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Abstract: Here we present a hybrid hierarchical statistical control approach for the control of robotic manipulators.
The bimodal dynamic imaging system considered in this paper utilizes two robotic manipulators to move the source
and detector imaging modules. As this system contains both continuous and discrete dynamics, hybrid system control
techniques are applied. The robotic arms used in this research are comprised of compliant joints, which have been shown
to introduce process noise into the system. To address this, a full-state feedback statistical controller is developed to
minimize joint angle variations for the system. The statistical controllers for the two robot arms are then coordinated
using a hierarchical controller. Finally, the feasibility of the hybrid hierarchical statistical controller is demonstrated with
numerical simulations.
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1. INTRODUCTION

Development of robotic and automated processes for
the evaluation and classification of included masses is an
ongoing area of research [18]. Mechanical systems de-
signed for use around humans, called ’cobots’ in industry,
include additional safety features and systems to prevent
harm to operators or damage to equipment, and therefore
represent a good candidate system for the development of
such medical systems. The Baxter Research Robot devel-
oped by Rethink Robotics is one such platform and was
developed primarily for research in the cobot space.

The Baxter Cobot includes compliant actuators [17] in
each joint as a safety measure. Should the arm collide
with a human or piece of equipment during operation,
the compliant actuator will ’yield’ reducing the severity
of the impact and improving the collision detection of
the system. While this feature improves the safety of the
robotic system, it also introduces noise to the joint angles
for the systems [7]. This paper presents a statistical con-
trol approach to address the presence of this noise, and
improve the tracking performance for the two-arm sys-
tem.

Linear-quadratic-Gaussian (LQG) control [10], statis-
tical control [21] and risk sensitive (RS) [5] control have
been actively researched in literature. Statistical control
is defined as the minimization of any finite or infinite lin-
ear combinations of the cost cumulants, thus LQG, sta-
tistical and RS control become special cases of statistical
control. In classical LQG control, the first cumulant or
the mean of the cost function is minimized. In statisti-
cal control, also known as minimal cost variance (MCV)
control, the second cumulant, or the variance, of the cost
function is minimized. And the minimization of all the
“fixed weighted” linear combination of the cost cumu-
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lants corresponds to RS control [22].
MCV control is a special case of statistical control,

where the second cumulant is optimized. In 1971 Sain
and Liberty published an open loop result in minimizing
the performance variance while keeping the performance
mean close to a prespecified value [21]. The full state
feedback second cumulant control problem is solved in
[26], [22]. Nonlinear statistical control was investigated
in [26]. More recently, the application of the statistical
control concept to game theory has appeared in the liter-
ature [8].

In this paper, a statistical controller for the linearized
robot manipulator is presented and evaluated for perfor-
mance. Here, the intent is to minimize the joint angle
variation so that the end-effector pose is less affected by
system noise. Less variation in end-effector position will
ensure that the laser and the camera will be in line-of-
sight during image acquisition for the bimodal imaging
experiment. The optimal design parameter for the sta-
tistical controller was developed using numerical simula-
tions. The contribution of this work consists of the appli-
cation of statistical control to a robotic manipulator with
complainant joints, as well as the implementation of sta-
tistical control in combination with a hybrid heirarchical
control approach.

In Section 2, Statistical Control is described. Then we
discuss hybrid hierarchical statistical control architecture
in Section 3. Finally, conclusions are presented in the last
section.

2. FULL-STATE FEEDBACK
STATISTICAL CONTROLLER

For stochastic dynamic systems, the presence of pro-
cess and measurement noise causes the states and out-
puts of the system to become random variables. In opti-
mal control applications, this also means the cost function



used for optimization also becomes a random variable. To
address the stochastic nature of the system states and cost
function, a statistical full-state feedback control method
is presented here.

