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Abstract. The objective of this paper is to study the optimal consumption and portfolio
choice problem of risk-controlled investors who strive to maximize total expected discounted
utility of both consumption and terminal wealth. Risk is measured by the variance of terminal
wealth, which introduces a nonlinear function of the expected value into the control problem.
The control problem presented is no longer a standard stochastic control problem but rather,
a mean field-type control problem. The optimal portfolio and consumption rules are obtained
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1. Introduction

Risk is no doubt essential in portfolio choices. The
comprehensive review of portfolio choices with vari-
ous risk measures can be found in Mitra and Ji (2010),
Krokhmal et al. (2011), and Kolm et al. (2014). Also,
utility theory is the foundation for the theory of choice
under uncertainty. Hence, it is natural to combine the
expected utility maximization framework with risk
measures (utility-risk management framework hereaf-
ter) when considering a risk-controlled individual’s
optimal investment-consumption decision under un-
certainty. The research along this line is scarce and
growing (e.g., Basak and Shapiro 2001, Pfeiffer 2016,
Wong et al. 2017), and we aim to contribute to litera-
ture in this direction.

In this study, we combine the utility maximization
framework of Merton (1969, 1971) with the variance
minimization idea from the Markowitz (1952) mean-
variance analysis to study risk management on
optimal portfolio and consumption decisions. Our pri-
mary interest is to observe how optimal consumption
and portfolio rules are altered because of the introduc-
tion of the variance risk measurement. We consider an
agent who strives to maximize total expected dis-
counted utility of both consumption and terminal
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wealth while minimizing the variance of terminal
wealth. The inclusion of the variance term introduces
a nonlinear function of the expected value into the ob-
jective of the control problem. The problem is no longer
a standard stochastic control problem but rather, a
mean field-type control (MFTC hereafter) problem. We
use the Hamilton-Jacobi—Bellman and Fokker—Planck
equations (HJB-FP hereafter) framework of Bensoussan
et al. (2013) to solve the MFTC problem and obtain a so-
lution depending on the initial condition.

Our work makes four significant contributions.
First, despite the growing attention to investigating
portfolio selections under a utility-risk management
framework, most work does not consider portfolio se-
lections and intermediate consumption simultaneous-
ly. Our model fills the gap by integrating intermediate
consumption, portfolio selections, and utility-risk
management in a unified framework.

Second, our study makes a technical contribution to
the literature. It turns out that solving a fixed point
equation is the key difficulty of studying the MFTC
problem by the HJB-FP framework in our study. We
are not only able to rigorously prove the uniqueness
and existence of the solution to the fixed point equation
but also, able to obtain explicit formulas for the optimal
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consumption and portfolio choices. Furthermore, the
fixed point has a crucial economic interpretation, the
average terminal wealth. As a by-product, we show
that the optimal terminal wealth is deterministic for an
individual whose penalty of the variance risk is infi-
nitely large. Moreover, we rigorously prove that this
deterministic optimal terminal wealth is less than the
expected optimal terminal wealth in the classical Mer-
ton’s model (i.e., zero penalty of the variance risk),
showing that the conservative portfolio choice because
of a zero tolerance of variance risk results in lower ex-
pected terminal wealth.

Third, we demonstrate the significance of embed-
ding variance risk management criteria on optimal
consumption and portfolio selections. Numerical
analysis results show that a consumer-investor’s in-
vestment in risky assets is inversely related to his per-
spective on the importance of the variance risk as well
as the progress of time. More importantly, numerical
results demonstrate the increasing-decreasing shape
of optimal consumption rate with respect to a consumer-
investor’s perspective on the importance of the variance
risk. We view this nonlinear relation as a significant
finding, which reveals that our model not only can al-
low a consumer-investor to control the variance risk
but also, can allow a consumer-investor to increase his
consumption rate. This desirable feature is robustness
regardless of values of a consumer-investor’s risk-aver-
sion coefficient and the market price of risk.

Fourth, our model theoretically derives the ex-
pected terminal wealth depending on the different
levels of variance risk. It allows a consumer-investor
to choose the proper level of variance risk considering
his risk aptitude by inputting a target expected termi-
nal wealth. As a result, the extent of risk management
for the investor is measurable and observable.

1.1. Literature Review: General Literature

Much of the current research on portfolio theory ema-
nates from the path-breaking mean-variance portfolio
model of Markowitz (1952), who refines the economic
logic of diversification and offers a practical way to
choose an “optimal portfolio” of assets by explicitly
recognizing investment risk as measured by variance
of return. Since then, there have been a considerable
number of studies devoted to the mean-variance
framework, including the extension from the single-
period setting to the dynamic continuous-time formu-
lation; see, for example, Li and Ng (2000), Zhou and
Li (2000), Li et al. (2002), Zhou and Yin (2003), Cesar-
one et al. (2013), and Qin (2015), among others. In the
extension to the multiperiod and continuous-time
framework, before the works of Li and Ng (2000) and
Zhou and Li (2000) who study the problem by the em-
bedding technique and the stochastic linear-quadratic
control framework, respectively, there is no analytical

result. Moreover, to tackle the computational efficien-
cy and to accommodate a broader class of risk measures
for various considerations, many researchers have ap-
plied the concept of mean-variance analysis to the adop-
tion of different risk measures, such as mean-absolute
deviation risk measures, value-at-risk (VaR) risk meas-
ures, and coherent risk measures; see, for instance, Kon-
no and Yamazaki (1991); Rockafellar and Uryasev (2000,
2002); Ahmadi-Javid (2012); Campbell et al. (2013); He
et al. (2015); and Gao et al. (2016, 2017), among others.

