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Tissue Viscoelasticity Quantification using
Smartphone Tactile Imaging Probe with an Indenter
and Tissue Pitting Recovery Model
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Abstract—Viscoelasticity of human tissue often carries important physiological
information linking to many fatal diseases, such as heart failure, renal impairment,
and liver failure. Fluid retention due to these diseases cause swelling of body
parts (edema) and changes the viscoelastic characteristic of the tissue. We
hypothesize that the viscoelastic behavior change of the tissue can be estimated
by creating and quantifying the pit on the swelled body parts. Here, we present a
smartphone tactile imaging probe with an indenter (STIP-I) system that measures
the pitting parameters and characterizes the viscoelastic behavior. This system
consists of tactile imaging sensing that utilizes a light diffusion in a
polydimethylsiloxane (PDMS)-based optical waveguide and a Viscoelastic Pitting
Recovery (VPR) computation model. The prototype STIP-l system is tested using
edematous tissue phantoms, which show a moderate measurement error of 29.5%

for the pitting parameters and excellent performance of 7.60 % error in elastic modulus estimation. The STIP-lI system
is expected to bring a new approach to understanding viscoelasticity changes due to various diseases.

Index Terms—Body fluid retention, edema severity assessment, smartphone imaging probe, sensing system integration,
tactile imaging sensor, tissue viscoelasticity estimation, viscoelastic pitting model and analysis

I.  INTRODUCTION

ENTER for Disease Control declares that heart failure is

the number one cause of death, with 379,800 deaths in the
United States in 2020 [1]. Similarly, 15.0% of the adult
population in the United States has chronic kidney disease
(CKD) [2], [3]. In many cases of heart or kidney failures, one
commonly observed symptom is fluid retention inside the body
(i.e., the excessive fluid trapped in body tissue), which is also
known as peripheral edema [4]-[9]. While a healthy individual
can also experience peripheral edema due to standing or sitting
for a long time, over sodium intake, or pregnancy, it can lead to
severe complications in heart or kidney disease patients [6], [8].
As such, characterizing edema could provide helpful
information for disease progression. For example, studies
indicate that chronic peripheral edema is proportional to renal
function reduction [6]-[10] and congestive heart failure [9],
[11]. Sudden unilateral limb swelling could also imply deep
vein thrombosis [6], [7].
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In the clinic, a physician performs a pitting edema test when
excessive fluid retention is observed under body tissue such as
the foot or ankle of a patient [7], [8]. A clinician applies
pressure to the swollen foot with a finger for a few seconds to
examine the lasting indentation (or pit) [7], [8], [12]. Such a test
is used to determine the treatment plan, including the
administration of diuretic drugs (e.g., furosemide) that help the
patient expel excess fluid through urine [9]. The finger pitting
test also indicates the viscoelasticity of the swollen tissue. Here,
the term viscoelasticity refers to combination of viscosity and
elasticity. Viscosity is the amount of resistance to recover the
original state from the deformed shape in time; thus, measuring
the tissue recovery time from the pitting represents the viscosity
[13]-[15]. Elasticity refers to a linear spring force when it
deforms and recovers without permanent damage; the tissue
pitting depth due to the applied indentation force is therefore
associated with elasticity [13]-[15].

However, the finger pitting test lacks the procedural standard
[16] and can be a subjective assessment depending on an
examiner. Furthermore, the severity metric (Grade I — IV) is
vague and cannot be correlated to the disease state. For those
reasons, the clinicians do not rely on the pitting test results.
Thus, several edematous tissue assessment devices are
developed for reliable measurements [16]-[19]. Those devices
include an edema depth gauge [16], air compression created pit
measurement [17], and direct surface imprinted depth meter
[18], [19]. Such apparatuses measure the pitting depth and force
applied during the indentation. However, none of these devices
can measure the time-dependent viscosity property, which is
essential for objective assessment [16], [18], [19].

