
Activation Landscapes as a Topological Summary
of Neural Network Performance

Matthew Wheeler
Department of Medicine

University of Florida
Gainesville, USA

mwheeler1@ufl.edu

Jose Bouza
CISE Department

University of Florida
Gainesville, USA

josejbouza@gmail.com

Peter Bubenik
Department of Mathematics

University of Florida
Gainesville, USA

peter.bubenik@ufl.edu

Abstract—We use topological data analysis (TDA) to study
how data transforms as it passes through successive layers
of a deep neural network (DNN). We compute the persistent
homology of the activation data for each layer of the network
and summarize this information using persistence landscapes.
The resulting feature map provides both an informative visual-
ization of the network and a kernel for statistical analysis and
machine learning. We observe that the topological complexity
often increases with training and that the topological complexity
does not decrease with each layer.

Index Terms—Topological data analysis, persistent homology,
persistence landscapes, deep neural networks, topological com-
plexity, local homology

I. INTRODUCTION

Deep neural networks (DNNs) have become an indispens-
able tool for handling and analyzing large amounts of data.
While they have been extremely successful for classifying
complex data sets, the way in which they make decisions is
often opaque. We will use topological data analysis (TDA) to
provide a new summary of a DNN which is designed to illumi-
nate aspects of DNN learning and performance. We focus on
how DNNs transform the topology of the input data manifold
and how training affects these topological transformations. To
this end, we use a TDA method, persistence landscapes, to
provide a feature map and kernel for the activations of each
of the layers in a DNN and we use this method to summarize
changes in the DNN during learning.

A. Topological Data Analysis

Large data sets can exhibit highly complicated topological
and geometric structure that is both difficult to summarize and
crucial for understanding the data. Topological data analysis
(TDA) uses methods based on algebraic topology to quantify
and study the shape of data. One of the primary tools of TDA,
persistent homology, gives a complete summary of the ho-
mology of a one-parameter family of topological spaces [14],
[48]. As an important application, a collection of points in
Euclidean space may be used to produce a one-parameter
family consisting of unions of balls centered at these points
of uniform increasing radius. There are a number of efficient
implementations for computing persistent homology [4], [5],
[29], [31] A variant, called local homology, has been used to
learn the stratification of data [6], [28], [32], [37].

B. Deep Neural Networks

Deep Neural Networks (DNNs) are overparametrized mod-
els with multiple layers and have been shown to be effec-
tive for a variety of machine learning tasks, especially for
structured data such as images or text [16]. Examples of
DNN successes include applications in biology [1], [12], [27],
chemistry [26], engineering [33], medicine [11], physics [2],
and speech recognition [17], [19], [45]. We will limit our scope
to a particular DNN architecture, the multi-layer perceptron
(MLP), whose layers consists of an affine transformation
followed by a non-linear function, although our method can
also be used for other deep learning architectures.

C. Previous Work

The synthesis of TDA and DNNs has been shown to be
increasingly potent [3], [40]. Topological summaries have been
used in DNNs since the work of Hofer et al. [20] Around
the same time, persistence landscapes [8] were used as a
layer in DNNs for music audio signals [25] and TDA was
used in DNNs for the classification of a dynamical systems
time series [41]. More recent work has highlighted the use
of differentiable topological layers in DNNs [10], [15]. For
example, persistence landscapes have been used as part of a
robust topological layer for DNNs [23]. TDA has been used to
to measure disentanglement of DNNs [47] and the use of TDA
to measure and control the topological loss across training has
led to state-of-the-art results in training autoencoders [13], [21]
and GANs [42].

An important approach to understanding DNNs is the devel-
opment of visualization tools [22], [38], [44], [46]. A recent
subset of this literature has used the TDA method Mapper [39]
to visualize the activations of the layers in a DNN [7], [35]
and to determine the appropriate DNN architecture for certain
image data [9]. Persistent homology has also been used to
measure the complexity of DNNs [18], [36], [43].

Naitzat, Zhitnikov and Lim [30] used homology and per-
sistent homology to study how the topology of the collection
of data from one input class changes as it passes through the
layers of a fully trained DNN. Their analysis indicated that
at each layer the topological complexity decreases. Here we
present a kernel-based approach that builds on their work.

ar
X

iv
:2

11
0.