In view that most analyses of portfolio, whether they
are of Markowitz’s mean variance, maximized over one
period, Samuelson (1969) formulates and solves a many-
period generalization of portfolio selection as lifetime
planning of consumption and investment decisions in a
discrete time setup using expected utility maximization.
Merton (1969, 1971) extends the work of Samuelson
(1969) to a continuous-time setting. From that point on,
dynamic portfolio optimization through expected utility
maximization has been extensively studied; see, for ex-
ample, Lehoczky et al. (1983), Karatzas et al. (1986,
1987), Cox and Huang (1989), Shreve and Soner (1994),
and Brown and Smith (2011), among others.

1.2. Literature Review: Mean Field-Type Control
Because of time inconsistency, two different optimal
strategies of MFTC are both studied. Bensoussan et al.
(2013) develop a coupled system of HJB-FP to solve
the MFTC problem and obtain a time-inconsistent so-
lution (or precommitment solution), which is depen-
dent on the initial condition. An alternative way is to
find time-consistent strategies. Bjork et al. (2014) study
the mean-variance problem within a game frame-
work. Using the method introduced in Bjork et al.
(2017), they derive time-consistent equilibrium control
by solving the extended HJB equation. Lauriére and
Pironneau (2014) and Pham and Wei (2017) adopt the
dynamic programming for mean field-type control
and derive a solution, which is independent of the ini-
tial condition. The current study uses the HJB-FP
framework to obtain the optimal consumption and
portfolio rules. The HJB-FP framework of Bensoussan
et al. (2013) has been applied to study a number of
MFTC problems: for example, Bensoussan et al. (2013,
2019) apply this framework to study the continuous-
time Markowitz portfolio with short-selling prohibi-
tion and capital investment problem, respectively, in
which closed form solutions are obtained.

1.3. Literature Review: Risk Management and
Utility Maximization Unified Framework

Our proposed problem follows the recent trend of em-

bedding risk management criteria into the utility max-

imization framework. In this section, three studies

closely related to our work are discussed. Basak and

Shapiro (2001) present the first analytical research to
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embed the concept of risk management into a utility
maximizing problem to analyze optimal dynamic
portfolio and wealth/consumption policies. They first
consider that a risk-managing investor, constrained to
maintain the VaR of horizon wealth at a prespecified
level for managing market-risk exposure, attempts to
maximize the utility of terminal wealth. Extending the
economic setting to a standard pure-exchange equilib-
rium model, the study then examines the problem
that a VaR manager, who must comply with a VaR
constraint imposed at some horizon (shorter than the
agent’s lifetime), strives to maximize the intertempo-
ral utility of consumption over the lifetime. The dy-
namic optimization problems are solved using the
martingale representation approach. Compared with
the study of Basak and Shapiro (2001), our work inte-
grates intermediate consumption, portfolio selections,
and utility-risk management in a unified framework
to study the optimal consumption and portfolio
choice problem using the MFTC approach.

Wong et al. (2017) study the utility-risk portfolio se-
lection problem by maximizing an investor’s utility of
terminal wealth with deviation risk. Although the
work of Wong et al. (2017) is closely related to our
study, they are different in several aspects. First,
unlike our work, the work of Wong et al. (2017) does
not consider intermediate consumption over the in-
vestment horizon in the utility-risk optimization
framework. Consequently, optimal portfolio rules are
different, and our study is able to additionally provide
the insights with respect to the optimal consumption
policy, which is not intuitively guessable. Second,
Wong et al. (2017) do not perform numerical analyses.
We, on the other hand, quantitatively demonstrate the
optimal consumption policy, the optimal investment
policy, and the wealth process through numerical
studies and obtain several important implications/
insights. Third, Wong et al. (2017) convert the utility-
risk problem into an equivalent nonlinear moment
problem, whereas we study the optimal investment-
consumption problem using the HJB-FP framework of
Bensoussan et al. (2013).

Recently, Pfeiffer (2016) studies a continuous-time
Merton’s portfolio choice problem with cost function-
als involving the probability distribution of the state
variable. The problem takes the form of a mean field-
type control problem. In this study, three cost func-
tions, which are a cost involving the semideviation,
the conditional value-at-risk, and a cost with a penali-
zation term with a target, are considered to allow for a
risk-averse consumer’s risk management. Pfeiffer
(2016) tackles the mean field-type control problem by
solving a coupled system of HJB-FP equations numer-
ically with an iterative method. The main idea of the
work of Pfeiffer (2016) is close to the primary purpose
of our study, and we both approach the problem by

studying the coupled system of HJB-FP equations.
However, as in the work of Wong et al. (2017), Pfeiffer
(2016) does not consider intermediate consumption in
the optimization problem. In addition, we not only
rigorously prove the existence and uniqueness of the
solution by a fixed point argument but also, obtain an-
alytical results. To the best of our knowledge, our
study proposes the first analytical optimal investment-
consumption policy for an extended Merton’s model
incorporating the idea of risk management proposed
by Markowitz’s portfolio selection problem.

1.4. Literature Review: Literature Related to Our
Numerical Study

In our numerical example, we investigate the dynamic
portfolio behavior of a consumer-investor who has a
constant relative risk-aversion (CRRA) utility function
on consumption (x'77)/(1-y) and terminal wealth
(log utility) with variance control (importance mea-
sured by €). Note that the parameter ) in utility func-
tions represents the consumer-investor’s absolute risk
aversion. Our MFTC model becomes the traditional
Merton’s portfolio selection problem when e equals
zero, which implies that the consumer-investor is not
willing to manage the variation of terminal wealth. In
the MFTC model, therefore, the consumer-investor
chooses a nonmyopic dynamic portfolio regardless of
y by controlling the variance risk of final wealth.

