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Abstract— A matrix Fisher distribution on the special orthog-
onal group is a compact, global form of attitude uncertainty
distribution that has been successfully utilized for Bayesian
attitude estimations in an intrinsic fashion. This paper ad-
dresses two computational issues in implementing matrix Fisher
distributions, namely numerical stability and computational
efficiency. More precisely, an exponentially scaled normalizing
constant of the matrix Fisher distribution and its mathematical
properties are introduced for robust numerical implementa-
tions. Next, two approximate matrix Fisher distributions are
formulated for a highly concentrated case and an almost
uniformly distributed case respectively. These approximate
forms yield an explicit form of attitude estimation schemes for
the considered cases, and it also illustrate the similarity between
the Gaussian distribution and the matrix Fisher distribution in
the highly concentrated cases.

I. INTRODUCTION

Quaternion-based extended Kalman filters and their varia-
tions have been the workhorse of attitude estimation. While
these approaches have been verified successfully in a variety
of applications, it is still desirable to formulate attitude
estimation directly on the special orthogonal group.

In [1], an attitude estimation scheme is proposed by repre-
senting a probability density function on the special orthogo-
nal group with noncommutative harmonic analysis [2]. This
utilizes the property that irreducible matrix representations
of a compact Lie group constitute an orthonormal basis for
complex-valued square integrable functions on the group.
This idea has been applied for uncertainty propagation and
attitude estimation in robotics and aerospace engineering [3],
[4], [5]. While an arbitrary shape of distributions can be
constructed via irreducible matrix representations, harmonic
analysis on a Lie group may become impractical for real-
time implementation especially if higher order terms in the
Fourier coefficients are considered.

Another notable approach is representing highly concen-
trated probability distributions on a Lie group via normal
distribution in the tangent space [6], [7]. These approaches
take the advantage that the exponential map is a local
diffeomorphism between the lie algebra and the group,
and the resulting estimation scheme resembles the familiar
Kalman filers in the Euclidean space. However, the issue of
singularities remains and it is not generally applied to the
cases of large uncertainties.
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Recently, a specific form of exponential density of random
matrices, namely the matrix Fisher distribution [8], [9]
has been utilized in attitude estimation. Various stochastic
properties of the matrix Fisher distribution are presented on
the special orthogonal group, and two types of Bayesian
attitude estimation schemes are proposed [10], [11]. As
they are constructed on the special orthogonal group, the
issue of singularities in quaternion-based filters is natu-
rally avoided, and there is no restriction on the degree of
concentration as opposed to the aforementioned approaches
based on exponential coordinates. It has been illustrated that
the Bayesian attitude estimator based on the matrix Fisher
distribution performs successfully for challenging cases of
large uncertainties when the initial estimate is the uniform
distribution on the special orthogonal group.

This paper addresses computational issues to improve
robustness and efficiency in implementing the matrix Fisher
distributions. First, the normalizing constant of the matrix
Fisher distribution may become exceedingly large espe-
cially when the distributions becomes more concentrated,
thereby causing numerical overflow. Here we introduce an
exponentially scaled form of the normalizing constant and
reformulated the Bayesian attitude filter so as to avoid such
numerical instabilities. Next, we present two approximate
forms of the matrix Fisher distribution for two extreme cases
of high concentration and wide dispersion, and we present
an explicit expression for the normalizing constant. This
avoids numerical iterations required for Bayesian attitude
filtering constructed in [10], and results in an explicit attitude
estimator. Additionally, it is shown that the matrix Fisher dis-
tribution in highly concentrated cases is well approximated
by a normal distribution of Euler angles.

In short, this paper proposes an alternative formulation of
the matrix Fisher distributions for numerical robustness, and
approximate matrix Fisher distributions to improve compu-
tational efficiency. These are illustrated by several numerical
examples.

II. BAYESIAN ATTITUDE FILTERING WITH MATRIX
FISHER DISTRIBUTION ON SO(3)

Here we summarize the properties of the matrix Fisher
distribution on the special orthogonal group, and a Bayesian
estimation scheme proposed in [10].

The configuration manifold for the attitude dynamics of a
rigid body is the three-dimensional special orthogonal group,

SO(3) = {R ∈ R3×3 |RTR = I3×3, det[R] = 1},



where each rotation matrix corresponds the linear transfor-
mation of the representation of a vector from the body-
fixed frame to the inertial frame. The lie algebra so(3) is
the set of 3 × 3 skew-symmetric matrices, i.e., so(3) =
{S ∈ R3×3 |S = −ST }. The hat map: ∧ : R3 → so(3)
is defined such that x̂ = −(x̂)T , and x̂y = x × y for any
x, y ∈ R3. The inverse of the hat map is denoted by the
vee map: ∨ : so(3) → R3. The two-sphere is the set of
unit-vectors in R3, i.e., S2 = {q ∈ R3 | ‖q‖ = 1}, and
the i-th standard basis of R3 is denoted by ei ∈ S2 for
i ∈ {1, 2, 3}. The set of circular shifts of (1, 2, 3) is defined
as I = {(1, 2, 3), (2, 3, 1), (3, 1, 2)}. The Frobenius norm of
a matrix A ∈ R3×3 is defined as ‖A‖F =

√
tr[ATA].