10
13

6v
1

 [c
s.L

G
]

19
 O

ct
 2

02
1

II. METHODS

A. Persistent Homology

Given a collection of points X = {x1, . . . , xN} ⊂ Rd and
r > 0, the Vietoris-Rips complex is the abstract simplicial
complex given by

VRr(X) = {σ ⊂ X | σ 6= ∅, ∀x, y ∈ σ, ‖x− y‖ ≤ r } .

For j ≥ 0, the simplicial homology in degree j of this complex
with binary coefficients produces a vector space Hj(VRr(X)).
The dimension of this vector space, called the jth Betti number
gives the number of connected components and the number of
holes in VRr(X) for j = 0 and 1 respectively.

For r ≤ s, VRr(X) ⊆ VRs(X) and there is a corre-
sponding linear map Hj(VRr(X)) → Hj(VRs(X)). These
vector spaces and linear maps, called a persistence module, are
completely described by the persistence diagram Dgmk(X)
which consists of ordered pairs (a, b) giving the values of r
at which a topological features appear and disappear in the
persistence module.

B. Local homology

We also use a variant of homology called local homology
to detect local stratified structure. The homology of the points
X ⊂ Rd relative to the exterior of the open unit ball may
be computed as follows. All points outside the unit ball are
projected to the unit sphere and we take the homology of
a modified Vietoris-Rips complex of the resulting points in
which pairwise distances between all points on the unit sphere
are set to zero.

C. Persistence Landscapes

Persistence landscapes are a feature map and kernel for
persistent homology. The following construction of persistence
landscapes from persistence diagrams is invertible [8]. For
each (a, b) ∈ Dgmk(X), consider the function

f(a,b)(t) = max(0,min(a+ t, b− t)).

The persistence landscape is the sequence of functions λ =
(λ1, λ2, . . .), where

λk(t) = kmax
{
f(a,b)(t)

}
(a,b)∈Dgmk(X)

.

Note that this sequence is decreasing and has at most as many
nonzero terms as the number of elements of the persistence
diagram. Persistence landscapes are elements of a Hilbert
space with inner product given by

〈λ, ρ〉 =
∑
k

∫
λk(t)ρk(t) dt.

With this inner product we have a corresponding norm
‖λ‖ =

√
〈λ, λ〉 and metric d(λ, ρ) = ‖λ− ρ‖. We define

the topological complexity of a persistence landscape to be its
norm.

Fig. 1: Activations. We consider how input data transforms as
it passes through the layers of the network. We visualize these
high-dimensional point clouds using the two-dimensional PCA
projections. The top row corresponds to the synthetic data
activations 0, 2, 5, 8, and 11 of a network trained to 99.999%
accurarcy. On the bottom we have the MNIST data activations
0, 1, 3, 5, and 7 of a network trained to 99.5% accuracy. Colors
indicate ground-truth classes.

D. Activation Landscapes

We now use persistence landscapes to define a feature map
and kernel for multi-layer perceptrons (MLPs). Suppose we
have an MLP of the form

F = P ◦ LN ◦ LN−1 ◦ ... ◦ L1

where the ith layer, Li, is given by an affine transformation
Wi followed by a non-linear function σ. For LN , σ is omitted.
The network ends with a softmax function, P , mapping the
output of LN to a probability vector. We call N the depth of
the network.

Let x be a batch of input data to this network. The ith
activation is given by

ai = (Li ◦ ... ◦ L1)(x).

We also let a0 = x. The activation landscapes of network F
with input batch x are computed as follows.

1) Center the vectors in ai (i.e. translate the mean to the
origin) and then normalize so that the maximum distance
between the vectors in ai is 1.

2) Compute the persistence diagram of the Vietoris-Rips
complex of the normalized activations for degree j.

3) Compute the corresponding persistence landscape.
We denote the persistence landscapes for layer i by λ(i) and
call it the ith activation landscape. Thus to each network and
each input we associate a sequence of activation landscapes
{λ(0), λ(1), . . . λ(N)}. We may interpret this sequence as a
piecewise linear path in Hilbert space which we call the
activation landscape curve. Alternatively we may consider this
sequence as an element of the product Hilbert space, which
has inner product

〈λ, ρ〉 =
N∑
i=0

∑
k

∫
λ
(i)
k (t)ρ

(i)
k (t) dt. (1)

In the case of local homology, we modify steps (1) and (2)
above as follows.

