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Abstract—Viscoelasticity of human tissue often carries important physiological 

information linking to many fatal diseases, such as heart failure, renal impairment, 
and liver failure. Fluid retention due to these diseases cause swelling of body 
parts (edema) and changes the viscoelastic characteristic of the tissue. We 
hypothesize that the viscoelastic behavior change of the tissue can be estimated 
by creating and quantifying the pit on the swelled body parts. Here, we present a 
smartphone tactile imaging probe with an indenter (STIP-I) system that measures 
the pitting parameters and characterizes the viscoelastic behavior. This system 
consists of tactile imaging sensing that utilizes a light diffusion in a 
polydimethylsiloxane (PDMS)-based optical waveguide and a Viscoelastic Pitting 
Recovery (VPR) computation model. The prototype STIP-I system is tested using 
edematous tissue phantoms, which show a moderate measurement error of 29.5% 
for the pitting parameters and excellent performance of 7.60 % error in elastic modulus estimation. The STIP-I system 
is expected to bring a new approach to understanding viscoelasticity changes due to various diseases. 
 

Index Terms—Body fluid retention, edema severity assessment, smartphone imaging probe, sensing system integration, 
tactile imaging sensor, tissue viscoelasticity estimation, viscoelastic pitting model and analysis 
 

 
I.  INTRODUCTION 

ENTER for Disease Control declares that heart failure is 
the number one cause of death, with 379,800 deaths in the 

United States in 2020 [1]. Similarly, 15.0% of the adult 
population in the United States has chronic kidney disease 
(CKD) [2], [3]. In many cases of heart or kidney failures, one 
commonly observed symptom is fluid retention inside the body 
(i.e., the excessive fluid trapped in body tissue), which is also 
known as peripheral edema [4]–[9]. While a healthy individual 
can also experience peripheral edema due to standing or sitting 
for a long time, over sodium intake, or pregnancy, it can lead to 
severe complications in heart or kidney disease patients [6], [8]. 
As such, characterizing edema could provide helpful 
information for disease progression. For example, studies 
indicate that chronic peripheral edema is proportional to renal 
function reduction [6]–[10] and congestive heart failure [9], 
[11]. Sudden unilateral limb swelling could also imply deep 
vein thrombosis [6], [7].  
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In the clinic, a physician performs a pitting edema test when 
excessive fluid retention is observed under body tissue such as 
the foot or ankle of a patient [7], [8]. A clinician applies 
pressure to the swollen foot with a finger for a few seconds to 
examine the lasting indentation (or pit) [7], [8], [12]. Such a test 
is used to determine the treatment plan, including the 
administration of diuretic drugs (e.g., furosemide) that help the 
patient expel excess fluid through urine [9]. The finger pitting 
test also indicates the viscoelasticity of the swollen tissue. Here, 
the term viscoelasticity refers to combination of viscosity and 
elasticity. Viscosity is the amount of resistance to recover the 
original state from the deformed shape in time; thus, measuring 
the tissue recovery time from the pitting represents the viscosity 
[13]–[15]. Elasticity refers to a linear spring force when it 
deforms and recovers without permanent damage; the tissue 
pitting depth due to the applied indentation force is therefore 
associated with elasticity [13]–[15].  
However, the finger pitting test lacks the procedural standard 

