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Abstract
We study a dynamic mean–variance portfolio selection problem with return pre-
dictability and trading frictions from price impact. Applying mean-field type control
theory, we provide a characterisation of an equilibrium trading strategy for an investor
facing stochastic investment opportunities. An explicit equilibrium strategy is derived
in terms of the solution to a generalised matrix Riccati differential equation, and a suf-
ficient condition is also provided to ensure the latter’s well-posedness. Our solution
indicates that the investor should trade gradually towards a target portfolio which
accounts for return predictability, price impact and time-consistency. Moreover, an
asymptotic analysis around small liquidity costs shows that the investor’s target port-
folio is an equilibrium portfolio without price impact in the first-order sense, and that
her first-order approximated value function does not deteriorate significantly for suffi-
ciently small liquidity costs. Finally, our numerical results demonstrate that the target
portfolio is more conservative than an equilibrium portfolio without price impact.

Keywords Dynamic mean–variance problem · Price impact · Time-inconsistency ·
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1 Introduction

The dynamic mean–variance portfolio analysis in Basak and Chabakauri [3] has in-
spired many researchers to derive equilibrium or time-consistent solutions to vari-
ous time-inconsistent problems in finance and economics. In particular, Björk and
Murgoci [9] and Björk et al. [8] derived extended Hamilton–Jacobi–Bellman (HJB)
equations to obtain discrete- and continuous-time equilibrium strategies for a wide
range of time-inconsistent problems with no market frictions. Since then, several ex-
tensions have also been proposed. Readers are referred to, for example, Wang and
Forsyth [40], Czichowsky [14], Bensoussan et al. [6, 7], Gu et al. [25] and the refer-
ences therein for representative works in this direction. More recently, He and Jiang
[29] and Huang and Zhou [31] proposed various characterisations of strong, weak
and regular equilibrium strategies for a class of time-inconsistent problems under
Markovian settings.

At the other end of the spectrum, incorporating transaction costs into portfolio se-
lection problems began with the seminal works of Constantinides [13] and Davis and
Norman [15], where a no-trade region was introduced and rigorously analysed. The
existing literature on transaction costs predominantly considers the time-consistent
utility maximisation framework and typically focuses mainly on a single-asset anal-
ysis due to the complexity of the no-trade space for multiple assets. As closed-form
solutions are typically unavailable in the presence of transaction costs, several asymp-
totic methods have also been proposed to obtain some tractable almost-optimal poli-
cies with transactions costs and constant investment opportunities (see e.g. Guasoni
and Muhle-Karbe [26], Gerhold et al. [21], Altarovici et al. [2], Liu et al. [32], Gua-
soni and Weber [27, 28] and the references therein).

When the trading frictions are modelled by means of a linear transient price im-
pact, Gârleanu and Pedersen [19] showed that the portfolio selection problem with re-
turn predictability of an infinitely-lived mean–variance investor admits a closed-form
solution under a multi-asset framework. Specifically, to avoid the time-inconsistent
nature of the mean–variance utility, Gârleanu and Pedersen [19] simply considered
a local mean–variance investor whose utility function is a discounted sum of the
single-period mean–variance functions of her portfolio returns over infinite time. The
local mean–variance problem was reformulated into a standard linear–quadratic con-
trol problem whose solution can be found up to a system of matrix Riccati algebraic
equations. Their discrete-time framework has attracted instant, widespread attention
(see e.g. Glasserman and Xu [22], DeMiguel et al. [16], Moallemi and Sağlam [35],
Mei and Nogales [34], Collin-Dufresne et al. [12]). Later, Gârleanu and Pedersen
[20] extended their local mean–variance analysis to a continuous-time framework
and demonstrated rigorously that the optimal trading strategy in continuous time can
be seen as the limit of that in the discrete-time model for some specific forms of price
impact. Representative extensions of Gârleanu and Pedersen [20] include, but are not
limited to, Muhle-Karbe et al. [37, 38], Moreau et al. [36], Bouchard et al. [10], Ekren
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and Muhle-Karbe [18], Ma et al. [33], Cayé et al. [11], Herdegen et al. [30] and the
references therein.

In this paper, we consider a dynamic mean–variance problem with return pre-
dictability and frictions. Specifically, we adopt the asset and return-predicting factor
dynamics in Gârleanu and Pedersen [20] in which correlations among assets and fac-
tors are allowed. Each trade incurs a linear transient price impact, which conveniently
leads to quadratic execution costs for the investor. Differently from Gârleanu and
Pedersen [20], we consider that the investor optimally trades to maximise a mean–
variance utility function of her terminal wealth, which makes the stochastic control
problem time-inconsistent. We derive an explicit equilibrium solution of that prob-
lem. To the best of our knowledge, such a problem has not been explored in the
existing literature.

To obtain an explicit equilibrium solution to our dynamic mean–variance problem,
we first derive an extended HJB equation by means of the mean-field type control
techniques introduced in Bensoussan et al. [5, Chap. 4] and characterise the solution
in terms of a coupled system of partial differential equations (PDEs). In addition, we
also establish a verification theorem to demonstrate that the solvability of the original
stochastic control problem is equivalent to the well-posedness of the coupled sys-
tem of PDEs. Due to the wealth-separability of an corresponding equilibrium value
function, we show that finding an equilibrium solution can be reduced to solving a
coupled system of matrix Riccati differential equations (hereafter referred to as cou-
pled Riccati system). It is important to mention that the inconsistent nature of the
mean–variance problem makes the coupled Riccati system non-canonical, even in a
block-matrix form, and it has not been well studied in the literature. Indeed, the cou-
pling feature of the Riccati system in our paper makes it structurally different from
those in the finite-time analogues of Gârleanu and Pedersen [20] and Ma et al. [33],
where the Riccati systems are decoupled in their block matrix forms and the global
existence of solutions can be established by means of a standard comparison principle
for matrix Riccati differential equations.

Our work makes the following contributions to the existing literature. Since the
unique structure of our coupled Riccati system prevents us from using any existing
approach, we first derive a sufficient condition to establish the existence and unique-
ness of a solution to the coupled Riccati system in this paper. The sufficient condition
is easy to check as it is shown to be equivalent to finding a scalar solution of a non-
linear equation. Second, by conducting an asymptotic analysis around small liquidity
costs, we show that the coupling feature in our Riccati system appears in the higher
order terms since the first-order approximated equations of the coupled Riccati sys-
tem admit closed-form expressions.

Third, our equilibrium trading strategy indicates that the mean–variance investor
should trade gradually towards a dynamic target portfolio, which is the discounted
value of a future equilibrium portfolio in the absence of price impact, with some ad-
justment terms. Differently from the aim portfolio in Gârleanu and Pedersen [20], the
target portfolio here not only accounts for the persistence of return-predicting signals
and price impacts, but also for the investor not deviating from future strategies. More
importantly, the volatilities of the return-predicting factors have a direct impact on
the dynamics of the target portfolio, whereas they do not appear in the aim portfolio
in Gârleanu and Pedersen [20].
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Fourth, by means of an asymptotic analysis around small liquidity costs, an in-
vestor’s frictionless equilibrium portfolio is the target portfolio in the first-order sense
when the liquidity cost is sufficiently small. In addition, the equilibrium value func-
tion derived from pursuing such a first-order approximated trading strategy is almost
optimal in the sense that it does not deteriorate significantly around small liquidity
costs. Fifth, our numerical results indicate that the target portfolio appears to be a
conservative form of its corresponding equilibrium portfolio without price impact.

The rest of this paper is organised as follows. In Sect. 2, we present a dynamic
mean–variance problem with return predictability and price impact, and the definition
of an equilibrium strategy. In Sect. 3, we derive an analytical equilibrium solution to
the extended HJB equation in terms of a coupled system of matrix Riccati differential
equations. The latter’s well-posedness is also provided in Sect. 4. Section 5 provides
some financial implications of our main results and conducts an asymptotic analysis
around small liquidity costs. Section 6 provides numerical illustrations. Section 7
concludes the paper with suggestions for future research.

2 Dynamic mean–variance problemwith frictions

2.1 Dynamics with return predictability

Consider a financial market where one risk-free asset and n risky assets are traded
continuously on a finite interval [0, T ]. Let (�,F ,F,P) be a complete filtered prob-
ability space, where F = (Ft )t∈[0,T ] denotes the filtration generated by a standard
n-dimensional Brownian motion (W

p
t )t∈[0,T ] and a k-dimensional Brownian motion

(W
f
t )t∈[0,T ] with instantaneous correlation matrix ρ = d〈Wp,Wf 〉t /dt .
Denote by (p0

t )t∈[0,T ] and (pt )t∈[0,T ] the risk-free asset price and the vector of
risky asset prices, respectively. The dynamic of the risk-free asset is given by

dp0
t = rp0

t dt,

where r > 0 is the constant risk-free interest rate. The dynamics of the risky asset
prices (pt )t∈[0,T ] and the return-predicting factors (ft )t∈[0,T ] are modelled as

dpt = (rpt + Bft )dt + σpdW
p
t , (2.1)

dft = −�ftdt + σf dW
f
t , (2.2)

where B is an n × k matrix of factor loadings of full column rank, � is a symmetric
positive definite matrix which represents the factors’ mean-reversion rates, and σp

and σf are n × n and k × k constant matrices, respectively. Denote the covariance
matrices by �p = σ�

p σp = d〈p,p〉t /dt , �f = σ�
f σf = d〈f,f 〉t /dt and

�ρ = σ�
p ρσf = d〈p,f 〉t /dt,

where � denotes the transpose of a matrix or a vector.
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2.2 Wealth dynamics with price impact

Denote by (xt )t∈[0,T ] the investor’s portfolio position, which contains the number of
shares of the risky assets. As pointed out by Gârleanu and Pedersen [20], non-smooth
changes in portfolios, such as a discrete jump or quadratic variation (e.g. Brownian
motion) in position, would result in infinite transaction costs under the continuous-
time framework. Consequently, we adopt their assumption that the investor chooses
a trading strategy (τt )t∈[0,T ] that determines the instantaneous rate of change of her
portfolio position (xt )t∈[0,T ], i.e.,

dxt = τtdt. (2.3)