Fig. 2: Activation landscapes. Left: For our synthetic data and a batch of input data consisting of points from the blue class
in Figure 1, we present the activation landscapes for homology in degree one for each layer and various training thresholds
averaged across 100 network initializations. Each row represents a training threshold and each column represents a layer of
the network. Right: The activation landscapes for MNIST data with a batch of input data consisting of points from all classes
and using local homology in degree one.

1) If the layer does not end with ReLU then center the ai.
Order the resulting vectors by their distance to the origin.
Rescale the vectors so the median norm is 1. Replace
vectors with norm greater than 1 with their unit vectors.

2) Compute the persistence diagram of the Vietoris-Rips
complex of a modified distance matrix of these normal-
ized activations in degree j in which all distances between
activation vectors whose norms are greater than or equal
to the median are set to 0.

E. Average Activation Landscapes

Given a fixed network architecture, training data, and batch
of input data, the activation landscapes are functions of initial
weights from which the networks are trained. If these are ran-
domly determined then the activation landscapes are random
variables. The expected values of these random variables may
be estimated using the average activation landscapes over a
number of samples of initial weights. Similarly, we may also
randomly vary the training data and/or the input data.

III. EXPERIMENTS

We now demonstrate that the activation landscapes can
illuminate aspects of the training dynamics of a deep neural
network. We ran two experiments to study the activation
landscapes of networks trained on synthetic and real data.
Both experiments ran on 4 AMD EPYC 7702 Rome 2.0
GHz Cores, 128 GB of system RAM and an RTX 2080 Ti
GPU. We provide a highly configurable and tested pipeline
for computation of activation landscapes in the nn-activation-
landscapes Python package. This package integrates with the
popular deep learning library PyTorch [34].

A. Synthetic Data

Following [30], we constructed synthetic data composed of
two categories. The first category C1 consists of 9 disks while
the second C2 is the complement of the first category within
a larger disk. We used an evenly spaced square lattice on the
plane to sample points from each category with a combined
total of 14,235 points. See the leftmost image in Figure 1.

We generated 100 trained networks, each with a different
weight initialization, for this data set. All network architectures

consisted of an MLP with 11 fully connected layers, the first
ten layers of width 15 and the last (output) layer of width
2. Each layer included a ReLU activation except the last
layer (which outputs logit vectors). Networks were trained
on training data consisting of 90% of the 14,235 points.
Adam [24] optimizer was used with an initial learning rate
of 0.04. We took snapshots of the weights during the training
at prescribed training accuracy thresholds between 50% and
100%. All networks trained to 100% training accuracy and
had very low generalization error.

To compute activation landscapes we used a batch of input
data consisting of a sublattice of 28.52% of the original data.
This sublattice included points from both the testing and
training data. We used homology in degree one. Persistence
landscapes were discretized with width 0.001.

We obtained a three parameter family of activation land-
scapes across: 1) networks with different initialization weights
and choices of training data; 2) training thresholds; and
3) layers of each network. For each training threshold and
layer, we averaged the activation landscapes across the trained
networks.

B. Real Data

For our second experiment, we used the MNIST database
of 28 × 28 pixel images of handwritten digits with 60, 000
training images and 10, 000 test images. We generated 10
trained networks. The flattened MNIST images were fed into
an MLP with 7 fully connected layers with feature dimensions
784 → 128 → 64 → 64 → 64 → 64 → 64 → 10.
As in the synthetic experiment, each layer was followed by
a ReLU activation function except for the last. We again
used an Adam optimizer for training with an initial learning
rate of 0.04. We took snapshots of the weights at various
training accuracy thresholds between 20% and 100%. All
networks trained to near 100% training and test accuracy. We
computed activation landscapes on a randomly sampled subset
of size 2, 000 from the union of the training and test images
(approximately 2.1% of the images). We used local homology
in degree one and persistence landscapes were discretized to
width 0.005. We obtained a four parameter family of activation

https://github.com/jjbouza/tda-nn
https://github.com/jjbouza/tda-nn

TABLE I: The p-values for differences between the activation
landscapes in Figure 2 between the various training thresholds.
Top: Synthetic data. Bottom: MNIST data.