[16] and can be a subjective assessment depending on an 
examiner. Furthermore, the severity metric (Grade I – IV) is 
vague and cannot be correlated to the disease state. For those 
reasons, the clinicians do not rely on the pitting test results. 
Thus, several edematous tissue assessment devices are 
developed for reliable measurements [16]–[19]. Those devices 
include an edema depth gauge [16], air compression created pit 
measurement [17], and direct surface imprinted depth meter 
[18], [19]. Such apparatuses measure the pitting depth and force 
applied during the indentation. However, none of these devices 
can measure the time-dependent viscosity property, which is 
essential for objective assessment [16], [18], [19]. 
In this paper, we present a Smartphone Tactile Imaging 
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Probe with an Indenter (or STIP-I) paired with a Viscoelastic 
Pitting Recovery (VPR) computation model. The STIP-I 
system is based on our previous work on the Smartphone-based 
Compression Induced Sensing (SCIS) system in [20] and tactile 
imaging systems in [21], [22], which measure the applied force 
and the corresponding tissue reaction through real-time 
imaging of interfaced tissue (this technique is called tactile 
sensing [23], [24]). The STIP-I device interfaces the edematous 
tissue using an indenter which creates a regulated and 
repeatable pit. While the indenter interfaces with the tissue, the 
STIP-I system allows imaging of the deformation and recovery 
of tissue and finds the pitting parameters: pitting depth, 
rebound force, and recovery time. The collected images are 
then further processed via a computational VPR model and 
obtain the viscoelasticity of the tissue. Lastly, we built a potent 
diagnosis determinator by comparing the calculated 
viscoelasticity to the clinical edema severity metric (Grade I – 
IV). The proposed STIP-I system offers several advantages 
over the current finger pitting test or other assessment devices, 
including the precise and objective assessment and tissue 
visualization during the assessment. Moreover, the use of 
smartphones increases the accessibility and cost-effectiveness 
of the system.  
The outline of this paper comprises the STIP-I system 

design, data processing and computation, and experimental 
results and discussion. This paper also shows the significance 
of the results of edematous tissue assessment using STIP-I 
pitting parameters and the VPR model. 

II. SENSING SYSTEM DESIGN 
A. System Overview 

 
Fig. 1.  STIP-I System Functional Block Diagram 

Fig. 1 shows the overall architecture of the STIP-I system.  
Overall, the system can be categorized into two units: sensing 
and processing units. The sensing unit is the hardware module 
that enables tactile imaging of the indented tissue (pit), which 
emulates the finger pitting test. While an attached indenter 
interfaces the skin, the sensing unit captures a video of pit 
creation and recovery in real-time. It also reads the applied 
forces over the course of pitting. The processing unit then 
retrieves various spatiotemporal information from the video, 
including pitting depth, rebound force, and recovery time. The 
data is further processed to compute the viscoelasticity using a 
viscoelastic pitting recovery (VPR) model, determining the 
severity. 

Fig. 2 illustrates the sensing unit hardware, which consists of 
three subcomponents: sensing platform, sensing probe, and 
indenter attachment. The sensing platform shown in Fig. 2 (b) is 
based on our previously reported Smartphone-based 
Compression Induced Sensing (SCIS) system [20] that uses a 
smartphone (as an image sensor and data storage; iPhone6S, 
Apple Inc.) and control electronics. The control electronics 
contain a force sensor (FC22, TE Connectivity Inc.), a LED 
control circuit, and a Bluetooth-enabled microcontroller 
(Adafruit Feather 32u4 Bluefruit LE, Adafruit Industries), 
powered by a li-ion battery (803860, PCM/Shenzhen Battery 
CO., LTD). Fig. 2 (c) shows the sensing probe, a mediator 
between the smartphone and the indenter. As the indenter 
creates and releases a pit on the edematous tissue, its distal end 
also compresses the sensing probe with the same force. In other 
words, the copy of the pit is imprinted on the sensing probe, 
which is later captured as a video and processed for 
viscoelasticity computation. In our case, we used transparent 
hemispherical polydimethylsiloxane (PDMS) (diameter was 
50mm and Young’s Modulus of 20 kPa) as a sensing tip. The 
sensing probe also is an optical waveguide that enables tactile 
imaging with six white LEDs (l = 470 nm, LTW-42NC5, 
LITE-ON Technology Co.) that are placed the outer edge of the 
sensing probe. The sensing probe is then enclosed by an indenter 
attachment (Fig. 2 (d)) that holds the indenter and the peripheral 
fixtures. The indenter has a diameter of 15 mm and a length of 
12 mm, which can create an identical pit repeatably. 