We utilize the modified Bessel function of the first
kind [12]. For any x ∈ R, the zeroth order function, and
the first order function are given by

I0(x) =
1

π

∫ π

0

exp(x cos θ) dθ =
∞∑
n=0

( 1
2x)2n

(n!)2
, (1)

I1(x) =
1

π

∫ π

0

cos θ exp(x cos θ) dθ =
d

dx
I0(x). (2)

A. Matrix Fisher Distribution on SO(3)

Definition 1 A random rotation matrix R ∈ SO(3) is
distributed according to a matrix Fisher distribution, if its
probability density function is defined relative to the uniform
distribution on SO(3) as

p(R) =
1

c(F )
exp(tr[FTR]), (3)

where F ∈ R3×3, and c(F ) ∈ R is a normalizing constant
defined such that

∫
SO(3)

p(R) dR = 1. This is denoted by
R ∼M(F ).

Throughout this paper, the measure dR is scaled such that∫
SO(3)

dR = 1 [2]. As such, the uniform distribution is given
by p(R) = 1. For the subsequent study, it is convenient to
decompose the matrix parameter F as follows.

Definition 2 ([13]) For a given F ∈ R3×3, let the singular
value decomposition be given by F = U ′S′(V ′)T , where
S′ ∈ R3×3 is a diagonal matrix composed of the singular
values s′1 ≥ s′2 ≥ s′3 ≥ 0 of F , and U ′, V ′ ∈ R3×3 are
orthonormal matrices. The ‘proper’ singular value decom-
position of F is defined as

F = USV T , (4)

where the rotation matrices U, V ∈ SO(3), and the diagonal
matrix S ∈ R3×3 are defined as

U = U ′diag[1, 1, det[U ′]], (5)
S = diag[s1, s2, s3] = diag[s′1, s

′
2, det[U ′V ′]s′3], (6)

V = V ′diag[1, 1, det[V ′]]. (7)

The main motivation of the proper singular value de-
composition is to ensure det[U ] = det[V ] = +1 thereby
guaranteeing U, V ∈ SO(3). Various stochastic properties of

(3) have been presented in [10]. The following theorem lists
selected properties that are directly relevant to this paper.

Theorem 1 ([10]) Consider a matrix Fisher distribution
given by (3), where the matrix parameter F is decomposed
as (4). Suppose R ∼M(F ), and let Q = UTRV ∈ SO(3).
(i) Q ∼M(S).

(ii) The normalizing constant satisfies c(F ) = c(S), which
is given by

c(S) =

∫ 1

−1

1

2
I0

[
1

2
(si − sj)(1− u)

]
× I0

[
1

2
(si + sj)(1 + u)

]
exp(sku) du, (8)

for any (i, j, k) ∈ I.
(iii) The first moment of Q is given by

E[Qij ] =


1

c(S)

∂c(S)

∂si
=
∂ log c(S)

∂si
if i = j,

0 otherwise,
(9)

where Qij ∈ R denotes (i, j)-th element of Q for i, j ∈
{1, 2, 3}.

(iv) The first moment of R is given by

E[R] = UE[Q]V T . (10)

(v) The max mean attitude and the minimum mean squared
error estimate are identical and they are given by

Mmax[R] = Mmse[R] = UV T ∈ SO(3). (11)

Proof: See [10].
The property (ii) implies that the normalizing constant

depends only on the proper singular values of F , and it
is given by an one-dimensional integral. The property (iv)
shows that the first moment, or the arithmetic mean of R is
constructed by that of Q, which is given by the normalizing
constant and its derivatives. Such arithmetic mean is not
necessarily a rotation matrix. Instead the mean attitude is
formulated as the attitude that maximizes the density value or
the attitude that minimizes mean squared error. The property
(v) implies both are equivalent, and are given by UV T .
Geometric interpretation of U, S, V in determining the shape
of the distribution is presented in [10].

B. First Order Attitude Filter

Consider a stochastic differential equation on SO(3),

(RT dR)∨ = Ωdt+HdW, (12)

where Ω ∈ R3 is the angular velocity in the body-fixed
frame, H ∈ R3×3 is a diagonal matrix, and W ∈ R3 de-
notes an array of independent, identically distributed Wiener
processes. The time variable t is discretized with a fixed step
size h > 0, and let the value of a variable at the k-th time
step be denoted by the subscript k. Assuming R0 ∼M(F0)
for F0 ∈ R3, we wish to determine Fk ∈ R3×3 so that
Rk ∼M(Fk).