In statistical control, one or more cumulants of the
stochastic cost function are minimized. In the particular
configuration presented in this paper, all the states of the
system (joint angles, velocities, torques, and end-effector
positions) are available for measurement, so a full-state
feedback approach is considered. We design separate
statistical controllers for each of the robotic arms which
will attempt to minimize the variance of the cost func-
tion comprised of weighted system states and inputs. A
minimized variation in the cost function will ensure that
the source (e.g. laser) and the detector (e.g. camera) will
be in line-of-sight during image acquisition during exper-
iment.

2.1. Statistical Control Preliminaries
We consider a stochastic linear time invariant dynamic

system modeled on [t0, tf ]. The dynamic process model
is given by,

dx(t) = Ax(t)dt+Bu(t)dt+ Fdw(t),
x(t0) = x0, t ∈ [t0, tF ]

(1)

where x(t) ∈ Rn is an n-dimensional state vector at time
t, u(t) ∈ Rm is an m-dimensional control vector at time
t, x0 is the initial condition. A ∈ Rn×n, B ∈ Rn×m,
and F ∈ Rn×p are matrices of appropriate order. Here,
dw(t) is a Gaussian random process of dimension p with
zero mean, covariance of W (t)dt. The random process
is defined on a probability space (Ω0,F ,P) where Ω0

is a non-empty set, F is a σ-algebra of Ω0, and P is a
probability measure on (Ω0, F ). Also, we consider the
output equation:

y(t) = Cx(t) +Du(t), (2)

where, C and D are matrices of appropriate order. The
quadratic random cost for the linear stochastic system is

J = x′(tF )QFx(tF )+∫ tF
t

[x′(τ)Qx(τ) + u′(τ)Ru(τ)dτ ] ,
(3)

where the state weighting symmetric matrix Q ∈ Rn×n is
positive semi-definite, the control effort weighting sym-
metric matrix R ∈ Rm×m is positive definite, and the ter-
minal penalty weighting symmetric matrix QF ∈ Rn×n

is positive semi-definite.
The statistical control problem is to determine a con-

trol law such that the n-th cost cumulant of the cost func-
tion in (3) is minimized, while keeping the rest of the
(n− 1)-th cumulants at pre-specified levels.

2.2. Statistical Control Law
In this paper, we utilize the statistical control that mini-

mizes the second cumulant (variance) of the cost function
for a fixed first cumulant (mean). In case of the second
cost cumulant minimization, the full-state-feedback lin-
ear statistical control law has the form [22], where the

state weighting symmetric matrix Q ∈ Rn×n is posi-
tive semi-definite, the control effort weighting symmetric
matrix R ∈ Rm×m is positive definite, and the terminal
penalty weighting symmetric matrix QF ∈ Rn×n is pos-
itive semi-definite.

The statistical control problem is to determine a con-
trol law such that the n-th cost cumulant of the cost func-
tion in (3) is minimized, while keeping the rest of the
(n− 1)-th cumulants at pre-specified levels.

2.3. Statistical Control Law
In this paper, we utilize the statistical control that mini-

mizes the second cumulant (variance) of the cost function
for a fixed first cumulant (mean). In case of the second
cost cumulant minimization, the full-state-feedback lin-
ear statistical control law has the form [22],

u(t) = −R−1B′(M+ γV)x(t)
= −Kstatx(t),

(4)

where the positive semi-definite M and V are solutions
of the coupled algebraic Riccati equations:

0 = A′M+MA+Q−MBR−1B′M
+γ2VBR−1B′V, (5)

0 = 4MFWFTM+A′V
+VA−MBR−1B′V
−VBR−1B′M− 2γVBR−1B′V,

(6)

with the boundary conditions M (tF ) = QF and
V (tF ) = 0 for a suitable Lagrange multiplier γ. We
assume that R > 0, (A,B) is stabilizable, and (

√
Q,A)

is detectable.
Note that the statistical control with nonzero γ is

known as ‘Minimum Cost Variance’ control, and the sta-
tistical control with γ = 0 is known as ‘Linear Quadratic
Gaussian’ control.