To model trading frictions, we follow Gârleanu and Pedersen [20] and assume that
when the investor trades τtdt units of the assets at time t ≥ 0, her trade has a transient
linear price impact on the asset price (pt )t∈[0,T ] as

pE
t := pt + 1

2
�τt , (2.4)

where � is a symmetric positive definite n×n matrix that measures the level of trans-
action costs. The matrix � is referred to as the multi-dimensional Kyle’s lambda (see
e.g. Grossman and Miller [24] and Greenwood [23]). In (2.4), (pE

t )t∈[0,T ] denotes the
vector of execution prices and represents the amount the investor pays (receives) for
each unit of her buy (sell) τtdt . We assume that the investor’s trade size τtdt affects
only the execution price and that her trade has no permanent impact on the asset price
dynamics in (2.1). In terms of the execution price in (2.4), the total cost associated
with the trading strategy is expressed as

Cost(τtdt) := τ�
t ptdt + TC(τt )dt,

where the first term denotes the cost of trading τtdt units of the assets at the market
price pt , and the second term, TC(τt ) := 1

2τ�
t �τt , captures the quadratic execution

costs of trading τtdt units.
With the specifications of the asset price dynamics and execution costs in place,

we can now derive the wealth dynamics of an investor with trading frictions. Let
(yτ

t )t∈[0,T ] be the investor’s wealth process under the trading strategy (τt )t∈[0,T ]. In-
voking the self-financing condition and Itô’s lemma yields

dyτ
t =

(
ryτ

t + x�
t Bft − 1

2
τ�
t �τt

)
dt + x�

t σpdW
p
t .

We restrict our attention to admissible feedback trading strategies as defined below.

Definition 2.1 An admissible feedback trading strategy is a map

τ : [0, T ] ×R
n ×R×R

k → R
n
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such that for each initial point (t, x, y, f ) ∈ [0, T ] × R
n × R × R

k , the stochastic
differential equation (SDE) system

⎧⎪⎪⎨
⎪⎪⎩

dxt = τ(t, xt , y
τ
t , ft )dt,

dyτ
t =

(
ryτ

t + x�
t Bft − 1

2
τ(t, xt , y

τ
t , ft )

��τ(t, xt , y
τ
t , ft )

)
dt

+ x�
t σpdW

p
t ,

(2.5)

admits a unique strong solution with E[supt∈[0,T ] |τ(t, xt , y
τ
t , ft )|2] < ∞.

The class of admissible feedback trading strategies is denoted by A[0,T ], and we
use τ and τ(t, x, y, f ) interchangeably throughout the paper.

2.3 Dynamic mean–variance portfolio selection problem

Suppose that the investor seeks to choose a trading strategy (τt )t∈[0,T ] that maximises
the expected mean–variance utility of her terminal wealth yτ

T , i.e.,

max
τ

(
E[yτ

T ] − η

2
Var[yτ

T ]
)

, (2.6)

with the return-predicting factors (ft )t∈[0,T ] in (2.2), her portfolio position (xt )t∈[0,T ]
in (2.3) and her wealth process (yτ

t )t∈[0,T ] in (2.5). The expected mean–variance
utility function in (2.6) is different from the local mean–variance utility function in
Gârleanu and Pedersen [20] and Collin-Dufresne et al. [12] in that the variance opera-
tor in (2.6) violates the tower property of conditional expectations, as stated in Basak
and Chabakauri [3]. To circumvent this problem, we follow the existing literature (see
e.g. Ekeland and Pirvu [17] and Bensoussan et al. [6]) and provide a game-theoretic
characterisation of a so-called equilibrium trading strategy. For a fixed initial point
(t, x, y, f ) ∈ [0, T ] ×R

n ×R×R
k , we denote by

E
x,y,f
t [ · ] := E[ · |xt = x, yτ

t = y,ft = f ],
Varx,y,f

t [ · ] := Var[ · |xt = x, yτ
t = y,ft = f ]

the conditional expectation and conditional variance, respectively. The criterion in
(2.6) can then be rewritten in terms of the objective functional J defined as

J (t, x, y, f ; τ) := E
x,y,f
t [yτ

T ] − η

2
Varx,y,f

t [yτ
T ],

= E
x,y,f
t [F(yτ

T )] + G(E
x,y,f
t [yτ

T ]), (2.7)

where F(y) := y − η
2 y2 and G(y) := η

2 y2.

Due to the quadratic function G(E
x,y,f
t [yτ

T ]) in the mean-field term, the maximi-
sation of the objective functional in (2.7) is a mean-field type control problem. We
follow the guiding philosophy proposed in Bensoussan et al. [5, Chap. 4] to solve our
problem more explicitly. In this paper, we consider an equilibrium solution of this
problem as defined below.
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Definition 2.2 An equilibrium solution (or equilibrium trading strategy) is an admis-
sible feedback trading strategy τ ∗ : [0, T ] ×R

n ×R×R
k →R

n such that for any
(t, x, y, f ) ∈ [0, T ] ×R

n ×R×R
k ,

lim inf
ε→0+

J (t, x, y, f ; τ ∗) − J (t, x, y, f ; τ ε)

ε
≥ 0.

Here τ ε is an arbitrary spike variation of τ ∗ ∈A[0,T ] defined as

τ ε(s, x, y, f ) =
{

τ̄ (s, x, y, f ), s ∈ [t, t + ε), x ∈ R
n, y ∈R, f ∈R

k,

τ ∗(s, x, y, f ), s ∈ [t + ε, T ], x ∈R
n, y ∈ R, f ∈R

k,
(2.8)

where τ̄ ∈ A[0,T ] and ε > 0 are arbitrarily chosen. The corresponding equilibrium
value function V is defined as V (t, x, y, f ) := J (t, x, y, f ; τ ∗).

Remark2.3 According to He and Jiang [29] and Huang and Zhou [31], an equilibrium
solution as in Definition 2.2 constitutes a weak equilibrium solution, which is defined
by means of a first-order condition.

3 Equilibrium solution

In this section, we provide an analytical expression for an equilibrium trading strat-
egy τ ∗ in Definition 2.2. Specifically, we first apply mean-field type control tech-
niques to derive an extended HJB equation which is similar to the works of Ben-
soussan et al. [5, Chap. 4] and Björk et al. [8] and show that the corresponding
value function under an equilibrium trading strategy τ ∗ satisfies a system of cou-
pled PDEs. A verification theorem is also established to demonstrate that the solution
of the coupled PDE system is indeed the corresponding equilibrium value function V

in Definition 2.2. Secondly, we exploit the explicit form of V and show that it can be
decomposed into wealth-dependent and wealth-independent components. The modi-
fied value function is then shown to be a quadratic function of the investor’s current
position and the current levels of the return-predicting factors, with the coefficients
of the quadratic functions being expressed as solutions to a coupled system of matrix
Riccati differential equations.

We first characterise an equilibrium trading strategy τ ∗ and the correspond-
ing equilibrium value function in terms of a system of coupled PDEs. We say
that a function �(t, x, y, f ) on [0, T ] × R

n × R × R
k belongs to the space

L2([0, T ] ×R
n ×R×R

k) if it satisfies the condition

E
x,y,f
t

[∫ T

t

(|∂y�(s, xs, y
τ
s , fs)x

�
s σp|2 + |∂f �(s, xs, y

τ
s , fs)σf |2)ds

]
< ∞

for any admissible feedback trading strategy τ and every (t, x, y, f ).

Theorem 3.1 Suppose there exists an equilibrium strategy τ ∗ whose corresponding
equilibrium value function V (t, x, y, f ) and 
(t, x, y, f ):= E

x,y,f
t [yτ∗

T ] are both in
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C1,1,2,2([0, T ] × R
n × R × R

k) ∩ L2([0, T ] × R
n × R × R

k). Then they satisfy the
coupled system of PDEs

{
max
τ∈Rn

LτV = ηN
,

Lτ∗

 = 0

(3.1)

with V (T , x, y,f ) = 
(T ,x, y,f ) = y, where the operators Lτ and N are defined,
for v ∈ C1,1,2,2([0, T ] ×R

n ×R×R
k), by

Lτ v := ∂tv + ∂xv
�τ − ∂f v�(�f ) +

(
ry + x�Bf − 1

2
τ��τ

)
∂yv

+ 1

2
x��px∂yyv + x��ρ∂fyv + 1

2
tr(∂ff v�f ),

N v := 1

2
x��px(∂yv)2 + x��ρ∂f v∂yv + 1

2
∂f v��f ∂f v,

and tr( · ) represents the trace of a matrix.

Proof For ε > 0, consider the spike modification control τ ε defined in (2.8) and the
corresponding objective functional J (t, x, y, f ; τ ε). By the Feynman–Kac formula,

(t, x, y, f ) is indeed the solution to the second equation in (3.1). We also have

J (t, x, y, f ; τ ε) − J (t, x, y, f ; τ ∗) = I1 − I2, (3.2)

where

I1 := E
x,y,f
t [V (t + ε, xt+ε, y

τε

t+ε, ft+ε)] − V (t, x, y, f ),

I2 := G
(
E

x,y,f
t [
(t + ε, xt+ε, y

τε

t+ε, ft+ε)]
)

−E
x,y,f
t

[
G

(

(t + ε, xt+ε, y

τε

t+ε, ft+ε)
)]

.

In (3.2), the equality follows from the definition of J (t, x, y, f ; τ ε) and V (t, x, y, f )

in (2.7) and Definition 2.2, respectively, and the tower property of the conditional
expectation.

