanding of compounding impacts aswell as to develop
a comprehensive and robust strategy to deal with natural and human
disasters.
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