Training Accuracy 55% 70% 85% 99.999%
55% · · · ·
70% 0.01434 · · ·
85% 0.00000 0.00792 · ·

99.999% 0.00000 0.00000 0.01579 ·
Training Accuracy 60% 80% 95% 99.5%

55% · · · ·
70% 0.00000 · · ·
85% 0.00000 0.00000 · ·
99.5% 0.00000 0.00000 0.00000 ·

landscapes across: 1) networks with different initialization
weights and choices of training data; 2) training thresholds;
3) layers of each network; and 4) subsamples of input data. For
each training threshold and layer, activation landscapes were
averaged over choices of trained networks and input data.

C. Results

For a choice of training data and a fixed network archi-
tecture, we consider the activations and activation landscapes
for various network initializations, thresholds, and layers. In
Figure 1 we visualize the activations for some of the layers
in a particular fully trained network for both our synthetic
data and real data. In Figure 2, we plot the average activation
landscapes for all layers and a selection of training accuracy
thresholds for homology in degree 1 for C2 for our synthetic
data on the left and for local homology in degree 1 for our
real data on the right. For the synthetic data, observe that the
nine holes in the blue input data in Figure 1 are detected by
the activation landscapes of the starting layers in Figure 2.
For our real data, observe in Figure 1 that inputs of a given
class as they pass through the network seem to cluster on
one-dimensional subspaces emanating from the origin. These
features are detected by the activation landscapes in ending
layers of Figure 2.

In Figure 3 we give a 2D projection of the activation
landscapes for all of the layers and a range of learning
accuracy thresholds including the four in Figure 2 for both our
synthetic and real data. This is a 2D projection of a sequence
of piecewise linear high-dimensional curves.

In Figure 4 we give the norms of the activation landscapes
of all of the layers and a range of learning accuracy thresholds
including the four in Figure 2. Observe that these curves are
not monotonically decreasing and that this effect increases as
the learning accuracy threshold increases.

Finally we test if the activation landscapes for the various
training accuracy thresholds whose averages are shown in
Figure 2 are statistically significantly different. We perform
permutation test with N = 100, 000 on the test statistic given
by the distance between the average activation landscapes
using the inner product in (1). Table I shows the p values.
In all cases, the difference is statistically significant for the
significance level of 0.05.

Fig. 3: Activation curves. Two-dimensional PCA projections
of the activation landscapes from Figure 2 using a larger num-
ber of training accuracy thresholds, with consecutive layers
connected by line segments (increasing layers generally from
left to right) and increasing accuracy thresholds colored from
yellow to purple.

Fig. 4: Topological complexity. Average norms of the ac-
tivation landscapes from Figure 2 using a larger number of
training accuracy thresholds with consecutive layers connected
by line segments and increasing accuracy thresholds colored
from yellow to purple.

IV. DISUSSION

In Figures 2 and 3 we observe that as the training accuracy
threshold increases the activation landscapes are converging
toward the expected activation landscape of a fully trained
network. Furthermore, the latter seems to accentuate the most
significant topological features of the activations. In Figure 4
we plot the norms of these activation landscapes. We make
two striking observations. First, the topological complexity of
the activations does not decrease monotonically as the data
passes through the layers of the well trained networks, contra-
dicting a previous observation on the topology of deep neural
networks [30]. Second, as the training threshold increases the
topological complexity of the activations tends to increases.

V. CONCLUSION

Our activation landscapes provide a powerful and innovative
way for analyzing the evolution of topological information
as it passes through the layers of a deep neural network and
how this changes throughout the training process. Our method
has a number of benefits over previous instances. First, it
provides a complete summary of the persistent homology of
the activations in each layer in the network. Second, as a
feature map and kernel it allows us to easily apply statistics
and machine learning in our analysis.