In this paper, we present a Smartphone Tactile Imaging
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Probe with an Indenter (or STIP-I) paired with a Viscoelastic
Pitting Recovery (VPR) computation model. The STIP-I
system is based on our previous work on the Smartphone-based
Compression Induced Sensing (SCIS) system in [20] and tactile
imaging systems in [21], [22], which measure the applied force
and the corresponding tissue reaction through real-time
imaging of interfaced tissue (this technique is called tactile
sensing [23], [24]). The STIP-I device interfaces the edematous
tissue using an indenter which creates a regulated and
repeatable pit. While the indenter interfaces with the tissue, the
STIP-I system allows imaging of the deformation and recovery
of tissue and finds the pitting parameters: pitting depth,
rebound force, and recovery time. The collected images are
then further processed via a computational VPR model and
obtain the viscoelasticity of the tissue. Lastly, we built a potent
diagnosis determinator by comparing the calculated
viscoelasticity to the clinical edema severity metric (Grade I —
IV). The proposed STIP-I system offers several advantages
over the current finger pitting test or other assessment devices,
including the precise and objective assessment and tissue
visualization during the assessment. Moreover, the use of
smartphones increases the accessibility and cost-effectiveness
of the system.

The outline of this paper comprises the STIP-I system
design, data processing and computation, and experimental
results and discussion. This paper also shows the significance
of the results of edematous tissue assessment using STIP-I
pitting parameters and the VPR model.

Il. SENSING SYSTEM DESIGN

A. System Overview

Sensing Unit Processing Unit
Smartphone and Probe Real time Computer -
Video (Images + Time) and |22 sharing Video Conversion, Modeling and
Force Acquisition — Parameterization Classification
USB
Operate the pitting procedure Read and store the
Generate VPR
(press/release) data{captur‘?d by the model
Monitor the applying force -
during the operation Process the data to ggj::iy
Read the sensing probe view calculate the pitting Classification
of the pitted tissue response paramefers

Fig. 1. STIP-I System Functional Block Diagram

Fig. 1 shows the overall architecture of the STIP-I system.
Overall, the system can be categorized into two units: sensing
and processing units. The sensing unit is the hardware module
that enables tactile imaging of the indented tissue (pit), which
emulates the finger pitting test. While an attached indenter
interfaces the skin, the sensing unit captures a video of pit
creation and recovery in real-time. It also reads the applied
forces over the course of pitting. The processing unit then
retrieves various spatiotemporal information from the video,
including pitting depth, rebound force, and recovery time. The
data is further processed to compute the viscoelasticity using a
viscoelastic pitting recovery (VPR) model, determining the
severity.

Fig. 2 illustrates the sensing unit hardware, which consists of
three subcomponents: sensing platform, sensing probe, and
indenter attachment. The sensing platform shown in Fig. 2 (b) is
based on our previously reported Smartphone-based
Compression Induced Sensing (SCIS) system [20] that uses a
smartphone (as an image sensor and data storage; iPhone6S,
Apple Inc.) and control electronics. The control electronics
contain a force sensor (FC22, TE Connectivity Inc.), a LED
control circuit, and a Bluetooth-enabled microcontroller
(Adafruit Feather 32u4 Bluefruit LE, Adafruit Industries),
powered by a li-ion battery (803860, PCM/Shenzhen Battery
CO., LTD). Fig. 2 (c) shows the sensing probe, a mediator
between the smartphone and the indenter. As the indenter
creates and releases a pit on the edematous tissue, its distal end
also compresses the sensing probe with the same force. In other
words, the copy of the pit is imprinted on the sensing probe,
which is later captured as a video and processed for
viscoelasticity computation. In our case, we used transparent
hemispherical polydimethylsiloxane (PDMS) (diameter was
50mm and Young’s Modulus of 20 kPa) as a sensing tip. The
sensing probe also is an optical waveguide that enables tactile
imaging with six white LEDs (A = 470 nm, LTW-42NCS5,
LITE-ON Technology Co.) that are placed the outer edge of the
sensing probe. The sensing probe is then enclosed by an indenter
attachment (Fig. 2 (d)) that holds the indenter and the peripheral
fixtures. The indenter has a diameter of 15 mm and a length of
12 mm, which can create an identical pit repeatably.
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Fig. 2. Design and Subunits of STIP-I Sensing Unit