For implementing the statistical control for non-zero
reference tracking, we use the internal model principle to
find a feedforward gain for a reference input [12]. The
control law is rewritten as:

u = −Kstatx+ N̄r, (7)

where

N̄ = Nu +KstatNx (8)

is the feedforward controller gain. Note that we first de-
sign a state feedback gain Kstat using statistical control
method such that A − BKstat is stable. Then, to obtain
the values of Nx and Nu, we solve[

A B
C D

] [
Nx

Nu

]
=

[
0
I

]
. (9)

This feedforward control method is applicable for a
slowly varying reference input and is valid for the pro-
posed application detailed below.



2.4. Statistical Control Simulation of a Single Robot
Manipulator

2.4.1. Baxter Robotic Manipulator Model
Baxter is a dual manipulator robot [18]. The linearized

dynamics of the left manipulator taken around the oper-
ating point [0, 0.7854, 1.5708, 0, 0.7854, 0] and zero joint
velocity are formulated as:

[
∆q̇l

∆q̈l

]
︸ ︷︷ ︸
14×1

=

Al︷ ︸︸ ︷[
07×7 I7×7

−A−1
pl (Cpl1 +Cpl2) −A−1

pl Bpl

]
︸ ︷︷ ︸

14×14

[
∆ql

∆q̇l

]
︸ ︷︷ ︸
14×1

+

Bl︷ ︸︸ ︷[
07×7

A−1
pl

]
︸ ︷︷ ︸
14×7

∆τ︸︷︷︸
7×1

.

(10)

where

A−1
pl =



−0.2525 1.2359 −1.3411 0.2171 −0.6623 −1.8760 −0.7642
1.2359 −0.0965 −1.5473 0.1687 −0.3324 0.1499 −0.1311
−1.3411 −1.5473 15.137 0.1357 8.8677 16.7180 7.3466
0.2171 0.1687 0.1357 4.3447 8.6417 5.4724 4.0161
−0.6623 −0.3324 8.8677 8.6417 94.2320 18.7970 13.8300
−1.8760 0.1499 16.7180 5.4724 18.7970 79.1160 46.2780
−0.76416 −0.1311 7.3466 4.0161 13.8300 46.2780 1847.9


, (11)

Bpl = 07×7,
Cpl1 = 07×7

(12)

and

Cpl2 =



0 −7.6493 0 0 0.0102 0 0
−7.6493 −21.607 5.3508 5.1614 −1.2548 −1.1767 0
−7.6493 −19.439 5.3508 5.1614 −0.5213 −1.1767 −0.0035

0 5.1614 0.1947 6.5152 −0.9189 −0.44536 −0.0194
0.01019 −0.5213 −0.0408 −0.9189 0.1543 −0.48784 0.0078

0 −1.1767 0.0399 −0.4454 −0.4878 −1.322 0.0059
0 −0.00351 −0.0013 −0.0194 0.0078 0.0059444 −0.0204


. (13)

The system is found controllable and observable with
eigenvalues ±11.58i, ±9.40, ±7.52, ±6.59, ±5.22,
−0.62 ± 0.66i, and 0.62 ± 0.66i. Due to the compli-
ant joint construction used in the baxter robot [17], ex-
perimentation with the Baxter robot has shown additive
process noise present in the joint angle measurements.
To account for this additive noise, we add a zero-mean
Gaussian white noise term dw with a covariance W to
the model. The resulting stochastic linear model for the
left robot manipulator is of the form:

dxl(t) = Alxl(t)dt+Blul(t)dt+ Fldwl(t),
xl(t0) = xl0, t ∈ [t0, tF ].

(14)

The control architecture used for the simulated set-point
tracking is given in Fig. 1.
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Fig. 1 Set-point tracking with statistical control simula-
tion diagram.

The initial and refernece joint angles used in simula-
tion are shown in Table 1.

Table 1 Initial and Reference joint angles.