REFERENCES

[1] Reza Abbasi-Asl, Yuansi Chen, Adam Bloniarz, Michael Oliver, Ben
Willmore, Jack Gallant, and Bin Yu. The DeepTune framework for
modeling and characterizing neurons in visual cortex area V4. bioRxiv,
page 465534, 2018.

[2] P. Baldi, P. Sadowski, and D. Whiteson. Enhanced Higgs boson to τ+τ -
search with deep learning. Physical Review Letters, 114(11):1–6, 2015.

[3] D. Barnes, Luis Polanco, and Jose A. Perea. A comparative study
of machine learning methods for persistence diagrams. Frontiers in
Artificial Intelligence, 4, 2021.

[4] Ulrich Bauer. Ripser: efficient computation of vietoris–rips persistence
barcodes. Journal of Applied and Computational Topology, 5(3):391–
423, 2021.

[5] Ulrich Bauer, Michael Kerber, Jan Reininghaus, and Hubert Wagner.
Phat – persistent homology algorithms toolbox. In Hoon Hong and
Chee Yap, editors, Mathematical Software – ICMS 2014, volume 8592
of Lecture Notes in Computer Science, pages 137–143. Springer Berlin
Heidelberg, 2014.

[6] Paul Bendich, Bei Wang, and Sayan Mukherjee. Local homology
transfer and stratification learning. In Proceedings of the Twenty-Third
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1355–
1370. ACM, New York, 2012.

[7] Rickard Bruel Gabrielsson and Gunnar Carlsson. Exposition and
interpretation of the topology of neural networks. Proceedings - 18th
IEEE International Conference on Machine Learning and Applications,
ICMLA 2019, pages 1069–1076, 2019.

[8] Peter Bubenik. Statistical topological data analysis using persistence
landscapes. Journal of Machine Learning Research, 16:77–102, 2015.

[9] Gunnar Carlsson and Rickard Brüel Gabrielsson. Topological ap-
proaches to deep learning. In Nils A. Baas, Gunnar E. Carlsson,
Gereon Quick, Markus Szymik, and Marius Thaule, editors, Topological
Data Analysis, pages 119–146, Cham, 2020. Springer International
Publishing.

[10] Mathieu Carrière, Frédéric Chazal, Yuichi Ike, Théo Lacombe, Martin
Royer, and Yuhei Umeda. Perslay: A neural network layer for persis-
tence diagrams and new graph topological signatures. In Silvia Chiappa
and Roberto Calandra, editors, The 23rd International Conference on
Artificial Intelligence and Statistics, AISTATS 2020, 26-28 August 2020,
Online [Palermo, Sicily, Italy], volume 108 of Proceedings of Machine
Learning Research, pages 2786–2796. PMLR, 2020.

[11] Jeffrey De Fauw, Joseph R. Ledsam, Bernardino Romera-Paredes,
Stanislav Nikolov, Nenad Tomasev, Sam Blackwell, Harry Askham,
Xavier Glorot, Brendan O’Donoghue, Daniel Visentin, George van den
Driessche, Balaji Lakshminarayanan, Clemens Meyer, Faith Mackinder,
Simon Bouton, Kareem Ayoub, Reena Chopra, Dominic King, Alan
Karthikesalingam, Cı́an O. Hughes, Rosalind Raine, Julian Hughes,
Dawn A. Sim, Catherine Egan, Adnan Tufail, Hugh Montgomery, Demis
Hassabis, Geraint Rees, Trevor Back, Peng T. Khaw, Mustafa Suleyman,
Julien Cornebise, Pearse A. Keane, and Olaf Ronneberger. Clinically
applicable deep learning for diagnosis and referral in retinal disease.
Nature Medicine, 24(9):1342–1350, 2018.

[12] Pietro Di lena, Ken Nagata, and Pierre Baldi. Deep architectures
for protein contact map prediction. Bioinformatics, 28(19):2449–2457,
2012.

[13] Meryll Dindin, Yuhei Umeda, and Frederic Chazal. Topological data
analysis for arrhythmia detection through modular neural networks. In
Cyril Goutte and Xiaodan Zhu, editors, Advances in Artificial Intelli-
gence, pages 177–188, Cham, 2020. Springer International Publishing.