 
Fig. 2.  Design and Subunits of STIP-I Sensing Unit 

A part of the sensing unit is a smartphone app that captures 
the images and reads the force values from the load cell. The 
app is built for data acquisition using iOS developing 
environment (Swift 3, XCODE 9.4.1, iOS 10.1).   The data 
collected by the app can be transferred to a personal computer 
(MacBookPro13,2, Apple Inc.) for post-processing (Processing 
unit). The processing unit refers to MATLAB software that 
runs on the computer (MATLAB R2021a). The processing unit 
converts the recorded video into a series of images with 
timestamps, computing the pitting parameters and performing 
the tissue behavior analysis using the VPR model (Fig. 1).   
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B. Sensing Principle and Operation The sensing principle of the STIP-I tactile probe uses diffused 
light reflection and light obstruction. Fig. 3 illustrates the

concept of the sensing principle. Using six LEDs, light is 
infused through the sensing probe, inducing reflection on 
contours (acting as an optical waveguide). As mentioned, the 
indenter interfaces with the tissue, and it imprints the pit on the 
sensing probe. It creates a light obstruction on the sensing probe. 
To the smartphone camera, which directly sits on top of the 
sensing probe, such light obstruction appears as a circular shape 
(Fig. 3). 

 
 
Fig. 3.  The schematic of the STIP-I sensing probe and principle 
 

 
(a)               (b) 

Fig. 4.  Sensing principle and operation – (a) Pitting State and 
(b)Recovery State with the light obstruction due to the soft sensing tip 
deformation pressed by the rebounding indenter 

 
The operation involves two parts: pit creation and pit 

recovery as illustrated in Fig. 4. In the pit creation state, the 
indenter is locked in a place, allowing uniform force application 
onto the tissue (Fig. 4 (a)). At this phase, the camera image 
shows an empty white circle. Once the indenter creates a pit, the 
operation mode is switched to the pit recovery state by 
unlocking the indenter. The pitted tissue then starts to push back 
the indenter and imprints the entire course of tissue recovery on 
the sensing probe in real-time. Since the sensing probe is 
deformed and the light within the probe is disrupted, it appears 
as a gray circular pattern on the camera, as shown in Fig. 4 (b). 
By characterizing this gray circular pattern, it is possible to 
translate it to the tissue recovery patterns. Such circular patterns 
are then fed to the VRP model for post-processing.  

III. IMAGE PROCESSING AND PITTING ANALYSIS 
A. Image Processing – Thresholding Binary Inverted 
The STIP-I system records the tissue deformation and 

recovery video and stores a series of images over time (frames). 
The acquired images are processed to generate the pitting 
parameters. Fig. 5 shows an example image obtained during the 
operation. The image processing starts by determining the 
region of interest (ROI) from the raw images. From the raw 
image (Fig. 5 (a)), the ROI in each image is selected to include 
the light occluded area that is created by deforming the sensing 
probe. The original color images are then converted to 
grayscale images to extract the pixel intensity value. The light 
occluded area generally shows a low-intensity value compared 
to the surrounding area after the conversion.  

 
                               (a)                     (b) 

Fig. 5.  Image Processing Example – (a) determining ROI (b) 
thresholding binary inverted image (0 = black, 1 = white, the values are 
corresponding to the pixel intensity 0=black, 255=white) 

Employing the thresholding process, the grayscale image is 
further processed into the binary image with a black (0) and 
white (1), depending on the pixel intensity values 0 (black) and 
255 (white). The binary value is determined by the following, 

    (1)      

where,  is the binary pixel value at the location of  
resulted in the threshold binarization,  is each pixel value at 
the location  of the cropped grayscale image, and   is the 
empirically determined threshold value. In the process of 
threshold binarization inversion, we assign zero, which 
corresponds to black, to  if the pixel intensity of Ig is greater 
than the threshold value, p.  shows the result of the 
segmenting light occluded area in the view. The segmented 
area for the calculation is shown as the white-colored area in 
Fig. 5 (b). After the image conversion, the area of the 
light-occluded region is calculated by (2). The sum of all binary 
image pixels in the ROI area of the segmented kth frame image, 

: 
 

 
Each pixel value in the processed image is presented as  

at the pixel coordinate, . The maximum numbers of i and j 
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are defined by the size of the window, m and n, respectively. 
Later,  is converted to the pitting parameters based on the 
experimentally obtained calibration (see Section IV.B).  