Dai et al. (2021) set up a mean-variance model for
log returns, which is different from the standard
mean-variance model for terminal wealth. They study
the time-consistent portfolio investment in a complete
market and an incomplete market. They show that in
a complete market, the mean-variance optimization
and the CRRA utility are equivalent. Therefore, the
optimal investment strategy is to invest a constant
fraction of wealth in the risky asset as Merton’s classical
result (¢ = 0 in our case). However, in incomplete mar-
kets, they point out that the investment is decreasing as
time progresses. We obtain the similar observation in
our MFTC model with constant investment opportunity
set. In general, the risk-aversion coefficient is too diffi-
cult to measure in industry practice as well as academic
research. Dai et al. (2021) suggest that the risk aversion
can be inferred by inputting a target return because they
prove that there exists a one-to-one mapping between y
and annual target return in complete market. By analogy,
our model demonstrates the expected terminal wealth p,
depending on €. Therefore, our MFTC model allows an
investor to choose the proper € considering his risk
aptitude by inputting a target terminal wealth.

Sotomayor and Cadenillas (2009) study the optimal
consumption-investment problem with regime switch-
ing and obtain exact solutions for specific hyperbolic
absolute risk aversion (HARA) utility functions. They
observe a positive effect of consumption as in Merton
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(1969). That is, the investor increases his consumption
as wealth increases. Interestingly, for all €, the consump-
tion in our model is increasing, whereas the wealth is
decreasing for some time t. In addition, Sotomayor and
Cadenillas  (2009) observe very high consumption
wealth ratios (greater than one) for investors, which are
also observed in our model.

Liu (2007) introduces the analytical solutions for the
dynamic portfolio selection problem in a continuous-
time model with CRRA class utility functions in
stochastic environments. His model indicates that the
optimal terminal wealth for y = co becomes constant if
the investment opportunity is constant because an
infinite risk-averse investor constructs the optimal
portfolio using only the riskless asset. Similarly, we
investigate the extreme case for € = co in the MFTC
model. In this case, the final wealth (p_ ) becomes de-
terministic because of no variation in the optimal final
wealth. The consumer-investor steadily reduces the
weight of risk asset as the remaining time horizon
goes to zero and eventually, allocates all his wealth to
the risk-free asset at the terminal time horizon to at-
tain the best deterministic final wealth.

In the remainder, Section 2 presents the model.
Section 3 summarizes the theory and methodology
of the mean field-type control approach document
in Bensoussan et al. (2013, 2021) and lays out suffi-
cient condition of optimality. Section 4 studies the
existence and uniqueness solution of Merton’s problem
with variance control and presents the optimal feed-
back and the optimal value of our model. Properties
and solutions to two extreme cases are also studied.
Section 5 reports the results of our numerical analysis,
further highlighting the importance and benefits of
our model. Section 6 lays out investment-consumption
insights that can benefit investors. Section 7 presents
some concluding remarks.

2. Merton’s Problem with
Variance Control

Merton (1969, 1971) extended the Samuelson (1969)
optimal investment-consumption model in a discrete-
time setup to a continuous-time setting. A consumer-
investor must choose his consumption and asset
allocation strategy between risky assets (stocks) and a
risk-free asset optimally so as to maximize expected
utility. Merton used stochastic optimal control meth-
odology to obtain the optimal portfolio strategy.

A potential risk presented to a consumer-investor
in Merton’s model is the deviation of his terminal
wealth from the expected. In view of this, an ex-
tension of the classical Merton’s problem that in-
corporates the variance of a consumer-investor’s
terminal wealth to measure the risk is proposed.

The inclusion of the variance term results in a mean
field-type control problem that cannot be solved by
classical stochastic control methods. In the follow-
ing, the financial market where a consumer-investor
bases his investment-consumption decision is intro-
duced first, followed by a brief review of the classi-
cal Merton’s problem. This section is concluded by
presenting the model of Merton’s problem with vari-
ance control.

2.1. Financial Market

A financial market consists of one nonrisky asset with
a constant interest rate r and n risky assets. Prices of
risky assets Y;(t),i=1,2,...n, evolve as

dY;(t) =Yi(t) (1)

ai(t)dt + Z()'ij(t)dw]'l,
=1
YI(O) = Y?r

where wj(t) are independent standard Wiener process-
es, constructed on a probability space (Q, A, P) and a
filtration F*, and the coefficients a;(t), o;(t) are deter-
ministic functions.

The volatility matrix, o(t) = {0j(t)},x,, is invertible.
We assume that a(t) := (a1 (H).aa(b), -+ .an(H))’, o(t), and
071(t) are bounded. The Sharpe ratio is given by

0(t) = o ()(alt) - rl),

where 1:=(1,1,...)" denotes a vector of R". Define the
process Z(t) by

dZ(t) = —Z(H0(t).dw(t),

Z(0)=1, @

which is called a martingale measure (market indica-
tor). In addition, the process,

Z(t)Yi(t)e™,

is a (P, ') martingale.