[14] Herbert Edelsbrunner, David Letscher, and Afra Zomorodian. Topologi-
cal persistence and simplification. Discrete Comput. Geom., 28(4):511–
533, 2002. Discrete and computational geometry and graph drawing
(Columbia, SC, 2001).

[15] Rickard Brüel Gabrielsson, Bradley J. Nelson, Anjan Dwaraknath, and
Primoz Skraba. A topology layer for machine learning. volume 108 of
Proceedings of Machine Learning Research, pages 1553–1563, Online,
26–28 Aug 2020. PMLR.

[16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning.
Adaptive Computation and Machine Learning. MIT Press, Cambridge,
MA, 2016.

[17] Alex Graves, Abdel Rahman Mohamed, and Geoffrey Hinton. Speech
recognition with deep recurrent neural networks. ICASSP, IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing -
Proceedings, (3):6645–6649, 2013.

[18] William H. Guss and Ruslan Salakhutdinov. On characterizing the capac-
ity of neural networks using algebraic topology. ArXiv, abs/1802.04443,
2018.

[19] Awni Y. Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Gre-
gory Frederick Diamos, Erich Elsen, Ryan J. Prenger, Sanjeev Satheesh,
Shubho Sengupta, Adam Coates, and A. Ng. Deep speech: Scaling up
end-to-end speech recognition. ArXiv, abs/1412.5567, 2014.

[20] Christoph Hofer, Roland Kwitt, Marc Niethammer, and Andreas Uhl.
Deep learning with topological signatures. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
editors, Advances in Neural Information Processing Systems 30, pages
1634–1644. Curran Associates, Inc., 2017.

[21] Christoph D. Hofer, Roland Kwitt, Mandar Dixit, and Marc Niethammer.
Connectivity-optimized representation learning via persistent homology.
36th International Conference on Machine Learning, ICML 2019, 2019-
June:4868–4877, 2019.

[22] Fred Hohman, Minsuk Kahng, Robert Pienta, and Duen Horng Chau.
Visual Analytics in Deep Learning: An Interrogative Survey for the Next
Frontiers. IEEE Transactions on Visualization and Computer Graphics,
25(8):2674–2693, 2019.

[23] Kwangho Kim, Jisu Kim, Manzil Zaheer, Joon Kim, Frederic Chazal,
and Larry Wasserman. Pllay: Efficient topological layer based on
persistent landscapes. In H. Larochelle, M. Ranzato, R. Hadsell, M. F.
Balcan, and H. Lin, editors, Advances in Neural Information Processing
Systems, volume 33, pages 15965–15977. Curran Associates, Inc., 2020.

[24] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[25] Jen-Yu Liu, Shyh-Kang Jeng, and Yi-Hsuan Yang. Applying topological
persistence in convolutional neural network for music audio signals.
arXiv:1608.07373 [cs.NE], 2016.

[26] Alessandro Lusci, Gianluca Pollastri, and Pierre Baldi. Deep architec-
tures and deep learning in chemoinformatics: The prediction of aqueous
solubility for drug-like molecules. Journal of Chemical Information and
Modeling, 53(7):1563–1575, 2013.

[27] Adam H. Marblestone, Greg Wayne, and Konrad P. Kording. Toward
an integration of deep learning and neuroscience. Frontiers in Compu-
tational Neuroscience, 10(SEP):1–60, 2016.

[28] Yuriy Mileyko. Another look at recovering local homology from samples
of stratified sets. J. Appl. Comput. Topol., 5(1):55–97, 2021.

[29] Dimitriy Morozov. Dionysus: a C++ library with various algorithms for
computing persistent homology. Software available at http://www.mrzv.
org/software/dionysus/, 2012.

[30] Gregory Naitzat, Andrey Zhitnikov, and Lek-Heng Lim. Topology of
deep neural networks. J. Mach. Learn. Res., 21:Paper No. 184, 40, 2020.

[31] Vidit Nanda. Perseus: the persistent homology software. Software avail-
able at http://www.math.rutgers.edu/∼vidit/perseus/index.html, 2013.

[32] Vidit Nanda. Local cohomology and stratification. Found. Comput.
Math., 20(2):195–222, 2020.