B. Pitting Parameters Analysis 
The pitting parameters, i.e., pitting depth ( ), rebound force 

( ), and recovery time ( ) are derived from Sk. First the Sk is 
calibrated against physical measurements. The pitting depth is: 

 .                                  (3) 

It is obtained by finding the difference between the total length 
of the indenter (l = 12 mm) and the depth change, ds, in the 
range between 0 and l. The ds can be retrieved from the Sk as 
follows, 
 

                        (4) 

where and are empirical coefficients determined during 
the calibration, and S0 is the initial value of Sk. 
 During the recovery phase, the pitted tissue pushes the 
indenter upward and compresses the sensing probe with the 
rebound force. This force would be directly proportional to the 
size of the light-occluded pattern in the camera view. The 
rebound force, 

                                  (5) 
 

is also related to the Sk as the area with respect to the mechanical 
property of the sensing probe. In (5), Smax is the maximum Sk 
and the C1 and C2 are empirically determined mechanical 
properties of the sensing tip.  
The recovery time, Tr, is obtained by identifying the time 

values at the recovery state starting and ending. Owing to the 
settling time concept of in control systems analysis for the step 
input response [25], the output variation of a handheld device 
could be dramatically reduced. Equation (6) shows the tissue 
recovery time, Tr, which is the difference between the settling 
time, Ts, and the initial time, T0. Ts is measured when Sk reaches 
98.0% of Smax. T0 is the time of S0 when the tissue starts to 
recover.  

 .                                  (6) 
 

Note that the recovery time is a crucial element in determining 
the viscosity of tissue as it causes a time delay in tissue 
reshaping. 

C. Viscoelastic Pitting Recovery (VPR) Model 
The Maxwell model, the Kelvin-Voigt model, and the 

standard linear solid (SLS) model are the most used viscoelastic 
models in theoretical mechanical modeling [26]–[29]. The 
Maxell model represents the tissue as a viscous damper ( ) 
and an elastic spring (Etss) coupled in series [26]–[28]. The 
Kelvin-Voigt model has a parallel structure of a viscous 
component and an elastic component, and the SLS model is a 
hybrid of the Maxell and Kelvin-Voigt models [26]. Due to the 
presence of a transition state, which is anelastic behavior not 
shown in the Maxwell model, the Kelvin and SLS models are 
more appropriate for describing tissue viscoelasticity [27], [30]. 
In our VPR model design, the Kelvin-Voigt model (Fig. 6) is 
used since its strain recovery state is better matched with that of 
the pitting recovery condition. Combined, the Kelvin-Voigt 

model describes the viscoelastic behaviors under mechanical 
loading (pit) and unloading (recovery). The gradual 
deformation and recovery behaviors of tissue are expressed in 
terms of stress and strain in the Kevin-Voigt model. As such, 
we utilize the recovery behavior of tissue at the unloading state 
to characterize the pitting recovery state. 

 
Fig. 6.  Kelvin-Voigt model (parallel arrangement) of tissue 

To build a viscoelastic behavior model of tissue, the ratio of 
elasticity to viscosity needs to be determined in the form of 
time-dependent characteristics [13], [26], [29]. Thus, we 
calculate the elasticity and viscosity of the tissue using the 
pitting parameters, i.e., pitting depth	 , rebound force , and 
recovery time, .  

1) Elasticity Computation 

Elasticity is defined as the stress over the strain. The most 
elasticity measurements perform on the material based on the 
uniaxial and uniform stress (extension or compression). 
However, it does not suitable for living tissue. Thus, the 
elasticity estimation based on the indentation presented in [31], 
[32], 
 

                                    (7) 

 
is used where Etss is the tissue elasticity, which is proportional 
to the ratio of applied force, Fa, and the pitting depth, Dp. The 
tissue interface is caused by the indenter, whose radius is R. 

2) Viscosity Computation 

The viscosity is the internal resistance to the flow of the 
shape [13]–[15]. The amount of resistance in the viscoelastic 
material can be determined by measuring the time delay for the 
complete shape transition. The time delay in the Kelvin-Voigt 
model is defined as retardation time, which is determined by the 
ratio of viscosity, h, over the elasticity, E [26], [33]. In our case, 
the tissue viscosity is unknown, and it can be determined by 
utilizing the relationship in the time delay, as shown in (8). 
 