2.2. Classical Merton’s Problem

Consider a consumer-investor whose unique source
of income comes from his portfolio investment on the
market. The wealth at time s is

X(s) = mo(s)e ™ + Z m(s)Yi(s),s > £, X(H) =x, (3)
i=1

where 1¢(s) and 7t;(s) are the amount of cash and the
number of shares invested in the risky asset 7, respec-
tively. The portfolio is self-financed, and the dynamics
of controlled wealth process are given by

dX(s) = rmo(s)e™ds + Zn] 11;(s)dYi(s) — C(s)ds,
i=1

s>t,X(H) =x, 4)
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where C(s) represents the consumption rate and 7o(s)
and 71(s) := (111(5),72(s), -+ ,714(s))" are control variables.
Using (1) and introducing

mi(s):%,izllzl e n (5)

(i.e., @i(s) denotes the proportion of wealth invested
in the risky asset i), it follows after rearrangements
that

dX(s) =rX(s)ds + X(s)a"(s)wm(s).(0(s)ds + dw(s))
—C(s)ds, s> t,X(t) = x. (6)

Then, X(s) is the state of a dynamic system, with con-
trols @(.) := (w1 (.),w2(.), -+ w,(.))" and C(.).

The consumer-investor considers the intertemporal
portfolio choice over a finite horizon T, where con-
sumption and wealth allocation between risky assets
and a risk-free asset must be made. The investment-
consumption performance is measured by utility
functions Ui (c) for consumption and Ux(x) for final
wealth defined by

T
J@(.),C()) =E / . Ui(C(s))e " ds + EUn(X(T))e ™,

@)
with
dX(s) =rX(s)ds + X(s)o"(s)wm(s).(0(s)ds + dw(s))
—C(s)ds, X(0) = xp. (8)

The consumer-investor’s dynamic portfolio optimi-
zation problem is to maximize his expected utility
over a finite horizon T through his choice of consump-
tion and portfolio investments: that is,

D(xo,0) = sup J(@(.),C()). ©)
a(.),C()
The optimization problem of (9) can be solved apply-
ing dynamic programming, and the value function,
D(xp,0), is the solution of the Bellman equation.

2.3. Model of Merton’s Problem with
Variance Control

One potential problem associated with the classical
Merton’s model (cf. (7) and (9)) is that a consumer-
investor’s terminal wealth may vary significantly. To
control the variation risk, the penalty term, the vari-
ance of the terminal wealth, is added to the classical
Merton’s performance function (7). The consumer-
investor’s performance function becomes

T
Je(@(),C()) =E f U (C()e s + EL(X(T)e !
—ee”Tvar(X(T)), (10)

subject to (8). In (10), e €[0,00) is a coefficient that
weights the importance of variance.

The dynamic optimization problem is to maximize
Je(®(.),C(.)): that is,

u(x0,0) = sup Je(a(.),C()). (11)
@(),C()

The consumer-investor’s optimization problem now
deals not only with maximizing expected utility over
a finite horizon T but also, with minimizing the vari-
ance of the terminal wealth. Because of the presence
of the variance term in (10), standard stochastic con-
trol cannot be applied to solve the optimization prob-
lem. The mean field-type control theory is the right
tool to study such a control problem.

Remark 1. When € = 0, (10) reduces to the classical
Merton’s problem (cf. (7) and (9)).

Utility functions in (10) satisfy the following
assumption.

Assumption 1. The utility function U1(C), Up(x) : R* —
R* is concave and twice differentiable in the interior,
U}(0) = +oo, U/(+00) =0,i=1,2.

3. General Mean Field-Type Control

As stated in Section 2.3, the proposed Merton’s prob-
lem with variance control can be solved applying the
mean field-type control theory. In this section, the
mean field-type control problem is briefly presented,
followed by the sufficient conditions of optimality.
Details can be found in Bensoussan et al. (2013,
2021).

3.1. The Mean Field-Type Control Problem

Let (Q, A, P) be a probability space and a filtration F*
generated by an n-dimensional standard Wiener pro-
cess w(t). Consider a diffusion process in R" given by

dx = g(x,v(x,s))ds + o(x,v(x,s))dw,
x(0) = xo,

where xy € R" represents the initial state of the system,
v(x,s) € R™ is the control obtained by feedback, and
o(x) is an n X n matrix that is invertible.

Define payoff to be maximized as

(12)

T
J(o() = / T Ef(x(s), os))s
+e¢ T Eh(x(T)) + ¢~ F(Ex(T)), (13)

where v(s) = v(x(s),s) and x(s) is the solution of (12) af-
ter inserting the feedback. In (13), F(.) is a nonlinear
function of the expected value of x(T). Because of this
term, this is not a standard control problem, but a
mean field-type control problem.

Next, transform the stochastic problem (13) into a
deterministic control problem for a partial differential
equation (PDE) by introducing the Fokker-Planck
equation:
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Bmv( )

(al] (x, U(S))mv( ))

Z 8x,

+ le(g(x, U(S))mv(.)) =0,
My (x,0) = 0(x — xp), (14)
and the solution is denoted by 1, )(x,s), which is the

probability distribution of x,.)(s). Then, the payoff
function (13) can be rewritten as

T
J(0() = /0 e [ 0006 g (v )

+eT / (x)inog ) (x, T)dx
RVI

+erTF( / X1y ) (%, T)dx) / () (x, T)dx.
Rﬂ RVI

(15)
Remark 2. In order to use standard variations of the
control, the term /R my()(x, T)dx equal to one is in-

serted in (15). So, the functional (15) coincides with
(13). The problem described by (14) and (15) is now
considered with m1,(, € L*(R") N L'(R") and not in the
space of probability densities. A linear variation will
not respect the normalization because the space of
probability densities is not a vector space.