[33] Zhenguo Nie, Tong Lin, Haoliang Jiang, and Levent Burak Kara. Topol-
ogygan: Topology optimization using generative adversarial networks
based on physical fields over the initial domain. ArXiv, abs/2003.04685,
2020.

[34] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. Advances in neural information processing systems,
32:8026–8037, 2019.

[35] Archit Rathore, N. Chalapathi, Sourabh Palande, and Bei Wang.
Topoact: Visually exploring the shape of activations in deep learning.
Computer Graphics Forum, 40, 2021.

[36] Bastian Rieck, Matteo Togninalli, Christian Bock, Michael Moor, Max
Horn, Thomas Gumbsch, and Karsten Borgwardt. Neural persistence: A
complexity measure for deep neural networks using algebraic topology.
In International Conference on Learning Representations, 2019.

[37] Michael Robinson, Christopher Capraro, Cliff Joslyn, Emilie Purvine,
Brenda Praggastis, Stephen Ranshous, and Arun V. Sathanur. Local
homology of abstract simplicial complexes. ArXiv, abs/1805.11547,
2018.

[38] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakr-
ishna Vedantam, Devi Parikh, and Dhruv Batra. Grad-CAM: Visual
Explanations from Deep Networks via Gradient-Based Localization.
International Journal of Computer Vision, 128(2):336–359, 2020.

[39] Gurjeet Singh, Facundo Mémoli, and Gunnar Carlsson. Topological
methods for the analysis of high dimensional data sets and 3d object

http://www.mrzv.org/software/dionysus/
http://www.mrzv.org/software/dionysus/
http://www.math.rutgers.edu/~vidit/perseus/index.html

recognition. Eurographics Symposium on Point-Based Graphics, 22,
2007.

[40] Guillaume Tauzin, Umberto Lupo, Lewis Tunstall, Julian Burella Pérez,
Matteo Caorsi, Anibal M. Medina-Mardones, Alberto Dassatti, and
Kathryn Hess. giotto-tda: a topological data analysis toolkit for machine
learning and data exploration. J. Mach. Learn. Res., 22:Paper No. 39,
6, 2021.

[41] Yuhei Umeda. Time series classification via topological data analysis.
Transactions of the Japanese Society for Artificial Intelligence, 32(3):1–
12, 2017.

[42] Fan Wang, Huidong Liu, Dimitris Samaras, and Chao Chen. Topogan:
A topology-aware generative adversarial network. In Andrea Vedaldi,
Horst Bischof, Thomas Brox, and Jan-Michael Frahm, editors, Computer
Vision – ECCV 2020, pages 118–136, Cham, 2020. Springer Interna-
tional Publishing.

[43] Satoru Watanabe and Hayato Yamana. Topological measurement of
deep neural networks using persistent homology. ArXiv, abs/2106.03016,
2020.

[44] Jason Yosinski, Jeff Clune, Anh M Nguyen, Thomas J. Fuchs, and
Hod Lipson. Understanding neural networks through deep visualization.
ArXiv, abs/1506.06579, 2015.

[45] Dong Yu, Prank Seide, and Gang Li. Conversational speech transcription
using context-dependent deep neural networks. Proceedings of the 29th
International Conference on Machine Learning, ICML 2012, pages 4–5,
2012.

[46] Matthew D. Zeiler and Rob Fergus. Visualizing and understanding
convolutional networks. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 8689 LNCS(PART 1):818–833, 2014.

[47] Sharon Zhou, E. Zelikman, Fred Lu, A. Ng, and Stefano Ermon.
Evaluating the disentanglement of deep generative models through
manifold topology. ArXiv, abs/2006.03680, 2021.

[48] Afra Zomorodian and Gunnar Carlsson. Computing persistent homology.
Discrete Comput. Geom., 33(2):249–274, 2005.

	I Introduction
	I-A Topological Data Analysis
	I-B Deep Neural Networks
	I-C Previous Work

	II Methods
	II-A Persistent Homology
	II-B Local homology
	II-C Persistence Landscapes
	II-D Activation Landscapes
	II-E Average Activation Landscapes

	III Experiments
	III-A Synthetic Data
	III-B Real Data
	III-C Results

	IV Disussion
	V Conclusion
	References