Initial Reference
Angles (rad) Angles (rad)

J1 -0.3927 0
J2 -1.1781 0.7854
J3 -1.9635 1.5708
J4 1.1781 0
J5 1.1781 0.7854
J6 0.3927 0
J7 0.3927 0

2.4.2. Statistical Design Parameter Selection
In order to select a suitable statistical design parameter

γ, the joint angle tracking, and end-effector position and
orientation tracking error were evaluated. The following
two performance metrics were used to select a suitable
value for γ:
• Tracking error and root-mean-squared tracking error:
The tracking error is the difference between the set-points
and the outputs. The root mean squared tracking error is
defined in (15):

µε =

√∑t=tf
t=0 ε2(t)

Nε
, (15)

where µε is the root mean squared tracking error, ε is the
error between the set-point and the current output value,
Nε is the number of samples.
• Standard deviation of tracking error: The standard de-
viation of the tracking error indicates the variation of the
error from the mean error value. This is defined as:

σε =

√∑t=tf
t=0 (ε(t)−µ)2

Nε−1 . (16)

This formula is also referred as the corrected sample stan-
dard deviation. In this paper, we are interested in the
steady-state pointing performance of the system. There-
fore, we calculated these metrics on the steady-state part
of the joint angle and end-effector pose response.

In this simulation, γ was varied from 0 to 1 using a
step size of 0.1. For each γ the simulation was run 100
times. Each time a randomized seed was used to generate
Gaussian white noise. The simulation duration was 10
seconds. Finally, we averaged the response. In this man-
ner, we ensured the stochastic nature of the simulation.
We calculated the root-mean-squared tracking error and
standard deviation based on the response from t = 3s.
Table 2 RMS tracking error (µ) and variation (σ): γ = 0

γ = 0 µ σ
Joint angle (rad) 0.02 0.0071

End-effector position (mm) 14.25 7.865
End-effector orientation (deg) 1.32 0.7372

Tables 2 through 4 show tracking performance for sev-
eral values of γ =. We observe that the γ = 0.3 and



Table 3 RMS tracking error (µ) and variation (σ):
γ = 0.3

γ = 0.3 µ σ
Joint angle (rad) 0.0126 0.0043

End-effector position (mm) 8.86 4.63
End-effector orientation (deg) 0.84 0.45

Table 4 RMS tracking error (µ) and variation (σ):
γ = 0.9

γ = 0.9 µ σ
Joint angle (rad) 0.0139 0.004

End-effector position (mm) 4.31 4.2506
End-effector orientation (deg) 0.92 0.42

γ = 0.9 show better performance compared to γ = 0
case. γ = 0.3 produced the minimum tracking error in all
cases (joint angles and end-effector pose). γ = 0.9 pro-
duced the minimum tracking error variation. Our control
goal is to minimize the variation in the joint angle error,
consequently, which leads to minimum end-effector po-
sition error. Therefore, we choose γ = 0.9 as the best
design parameter value for the statistical control of the
left arm of Baxter robot.

2.4.3. Statistical Controller Simulation

Figs. 2 show the time response of the end-effector
position with the statistical controller of γ = 0.9. The
parameter γ = 0.9 yielded better tracking error varia-
tion for the end-effector position. Therefore, we selected
γ = 0.9 as the design parameter value for our statistical
controllers.
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Fig. 2 End-effector position tracking with statistical con-
trol γ = 0.9.

3. HYBRID HIERARCHICAL
STATISTICAL CONTROL

ARCHITECTURE

A hierarchical hybrid agent control system architec-
ture was selected to control the source and detector mo-
tion of the Baxter robotic arms for the desired scanning
behaviour. The system consists of two tiers; The top tier
consisting of the supervisory controller, and the bottom
tier consisting of the agents. The supervisory controller
generates commands for scanning, monitors the status of
agents, and coordinates motion between them. Each of
the Baxter arms is equipped with a different sensor and is
considered an agent in this architecture. In this applica-
tion, the supervisory control coordinates high-level mo-
tion, while the statistical controller determines low-level
torque inputs for each joint.
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Joint 
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Fig. 3 Hierarchical hybrid agent control system architec-
ture for a dual arm robot assisted bimodal dynamic
imaging system.