Applying the Dynkin formula on I1 and using the definition of the spike modifi-
cation control in (2.8), we have

I1 = E
x,y,f
t

[∫ t+ε

t

Lτ̄ V (s, xs, y
τ̄
s , fs)ds

]
, (3.3)

where the equality holds due to the assumption that V ∈ L2([0, T ] ×R
n ×R×R

k).
We now turn to the calculation of I2. Noting that G(y) = η

2 y2, we apply the Dynkin
formula on G(
(t + ε, xt+ε, y

τε

t+ε, ft+ε)) and have

E
x,y,f
t

[
G

(

(t + ε, xt+ε, y

τε

t+ε, ft+ε)
)]

= G
(

(t, x, y, f )

) +E
x,y,f
t

[∫ t+ε

t

Lτ̄G
(

(s, xs, y

τ̄
s , fs)

)
ds

]
.
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On the other hand, applying the Taylor expansion on G(y) gives

G
(
E

x,y,f
t [
(t + ε, xt+ε, y

τε

t+ε, ft+ε)]
)

= G
(

(t, x, y, f )

) + η
(t, x, y, f )E
x,y,f
t

[∫ t+ε

t

Lτ̄ 
(s, xs, y
τ̄
s , fs)ds

]
+ o(ε).

Combining these together leads to

I2 = −ηE
x,y,f
t

[∫ t+ε

t

N
(s, xs, y
τ̄
s , fs)ds

]
+ o(ε). (3.4)

Therefore, expressing (3.2) in terms of (3.3) and (3.4) leads to

J (t, x, y, f ; τ ε) − J (t, x, y, f ; τ ∗)

= E
x,y,f
t

[∫ t+ε

t

Lτ̄ V (s, xs, y
τ̄
s , fs) − ηN
(s, xs, y

τ̄
s , fs)ds

]
+ o(ε),

where we have suppressed the arguments of the functions for simplicity. Dividing
by ε on both sides, taking ε → 0+ and using Definition 2.2 leads to

Lτ̄ V ≤ ηN
. (3.5)

Consequently, if we choose the maximiser of Lτ̄ V to be τ ∗, the inequality in (3.5)
becomes an equality, leading to the PDE for V . �

Next, we establish a verification theorem to show that a solution to the coupled
PDE system in (3.1) is an equilibrium value function in Definition 2.2, thereby prov-
ing that a maximiser in (3.1) constitutes an equilibrium trading strategy.

Theorem 3.2 Suppose that the functions V (t, x, y, f ), 
(t, x, y, f ) and τ ∗ satisfy
the following assumptions:

1) V (t, x, y, f ) and 
(t, x, y, f ) are in C1,1,2,2([0, T ] × R
n × R × R

k) and are
solutions of the coupled PDE system in (3.1).

2) τ ∗ is a maximiser in (3.1) and τ ∗ ∈A[0,T ].
3) V (t, x, y, f ) and 
(t, x, y, f ) ∈ L2([0, T ] ×R

n ×R×R
k).

Then τ ∗ is an equilibrium trading strategy, and V (t, x, y, f ) is the corresponding
equilibrium value function.

Proof We first show that V (t, x, y, f ) is the value function associated with the ad-
missible trading strategy τ ∗ which is a maximiser in (3.1). Since V (t, x, y, f ) is a
solution of the HJB equation (3.1), we have Lτ∗

V = ηN
 . Applying the Dynkin
formula to V (t, x, y, f ) leads to

E
x,y,f
t [V (T , xT , yτ∗

T , fT )] = V (t, x, y, f ) +E
x,y,f
t

[∫ T

t

Lτ∗
V (s, xs, y

τ∗
s , fs)ds

]
.
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where the stochastic integral part becomes zero due to the assumption that V is in
L2([0, T ] ×R

n ×R×R
k). Combining the above leads to

E
x,y,f
t [V (T , xT , yτ∗

T , fT )] − V (t, x, y, f )

= ηE
x,y,f
t

[∫ T

t

N
(s, xs, y
τ∗
s , fs)ds

]

= E
x,y,f
t

[
G

(

(T ,xT , yτ∗

T , fT )
)] − G

(

(t, x, y, f )

)
. (3.6)

By means of the terminal conditions for V and 
 , we can rewrite (3.6) as

V (t, x, y, f ) = E
x,y,f
t [yτ∗

T − G(yτ∗
T )] + G(E

x,y,f
t [yτ∗

T ]) = J (t, x, y, f ; τ ∗).

Next, we show that τ ∗ is an equilibrium trading strategy in the sense of Defini-
tion 2.2. We first take a spike modification τ ε of τ ∗ as in (2.8). Applying the Dynkin
formula and the Taylor expansion on the objective function J in (2.7), it follows that

J (t, x, y, f ; τ ε) = E
x,y,f
t

[
V (t + ε, xt+ε, y

τε

t+ε, ft+ε)

− η

∫ t+ε

t

N
(s, xs, y
τ̄
s , fs)ds

]

+ o(ε).

On the other hand, from the first equation in (3.1), we have

Lτ ε

V ≤ ηN
.

Integrating from t to t + ε and taking conditional expectations leads to

0 ≥ E
x,y,f
t [V (t + ε, xt+ε, y

τε

t+ε, ft+ε)] − V (t, x, y, f )

− ηE
x,y,f
t

[∫ t+ε

t

N
(s, xs, y
τ̄
s , fs)ds

]

= J (t, x, y, f ; τ ε) − V (t, x, y, f ) + o(ε).

Therefore, it follows that J (t, x, y, f ; τ ∗) = V (t, x, y, f ) ≥ J (t, x, y, f ; τ ε) + o(ε),
yielding lim inf

ε→0+
J (t,x,y,f ;τ∗)−J (t,x,y,f ;τ ε)

ε
≥ 0, which completes the proof. �

The following proposition shows that the equilibrium value function V and the
auxiliary function 
 in Theorem 3.1 can be decomposed into wealth-dependent and
wealth-independent components. This wealth-separable property of V and 
 allows
one to conveniently focus on finding solutions as functions that are independent of
wealth, which greatly enhances the analytical tractability of V in Definition 2.2.
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Proposition 3.3 Let

V (t, x, y, f ) = h(t)y − 1

2
x�Axx(t)x + x�Axf (t)f + 1

2
f �Aff (t)f

+ A0(t), (3.7)


(t, x, y, f ) = h(t)y − 1

2
x�Cxx(t)x + x�Cxf (t)f + 1

2
f �Cff (t)f

+ C0(t) (3.8)

and

τ ∗(t, x, y, f ) = �−1

h(t)

(
Axf (t)f − Axx(t)x

)
, (3.9)

where h(t) := er(T −t) and Axx(t),Axf (t),Aff (t),Cxx(t),Cxf (t),Cff (t) solve the
coupled Riccati system,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ȧxx = 1

h
Axx�

−1Axx − η
(
h2�p + Cxf �f C�

xf + h(�ρC�
xf + Cxf ��

ρ )
)
,

Ȧxf = −hB + 1

h
Axx�

−1Axf + Axf � + η(Cxf �f Cff + h�ρCff ),

Ȧff = − 1

h
A�

xf �−1Axf + (Aff � + �Aff ) + ηCff �f Cff ,

Ċxx = − 1

h
Axx�

−1Axx + 1

h
(Axx�

−1Cxx + Cxx�
−1Axx),

Ċxf = −hB + Cxf � + 1

h
(Axx�

−1Cxf + Cxx�
−1Axf ) − 1

h
(Axx�

−1Axf ),

Ċff = (Cff � + �Cff ) − 1

h
(A�

xf �−1Cxf + C�
xf �−1Axf ) + 1

h
A�

xf �−1Axf

(3.10)

with

Axx(T ) = Cxx(T ) = 0n×n,

Axf (T ) = Cxf (T ) = 0n×k,

Aff (T ) = Cff (T ) = 0k×k,

A0(t) = 1

2

∫ T

t

tr
(
Aff (s)�f

)
ds,

C0(t) = 1

2

∫ T

t

tr
(
Cff (s)�f

)
ds.

If the coupled system in (3.10) is well defined, then τ ∗ in (3.9) is an equilibrium
trading strategy, and V (t, x, y, f ) is the corresponding equilibrium value function.

Proof According to Theorem 3.2, it suffices to show that the functions V (t, x, y, f )

in (3.7), 
(t, x, y, f ) in (3.8) and the candidate equilibrium trading strategy τ ∗ in
(3.9) satisfy the assumptions in Theorem 3.2.
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First, substituting the ansatz in (3.7) and (3.8) into the coupled PDE system in (3.1)
and matching coefficients for the terms y, x�( · )x, x�( · )f , f �( · )f directly leads to
the coupled system (3.10). In other words, if (3.10) is well defined, then V (t, x, y, f )

and 
(t, x, y, f ) in (3.7) and (3.8) are in C1,1,2,2([0, T ] ×R
n ×R×R

k) and solve
the coupled PDE system in (3.1). In addition, since � > 0n×n and ∂yV > 0, it follows
that τ ∗ in (3.9) is a maximiser in (3.1).

Next we show that τ ∗ ∈A[0,T ]. As the state dynamics (2.2) of (ft )t∈[0,T ] is linear
and independent of the trading strategy, it follows readily that E[supt∈[0,T ] |ft |2] < ∞.
Since τ ∗ in (3.9) is linear in x and f , the equilibrium portfolio (x∗

t )t∈[0,T ] in
(2.3) is linear in (ft )t∈[0,T ] and so E[supt∈[0,T ] |x∗

t |2] < ∞. Consequently, we have
E[supt∈[0,T ] |τ ∗

t |2] < ∞. As τ ∗ in (3.9) is independent of y, the equilibrium wealth
process (yτ∗

t )t≥0 satisfies a linear SDE in (2.5) and admits a unique strong solution.
Therefore, it follows that τ ∗ ∈ A[0,T ].

From (3.7) and (3.8), the functions V (t, x, y, f ) and 
(t, x, y, f ) are linear in
y and quadratic in f . Consequently, the term ∂y�(t, x, y, f ) is bounded and the
term ∂f �(t, x, y, f ) is linear in x and f for � ∈ {V,
}. For any admissible trading

strategy τ , we have E[supt∈[0,T ] |τt |2] < ∞, which implies that E[∫ T

0 |xs |2ds] < ∞.