A part of the sensing unit is a smartphone app that captures
the images and reads the force values from the load cell. The
app is built for data acquisition using iOS developing
environment (Swift 3, XCODE 9.4.1, iOS 10.1). The data
collected by the app can be transferred to a personal computer
(MacBookPro13,2, Apple Inc.) for post-processing (Processing
unit). The processing unit refers to MATLAB software that
runs on the computer (MATLAB R2021a). The processing unit
converts the recorded video into a series of images with
timestamps, computing the pitting parameters and performing
the tissue behavior analysis using the VPR model (Fig. 1).
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B. Sensing Principle and Operation

concept of the sensing principle. Using six LEDs, light is
infused through the sensing probe, inducing reflection on
contours (acting as an optical waveguide). As mentioned, the
indenter interfaces with the tissue, and it imprints the pit on the
sensing probe. It creates a light obstruction on the sensing probe.
To the smartphone camera, which directly sits on top of the
sensing probe, such light obstruction appears as a circular shape
(Fig. 3).
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Fig. 3. The schematic of the STIP-I sensing probe and principle
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Fig. 4. Sensing principle and operation — (a) Pitting State and
(b)Recovery State with the light obstruction due to the soft sensing tip
deformation pressed by the rebounding indenter

The operation involves two parts: pit creation and pit
recovery as illustrated in Fig. 4. In the pit creation state, the
indenter is locked in a place, allowing uniform force application
onto the tissue (Fig. 4 (a)). At this phase, the camera image
shows an empty white circle. Once the indenter creates a pit, the
operation mode is switched to the pit recovery state by
unlocking the indenter. The pitted tissue then starts to push back
the indenter and imprints the entire course of tissue recovery on
the sensing probe in real-time. Since the sensing probe is
deformed and the light within the probe is disrupted, it appears
as a gray circular pattern on the camera, as shown in Fig. 4 (b).
By characterizing this gray circular pattern, it is possible to
translate it to the tissue recovery patterns. Such circular patterns
are then fed to the VRP model for post-processing.

The sensing principle of the STIP-I tactile probe uses diffused
light reflection and light obstruction. Fig. 3 illustrates the

[ll. IMAGE PROCESSING AND PITTING ANALYSIS

A. Image Processing — Thresholding Binary Inverted

The STIP-I system records the tissue deformation and
recovery video and stores a series of images over time (frames).
The acquired images are processed to generate the pitting
parameters. Fig. 5 shows an example image obtained during the
operation. The image processing starts by determining the
region of interest (ROI) from the raw images. From the raw
image (Fig. 5 (a)), the ROI in each image is selected to include
the light occluded area that is created by deforming the sensing
probe. The original color images are then converted to
grayscale images to extract the pixel intensity value. The light
occluded area generally shows a low-intensity value compared
to the surrounding area after the conversion.

ROI

(a) (b)

Fig. 5. Image Processing Example — (a) determining ROI (b)
thresholding binary inverted image (0 = black, 1 = white, the values are
corresponding to the pixel intensity O=black, 255=white)

Employing the thresholding process, the grayscale image is
further processed into the binary image with a black (0) and
white (1), depending on the pixel intensity values 0 (black) and
255 (white). The binary value is determined by the following,

P Y
A A M m
1, otherwise
where, J’;";;} is the binary pixel value at the location of {x, y)

resulted in the threshold binarization, I is each pixel value at

the location (x, y) of the cropped grayscale image, and p is the
empirically determined threshold value. In the process of
threshold binarization inversion, we assign zero, which
corresponds to black, to I, if the pixel intensity of /; is greater

than the threshold value, p. I, shows the result of the

segmenting light occluded area in the view. The segmented
area for the calculation is shown as the white-colored area in
Fig. 5 (b). After the image conversion, the area of the
light-occluded region is calculated by (2). The sum of all binary
image pixels in the ROI area of the segmented k" frame image,
I;l;g.k:

i=mj=n
— E E Lj
Sk_ Iseg.k
o

Each pixel value in the processed image is presented as I;_'iq.k

at the pixel coordinate, (1, j). The maximum numbers of / and j

fi=12 .. mj=12 .n} (2)
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are defined by the size of the window, m and n, respectively.
Later, S, is converted to the pitting parameters based on the
experimentally obtained calibration (see Section IV.B).