3.1. Hybrid Automaton
The proposed hybrid hierarchical system includes both

the continuous and discrete dynamics. The statistical
controller developed for low-level joint position control
is continuous, while the hierarchical controller used to
coordinate motion between the two arms is discrete. As
such, the system represents a hybrid automation system
as defined in [16]. The hybrid automaton H can be de-
scribed mathematically as

H = (S,X,Σin,Σout, U, f, Init,D, E , G,R) (17)

where S is the set of discrete states where the system is
allowed to exist. X is the set that represents all of the
continuous variables, possible in each of the states of S.
The vector field, f , consists of time dependent functions
such as differential equations that describe the time evo-
lution of the variables in X . U denotes the tangent bundle
of X . The initial states are the initial values of the contin-
uous variables. D contains the range where each contin-
uous variable and discrete event that are allowed to exist.
P (X) denotes the set of all subsets of X . Σin and Σout

denote the set of all discrete inputs and discrete outputs.
The set of edges, E , describe what transitions are allowed
to occur between states. The guard conditions, G, de-
scribe the events that must occur for a transition to take



place. Finally, the reset map, R, is the set of conditions
that cause the system to enter its initial state.

3.2. Supervisory Controller Model
The supervisory controller functions are as follows:

1. To generate and send commands to agents.
2. To schedule the scanning task command to control the
agents.
3. To facilitate coordination between the agents so that
they can act cooperatively.
4. To ensure safety in case of unexpected situations.

Supervisory controller automaton is modeled using
discrete event systems. In our case, the supervisory con-
troller is designed to execute its tasks sequentially. There
are five discrete nodes, which constitute the discrete set
S = {s1, s2, s3, s4, s5}. Each nodes are defined as fol-
lows:
• Idle Node (s1). In this node, the supervisory controller
waits for the PowerON message from the operator. If the
PowerON message is generated, the system jumps from
node s1 to node s2. In the case, when the supervisory
controller gets UnexAg1Status = 1 or UnexAg2Status =
1 message from node s5 or ScanCountFinish = 1 from
node s2, it sends the PowerOFF message to the operator.
• Agent Scheduler Node (s2). In this node, the supervi-
sory controller assigns the scanning task to Agent 1 and
Agent 2 sequentially and checks for the scanning task sta-
tus. If the scan count matches a pre-specified number,
the system jumps from s2 to s1. Agent 1 sends back a
scheduling success message via Ag1ScheduleFinish tag
with 1 upon successful reception. Then the supervisory
controller starts calculating task start and end time. The
supervisory controller then jumps to s3 to control Agent 1
to perform the task with a message tag Ag1Active=1. Af-
ter a pre-specified time interval, the controller jumps back
from s3. The controller then jumps to s4 with a message
tag Ag2Active=1. The controller does the scheduling and
time interval calculation for s4. The scan count is incre-
mented by 1 if Agent 2 sends back AgTaskFinish = 1 tag.
This sequence of jumping goes on until the scan is com-
plete and s2 generates a tag ScanCountFinish = 1.
• AgentManeuver Node (s3 and s4). In these nodes,
the supervisory controller sends the control signal to per-
mit pre-specified reference trajectory to the correspond-
ing agent at the calculated task start time. The the super-
visory controller will standby in s3 or s4 to wait for the
task status feedback from Agent 1 or 2. After the super-
visory controller receives the feedback, or if a TimeOut
event is triggered, it will jump from s3 to s2 or from s4
to s2. The scanning task includes positioning of the robot
arm joints at the desired position and capturing images.
If the scheduled scanning task has been successfully per-
formed by an agent, a feedback tag AgTaskFinish = 1 is
sent from the bottom tier to the top tier, and the supervi-
sory controller jumps back to s2.
• UnexpectedStatusCheck Node (s5). In this node, the
supervisory controller monitors for any unexpected sit-
uation. The unexpected situations can occur in differ-
ent scenarios such as there is collision between the arms,

there exist out of reach joint limit, or the operator is not
satisfied with the scanning performance during the scan-
ning. The generated message tag is UnexAg1tatus or Un-
exAg2tatus. If the tag is 1, the supervisory controller falls
back to node s1.