                                       (8) 
 

The tissue viscosity, , is calculated by the product of the 
recovery time, Tr, and the tissue elasticity,  . Note that 
viscosity used in this method is not absolute tissue viscosity but 
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rather a relative value indicating the viscous component of 
tissue. 

3)  Viscoelastic Pitting Recovery (VPR) Model 

Combining elasticity and viscosity computation, the VPR is 
built based on the Kelvin-Voigt model and the constitutive law 

in the standard form [15], [26]. The applied stress, , is 
shown as follows, 

 
 .                         (9) 
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We are looking for the depth change in the pitted tissue. 
Thus, we assume that the strain is the ratio of depth change, 

 over the initial depth, . We assume that  is unity 
because we are looking for depth change per unit depth. The pit 
recovery starts where the depth, , and the stress  
becomes zero, thus we obtain the following equation from (9),  
 

                         (10) 
 
where  is the maximum pitting depth at ,  is tissue 
elasticity, and  is tissue viscosity in our application. 
Equation (10) is the VPR model, the tissue depth change model 
in terms of elasticity and viscosity. 

IV. EXPERIMENTAL RESULTS 
A. Edematous Tissue Phantom 
Edematous tissue phantoms made of soft elastomer (Life 

form Pitting Edema Trainer, Nasco) were utilized to validate 
the STIP-I functionality and the proposed VPR model. This 
commercial training tissue phantom mimics clinically defined 
edema severity grades (I to IVs); A higher grade means severe 
edema as defined in [34]. Prior to the experiment, the 
mechanical properties of tissue phantoms were measured using 
a universal mechanical testing machine (5944B12032, Instron). 
Young’s Modulus of the tissue phantom exhibited 355.59 ± 
2.17 kPa for Grade I; 266.37 ± 0.62 kPa for Grade II; 221.35 ± 
0.27 kPa for Grade III, and 185.91 ± 0.60 kPa for Grade IV. The 
dimension of each phantom was 56 ´ 87 ´ 18 mm3. 

    
(a)                               (b) 

Fig. 7.  Direct Measurement Experiment Setup (a)Experiment Setup and 
Components, (b) Tissue Phantom Direct Measurement 

 
Fig. 7 shows the experimental setup for the direct 

measurements. While a force gauge (Force Gauge M3-10, 50N 
max, Mark-10 Corporation, NY) with an indenter interfaces the 
tissue phantom, the vertical movements are measured using a 
ruler (Fig. 7). The measured force through the force gauge 
defines the STIP-I operating force range, while the measured 
pitting depth is used for validation in the following section. The 
result of pitting depth change corresponding to the applied 
forces to the tissue phantoms is shown in Fig. 8. The phantom 
with a lower Young's Modulus value (higher grade) had more 
depth change when applying the same amount of force. 

 
Fig. 8.  Direct pitting measurement results for varying applied force  

B. Pitting Parameter Acquisition using STIP-I  
As described above, the STIP-I system was hardwired to a 

personal computer for complete viscoelasticity computation. 
Fig. 9 shows the entire system, including the STIP-I system on 
a tissue phantom and a laptop. The STIP-I video was recorded 
for 120 seconds long during a 15-sec pitting and a 105-sec 
recovery.  
 

    
  (a)                (b) 

Fig. 9.  STIP-I Measurement experiment setup (a) STIP-I data 
acquisition (b) direct measurement 

Calibration was performed using the experimental setup 
depicted in Fig. 9 (b). The calibration procedure established the 
relationship of the Sk (sum of pixels) changes in the images with 
the applied force to the sensing probe. The size of the 
segmented area in the image was dictated by externally applied 
force as the indenter generates the counterforce to the sensing 
probe due to the mechanical properties of the tissue phantom.  
The calibration also determined the relationship between the 
segmented area and the displacement of the indenter, which is 
the critical factor for computing the pitting parameters.  
After the calibration, the mechanical properties of four 

different tissue phantoms representing clinical edema grades 
were measured using the STIP-I system. The five trials were 
executed for each phantom. The applied pitting force was 
maintained at 16 ± 1.5 N, and images were captured every 
0.017 sec (60 FPS). The total duration of each measurement 
was up to 120 sec: 15 sec for creating pitting and up to 105 sec



6  IEEE SENSORS JOURNAL, VOL. XX, NO. XX, MONTH X, XXXX 

 

for monitoring the total recovery. From the initial testing, we 
optimized operation time. 