D,=1—d;. €)

It is obtained by finding the difference between the total length
of the indenter (/ = 12 mm) and the depth change, d;, in the
range between 0 and /. The ds can be retrieved from the Sk as
follows,

d, = —a;5; + a;5, 4)

where ajand a,are empirical coefficients determined during
the calibration, and Sy is the initial value of Sk.

During the recovery phase, the pitted tissue pushes the
indenter upward and compresses the sensing probe with the
rebound force. This force would be directly proportional to the
size of the light-occluded pattern in the camera view. The
rebound force,

F, = % )

is also related to the Sk as the area with respect to the mechanical
property of the sensing probe. In (5), Snar is the maximum Sk
and the C; and C: are empirically determined mechanical
properties of the sensing tip.

The recovery time, 77, is obtained by identifying the time
values at the recovery state starting and ending. Owing to the
settling time concept of in control systems analysis for the step
input response [25], the output variation of a handheld device
could be dramatically reduced. Equation (6) shows the tissue
recovery time, 7, which is the difference between the settling
time, 75, and the initial time, 79. Tsis measured when Si reaches
98.0% of Smax. To is the time of Sy when the tissue starts to
recover.

T,=T.—T,. (6)

Note that the recovery time is a crucial element in determining
the viscosity of tissue as it causes a time delay in tissue
reshaping.

C. Viscoelastic Pitting Recovery (VPR) Model

The Maxwell model, the Kelvin-Voigt model, and the
standard linear solid (SLS) model are the most used viscoelastic
models in theoretical mechanical modeling [26]-[29]. The
Maxell model represents the tissue as a viscous damper (1,55)
and an elastic spring (Ews) coupled in series [26]-[28]. The
Kelvin-Voigt model has a parallel structure of a viscous
component and an elastic component, and the SLS model is a
hybrid of the Maxell and Kelvin-Voigt models [26]. Due to the
presence of a transition state, which is anelastic behavior not
shown in the Maxwell model, the Kelvin and SLS models are
more appropriate for describing tissue viscoelasticity [27], [30].
In our VPR model design, the Kelvin-Voigt model (Fig. 6) is
used since its strain recovery state is better matched with that of
the pitting recovery condition. Combined, the Kelvin-Voigt

B. Pitting Parameters Analysis

The pitting parameters, i.e., pitting depth (D,,), rebound force
(F,), and recovery time (T;) are derived from Sk. First the Sk is
calibrated against physical measurements. The pitting depth is:

model describes the viscoelastic behaviors under mechanical
loading (pit) and unloading (recovery). The gradual
deformation and recovery behaviors of tissue are expressed in
terms of stress and strain in the Kevin-Voigt model. As such,
we utilize the recovery behavior of tissue at the unloading state
to characterize the pitting recovery state.

EByss
AN —

> 5

}7
Mtss }% £(t)

Fig. 6. Kelvin-Voigt model (parallel arrangement) of tissue

To build a viscoelastic behavior model of tissue, the ratio of
elasticity to viscosity needs to be determined in the form of
time-dependent characteristics [13], [26], [29]. Thus, we
calculate the elasticity and viscosity of the tissue using the
pitting parameters, i.e., pitting depth D,,, rebound force F,., and
recovery time, T,.

1) Elasticity Computation

Elasticity is defined as the stress over the strain. The most
elasticity measurements perform on the material based on the
uniaxial and uniform stress (extension or compression).
However, it does not suitable for living tissue. Thus, the
elasticity estimation based on the indentation presented in [31],
[32],

E ()

ub HﬂI

j— 3 .
tss ]TEH

is used where Eis; is the tissue elasticity, which is proportional
to the ratio of applied force, Fi, and the pitting depth, D,. The
tissue interface is caused by the indenter, whose radius is R.