3.2. Sufficient Conditions of Optimality
Following Bensoussan et al. (2021), the sufficient con-
ditions of optimality are briefly presented. First, intro-
duce the Lagrangian function
L(x,q,M,v) = f(x,v) + q - g(x,v) + tr (a(x,v)M),
(16)
where a(x,v) =30(x,0)0(x,v), q€R", M€ L(R";R"),
and the Hamiltonian function
H(x,q,M) = sup L(x,q,M,v). 17)
v

Let 9(x,q, M) denote a measurable function, which at-
tains the maximum in v in the Lagrangian, and write

H(x,q,M) =L(x,q,M,0(x,q,M)), (18)
G(x,q,M) = g(x,0(x,q,M)), (19)
P(x,q,M) = a(x,0(x,q,M)). (20)

Next, look for two functions u(x,t) € R, W(x,t;T) € R"
solutions of the coupled system of PDEs:

du _ 2
— o * 1 =H(x, Du,D’u), (21)
u(x, T) = h(x) + x.DF(p) + F(p),
a 83—%, = trP(x, Du, D*u)D*¥ + DW.G(x, Du,D*u),
W T.T) = x, @
where
W(x,t;T) = Ey [#(T)] (23)

and
p="P(x,0;T) (24)

is the expected value of the optimal final state.
Solving this system, one obtains the optimal feedback

o(x,t) = (x, Du, D*u) (25)
and the optimal value
J(@(.) = u(xo,0) — " p.DF(p). (26)

Note that u(x,0) is not the optimal value.

4. The Existence and Uniqueness
Solutions for Merton’s Problem with
Variance Control

In this section, solutions for Merton’s problem with

variance control are obtained. The correspondence of

notation is stated first in order to apply the general

theory presented in Section 3:

)

f(x,0) = U1(C),g(x,v) = rx + x5"00 — C,
h(x) = Us(x) — ex?,
a(x,v) = %xzw*a*aw,
F(x) = ex?,
ﬁi = (u;)_li
L(x,q,M,v) = U;(C) + q(rx + x&*60 — C)
+tr(% xzw*a*awM),
ui(€) =4,C = B,(9),
N e
= Mx(O') 0,M <0,
14°| 6

H(x,q,M) = U1(B,(q)) — 9B, (q) + grx — M

A 0
8 = =11 g ) = G, g,

141 6P
a(x,0) = SME S P(x,q,M). (27)

In order for the Lagrangian, L(x,q,M,v), to admit a
maximum, we need to assume that M < 0.

Using these notations, from Section 3.2, the system
of coupled PDEs for the solutions of Merton’s prob-
lem with variance control is

u u Ju u
T T ul(‘[gl(&x)) ox ﬁl(ax) ™ ox

(&u) op

1\0
2 Pu
ox2
u(x, T) = Up(x) — ex* + €p? + 2exp,, (28)
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e (p,)=p, Moreover, p. €10,p], where
_ A _ oV _ |9| a _ Jdu = 86(1—y)+)/2+}_tz_exp|9\2T—(/_\—y)2
o o R, Pl oy p 4e(i—2y) .
o2 The proof is given in Online Appendix EC.2.

W(x,T;T) = x, (29)
and
pe = W(xo,0;T). (30)

In (28)—(30), we have written p_ instead of p to empha-
size the dependence in €. Then, the optimal feedback
is given by

s = 35

du
. 0x (-1
Ge(x,t)=——2—(0") 0, 31
(x, 1) P (d") (31)
ox?
and the optimal value is
Je(Ce, @) = u(x0,0) —2epZe™™". (32)

From (28)—(30), p, is the solution of a fixed point prob-
lem. As shown in Online Appendix EC.1, by introduc-
ing A(x,t) = ‘;—z(x, f) and with some transformation, we
can reduce the study to a linear PDE and obtain p_ as
a solution of a fixed point equation given here:

EB,.(Ae(p)éo(T) = 2ep,) = p., (33)

where f,.(u) is the solution of Uj(x)—2ex=y,
Bro(1) = B,(1) and p must be greater than zero. The
number p_, has a crucial economic interpretation. It
represents the average wealth at the horizon T. Name-
ly, it is the target to which the final wealth must be
close to. Solving this fixed point equation becomes the
key difficulty of the mean field-type control problem.

Assumption 2.
xUj(x) is concave, (34)

xUp(x) <yx+1-y,0<y<1, (35)
y < %1, with A the solution of
T -
Ef a@pdaEeas=x, 66
0
Uy’ (x) > 0. (37)

Theorem 1. Define Te(p) = EB,.(Ac(p)éo(T) —2ep). Un-
der Assumption 2, there exists a unique p, € R* such that

By Theorem 1, the existence and uniqueness of solu-
tions for Merton’s problem with variance control can
be stated explicitly in the following theorem. For nota-
tional convenience, we omit p_ in the subscript.

Theorem 2. The optimal consumption, investment, and
wealth are, respectively,

Ce(s) = By (Ae&o(5)), (38)
Ao o etals)s)
o) = a0

and

Xe(s) = Ge(/\eéo(s)/ S)'

The optimal value is

. T
Je(Ce, &) =E / (B (Aeto(s))e™ ds

+ E[Uz(Bye(Ae&o(T) — 2€p,))
— B3 (Ae&o(T) — 2ep,) — €p?
+2€p o (Ae&o(T) = 2ep )], (40)

where p, represents the optimal expected wealth at time T
and Ae = Ae(x,0)(Ae > A).

See Online Appendix EC.3 for the proof.

4.1. Extreme Cases

Because the proposed model of Merton’s problem
with variance control aims at managing the vari-
ance of a consumer-investor’s wealth at the end of
investment horizon T, a natural question to ask is
how the expected optimal final wealth at the end of
investment horizon is affected by a consumer-
investor’s perspective on the importance of vari-
ance risk measured by e€[0,00). The following
subsections explore two extreme cases: that is, the
cases when a consumer-investor displays no con-
cern (i.e., € = 0) and extreme concern (i.e., € = 00) of
the variance risk. Finally, a proven relationship be-
tween these two expected optimal final wealth val-
ues is presented.