TABLE I 
VERIFICATION RESULT OF PITTING PARAMETERS 

Grade 

Pitting Depth 
(mm) 

Rebounding 
Force (N) 

Recovery Time 
(sec) 

Ground 
Truth STIP-I Ground 

Truth STIP-I Ground 
Truth STIP-I 

I 3.65 3.98 7.54 7.26 8.03 2.19 

II 5.16 4.74 6.08 6.22 11.5 8.95 

III 7.84 6.79 4.92 5.34 17.0 27.5 

IV 9.02 7.63 4.21 4.75 19.8 44.4 
Avg. 
Error 
(%) 

11.50 6.84 70.0 

Pitting parameters (Dp, Fr, and Tr, as discussed in Section 
III.B) were computed using the Sk values and compared with 
the direct measurements (i.e., ground-truth) (Section IV. A). 
Table I summarizes the results. The analyzed pitting depth, Dp, 
resulted in 11.5% of the average error for all four grades. The 
rebound force, Fr, was comparable with the directly measured 
rebound force. The Fr showed an excellent agreement with a 
6.84% error. The recovery time, Tr, measured by STIP-I, was 
also compared with that of the finger pitting test. Note that Tr 
was captured when the Sk reached 98.0% of its maximum. The 
results showed a high error of 70.0% due to unreliable manual 
measurements (human error). 

C. Viscoelastic Pitting Recovery Model 
1) Elasticity and Viscosity 

The estimated elasticity values were well correlated with the 
measured mechanical properties of the tissue phantom, 
summarized in Table II. In comparison, the overall error was 
7.60% as compared to the ground truth. The viscosity, however, 
showed a high error of 69.0%. This high error is mainly due to 
the measurement method – we used a stopwatch to obtain the 
recovery time, which is how the clinicians assess the edematous 
tissue. Despite the high error, especially for Grade III and IV 
tissue phantom, the computed Tr strongly correlates to the 
edematous grade.  

TABLE II 
RESULT OF ELASTICITY AND VISCOSITY CALCULATION 

Grade 

Elasticity,  (kPa) Viscosity,  (N×s/mm2) 

Ground 
Truth STIP-I  Ground Truth STIP-I 

I 355.59 376.37 2.86 0.82 

II 266.37 316.02 3.05 2.83 

III 221.35 220.61 3.76 6.08 

IV 185.91 196.32 3.69 8.70 

Avg. 
Error (%) 7.60 69.0 

2) VPR Model and Edema Severity Classification 

Viscoelastic characteristics of the tissue govern the recovery 
patterns of the pitting depth ( ) as described in (10)). Fig. 
10 is a computed VRP model based on (10) and measured data 
in Table II. The model could indicate important facts regarding 
each edema grade: the elasticity and viscosity changes, the 
maximum pitting depth, the recovery speed. Grade I edema, for 
example, had the least pitting depth and the fastest recovery 
time due to high elasticity and low viscosity. 
The clinical edema categorization for the severe and mild 

cases declares edema grade III and above are severe [34]. Thus, 
identifying the time window that shows the most significant 
difference between grades II and III in the VPR model (Fig. 10) 
can be used for classifying the edema severity. Furthermore, a 
clear threshold between mild and severe edema and its optimal 
time window is needed. 

 
Fig. 10.  VPR model for four grades of edematous tissue phantoms 

 

 
Fig. 11.  Average distances of each 10s frame in the 50 sec (1sec – 50 
sec) between grades I-II (blue), II-III (orange), and III-IV (yellow)  

To identify the threshold value, we first normalized the 
pitting depth (  of each edema grade with the maximum 
pitting depth as 1 and the complete recovery as 0. To obtain the 
most severity-relevant time window, we identified the most 
significant depth difference between Grade II and III 
concerning the recovery time (Fig. 11).  For this, the time 
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window interval was set to 10-sec and the average differences 
in the pitting depth between each grade were calculated. In our 
case, we identified the time window of 11 - 20 sec as an edema 
severity determinant. 
 