2) Viscosity Computation

The viscosity is the internal resistance to the flow of the
shape [13]-[15]. The amount of resistance in the viscoelastic
material can be determined by measuring the time delay for the
complete shape transition. The time delay in the Kelvin-Voigt
model is defined as retardation time, which is determined by the
ratio of viscosity, 7, over the elasticity, £ [26], [33]. In our case,
the tissue viscosity is unknown, and it can be determined by
utilizing the relationship in the time delay, as shown in (8).

Ness = Eess " T )]

The tissue viscosity, 7., 1s calculated by the product of the
recovery time, 7T, and the tissue elasticity, E,;;. Note that
viscosity used in this method is not absolute tissue viscosity but
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rather a relative value indicating the viscous component of in the standard form [15], [26]. The applied stress, a(t), is
tissue. shown as follows,

3) Viscoelastic Pitting Recovery (VPR) Model

o(t) = Ee() + n(=2). 9)

Combining elasticity and viscosity computation, the VPR is dr

built based on the Kelvin-Voigt model and the constitutive law
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We are looking for the depth change in the pitted tissue.
Thus, we assume that the strain is the ratio of depth change,
D.(t) over the initial depth, D;. We assume that D; is unity
because we are looking for depth change per unit depth. The pit
recovery starts where the depth, D_(0) = D, and the stress o
becomes zero, thus we obtain the following equation from (9),

Eyes)
D.(t) = Dpe_( ‘ ”Tms)t

(10)
where D), is the maximum pitting depth at F, E,.; is tissue
elasticity, and 1), is tissue viscosity in our application.
Equation (10) is the VPR model, the tissue depth change model
in terms of elasticity and viscosity.

IV. EXPERIMENTAL RESULTS
A. Edematous Tissue Phantom

Edematous tissue phantoms made of soft elastomer (Life
form Pitting Edema Trainer, Nasco) were utilized to validate
the STIP-I functionality and the proposed VPR model. This
commercial training tissue phantom mimics clinically defined
edema severity grades (I to IVs); A higher grade means severe
edema as defined in [34]. Prior to the experiment, the
mechanical properties of tissue phantoms were measured using
a universal mechanical testing machine (5944B12032, Instron).
Young’s Modulus of the tissue phantom exhibited 355.59 +
2.17 kPa for Grade I; 266.37 + 0.62 kPa for Grade II; 221.35 +
0.27 kPa for Grade III, and 185.91 + 0.60 kPa for Grade IV. The
dimension of each phantom was 56 x 87 x 18 mm?.

Displacement Fa
measurement Force Gauge v
stand Markel), &g
SON max
Force
Gauge
Indenter
R Tissue
Fdematous Tissue dmm;t:ml:g Phantom
Phantom
Hard Surface
(a) (b)

Fig. 7. Direct Measurement Experiment Setup (a)Experiment Setup and
Components, (b) Tissue Phantom Direct Measurement

Fig. 7 shows the experimental setup for the direct
measurements. While a force gauge (Force Gauge M3-10, S0N
max, Mark-10 Corporation, NY) with an indenter interfaces the
tissue phantom, the vertical movements are measured using a
ruler (Fig. 7). The measured force through the force gauge
defines the STIP-I operating force range, while the measured
pitting depth is used for validation in the following section. The
result of pitting depth change corresponding to the applied
forces to the tissue phantoms is shown in Fig. 8. The phantom
with a lower Young's Modulus value (higher grade) had more
depth change when applying the same amount of force.
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Fig. 8. Direct pitting measurement results for varying applied force

B. Pitting Parameter Acquisition using STIP-I

As described above, the STIP-I system was hardwired to a
personal computer for complete viscoelasticity computation.
Fig. 9 shows the entire system, including the STIP-I system on
a tissue phantom and a laptop. The STIP-I video was recorded
for 120 seconds long during a 15-sec pitting and a 105-sec

recovery.
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Fig. 9. STIP-I Measurement experiment setup (a) STIP-I data
acquisition (b) direct measurement

Calibration was performed using the experimental setup
depicted in Fig. 9 (b). The calibration procedure established the
relationship of the Sk (sum of pixels) changes in the images with
the applied force to the sensing probe. The size of the
segmented area in the image was dictated by externally applied
force as the indenter generates the counterforce to the sensing
probe due to the mechanical properties of the tissue phantom.
The calibration also determined the relationship between the
segmented area and the displacement of the indenter, which is
the critical factor for computing the pitting parameters.