Combining this with E[∫ T

0 |fs |2ds] < ∞, we obtain

E
x,y,f
t

[∫ T

t

(|∂y�(s, xs, y
τ
s , fs)x

�
s σp|2 + |∂f �(s, xs, y

τ
s , fs)σf |2)ds

]
< ∞,

proving that V (t, x, y, f ),
(t, x, y, f ) are in L2([0, T ] ×R
n ×R×R

k). �

Up to now, we have shown that V and 
 in Proposition 3.3 can be represented as
linear functions of current wealth y and quadratic functions of the portfolio position
xt and the return-predicting factors ft at the time t ≥ 0. The corresponding coeffi-
cient functions can be obtained by solving the system of matrix Riccati differential
equations in (3.10). We provide a rigorous analysis on the well-posedness of (3.10)
in Sect. 4.

We have also derived an explicit form of an equilibrium trading strategy τ ∗ in
Proposition 3.3. The equilibrium strategy τ ∗ in (3.9) is of feedback form on the cur-
rent gap between the return-predicting factors and the position. More importantly, the
equilibrium strategy τ ∗ in (3.9) indicates that the more illiquid the stocks are (larger
�), the smaller the magnitude of the investor’s equilibrium trading strategy becomes
(smaller τ ∗). We provide more financial interpretation on τ ∗ in Sect. 5 after proposing
in Sect. 4 a sufficient condition to ensure the well-posedness of the coupled system
(3.10).

Remark 3.4 In Proposition 3.3, since � > 0n×n and ∂yV > 0, there exists a unique
interior solution τ ∗ in (3.9). In view of Remark 2.3, τ ∗ in (3.9) is a weak equilibrium
solution in the sense of He and Jiang [29] and Huang and Zhou [31]. In addition,
by Theorem 5.2 (iii) in He and Jiang [29], τ ∗ in (3.9) is also a regular equilibrium
solution.
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4 The well-posedness of the coupled Riccati differential system

In the previous section, we have demonstrated that an equilibrium value function V as
in Definition 2.2 can be characterised by the extended HJB equation in (3.1). More-
over, existence and uniqueness of the latter’s solution is equivalent to well-posedness
of the coupled system of matrix Riccati differential equations in (3.10). In this sec-
tion, we provide a time-dependent sufficient condition to address the latter.

We reformulate (3.10) in block matrix form as
{

Ȧ = D1 + AK1 + K1A − AN1A + η(CK2 + K�
2 C + CN2C),

Ċ = D2 + CK1 + K1C + AN1A − AN1C − CN1A
(4.1)

with terminal conditions A(T ) = C(T ) = 0(n+k)×(n+k) and

A(t) =
(−Axx(t) Axf (t)

A�
xf (t) Aff (t)

)
, C(t) =

(−Cxx(t) Cxf (t)

C�
xf (t) Cff (t)

)
,

D1(t) =
(

ηh2(t)�p −h(t)B

−h(t)B� 0k×k

)
, D2(t) =

(
0n×n −h(t)B

−h(t)B� 0k×k

)
,

K1 =
(

0n×n 0n×k

0k×n �

)
, K2(t) =

(
0n×n 0n×k

h(t)��
ρ 0k×k

)
,

N1(t) =
(

�−1

h(t)
0n×k

0k×n 0k×k

)
, N2 =

(
0n×n 0n×k

0k×n �f

)
.

To demonstrate the difficulty in solving the coupled Riccati system in (4.1), we re-
express (A,C) in the form of a 2(n + k) × 2(n + k) block matrix M as

M(t) :=
(

A(t) 0(n+k)×(n+k)

0(n+k)×(n+k) C(t)

)
.

In terms of M , the coupled system in (4.1) can be reformulated into the matrix Riccati
differential equation

Ṁ = D3 + MK3 + K�
3 M − MN3M + p(M), (4.2)

where p(M) = MK4MP + PMK�
4 M + P(MK5 + K�

5 M + MN4M)P and

D3 = diag(D1,D2), K3 = diag(K1,K1), N3 = diag(N1,0(n+k)×(n+k)),

N4 = diag(N1, ηN2), K5 = diag(0(n+k)×(n+k), ηK2),

P =
(

0(n+k)×(n+k) Id(n+k)

Id(n+k) 0(n+k)×(n+k)

)
, K4(t) =

(
0(n+k)×(n+k) 0(n+k)×(n+k)

−N1(t) 0(n+k)×(n+k)

)
,

with diag(A,B) representing a block diagonal matrix with matrices A and B on its
main diagonal. The presence of p(M) makes the matrix Riccati differential equation
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(4.2) non-canonical. In fact, (4.2) is documented in Abou-Kandil et al. [1, Chap. 6]
and called a generalised or perturbed matrix Riccati differential equation. As dis-
cussed there, only a few algorithms have been developed to solve (4.2) numerically,
and no proof of existence of a solution to (4.2) is available in the existing literature.
This motivates us to derive a sufficient condition to establish well-posedness of (4.1)
(or, equivalently, (4.2)) in the remainder of this section.

4.1 A decoupled case

When the return-predicting factors are deterministic, the following result shows that
well-posedness of the coupled Riccati system in (4.1) can be easily established by
means of a comparison principle.

Theorem 4.1 If σf = 0k×k , the coupled Riccati system (4.1) becomes decoupled as

{
Ȧ = D1 + AK1 + K1A − AN1A,

Ċ = D2 + CK1 + K1C + AN1A − AN1C − CN1A.

In addition, it admits a unique global solution on [0, T ].

Proof When σf = 0k×k , both K2 and N2 become zero matrices, which makes the last
bracket term in (4.1) disappear. This essentially makes the first equation decoupled
from the second equation in (4.1), which allows us to solve for A independently. In
this case, existence and uniqueness of the first equation in (4.1) can be established
globally by invoking the comparison principles for matrix Riccati equations by ap-
plying [1, Theorem 4.1.4]. Once the solution A is obtained, we can proceed to solve
the second equation for C in (4.1), which is a linear matrix differential equation of C,
in terms of A. �

4.2 A sufficient condition

For the general case where σf is not degenerate, there is no existing theory to ensure
existence of a solution to (4.1). We now provide a sufficient condition to establish
well-posedness of the coupled system (4.1). First, we introduce some notations for
convenience. Denote by Sn the space of real symmetric n × n matrices and define a
partial order < (≤) in Sn as

A1 < (≤)A2 ⇐⇒ A2 − A1 is positive (semi-)definite.

We begin with the following four lemmas that will be useful later.

Lemma 4.2 The instantaneous correlation matrix ρ satisfies

0n×n ≤ ρρ� ≤ Idn,

where Idn denotes the n × n identity matrix.
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Proof For any vector v ∈ R
n, we have v�ρρ�v = ‖vρ‖2

2 ≥ 0, which implies that
ρρ� ≥ 0n×n. On the other hand, for t ≥ 0, consider the covariance matrix �t of the
vector (W

p,�
t ,W

f,�
t )�, i.e.,

�t =
(

Idn ρ

ρ� Idk

)
t.

We have �t ≥ 0(n+k)×(n+k) as a covariance matrix is always positive semi-definite.
Note that both �t and its second entry Idk in the diagonal are positive definite. Con-
sequently, it follows that the Schur complement of the block matrix Idk of the block
�t takes the form

0n×n ≤ �t/Idk := (Idn − ρId−1
k ρ�)t = (Idn − ρρ�)t,

which completes the proof. �

Let σi(A) be the ith eigenvalue of a real matrix A. The spectral norm of A

is the largest singular value of A, i.e., σmax(A) := √
maxi σi(A�A). We also de-

fine σmin(A) := √
mini σi(A�A). Obviously, we have σmax(A) = maxi |σi(A)| and

σmin(A) = mini |σi(A)| for any A ∈ Sn. Denote by Z := C([0, T ];R(n+k)×(n+k)) the
set of R(n+k)×(n+k)-valued continuous functions with the norm

ρ∞(A) := max
0≤t≤T

σmax
(
A(t)

) = max
0≤t≤T

√
max

i
σi

(
A�(t)A(t)

)
for A( · ) ∈Z .

Lemma4.3 For A1,A2 ∈ C([0, T ];Sn+k), the norm ρ∞ has the following properties:

1) ρ∞(A1A2) ≤ ρ∞(A1)ρ∞(A2).
2) ρ∞(A1 + A2) ≤ ρ∞(A1) + ρ∞(A2).
3) ρ∞(A) ≤ κ ⇐⇒ −κIdn+k ≤ A(t) ≤ κIdn+k for all t ∈ [0, T ].

Proof The first two properties can be obtained directly from the definition of the
norm. Hence it remains to prove the last one. Since A(t) is a real symmetric matrix
for any t ∈ [0, T ], it can be diagonalised as A(t) = P̄ (t)diag(σi(A(t)))P̄ �(t), where
P̄ (t) is a real orthogonal matrix. It is obvious that

ρ∞(A) ≤ κ ⇐⇒ ∣∣σi

(
A(t)

)∣∣ ≤ κ for t ∈ [0, T ], i = 1, . . . , n + k.

For any t ∈ [0, T ] and i = 1, . . . , n + k, we have

∣∣σi

(
A(t)

)∣∣ ≤ κ ⇐⇒ −κIdn+k = −κP̄ (t)P̄ �(t) ≤ A(t) ≤ κP̄ (t)P̄ �(t) = κIdn+k.

Combining things completes the proof for property 3). �

Lemma 4.4 For any positive definite (respectively, semi-definite) H ∈ Sn, we have
σmax(e

−H ) < 1 (respectively, ≤ 1).