 
 

Fig. 12.  Edema severity classification using normalized VPR models  

We then set the mid-point of the  as the threshold, 
which determines mild or severe edema. The example of 
thresholding is shown in Fig. 12, which is the normalized Fig. 
10 with the threshold line. The result shows that tissue with 
severe edema has a pitting depth less than 62.0% from the 
maximum during recovery time between 11 and 20 sec. 

V. DISCUSSION 
Most existing tactile sensors use highly sensitive pressure 

sensors to quantify the direct touch sensation. However, direct 
contact-based tactile sensing requires complicated sensing 
material and algorithms, as discussed in [23], [24]. Moreover, 
typical tactile sensors usually only detect pressure. Our system 
also uses tactile sensing combined with imaging via the direct 
contact method. However, our sensing system can detect the 
pressure along with the chronological and objective recovery 
behavior of the pressure applied to tissue, which is needed for 
tissue viscoelasticity assessment. By utilizing STIP-I, we can 
read the parameters and time values to quantify the tissue 
viscoelasticity. 
STIP-I measured the pitting depth of the edematous tissue 

with an error of 11.5% and the rebound force with an error of 
6.84%. The errors occurred as a result of the force variation 
during the operation. The STIP-I operation accepts the range of 
applying force in 9.38% (16	±	1.5	N) variation. Thus, we could 
consider the reading errors are within the acceptable range. It is, 
in general, one of the constraints of a handheld device. The 
recovery time with a 70.0% measurement error, on the other 
hand, was much larger than the other measurement errors. It 
was mainly due to the difference in the full recovery and 
measurement standard between STIP-I and human testing; the 
observer decides full recovery when the pitted area returns to its 
previous state as visibly detectable without a time constraint. 
Nevertheless, we could optimize the STIP-I procedure to 
examine the data regarding the pit recovery in a set time frame 

until the initial condition is restored. To resolve the issue, 
further improvement in the design of the probe and operational 
procedure will be needed.  
The VPR model could classify edema severity even with a 

limited set of data and a small number of tissue phantom 
samples. Despite the limitations, we proposed the edema 
severity classification based on the viscoelastic measurements. 
By implementing the pitting depth threshold within the 
severity-relevant time window, we successfully identified the 
severe edema grades (Grade III and IV) from the mild cases. 
Extracellular fluid rising rates for each edema grade were 
defined as approximately 30.0% for Grade I, 45.0% for Grade 
II, 60.0% for Grade III, and 80.0% for Grade IV in the 
interstitial pressure study [35], [36]. The fluid increasing rate 
has a strong correlation with the pitting recovery speed shown 
in the VPR model (high as r = -0.97175). This finding provides 
the potential of the VPR model to estimate the fluid retention 
level in tissue for our future work. 

VI. CONCLUSION 
In this paper, we presented the Viscoelastic Pitting Recovery 
(VPR) model to evaluate the mechanical property change of an 
edematous tissue due to the abnormal increase of fluid. To 
construct the accurate model, we designed and developed the 
noble pitting parameter measuring system, Smartphone 
Imaging Probe – Indenter (STIP-I) system. STIP-I system 
produces pitting parameters (pitting depth, rebounding force, 
and recovery time). The experiment to estimate the pitting 
parameters using the edematous tissue phantoms (four types) 
resulted in a moderate error and the elasticity calculation using 
the parameters resulted in an excellent agreement with the gold 
standard. Also, the calculated viscosity based on the STIP-I 
measurements showed a high potential to estimate the retained 
fluid amount change in tissue. We were able to build the VPR 
model using the calculated elasticity and viscosity of the tissue 
phantoms and utilize the model to visualize the pitting recovery 
state of each tissue in time. The edema severity of the phantom 
tissues was successfully classified using the VPR models with 
the recovery percentage thresholding. STIP-I showed the 
ability to accurately quantify and characterize edema, which 
will be utilized to diagnose and treat diseases that cause edema. 
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