After the calibration, the mechanical properties of four
different tissue phantoms representing clinical edema grades
were measured using the STIP-I system. The five trials were
executed for each phantom. The applied pitting force was
maintained at 16 £ 1.5 N, and images were captured every
0.017 sec (60 FPS). The total duration of each measurement
was up to 120 sec: 15 sec for creating pitting and up to 105 sec
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for monitoring the total recovery. From the initial testing, we
optimized operation time.

TABLEI
VERIFICATION RESULT OF PITTING PARAMETERS

Pitting Depth Rebounding Recovery Time
(mm) Force (N) (sec)
Grade
Ground Ground Ground
Truth STIP-1 Truth STIP-1 Truth STIP-1
I 3.65 3.98 7.54 7.26 8.03 2.19
I 5.16 4.74 6.08 6.22 11.5 8.95
I 7.84 6.79 4.92 5.34 17.0 27.5
v 9.02 7.63 4.21 4.75 19.8 44.4
Avg.
Error 11.50 6.84 70.0
(%)

Pitting parameters (Dp, Fr, and T, as discussed in Section
II1.B) were computed using the Sk values and compared with
the direct measurements (i.e., ground-truth) (Section IV. A).
Table I summarizes the results. The analyzed pitting depth, Dp,
resulted in 11.5% of the average error for all four grades. The
rebound force, F, was comparable with the directly measured
rebound force. The F» showed an excellent agreement with a
6.84% error. The recovery time, 7,, measured by STIP-I, was
also compared with that of the finger pitting test. Note that 7,
was captured when the Si reached 98.0% of its maximum. The
results showed a high error of 70.0% due to unreliable manual
measurements (human error).

C. Viscoelastic Pitting Recovery Model
1) Elasticity and Viscosity

The estimated elasticity values were well correlated with the
measured mechanical properties of the tissue phantom,
summarized in Table II. In comparison, the overall error was
7.60% as compared to the ground truth. The viscosity, however,
showed a high error of 69.0%. This high error is mainly due to
the measurement method — we used a stopwatch to obtain the
recovery time, which is how the clinicians assess the edematous
tissue. Despite the high error, especially for Grade III and IV
tissue phantom, the computed 7, strongly correlates to the
edematous grade.

TABLE II
RESULT OF ELASTICITY AND VISCOSITY CALCULATION

Elasticity, E,.. (kPa) Viscosity, 17,... (N-s/mm?)

Grade
Ground STIP-I Ground Truth STIP-I
Truth
I 355.59 376.37 2.86 0.82
11 266.37 316.02 3.05 2.83
1 221.35 220.61 3.76 6.08
v 185.91 196.32 3.69 8.70
Avg.
Error (%) 7.60 69.0

2) VPR Model and Edema Severity Classification

Viscoelastic characteristics of the tissue govern the recovery
patterns of the pitting depth (D,(t)) as described in (10)). Fig.
10 is a computed VRP model based on (10) and measured data
in Table II. The model could indicate important facts regarding
each edema grade: the elasticity and viscosity changes, the
maximum pitting depth, the recovery speed. Grade I edema, for
example, had the least pitting depth and the fastest recovery
time due to high elasticity and low viscosity.

The clinical edema categorization for the severe and mild
cases declares edema grade III and above are severe [34]. Thus,
identifying the time window that shows the most significant
difference between grades II and III in the VPR model (Fig. 10)
can be used for classifying the edema severity. Furthermore, a
clear threshold between mild and severe edema and its optimal
time window is needed.