282 A. Bensoussan et al.

Proof Since H is symmetric positive definite (respectively, semi-definite), there ex-
ists an orthogonal matrix P̂ such that H = P̂ diag(H)P̂ −1, where diag(H) is a real
diagonal matrix whose main diagonal contains positive (respectively, nonnegative)

eigenvalues. Since e−H = e−P̂ diag(H)P̂−1 = P̂ e−diag(H)P̂ −1, we have

σi(e
−H ) = σi(e

−diag(H)) = e−σi(H) < 1

(respectively, ≤ 1), which completes the proof. �

Consider now the auxiliary system

Ȧ1 = D1 − ηN4 + A1K1 + K1A1 − A1N1A1 (4.3)

with terminal condition A1(T ) = 0(n+k)×(n+k) and

N4 :=
(

h2σ�
p ρρ�σp 0n×k

0k×n 0k×k

)
. (4.4)

The following result shows that (4.3) admits a unique solution.

Lemma 4.5 For any T > 0, (4.3) admits a unique solution A1.

Proof We rewrite A1 componentwise as

A1(t) :=
(−A1,xx(t) A1,xf (t)

A�
1,xf (t) A1,ff (t)

)

and perform a number of direct calculations to show that the components satisfy

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ȧ1,xx = 1

h
A1,xx�

−1A1,xx − ηh2σ�
p (Idn − ρρ�)σp,

Ȧ1,xf = −hB + 1

h
A1,xx�

−1A1,xf + A1,xf �,

Ȧ1,ff = − 1

h
(A1,xf )��−1A1,xf + (A1,ff � + �A1,ff ).

(4.5)

From (4.5), it suffices to show that the first equation admits a unique solution, as
the other equations for A1,xf and A1,ff are both linear. By Lemma 4.2, we have
ηh2σ�

p (Idn − ρρ�)σp ≥ 0n×n. Since �−1/h(t) ≥ 0n×n, it follows readily that A1,xx

admits a unique solution for any T > 0 by the comparison principle; see [1, Theo-
rem 4.1.4]. Consequently, the existence and uniqueness of A1,xf and A1,ff are also
established. This gives the result. �

We now provide a sufficient condition to ensure well-posedness of the sys-
tem (4.1).

Theorem 4.6 Given T > 0, suppose there exists an R > 0 satisfying the inequality

T
(
ρ∞(D2) + ρ∞(N1)

(
L2(R) + 2RL(R)

)) ≤ R, (4.6)
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where

L(R) := max
{
ρ∞(A1), T

(
ρ∞(D1) + b(R)

)}
, (4.7)

b(R) := η
(
2ρ∞(K2)R + ρ∞(N2)R

2). (4.8)

Then the coupled Riccati system (4.1) admits a unique solution. In addition, the so-
lution satisfies the estimates

ρ∞(A) ≤ L(R), ρ∞(C) ≤ R.

Remark 4.7 The sufficient condition in (4.6) implies that (4.1) is well posed for
small T . Such a feature is not unique to our system, as sufficient conditions for local
existence of solutions to other non-canonical, coupled Riccati systems can also be
found in Bensoussan et al. [4] and Herdegen et al. [30]. We provide some numerical
demonstrations on finding a positive R satisfying the inequality in (4.6).

Proof of Theorem 4.6 We first define in the space C([0, T ];Sn+k) a ball with radius
R > 0 as

BR := {C ∈ C([0, T ];Sn+k) : ρ∞(C) ≤ R},
and then define a map T on the ball BR as T (C̄) := C, where

{
Ȧ = D1 + AK1 + K1A − AN1A + η(C̄K2 + K�

2 C̄� + C̄N2C̄),

Ċ = D2 + CK1 + K1C + AN1A − AN1C̄ − C̄N1A
(4.9)

with terminal conditions A(T ) = C(T ) = 0(n+k)×(n+k). We prove that the map T
admits a fixed point via the Schauder fixed-point theorem in the following two steps.

Step 1. We show that T maps BR to itself. We first derive an estimate for A in
(4.9). For C̄ ∈ BR , applying Lemma 4.3 and invoking the definition of b in (4.8)
yields

ρ∞
(
η(C̄K2 + K�

2 C̄� + C̄N2C̄)
) ≤ b(R), (4.10)

which implies η(C̄K2 + K�
2 C̄ + C̄N2C̄) ≤ b(R)Idn+k . On the other hand, we have

C̄K2 + K�
2 C̄ + C̄N2C̄

=
(

C̄xf �f C̄�
xf + h(C̄xf ��

ρ + �ρC̄�
xf ), C̄xf �f C̄ff + h�ρC̄ff

C̄ff �f C̄�
xf + hC̄ff ��

ρ , C̄ff �f C̄ff

)

=
(

a

b

)(
a� b� ) − N4 ≥ −N4, (4.11)

where a := C̄xf σf +hσ�
p ρ, b := C̄ff σf and N4 is defined in (4.4). The last inequal-

ity results from the fact that
(

a

b

)(
a� b� ) ≥ 0(n+k)×(n+k).
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Combining (4.10) and (4.11) yields

−ηN4 ≤ η(C̄K2 + K�
2 C̄ + C̄N2C̄) ≤ b(R)Idn+k.

According to the comparison principle of matrix Riccati differential equations (see
Abou-Kandi et al. [1, Theorem 4.1.4]), we have the estimate

A2(t) ≤ A(t) ≤ A1(t),

where A1(t) is defined in (4.3) and A2(t) is

A2(t) = −
∫ T

t

e− ∫ s
t K1(u)du

(
D1(s) + b(R)Idn+k

)
e− ∫ s

t K1(u)duds.

As K1 is positive semi-definite, applying Lemma 4.4 leads to ρ∞(e−K1(s−t)) ≤ 1
for all s ≥ t . Consequently, it follows that ρ∞(A2) ≤ T (ρ∞(D1) + b(R)). By Lem-
mas 4.3 and 4.4, we have

−T
(
ρ∞(D1) + b(R)

)
Idn+k ≤ A2(t) ≤ A(t) ≤ A1(t) ≤ ρ∞(A1)Idn+k,

which implies that ρ∞(A) ≤ L(R), where L(R) is defined in (4.7).
Next, we derive an estimate for C in (4.9). In terms of C̄ and A, C reads

C(t) = −
∫ T

t

e−K1(s−t)
(
D2(s) + A(s)N1(s)A(s) − A(s)N1(s)C̄(s)

− C̄(s)N1(s)A(s)
)
e−K1(s−t)ds,

yielding ρ∞(C) ≤ T (ρ∞(D2)+ρ∞(N1)(L
2(R)+2RL(R))). Therefore, if there ex-

ists an R > 0 such that the latter term is ≤ R, we have ρ∞(C) ≤ R, which verifies
that T maps the ball BR to itself.

Step 2. It is clear that BR is a closed convex subset and that the mapping T is
continuous. Hence it remains to show that the image T (BR) is a relatively compact
subset of BR . Consider any sequence (T Cn)n∈N in T (BR). Since T maps BR to
itself, the sequence is uniformly bounded, i.e., we have ρ∞(T Cn) ≤ R for any n.
Since each element in the sequence is defined in (4.9), it is obvious that their first
derivatives are also uniformly bounded, which implies that the sequence is equicon-
tinuous. By the Arzelà–Ascoli theorem, the sequence (T Cn)n∈N thus has a uniformly
convergent subsequence, proving that T (BR) is a relatively compact subset of BR .
Consequently, by the Schauder fixed-point theorem (see Zeidler [41, Theorem 1.C]),
T admits a fixed point C∞. Accordingly, we can define A∞ in terms of C∞.

In addition, the uniqueness of the solution (A∞,C∞) follows because the right-
hand side of the equations in (4.1) is locally Lipschitz-continuous with respect to t .

�

A direct consequence of Theorem 4.6 is that Axx in (4.1) is positive definite.

Corollary 4.8 If the condition in Theorem 4.6 holds, we have

Axx(t) > 0n×n, t ∈ [0, T ).
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Proof We rewrite the first equation in (3.10) by completing the square with respect to
the term σf C�

xf + hρ�σp and come to the expression

Ȧxx = 1

h
Axx�

−1Axx − η(σf C�
xf + hρ�σp)�(σf C�

xf + hρ�σp)

− ηh2σ�
p (Idn − ρρ�)σp (4.12)

with Axx(T ) = 0n×n. By Lemma 4.2, we know that Idn − ρρ� ≥ 0n×n. The result
follows by applying the comparison principle on (4.12) (see [1, Theorem 4.1.4]). �

5 Financial implications

In this section, we first provide some financial implications behind the equilibrium
trading strategy τ ∗ in (3.9) in Proposition 3.3, whose uniqueness is a direct con-
sequence of Theorem 4.6 under the sufficient condition in (4.6). We then compare
our results with the dynamic mean–variance model without price impact. To explore
more financial implications of this equilibrium trading strategy, we also perform an
asymptotic expansion on the coupled system in (4.1) around small liquidity costs and
derive the corresponding almost equilibrium trading strategy.

5.1 Equilibrium portfolio and target portfolio

To provide more financial interpretations on the equilibrium trading strategy τ ∗, we
begin with the following corollary which is a direct consequence of Proposition 3.3
and Corollary 4.8.

Corollary 5.1 When the coupled Riccati system in (4.1) is well posed, the equilibrium
trading strategy τ ∗ admits the form

τ ∗(t, x, y, f ) = M rate(t)
(
M targ(t, f ) − x

)
, (5.1)

where the tracking rate matrix is M rate(t) = �−1Axx(t)/h(t) and the target portfo-
lio is

M targ(t, f ) = A−1
xx (t)Axf (t)f. (5.2)

The target portfolio is obviously well defined since Axx in (3.10) is positive defi-
nite by Corollary 4.8 when (4.1) is well posed. Financially, the target portfolio plays
a critical role to guide the mean–variance investor in rebalancing her portfolio. The
presence of price impact forbids the investor from rebalancing her portfolio simul-
taneously whenever the return-predicting factors change. Instead, she should trade
gradually towards the target portfolio. It is observed from M rate that a larger price
impact coefficient � results in a slower trading rate. In addition, the target portfolio
M targ in (5.2) is directly proportional to the return-predicting factors, with the coef-
ficient matrix A−1

xx Axf capturing the persistence of the return-predicting signals and
the price impact.
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Next, we show that the target portfolio M targ degenerates into the Markowitz port-
folio in (5.3) as the time to invest goes to 0. We follow the notation in Gârleanu and
Pedersen [20] to denote the Markowitz portfolio by

Markowitz (t, f ) := 1

ηh(t)
�−1

p Bf. (5.3)

Corollary 5.2 When t → T , the target portfolio M targ converges to Markowitz, i.e.,

lim
t→T

M targ(t, ft ) = Markowitz (T ,ft ).