The finite set of continuous variable for the agent sys-
tem is defined as
X = {q1, q2, q3, q4, q5, q6, q7}, where qi, i = 1, 2, · · · , 7
represents the joint angles of the robot arm. The contin-
uous dynamics include the stochastic model of the robot
arm with the state feedback statistical controller.

The finite set of discrete events has the input and out-
put events. It can be represented as follows.

Σin =


PowerOn

AgkTaskStatus
ScanCountF inish
UnexAgkStatus


′

,

Σout =

[
AgkTaskCMD

]
;

(18)

Note that Agk denote Ag1 and Ag2. The discrete transi-
tions in the system are:

E =



(s1, s2)
(s2, s1)
(s2, s3)
(s3, s2)
(s2, s4)
(s4, s2)
(s3, s5)
(s4, s5)
(s5, s1)



′

(19)

The guard conditions are defined as:


G1

G2

G3

G4
G5
G6
G7
G8
G9


=



(s1, s2) ⇒ {PowerON ̸= ∅}
(s2, s1) ⇒ {ScanCountF inish = 1}

(s2, s3) ⇒ {(Ag1Active = 1) ∧ (ScanCountF inish = 0)}
(s3, s2) ⇒ {Ag1TaskF inish = 1}

(s2, s4) ⇒ {(Ag2Active = 1) ∧ (ScanCountF inish = 0)}
(s4, s2) ⇒ {Ag2TaskF inish = 1}
(s3, s5) ⇒ {UnexAg1Status = 1}
(s4, s5) ⇒ {UnexAg2Status = 1}

(s5, s1) ⇒ {(UnexAg1Status = 1) ∨ (UnexAg2Stat = 1)}


(20)

The state transition diagram for the supervisory controller
(top tier) is given in Fig. 4.
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Fig. 4 State transition diagram for supervisory controller.



3.3. Agent Model
The agent functions are as follows:

1. To receive reference trajectory commands from the su-
pervisory controller.
2. To perform the joint maneuver so that the poses of the
two end-effector are in line-of-sight.
3. To send the task status feedback to the supervisory
controller to notify the task success.

• Idle node (s1). In this node, the agent is at the ini-
tial position with the initial pose. The agent waits for the
AgentTaskCMD from the supervisory controller to check
if the joint maneuver is required. After receiving Agent-
TaskCMD, the agent jumps to node s2.
• Joint maneuver node (s2). In this node, the agent
changes its joint angles to the reference joint angles. If
there are differences between the current and reference
joint angles, then the agent adjusts its joint angles by ap-
plying required torque input. At this stage, a statistical
controller is used to generate the required torque. If the
differences between the current and reference joint angles
are below certain thresholds, the agent jumps to node s3.
• Agent task status node (s3). In this node, the agent
operates at the target joint angles with specified mar-
gins. The agent checks for the completion of the task
assigned by the supervisory controller. The agent sends
back a AgentkTaskFinish tag to the top tier to indicate
that the joint maneuver is successful. If any unexpected
situation occurs during the maneuver, the agent generates
UnexAgkStatus tag to inform the top tier. Here k denotes
1 or 2.

The finite set of continuous variable for the agent sys-
tem is defined as X = {q1, q2, q3, q4, q5, q6, q7}, where
qi, i = 1, 2, · · · , 7 represents the joint angles of the robot
arm. The continuous dynamics include the stochastic
model of the robot arm with the state feedback statisti-
cal controller.

The finite set of discrete events has the input and out-
put events. It can be represented as follows.