4.1.1. ¢ = 0. Proposition 1. In this case, the problem re-
duces to the classical Merton’s problem, and

Po = EBy(Ao&o(T)). (41)

See Online Appendix EC.4 for the proof.
Equation (41) gives an explicit formula for the opti-
mal expected final wealth.
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4.1.2. e—>+x. Proposition 2. In this case, the enor-
mous penalty imposed on the variance risk leads to a
deterministic optimal wealth, and

Poo = Br(A), (42)
with Aw = A(p,) solution of the equation

T
By(Ae)e T +E / GOB (Ao =10 (43)

See Online Appendix EC.5 for the proof.

Equation (42) is the best deterministic final wealth
guaranteed when € — +co. It is no surprise because it
costs too much for a consumer-investor to pay the
penalty arising from the variance risk, leading to the
case of zero variance.

4.1.3. Comparison Between pg (¢ = 0) and p,, (e—>+x).
From Section 4.1.2, the expected terminal wealth p_
turns out to be deterministic: that is, no variation in the
optimal final wealth. It is thus natural to study the rela-
tion between p, when no control is made in the vari-
ance of the final wealth and p_, with zero variance.

Proposition 3. Assume that f,,p, >0 decrease on (0,00)
and also, that B, is strictly convex. Then, p, > p.,.

See Online Appendix EC.6 for the proof.

Proposition 3 is intuitively explained because py is
the expected wealth at T without considering the vari-
ance risk of the final wealth and p_, is the best deter-
ministic wealth at T. To be of no surprise at the final
wealth (that is, no deviation from the expected), a
consumer-investor allocates all his wealth to risk-free
assets. Consequently, p_ is smaller than py as sug-
gested by Proposition 3 because risk-free assets yield
less return than risky assets.

In addition, the proof of the relationship between p_
and p, for small € and y; =1 is given in Online Ap-
pendix EC.9.

5. Numerical Analysis

A primary contribution of this research is to solve for
optimal consumption-investment policies of Merton’s
problem with variance control. In this section, numeri-
cal studies are performed to illustrate the quantitative
results. In the study, only one risky stock is considered,
and utility functions take the following CRRA form,
which satisfies Assumptions 1 and 2:

EARER 1
Ui(x)=41-y,’ DRATY (44)

Inx, y1=1,

U, (x) =Inx. (45)

The base parameter values used for the numerical
studies are

xo=1,T=1,r=0.04,0=0.2.

Remark 3. The optimal controls for the CRRA utili-
ty function with variance control problem are giv-
en by

Ce(s) = (Aelo(s)) 1, (46)

/\eéo(s) % (/\550(5)/ S)
Ge(Ae‘SO(S)r S)

Bels) = — (@970, (47)

and

Xe (S) = Ge(Aeo(s), S)'

Remark 4. When ), =1 and € = 0, the optimal controls
are given by
v

Co(t) = 591()\050(13)) = mxo(t), s
I%O(t) = EI

which recover the results obtained by Merton (1969).
See Online Appendix EC.7 for the proof.

Remark 5. When y, =1 and € — +0o, the optimal con-
trols are given by

Co(t) = Cu(b), )
Boolt) = m(l —e7(T-h)8
P T 4 V/\ooléo(t) (1—e D)
o (M)(Q) (50)
¢ Xoo(t) J\O

Unlike Merton’s classical result, the investment poli-
Cy, Wo(t), depends on both the current wealth and the
terminal wealth and decreases as time progresses.

See Online Appendix EC.8 for the proof.

Under log utility functions, Remark 5 shows a
“surprising property.” A consumer-investor’s optimal
consumption behavior coincides in two extreme cases:
that is, when he completely disregards the variation
risk of terminal wealth and when he is excessively
concerned about the variation risk of terminal wealth.
In addition, when a consumer-investor is extremely
concerned about the variation of terminal wealth,
the investment policy consists of myopic demand
(the first term of Equation (50), Merton’s classical
result) and hedging demand (the second term of
Equation (50)).

5.1. Numerical Verification of Theorem 1

The fixed point Equation (33) is numerically studied
to verify Theorem 1. Figure 1, which plots the solu-
tions obtained by the intersection of p and Te, con-
firms a uniquely determined fixed point.
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Figure 1. (Color online) Fixed Point Problems Depending on y; € [0.8,1.0] with & = 1.0

2 T T T T , | I I |
1.8
1.6
1.4
. i
s e
= - s
08 @5 0.777562 )
o - ===Tio(p)
0.6 P .
R ) +  po1,m =038
. O pro,m =08
* pyn =08
B po, 11 = 0.8

5.2. Impact of ¢ on Expected Value and Variance of
Optimal Terminal Wealth, p_ and Var(X¢(T))
The numerical study exhibits that p. decreases with
respect to € (the left panels of Figures 2 and 3). A proof
of this relationship for € small and y, =1 is given in
Online Appendix EC.9. This inverse relation persists
regardless of values of y; and 0 as shown in the left
panels of Figures 4 and 5. In other words, regardless
of y; and 6O, the more a consumer-investor is con-
cerned about the variance risk of his final wealth, the
smaller his expected optimal final wealth will be. The
result is expected because a consumer-investor de-
creases his portfolio holding in risky assets in an effort
to reduce the variation of his final wealth as € in-
creases. The immediate effect of investing less wealth
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in risky assets and more wealth in risk-free assets is a
decrease in expected investment returns because risky
assets yield higher rates of return. This also explains
why po and p_, set the ceiling and the floor of the ex-
pected optimal terminal wealth shown in the left pan-
els of Figures 2 and 3.