Proof Applying the Taylor expansion to Axx(t) and Axf (t) around T , we have

Axx(t) = Axx(T ) + (t − T )Ȧxx(T ) + o(t − T ) = −ηh2(T )�p(t − T ) + o(t − T ),

Axf (t) = Axf (T ) + (t − T )Ȧxf (T ) + o(t − T ) = −h(T )B(t − T ) + o(t − T ).

Combining these and applying L’Hôpital’s rule, we achieve the desired results as

lim
t→T

M targ(t, ft ) = lim
t→T

A−1
xx (t)Axf (t)ft = 1

ηh(T )
�−1

p BfT = Markowitz (T ,fT ).

�

5.2 Comparisons with an equilibrium portfolio without price impact

To explore the effect of Kyle’s lambda � on the target portfolio M targ, let us revisit
the dynamic mean–variance problem without frictions, i.e., � = 0n×n. As in Defini-
tion 2.1, we first provide a definition of an admissible feedback frictionless portfolio.

Definition 5.3 An admissible feedback frictionless portfolio is a map

xnp : [0, T ] ×R×R
k →R

n

such that for any initial point (t, y, f ) ∈ [0, T ] ×R×R
k , the SDE

dy
xnp
t = (

ry
xnp
t + xnp(t, y

xnp
t , ft )

�Bft

)
dt + xnp(t, y

xnp
t , ft )

�σpdW
p
t

admits a unique strong solution denoted by yxnp . The class of admissible portfolios is
denoted by Anp

[0,T ], and we use xnp and xnp(t, y, f ) interchangeably.

The mean–variance objective functional without frictions is given by

Jnp(t, y, f ;xnp) = E
y,f
t [yxnp

T ] − η

2
Vary,f

t [yxnp
T ] = E

y,f
t [F(y

xnp
T )] + G(E

y,f
t [yxnp

T ]),

where

E
y,f
t [ · ] := E[ · |yxnp

t = y,ft = f ],
Vary,f

t [ · ] := Var[ · |yxnp
t = y,ft = f ]
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denote the conditional expectation and conditional variance, respectively. Corre-
spondingly, we define an equilibrium frictionless portfolio x∗

np as follows.

Definition 5.4 An admissible feedback frictionless portfolio x∗
np is called an equilib-

rium frictionless portfolio if for any (t, y, f ) ∈ [0, T ] ×R×R
k ,

lim inf
ε→0+

Jnp(t, y, f ;x∗
np) − Jnp(t, y, f ;xε

np)

ε
≥ 0.

Here xε
np is a spike modification of xnp,∗ ∈Anp

[0,T ] defined as

xε
np(s, y, f ) =

{
x̄np(s, y, f ), s ∈ [t, t + ε), y ∈ R, f ∈R

k,

x∗
np(s, y, f ), s ∈ [t + ε, T ], y ∈ R, f ∈ R

k,

where x̄np ∈ Anp
[0,T ] and ε > 0 are arbitrarily chosen. The corresponding equilibrium

frictionless value function is defined as Vnp(t, y, f ) := Jnp(t, y, f ;x∗
np).

Following Basak and Chabakauri [3], we show that an equilibrium frictionless
value function Vnp(t, y, f ) satisfies an extended HJB equation. For 
np(t, y, f ) in
C1,2,2([0, T ] ×R×R

k), we have

⎧⎨
⎩

0 = max
xnp∈Rn

(LxnpVnp − ηN xnp
np),

0 = Lx∗
np
np

with Vnp(T , y, f ) = 
np(T , y, f ) = y. Here, the operators Lx and N x are defined,
for any u ∈ C1,2,2([0, T ] ×R×R

k), by

Lxu := ∂tu + (ry + x�Bf )∂yu − ∂f u��f

+1

2
x��px∂yyu + x��ρ∂yf u + 1

2
tr(∂ff u�f ),

N xu := 1

2
x��px(∂yu)2 + x��ρ∂yu∂f u + 1

2
(∂f u)��f (∂f u).

We now provide the main result of this section in the form of the following propo-
sition. As the proof is analogous to that of Proposition 3.3, we omit it for brevity.

Proposition 5.5 Let

Vnp(t, y, f ) = h(t)y + V̂np(t, f ), 
np(t, y, f ) = h(t)y + ĝnp(t, f ),

where

V̂np(t, f ) = 1

2
f �A

(0)
ff (t)f + A

(0)
0 (t), ĝnp(t, f ) = 1

2
f �C

(0)
ff (t)f + C

(0)
0 (t),
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with the coefficients

C
(0)
ff (t) = 2

η

∫ T

t

e(�+�−1
p �ρB)�(s−t)B��pBe(�+�−1

p �ρB)(s−t)ds,

A
(0)
0 (t) = 1

2

∫ T

t

tr
(
A

(0)
ff (s)�ff

)
ds, C

(0)
0 (t) = 1

2

∫ T

t

tr
(
C

(0)
ff (s)�ff

)
ds,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ȧ
(0)
ff = (C

(0)
ff ��

ρ �−1
p B + B��−1

p �ρC
(0)
ff ) + (A

(0)
ff � + ��A

(0)
ff )

+ ηC
(0)
ff σ�

f (Id − ρρ�)σf C
(0)
ff − B��−1

p B

η
,

A
(0)
ff (T ) = 0n×n,

and

x∗
np(t, y, f ) = �−1

p

ηh(t)

((
B − η�ρC

(0)
ff (t)

)
f

)

= Markowitz (t, f ) − 1

h(t)
�−1

p �ρC
(0)
ff (t)f

︸ ︷︷ ︸
hedging

. (5.4)

Then x∗
np in (5.4) is an equilibrium frictionless portfolio and Vnp(t, y, f ) is the cor-

responding equilibrium frictionless value function in Definition 5.4.

Hence, in the absence of price impact, the equilibrium frictionless portfolio x∗
np in

(5.4) is independent of ĝnp, which is consistent with Basak and Chabakauri [3].
Proposition 5.5 reveals that the equilibrium frictionless portfolio x∗

np in (5.4) is
structurally different from the equilibrium portfolio x∗ defined in (2.3) with respect
to τ ∗ in Proposition 3.3 in three aspects. First, the equilibrium frictionless portfolio
x∗

np is linear in the return-predicting factor, which implies that the path of x∗
np follows

the Brownian path of the return-predicting factors. In contrast, the path of the equilib-
rium portfolio x∗ is smooth. Secondly, when � �= 0n×n, Proposition 3.3 shows that
the equilibrium trading strategy τ ∗ is expressed in terms of (A,C) in (4.1), and that
C cannot be solved for independently. This coupling feature escalates the difficulty of
our problem significantly and also demonstrates the essential difference when price
impact is taken into account in the dynamic portfolio selection problem. Finally, from
(5.4), the hedging demand disappears when �ρ = 0n×k , i.e., when the risky asset
prices and the return-predicting factors are independent. The investor invests myopi-
cally and follows the Markowitz portfolio. On the other hand, the hedging demand is
still present when trading with price impact, as τ ∗ in Proposition 3.3 would not de-
generate into the Markowitz portfolio when �ρ = 0n×k . This can be explained by the
fact that trading with price impact makes the investor far-sighted, instead of myopic,
as she anticipates the expected path of the return-predicting factors and rebalances her
portfolio smoothly towards the target portfolio to avoid staggering execution costs.

We conclude this section with the following corollary, which shows that the target
portfolio in (5.2) can be expressed in terms of the frictionless equilibrium portfolio
without price impact in (5.4).
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Corollary 5.6 The target portfolio in (5.2) admits the representation

M targ(t, f )

= ηA−1
xx (t)E

y,f
t

[∫ T

t

e
− ∫ s

t
Axx (u)�−1

h(u)
du

(
h2(s)�px∗

np(s, y
x∗

np
s , fs)

+ (
h(s)�ρC

(0)
ff (s) − Cxf (s)�f Cff (s) − h(s)�ρCff (s)

)
fs︸ ︷︷ ︸

adjustment term

)
ds

]
.

Proof This readily follows from applying Itô’s lemma to e
∫ T
t

1
h(s)

Axx(s)�−1ds
Axf (t)ft ,

integrating from t to T and taking conditional expectations. �

The representation above comprises an adjusted discounted integral of the future
equilibrium frictionless portfolio x∗

np, netting the adjustment term due to the mean-
field term in the objective functional in (2.7). In addition, the adjustment term in
Corollary 5.6 hinges primarily on the stochastic nature of the return-predicting factors
and the coefficient functions Cxf and Cff that account for the persistence of the
return-predicting factors as well as the trading friction �. Indeed, when �f = 0k×k ,
the adjustment term disappears as there would be no hedging demand needed for the
deterministic return-predicting factors.