Σin = {AgentkTaskCMD} ;
Σout = {AgkTaskF inish, UnexAgkStatus} ; (21)

Note that Agentk denote Agent1 and Agent2, and Agk
denote Ag1 and Ag2. Initial conditions enforced on the
system are:

Init = {qi = qi0} ; i = 1, 2, · · · , 7 (22)

The discrete transitions in the system are:

E = {(s1, s2) , (s2, s3) , (s3, s1)} (23)

The guard conditions are defined as:
G1

G2

G3

 =

[l] (s1, s2) ⇒ {AgentkTaskCMD ̸= ∅}
(s2, s3) ⇒ {Jointanglediff < threshold}
(s3, s1) ⇒ {(AgkTaskFinish = 1) ∨ (UnexAgkStatus = 1)}

 (24)

The state transition diagram for the agents (bottom tier)
is given in Fig. 5.

G1

G3 G2

s1 s2

s3

AgentTaskFinish=1
Or UnexpectedStatus=1

AgentTaskCommand=0

Joint angle-Reference angle > threshold

Fig. 5 State transition diagram for agents.
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Fig. 6 System implemented with the Baxter robot.

4. SIMULATION
The hybrid hierarchical statistical controller system

was implemented using MATLAB Simulink for the
supervisory controller, statistical joint controller, and
physics simulation. In addition, two feedforward con-
trollers were added to achieve set-point tracking.

The simulation was repeated 20 times with variations
in the seed value used to generate the additive Gaussian
white noise values. A summary of the simulation perfor-
mance is given in Table 5. When both the agents reached
steady-state positions, the system started acquiring im-
ages. At t=16s, Agent 1 switched to a new position af-
ter being provided with the new reference position. This
movement was repeated until 112s.

Table 5 Simulation Example Points.

Agent 1 Agent 2
time X Y Z X Y Z
(s) (mm) (mm) (mm) (mm) (mm) (mm)
0 554.80 -84.80 100.4 603.60 197.20 74.20
1 827.10 8.56 296.50 603.60 197.20 74.20
2 669.8 -77.30 171.10 603.60 197.20 74.20
8 669.8 -77.30 171.10 603.60 197.20 74.20
9 669.8 -77.30 171.10 939.90 1169.00 414.50

10 669.8 -77.30 171.10 655.30 76.90 155.10
... ... ... ... ... ... ...

112 618.80 -78.30 150.20 631.20 73.80 153.50

Fig. 9 shows the trajectory tracking error of Agent 1
and Agent 2. Enlarging a section of the plot from t = 17s
to t = 24s reveals the tracking error did not settle to zero,



but rather oscillated around the zero value. This was due
to the presence of the Gaussian white noise in the system.
The largest error for both agents was observed during the
initial motion, however measured mean and standard de-
viations of the agents after reaching steady state values
were (mean±standard deviation) was 1.49± 0.86 mm for
Agent 1 and 1.50± 0.86 mm for Agent 2. When both the
agents reached steady-state positions, the system started
acquiring images.
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Fig. 7 End-effector X-axis trajectory tracking error.
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Fig. 8 End-effector Y-axis trajectory tracking error.
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Fig. 9 End-effector Z-axis trajectory tracking error.

Note that the experiment for collecting reference joint
angles took 112 seconds. The images were taken at 15
positions throughout the motion over a row length of
30mm. Assuming a square sample of 30mm per side,
a full matrix scan of the sample area would take approx-
imately 30-35 minutes. For this test, position dwell time
at each sample point was set to 8 seconds as the images
were captured manually at these points. Integration of
the shutter command with the controller would allow for
shorter dwell times, thus reducing the capture time re-
quired for a full 30mm square sample.

5. CONCLUSIONS

This paper presented a hybrid hierarchical statistical
control architecture for the tracking control of a dual-
agent stochastic system, based on the Baxter research
robot. A full-state feedback controller was designed for
low-level joint control of each robotic arm, while high-
level motion tracking was implemented using a hybrid
hierarchical supervisory controller. The results of the
implementation in a MATLAB simulation environment
yielded a tracking error of approximately 2mm over a
series of 20 trials. A comparison of the statistical joint
controller to other more conventional controllers such as
LQR and PID control is left for future work.
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