Figures 6 (upper left panel) and 7 (left panel) reveal
the necessity of the MFTC model (Merton’s problem
with variance risk control) with preferable features.
With € small, the MFTC model allows a consumer-
investor to enjoy a higher consumption rate with
lower variation from his optimal terminal wealth. Fur-
thermore, Figure 7 (left panel) shows that at terminal
time T, Xo(T) (i.e., optimal terminal wealth from the
traditional Merton’s model) is extremely volatile.

Figure 2. (Color online) p, and A, Depending on € € (0,50] with y, =0.8 and 6 = 1.0
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Figure 3. (Color online) p_ and A Depending on € € (0,50] withy; =1.0and 6 = 1.0
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Obviously, the variance of terminal wealth in the tra-
ditional Merton’s model is too substantial for a
consumer-investor to ignore.

The optimal terminal wealth from the MFTC model
when € goes to +oo, )A(oo(T), is deterministic, a proper-
ty proven in Section 4.1.2. In other words, a
consumer-investor with excessive concerns about the
variance risk in the terminal wealth can steer clear of
variation in his terminal wealth. Given y4, € can then
be viewed as the risk aversion of a consumer-investor.
In this respect, the observation of deterministic termi-
nal wealth is in line with the work of Liu (2007). Liu
(2007) studies dynamic portfolio choice with stochas-
tic variation in investment opportunities and predicts
that the optimal terminal wealth for an investor with
infinite risk aversion is a constant. More importantly,
our model exhibits a distinct feature that a consumer-
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investor with constant terminal wealth can enjoy the
same consumption rate as if the traditional Merton’s
model was implemented as shown in the upper left
panel of Figure 6 and Remark 5.

5.3. Impact of ¢ on Optimal Consumption
Rate C.(1)

From Equation (46), optimal consumption rate is in-
versely related to A; therefore, we will study A, for the
consumption rate behavior. The right panels of Figures
2 and 3 depict a nonlinear relation between € and 1/A,,
and the relation holds regardless values of y; and 6 as
shown in the right panels of Figures 4 and 5.

As € increases, the optimal consumption rate grows
rapidly to a positive maximum and then decreases at a
decreasing rate. This nonlinear shape is a consequ-
ence of a risk-averse consumer-investor’s risk-reward

Figure 4. (Color online) p, and A, Depending on € € (0,30] with y, € {0.8,0.9,1.0} and 0 = 1.0
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Figure 5. (Color online) p,. and A, Depending on € € (0,30] with y, =0.8 and 6 € {0.9,1.0,1.1}
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trade-off (measured by the ratio between the expected
optimal terminal wealth and the standard deviation of
the terminal wealth p_/ SD(X(T))) as well as the de-
creasing return from increasingly investing in risk-free
assets. As shown in the right panel of Figure 7, the re-
ward (p,) per unit of risk (SD(X(T))) for a consumer-
investor is increasing as € increases. Therefore, a
consumer-investor is willing to rebalance his optimal
investment and consumption policies to reduce the
variance of the terminal wealth when € starts kicking
in. The consumer-investor can accomplish this goal by
buying or selling assets at the market to change the as-
set allocation of his portfolio from risky assets to risk-
free assets and to finance more consumption. Hence,
the consumption rate increases as € increases. Howev-
er, when the variance of the terminal wealth is reduced
to extremely small, most of the consumer-investor’s as-
set investment is allocated toward the risk-free assets.
The amount of wealth that the consumer-investor can
finance his consumption starts decreasing due to low
returns from risk-free assets. It explains why the con-
sumption rate starts decreasing after the point where
the variance of the terminal wealth is close to the level
of zero.

5.4. Expected Optimal Consumption Rate,
Expected Optimal Percentage Allocations in
Risky Assets, and Expected Optimal Wealth,
EC.(1), Ewr(t), and EX (1)

Figure 6 graphically studies the expectation of optimal

consumption, the expectation of optimal percentage

allocations in risky assets, and the expectation of opti-
mal wealth against time. The upper left panel con-
firms the increasing-decreasing pattern of the optimal
consumption process as € increases, discussed in

Section 5.3. For a given €, the expected optimal con-
sumption is monotonically increasing against ¢ similar
to Merton (1969).

The upper right panel plots the expected optimal
proportion of wealth allocated in risky assets,
E[w¢(t)], for different values of e against time. It
shows that percentage allocations in risky assets con-
tinuously decrease as the remaining investment hori-
zon approaches zero and as € increases. For a given
71, € can be viewed as a consumer-investor’s risk aver-
sion toward terminal wealth given. As such, these ob-
servations are comparable with the empirical study
by Barberis (2000). Barberis (2000) proposes the opti-
mal portfolio choice for an investor who has a CRRA
class utility over terminal wealth. This research shows
that the allocation to stocks for the investor, optimally
rebalancing the portfolio, steadily decreases as the re-
maining time horizon goes to zero, and the stock
allocation falls as the investor’s risk aversion over ter-
minal wealth increases. In addition, Dai et al. (2021),
who study a dynamic portfolio choice model with
the mean-variance criterion for log returns, also derive
that E[@.(t)] decreases as time proceeds toward the
end of the investment horizon under the incomplete
market setting. It is noted that, under a complete mar-
ket setting, Dai et al. (2021) obtain the optimal fraction
of the total wealth in risky assets as a constant inde-
pendent of time and wealth, same as in Merton (1969).