5.3 Small-liquidity-costs asymptotics

In Sect. 4, we have derived a sufficient condition for the well-posedness of the cou-
pled Riccati system in (4.1). Also, in Sect. 5.2, the frictionless value function and trad-
ing strategy are derived. In light of Corollary 5.6, we now conduct a small-liquidity-
costs perturbation around the frictionless case to shed more light on the relationship
between the investor’s equilibrium portfolio without price impact and her target port-
folio. Following Gârleanu and Pedersen [20], we assume in this subsection that the
liquidity costs are proportional to the amount of stock risk for a scalar λ > 0, i.e.,

� = λ�p. (5.5)

In terms of (5.5), we denote by (Aλ,Cλ) the solution of the coupled system in
(4.1). We first heuristically provide an explicit

√
λ-order (hereafter, referred to as the

first-order) solution to the coupled Riccati system as

Ãλ(t) =
(−Ãxx(t) Ãxf (t)

Ã�
xf (t) Ãff (t)

)

: =
(

0n×n 0n×k

0k×n A
(0)
ff (t)

)
+ √

λ

( −A
(1)
xx (t) A

(1)
xf (t)(

A
(1)
xf (t)

)� 0k×k

)
, (5.6)

C̃λ(t) =
(−C̃xx(t) C̃xf (t)

C̃�
xf (t) C̃ff (t)

)

: =
(

0n×n 0n×k

0k×n C
(0)
ff (t)

)
+ √

λ

( −C
(1)
xx (t) C

(1)
xf (t)(

C
(1)
xf (t)

)� 0k×k

)
, (5.7)
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where the zero-order part (A
(0)
ff ,C

(0)
ff ) is defined in Proposition 5.5 and the

√
λ-order

part is given by

A
(1)
xx (t) := h

3
2 (t)η

1
2 �p, A

(1)
xf (t) := √

h(t)/η
(
B − η�ρC

(0)
ff (t)

)
,

C
(1)
xx (t) := h

3
2 (t)η

1
2 �p/2, C

(1)
xf (t) := √

h(t)/η
(
3B − η�ρC

(0)
ff (t)

)
/2.

Based on the above explicit first-order solution to the coupled Riccati system, we
construct an approximate value function as

Ṽ (t, x, y, f ) := h(t)y − 1

2
x�Ãxx(t)x + x�Ãxf (t)f + 1

2
f �A

(0)
ff (t)f + A

(0)
0 ,

(5.8)


̃(t, x, y, f ) := h(t)y − 1

2
x�C̃xx(t)x + x�C̃xf (t)f + 1

2
f �C

(0)
ff (t)f + C

(0)
0 ,

(5.9)

with a sub-optimal trading strategy

τ̃ (t, x, y, f ) := �−1
p

λh(t)
∂xṼ (t, x, y, f )

=
√

ηh(t)

λ

(
�−1

p (B − η�ρC
(0)
ff (t))f

ηh(t)︸ ︷︷ ︸
=x∗

np

−x

)
. (5.10)

Substituting Ṽ and 
̃ in (5.8) and (5.9) into the coupled PDE in (3.1) yields

{
max
τ∈Rn

Lτ Ṽ − ηN x
̃ = O(
√

λ),

Lτ̃ 
̃ = O(
√

λ).
(5.11)

For more discussions and derivations on small-liquidity-costs asymptotics in a gen-
eral Markovian setting, readers are referred to Moreau et al. [36], Ekren and Muhle-
Karbe [18], Muhle-Karbe et al. [38], and the references therein.

Remark 5.7 One can also derive an alternative sub-optimal trading strategy by impos-
ing a different assumption on � from (5.5). Specifically, by adopting the form of �

as in Moreau et al. [36] and Ekren and Muhle-Karbe [18], i.e.,

� = λ�̄, �̄ > 0n×n, λ > 0,

the corresponding sub-optimal trading strategy τ̃ becomes

τ̃ λ(t, x, y, f ) := η
1
2 �̄− 1

2 (�̄− 1
2 �p�̄− 1

2 )
1
2 �̄

1
2

(λh−1
(t) )

1
2

(
�−1

p (B − η�ρC
(0)
ff (t))f

ηh(t)︸ ︷︷ ︸
x∗

np

−x

)
.

(5.12)



Dynamic mean–variance problem with frictions 291

Comparing (5.12) with (5.10), the coefficient matrix of the vector x∗
np − x in (5.12) is

an identity matrix under the assumption in (5.5), implying that the investor trades to-
wards the frictionless portfolio. This assumption also helps us achieve the desired
symmetric structure of the coupled Riccati system (A,C) in (4.1) when proving
Proposition 5.9 below.

Important implications can be drawn from the sub-optimal strategy τ̃ in (5.10)
and the first-order solution pair (Ṽ , 
̃) in (5.11). First, the feedback nature of τ̃ in
(5.10) indicates that the investor is trading towards x∗

np for sufficiently small liquidity
cost λ. In other words, when λ is small, x∗

np is the target portfolio for the investor
in a first-order sense, and

√
ηh(t)/λ is the trading rate. The smaller the value of λ,

the larger the trading rate becomes as it becomes less costly for the investor to re-
balance her portfolio. When λ = 0, the tracking rate becomes infinite, indicating that
the investor should immediately rebalance her portfolio to match the target portfo-
lio in the absence of any trading friction. Second, the approximated PDE for Ṽ in
(5.11) indicates that the investor’s expected utility would not deteriorate significantly
when the liquidity cost λ is sufficiently small. Third, from the view of the asymptotic
analysis, the first-order (

√
λ-order) terms A

(1)
xx , A

(1)
xf , C

(1)
xx and C

(1)
xf all admit closed-

form expressions, which is in a stark contrast to the coupled Riccati system in (4.1).
This observation indicates that the coupling feature in (4.1) appears in the higher-
order terms and one must therefore consider to expand into higher orders to derive a
similar sufficient condition in Theorem 4.6 by means of an asymptotic analysis.

Compared to the equilibrium value function in (3.7) with the equilibrium trading
strategy in (3.9), the first-order approximations in (5.8) and (5.10) are explicit. To
demonstrate that the sub-optimal control is an almost optimal control in the sense of
Moreau et al. [36], we proceed to conduct an error analysis on (5.8) with respect to
(3.7) in the sense that

V − Ṽ = −1

2
x�(Aλ

xx − Ãxx)x + x�(Aλ
xf − Ãxf )f

+ 1

2
f �(Aλ

ff − A
(0)
ff )f + (Aλ

0 − A
(0)
0 ).

Obviously, it suffices to show that the coefficients defined in (5.6) and (5.7) are indeed
the first-order approximation to (Aλ,Cλ) as λ → 0. We conclude this section by
showing that when σf = 0k×k , we have (Aλ − Ãλ,Cλ − C̃λ) = O(

√
λ) as λ → 0 for

the spectral norm σmax. The error analysis for the general case (σf �= 0k×k) is more
delicate and will be studied in the future. We begin with the following lemma.

Lemma 5.8 Suppose that H1 is symmetric positive definite and H2 is symmetric pos-
itive semi-definite. If they commute, i.e., H1H2 = H2H1, then H1H2 is symmetric
positive semi-definite.

Proof Since H1 commutes with H2, we have (H1H2)
� = H�

2 H�
1 = H2H1 = H1H2,

proving that H1H2 is symmetric. Moreover, there exists an invertible matrix P1 such
that H1 = P �

1 P1. Now the set of eigenvalues of P �
1 P1H2 (or H1H2) equals the set of
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eigenvalues of P1H2P
�
1 . Since P1H2P

�
1 is positive semi-definite, all its eigenvalues

are nonnegative, i.e., H1H2 is symmetric positive semi-definite. �

Proposition 5.9 When σf = 0k×k , we have the estimate, for t ∈ [0, T ] and as λ → 0,

σmax
(
Aλ

xx(t) − Ãxx(t)
) = O(

√
λ), σmax

(
Aλ

xf (t) − Ãxf (t)
) = O(

√
λ),

σmax
(
Cλ

xx(t) − C̃xx(t)
) = O(

√
λ), σmax

(
Cλ

xf (t) − C̃xf (t)
) = O(

√
λ),

σmax(A
λ
ff − A0

ff ) = O(
√

λ), σmax(C
λ
ff − C0

ff ) = O(
√

λ).

Proof It is enough to show σmax(A
λ
xx(t) − Ãxx(t)) = o(

√
λ); the other estimates fol-

low similarly. Define the remainder AR
xx(t) := Aλ

xx(t) − Ãxx(t). Differentiating the
remainder AR

xx leads to

ȦR
xx = Ȧλ

xx − √
λȦ(1)

xx = (
√

λA
(1)
xx + AR

xx)�
−1
p (

√
λA

(1)
xx + AR

xx)

hλ
− ηh2�p − √

λȦ(1)
xx

= AR
xx

√
ηh

λ︸ ︷︷ ︸
=:a

+ Aλ
xx�

−1
p

hλ︸ ︷︷ ︸
=:b

AR
xx − √

λȦ(1)
xx .

According to [1, Theorem 1.1.5], its solution can be obtained as

AR
xx(t) = �b(t, T )AR

xx(T )��
a�(t, T ) +

∫ T

t

�b1(t, s)
√

λȦ(1)
xx ��

a�(t, s)ds

= −√
ηλ�b(t, T )�p��

a�(t, T )

−3r
√

ηλ

2

∫ T

t

h
3
2 (s)�b(t, s)�p��

a�(t, s)ds, (5.13)

where �(t, s)H is the fundamental matrix of the matrix differential equation

�̇H (t, s) := ∂

∂t
�H (t, s) = H(t)�H (t, s), 0 ≤ t < s ≤ T , (5.14)

with �H (s, s) = Idn. Next, applying [1, Theorem 3.6.1] to (5.14), we have the esti-
mate

σmax
(
�H (t, s)

) ≤ 1, 0 ≤ t < s ≤ T , (5.15)

if H(t) is positive semi-definite for t ∈ [0, T ]. Since it is easy to see that a� is positive
semi-definite, it remains to show that b is positive semi-definite on [0, T ]. When
σf = 0k×k , the assumption in (5.5) readily implies that Aλ

xx and �p (and also �−1
p )

commute. Moreover, we know that Aλ
xx is positive semi-definite on [0, T ]. According

to Lemma 5.8, the matrix b is positive semi-definite. Thus following (5.15), we have
for the fundamental matrices the estimates

σmax
(
�b(t, s)

) ≤ 1, σmax
(
��

a�(t, s)
) ≤ 1, 0 ≤ t < s ≤ T .
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Applying the spectral norm σmax on both sides of (5.13) gives

σmax(A
R
xx(t))√
λ

≤ √
η σmax(�p)

(
1 + 3r

2

∫ T

t

h
3
2 (s)ds

)

= √
η σmax(�p)e

3r(T −t)
2 . (5.16)

It follows from (5.16) that

lim
λ→0

σmax(A
R
xx(t))√
λ

< ∞,

i.e., σmax(A
R
xx(t)) = O(

√
λ). �

Remark 5.10 Establishing Proposition 5.9 requires the remainders, such as AR
xx , to

be well defined; this holds when the original coupled Riccati system (Aλ,Cλ) in
(4.1) with respect to λ is well defined. When σf = 0k×k , as in Proposition 5.9, the
original coupled system (Aλ,Cλ) is essentially decoupled and therefore its global
solution uniquely exists. Hence the error analysis can then be conducted in a similar
vein as in Muhle-Karbe et al. [38], since the system of matrix Riccati differential
equations admits a global solution that exists unconditionally. However, when σf �=
0k×k , a more delicate analysis (postponed to later work) is needed to ensure that the
remainder terms are well defined in our framework.