8y

Grade I

Grade I

Grade III

~ Grade IV

Pitting Depth, D,.(t) in mm

Time (t)
Fig. 10. VPR model for four grades of edematous tissue phantoms
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3140
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Fig. 11. Average distances of each 10s frame in the 50 sec (1sec — 50
sec) between grades I-1l (blue), II-lll (orange), and llI-1V (yellow)

To identify the threshold value, we first normalized the
pitting depth (D,(t)) of each edema grade with the maximum
pitting depth as 1 and the complete recovery as 0. To obtain the
most severity-relevant time window, we identified the most
significant depth difference between Grade II and III
concerning the recovery time (Fig. 11). For this, the time
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window interval was set to 10-sec and the average differences
in the pitting depth between each grade were calculated. In our
case, we identified the time window of 11 - 20 sec as an edema
severity determinant.
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Fig. 12. Edema severity classification using normalized VPR models

We then set the mid-point of the D_(t) as the threshold,
which determines mild or severe edema. The example of
thresholding is shown in Fig. 12, which is the normalized Fig.
10 with the threshold line. The result shows that tissue with
severe edema has a pitting depth less than 62.0% from the
maximum during recovery time between 11 and 20 sec.

V. DISCUSSION

Most existing tactile sensors use highly sensitive pressure
sensors to quantify the direct touch sensation. However, direct
contact-based tactile sensing requires complicated sensing
material and algorithms, as discussed in [23], [24]. Moreover,
typical tactile sensors usually only detect pressure. Our system
also uses tactile sensing combined with imaging via the direct
contact method. However, our sensing system can detect the
pressure along with the chronological and objective recovery
behavior of the pressure applied to tissue, which is needed for
tissue viscoelasticity assessment. By utilizing STIP-I, we can
read the parameters and time values to quantify the tissue
viscoelasticity.

STIP-I measured the pitting depth of the edematous tissue
with an error of 11.5% and the rebound force with an error of
6.84%. The errors occurred as a result of the force variation
during the operation. The STIP-I operation accepts the range of
applying force in 9.38% (16 £ 1.5 N) variation. Thus, we could
consider the reading errors are within the acceptable range. It is,
in general, one of the constraints of a handheld device. The
recovery time with a 70.0% measurement error, on the other
hand, was much larger than the other measurement errors. It
was mainly due to the difference in the full recovery and
measurement standard between STIP-I and human testing; the
observer decides full recovery when the pitted area returns to its
previous state as visibly detectable without a time constraint.
Nevertheless, we could optimize the STIP-I procedure to
examine the data regarding the pit recovery in a set time frame

until the initial condition is restored. To resolve the issue,
further improvement in the design of the probe and operational
procedure will be needed.

The VPR model could classify edema severity even with a
limited set of data and a small number of tissue phantom
samples. Despite the limitations, we proposed the edema
severity classification based on the viscoelastic measurements.
By implementing the pitting depth threshold within the
severity-relevant time window, we successfully identified the
severe edema grades (Grade III and IV) from the mild cases.
Extracellular fluid rising rates for each edema grade were
defined as approximately 30.0% for Grade I, 45.0% for Grade
II, 60.0% for Grade III, and 80.0% for Grade IV in the
interstitial pressure study [35], [36]. The fluid increasing rate
has a strong correlation with the pitting recovery speed shown
in the VPR model (high as » = -0.97175). This finding provides
the potential of the VPR model to estimate the fluid retention
level in tissue for our future work.

VI. CONCLUSION

In this paper, we presented the Viscoelastic Pitting Recovery
(VPR) model to evaluate the mechanical property change of an
edematous tissue due to the abnormal increase of fluid. To
construct the accurate model, we designed and developed the
noble pitting parameter measuring system, Smartphone
Imaging Probe — Indenter (STIP-I) system. STIP-I system
produces pitting parameters (pitting depth, rebounding force,
and recovery time). The experiment to estimate the pitting
parameters using the edematous tissue phantoms (four types)
resulted in a moderate error and the elasticity calculation using
the parameters resulted in an excellent agreement with the gold
standard. Also, the calculated viscosity based on the STIP-I
measurements showed a high potential to estimate the retained
fluid amount change in tissue. We were able to build the VPR
model using the calculated elasticity and viscosity of the tissue
phantoms and utilize the model to visualize the pitting recovery
state of each tissue in time. The edema severity of the phantom
tissues was successfully classified using the VPR models with
the recovery percentage thresholding. STIP-I showed the
ability to accurately quantify and characterize edema, which
will be utilized to diagnose and treat diseases that cause edema.
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