Finally, the lower panel presents the expected opti-
mal wealth process, a result of a consumer-investor’s
investment-consumption decision, for various e. It
shows that the expected optimal wealth process de-
creases as € increases. Compared with Merton (1969),
our model leads to a nonmonotonic expected optimal
wealth process against time. As time f increases, the
expected optimal wealth process increases first and
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Figure 6. (Color online) Expectation of Ce(t), @e(t), and X (¢) for e € {0,0.1,1.0, + 0o} with ;=1 and 6 =1
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then decreases. The nonmonotonic shape holds true
even for the extreme case, € — 0.

5.5. Expected Consumption-Wealth Ratio

In Figure 8, the expected consumption-wealth ratio is
nonmonotonic in € at the beginning investment horizon.
However, as t progresses, the expected consumption-
wealth ratio becomes monotonically increasing in €. The
observation is expected. The differences in the expected
wealth among € are not significant at the beginning of
investment horizon and then increase at an increasing
rate as time progresses; see Figure 6, lower panel. On
the contrary, the differences in expected consumption
among € stay quite constant over the entire investment
horizon. Consequently, the consumption-wealth ratio
becomes monotonically increasing in € after the time
when decreases in the expected wealth dominate.

It is not surprising that the consumption-wealth ra-
tio in our model is higher than Merton’s because our
model predicts higher consumption and lower wealth.
Moreover, as shown in the figure, the ratios in our
model can be greater than one, whereas in Merton’s
model, the ratios are increasing to one at time T. Soto-
mayor and Cadenillas (2009), who study investment-
consumption problems with regime switching under
the utility maximization framework, also observe ra-
tios higher than 1 for the power utility x* with 0 <a <
1 in every market regime (bull or bear).

6. Investment-Consumption Insights

Our MFTC model, combining the investment-
consumption model of Merton (1969) and the mean-
variance framework of Markowitz (1952), investigates
the optimal investment and consumption policies when
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Figure 7. (Color online) Variance of Terminal Wealth Depending on € € [0, 1] and the Ratio Between the Expected Terminal
Wealth and Standard Deviation of Terminal Wealth Depending on € € [0,1] with y;=1and 6=1
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the variance risk is explicitly incorporated into the
investor-consumer’s portfolio selection framework. We
obtain the following investment-consumption insights
that can benefit investors.

1. Ignoring variance risk of terminal wealth in a
consumer-investor’s portfolio selection framework
is likely to end up yielding terminal wealth signifi-
cantly lower than the expected. This message is
important to both individual investors and profes-
sional investors because neither of them would want
to be surprised at much lower accumulated terminal
wealth than the expected at the end of the invest-
ment horizon.

2. The lower the variance risk of terminal wealth that
a consumer-investor achieves, the lower the expected
terminal wealth will be. This is consistent with the

popular investment quote: “In investing, what is com-
fortable is rarely profitable” (by Robert Arnott (Arnott
et al. 2011)). There is no free lunch; it is a risk-reward
trade-off for the investing comfort zone. Consequently,
it is important to be able to quantify the variance risk in
the portfolio selection instead of risk blindness. As said
by Ben Graham (Graham 1976), “The individual inves-
tor should act consistently as an investor and not as
a speculator.”

3. Consumer-investors do not control variance risk at
the expense of consumption. In fact, consumer-investors
enjoy at least the same consumption rate as if they were
not to control the variance risk. This again points out the
necessity of incorporating the variance risk in the port-
folio selection framework. The framework has the
benefit of feeding two birds with one stone; that is,

Figure 8. (Color online) Ratio of the Expectation of Ce(t) and the Expectation of X.(t) with y;=1and 0 =1
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consumer-investors not only achieve the target terminal
wealth at lower risk but also, enjoy higher consump-
tion rates.

4. For a consumer-investor to achieve a guaranteed
terminal wealth, it does not mean he will only invest in
risk-free assets over the entire investment horizon. If
the consumer-investor holds purely risk-free assets
during his investment horizon, the risk-free return will
not be able to finance him the consumption rate as one
who does not control the variance risk at all. Our
MFTC model can actually help a consumer-investor
achieve the goal through the investment policy, which
properly balances portfolios between risky assets and
risk-free assets over the investment horizon.

7. Conclusion

A consumer-investor’s investment-consumption problem
is studied through integrating intermediate consumption,
portfolio selections, and utility-risk management in a uni-
fied framework. Applying the mean field-type control
theory and overcoming the key difficulty of solving a
fixed point equation, explicit formulas for the optimal
consumption and portfolio choices are obtained. When e
= 0, closed form solutions for the traditional Merton’s
problem with logarithmic utilities (U (x) = Up(x) = Inx)
are recovered. For comparison purposes, closed form sol-
utions for our MFTC model are derived when € — 0. By
inspecting the closed form solutions obtained, it reveals
that, by implementing our MFTC model, a consumer-
investor can obtain guaranteed terminal wealth and
meanwhile, enjoy the same consumption rate as the tradi-
tional Merton’s model, which bears high variation in the
terminal wealth.

Numerical analysis results show that our MFTC
model not only can effectively control the variance risk
but also, can allow a consumer-investor to increase his
consumption rate. This desirable feature is illustrated
by the increasing-decreasing shape of optimal con-
sumption rate with respect to €. Regardless of values of
y1 and O, the optimal consumption rate increases
quickly to a positive maximum before starting to de-
crease at a decreasing rate as € increases. Furthermore,
numerical analysis results also show that the allocation
to stocks decreases as the remaining time horizon goes
to zero, and the stock allocation falls as the investor’s
risk aversion over terminal wealth increases.
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