6 Numerical examples

In Theorem 4.6, we have provided a sufficient condition in (4.6) to ensure the well-
posedness of the coupled Riccati system (A,C) in (4.1). This section provides a
detailed numerical investigation on (4.6) under various sets of model parameters.
To facilitate discussion, we first rephrase (4.6) in terms of a discriminant function
defined as

F(R,T , r,B,�,ρ,�p,�f ,�,η)

:= T (ρ∞(D2) + ρ∞(N1)(L
2(R) + 2RL(R)))

R
− 1. (6.1)

In view of (6.1), establishing (4.6) amounts to finding an R > 0 such that

F(R,T , r,B,�,ρ,�p,�f ,�,η) ≤ 0. (6.2)

We therefore provide several numerical illustrations on F by varying one to two
model parameters below.
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Fig. 1 The discriminant
function F as a function of R

6.1 Single risky asset with single return-predicting factor

In this subsection, we consider a financial market with one risky asset (i.e., index
fund) and one return-predicting factor. Unless stated otherwise, the parameters in this
subsection are taken from the set

� := {T = 0.5, r = 0.05,B = 0.3,� = 1, ρ = 0.2,

�p = 0.01,�f = 0.04,� = 0.5, η = 0.5}. (6.3)

Figure 1 shows the discriminant function F in (6.1) as a function of R, while
the remaining parameters are given in (6.3). From Fig. 1, F crosses the zero line at
around R ≈ 0.30. In view of Theorem 4.6, Fig. 1 provides a numerical confirmation
that the coupled Riccati system (A,C) in (4.1) under the model parameters in (6.3)
is well posed.

Figure 1 has shown that there exists an R > 0 to satisfy the condition in (6.2) given
the model parameters in (6.3). We now provide some visualisations on the sets of
feasible regions consisting of two model parameters such that the sufficient condition
in (6.2) is satisfied under a given R > 0. Without any loss of generality, we set R = 1
and consider the two feasible regions defined as

�(�,T ) := {(�,T ) ∈ R
2+ :F(R,T , r,B,�,ρ,�p,�f ,�,η) ≤ 0,

R = 1; r,B,�,ρ,�p,�f ,η ∈ �},
�(η,B) := {(η,B) ∈ R

2+ :F(R,T , r,B,�,ρ,�p,�f ,�,η) ≤ 0,

R = 1;T , r,�,ρ,�p,�f ,� ∈ �}.
In words, for R = 1, the feasible region �(�,T ) (respectively, �(η,B)) is the set of
(�,T ) ∈R

2+ (respectively, (η,B) ∈ R
2+) such that the coupled Riccati system (A,C)

in (4.1) under the remaining model parameters in (6.3) is well posed.
Figure 2(a) (respectively, 3(a)) displays a three-dimensional plot of the discrimi-

nant function F as a function of � and T (respectively, η and B), with the feasible
region �(�,T ) (respectively, �(η,B)) shown as the dark-shaded region. In addition,
the cross-sectional plots are given in Figs. 2(c) and 2(d) (respectively, Figs. 3(c) and
3(d)) to illustrate the behaviour of F with respect to each model parameter.
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Fig. 2 The discriminant function F as a function of � and T

We now provide some numerical illustrations on the optimal portfolio x∗. Accord-
ing to (5.1), the investor trades towards the target portfolio M targ in (5.2), and hence it
suffices for us to compare the target portfolio M targ with the equilibrium frictionless
portfolio x∗

np in (5.4). Since (5.2) and (5.4) are linear in f , we obtain

M targ(t, f )

x∗
np(t, y, f )

= ηh(t)�p

(B − η�ρC0
ff (t))

Axf (t)

Axx(t)
.

Figure 4 displays the evolution of the ratio M targ(t, f )/x∗
np(t, y, f ) and of

M rate(t), which is the tracking rate defined in Corollary 5.1, with respect to time.
Specifically, in Fig. 4(a), M targ/x∗

np is shown to be less than 1 and upward-sloping

as time approaches the maturity T , with M targ(T ,fT )/x∗
np(T , y

x∗
np

T , fT ) = 1. This ob-
servation indicates that the target portfolio is more conservative than the equilibrium
frictionless portfolio and the magnitude of that conservatism decreases as the invest-
ment horizon shrinks. In other words, the market frictions make the investor trade
more prudently in response to the changes of the return-predicting factor. On the other
hand, in Fig. 4(b), M rate is downward-sloping and converges to 0 as time approaches
the maturity T . As the maturity draws nearer, the chance of the investor narrowing
the gap between her current portfolio and the target portfolio diminishes, and hence
she should slow down the rebalancing speed to avoid staggering trading costs.
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Fig. 3 The discriminant function F as a function of η and B

Fig. 4 The ratio (a) and the tracking rate (b) with respect to time

6.2 Two assets with idiosyncratic return-predicting signals

In this section, we consider the case of two risky assets each of which only depends
on its own level, i.e., �, B , �, �p and �f are all diagonal matrices. The parameters
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Fig. 5 Two assets with idiosyncratic return-predicting signals

in this example are

T = 0.5, r = 0.05, � = diag(1,5),

�p = diag(0.04,0.04), �f = diag(0.16,0.16),

η = 0.5, B = diag(1,1), ρ = 02×2, � = diag(0.5,0.5),

x0 = (0,0)�, f0 = (1,1)�. (6.4)

Figure 5(a) shows that the discriminant function F crosses the zero line at
R ≈ 0.45, indicating that the coupled Riccati system (A,C) in (4.1) under the model
parameters in (6.4) is well posed. On the other hand, the study of the price impact in
this two-asset example can be done by comparing M targ and x∗

np. To this end, we de-

fine the expected target portfolio M
targ

and the expected equilibrium portfolio without
price impact x∗

np as

M
targ

(t, f ) := E[M targ(t, ft )|f0 = f ] = A−1
xx Axf e−�tf0,

x∗
np(t, y, f ) := E[x∗

np(t, y
x∗

np
t , ft )|yx∗

np
0 = y,f0 = f ],

where x∗
np in (5.4) is seen to be independent of y

x∗
np .

Figure 5(b) displays the allocations in assets 1 and 2 in M
targ

and x∗
np, with the

arrows indicating the direction of the evolution with respect to time. The straight line
denotes a 45-degree line which represents equal allocations in assets 1 and 2. When
t = 0, x∗

np shows an equal allocation in assets 1 and 2, but more allocations are placed

in asset 1 than in asset 2 as time progresses. On the other hand, M
targ

follows x∗
np from

the left as time progresses, and converges to x∗
np as time approaches the maturity T .

The observation in Fig. 5(b) can be explained by inspecting the elements of the
mean-reversion matrix �, as the other parameters in assets 1 and 2 are identical. Since
�2 is larger than �1, the return-predicting signal for asset 2 is less persistent than
that for asset 1. Consequently, the investor would invest more in asset 1 over time,
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resulting in convex paths with respect to asset 1 for both M
targ

and x∗
np. However,

trading frictions forbid the investor to react aggressively, and this explains why M
targ

is to the left of x∗
np over time. Finally, the close proximity between M

targ
and x∗

np in
Fig. 4(b) provides a visual confirmation of the small-liquidity-costs asymptotics in
Sect. 5.3 in that x∗

np serves as a good approximation of M
targ

for sufficiently small
liquidity costs.

7 Conclusions

In this paper, we derive an explicit equilibrium strategy of a dynamic mean–variance
investor in which asset returns are driven by stochastic factors, which effectively
captures return predictability, and where each trade incurs a linear transient price
impact. We employ mean-field type control techniques to characterise an equilibrium
trading strategy in terms of an extended HJB equation, which can be solved up to a
coupled system of matrix Riccati differential equations. After establishing the well-
posedness of the coupled Riccati system, we derive a sufficient condition under which
a local solution exists uniquely.

Our equilibrium solution admits several important financial implications when
trading with price impact. In addition, we conduct an asymptotic analysis by per-
turbing our matrix Riccati differential equations around small liquidity costs, and
show that the equilibrium trading strategy without price impact can serve as a target
portfolio for the investor in a first-order sense for sufficiently small liquidity costs.

This paper also initiates many new research directions. First, equilibrium solu-
tions under different asset price dynamics with price impact can also be reformulated
as mean-field type control problems and therefore a general, extended dynamic pro-
gramming principle can be derived accordingly. Second, a precommitment solution
of the dynamic mean–variance problem with price impacts can also be characterised
via solutions of fully coupled forward–backward PDE equations by means of the
Hamilton–Jacobi–Bellman–Fokker–Planck (HJB-FP) approach. Finally, further ex-
plorations of the portfolio selection problem with time-inconsistency and price im-
pacts may not conveniently yield any explicit formulations and further numerical
analysis in a similar vein as in Ekren and Muhle-Karbe [18] and Van Staden et al.
[39] become necessary. We leave these ideas for future research.
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