TABLE I
FIRST-ORDER ATTITUDE ESTIMATION

1: procedure FIRST-ORDER ATTITUDE ESTIMATION

2: R0 ∼M(F0), k = 0
3: repeat
4: Fk+1 =PROPAGATION(Fk,Ωk, Hk)
5: k = k + 1
6: until Zk+1 or zik+1

is available
7: Fk+1 =CORRECTION(Fk+1, Zk+1, zk+1)
8: go to Step 3
9: end procedure

10: procedure Fk+1=PROPAGATION(Fk , Ωk , Hk)
11: Compute E[Rk] with Fk from (10)
12: Compute E[Rk+1] with Ωk and Hk from (13)
13: Perform the singular value decomposition of E[Rk+1] to obtain

E[Rk+1] = Uk+1E[Qk+1]V T
k+1 as (10)

14: Solve (9) for Sk+1

15: Compute Fk+1 with Uk+1, Sk+1, Vk+1 from (4)
16: end procedure
17: procedure F+=CORRECTION(F−, Z)
18: Compute F+ from (15) with Z
19: end procedure

Two types of attitude estimators are introduced in [10].
Here, the first order filtering method is summarized for a
single attitude measurements for simplicity. For the predic-
tion step of Bayesian estimation, it is shown that the first
moment is propagated as

E[Rk+1] = E[Rk]

{
I3×3 +

h

2
(−tr[Gk]I3×3 +Gk)

}
× exp(hΩ̂k) +O(h1.5), (13)

where Gk = HkH
T
k ∈ R3×3. Next, for the correction step,

suppose an attitude measurement Z ∈ SO(3) is available,
which is distributed according to

p(Z|R) =
1

c(FZ)
exp(tr[FTZR

TZ]), (14)

with FZ ∈ R3×3 that specifies the accuracy and the bias
of the attitude sensor. It has been shown that for a priori
distribution R−k ∼ M(F−k ), the a posteriori distribution
conditioned by the measurement is also another matrix Fisher
distribution, given by

R|Z ∼M(F + ZFTZ ). (15)

The corresponding filtering scheme integrating the prediction
step and the correction step is summarized in Table I.

III. ROBUST NUMERICAL IMPLEMENTATION

When implementing the preceding attitude estimation
scheme, one may encounter numerical overflow especially if
the proper singular values are relatively large. It is because
the modified Bessel function I0(x), that appears in the calcu-
lation of the normalizing constant c(S) in (8), exponentially
increases with respect to x as illustrated by the following
expansion for large x,

I0(x) =
ex√
2πx

[
1 +

1

8x

(
1 +

9

16x
(1 + · · ·)

)]
.

This may cause numerical instability in attitude estimation
when the distribution becomes concentrated. In this section,
we present an alternative form of the normalizing constant
to avoid such issues, and the preceding attitude estimation
scheme is reformulated accordingly.

A. Exponentially Scaled Normalizing Constant

In several numerical libraries to compute the modified
Bessel function of the first kind, there is an option to
compute an exponentially scaled value. More specifically,
the exponentially scaled modified Bessel functions of the
first kind are defined as

Ī0(x) = exp(−|x|)I0(x), (16)
Ī1(x) = exp(−|x|)I1(x). (17)

For example, in Matlab, I0(x) is computed by the com-
mand besseli(0,x), and the scaled value Ī0(x) can
be obtained by besseli(0,x,1). The function Ī0(x) is
differentiable when x 6= 0, and from (2)

dĪ0(x)

dx
= Ī1(x)− sgn[x]Ī0(x). (18)

It is desirable to utilize the scaled modified Bessel functions
as limx→∞ Ī0(±x) = limx→∞ Ī1(±x) = 0.

Motivated by these, we define the exponentially scaled
normalizing constant as follows.

Definition 3 For a matrix Fisher distribution M(F ), let
the proper singular value decomposition is given by (4). Its
exponentially scaled normalizing constant is defined as

c̄(S) = exp(−tr[S])c(S). (19)

We show that the exponentially scaled normalizing con-
stant and its derivatives are written in terms of the scaled
modified Bessel functions as summarized below.

Theorem 2 The exponentially scaled normalizing constant
for the matrix Fisher distribution (19) satisfies the following
properties for any (i, j, k) ∈ I.

(i) c̄(S) is evaluated by

c̄(S) =∫ 1

−1

1

2
Ī0

[
1

2
(si − sj)(1− u)

]
Ī0

[
1

2
(si + sj)(1 + u)

]
× exp((min{si, sj}+ sk)(u− 1)) du. (20)

(ii) The first order derivatives of c̄(S) are given by

∂c̄(S)

∂sk
=∫ 1

−1

1

2
Ī0

[
1

2
(si − sj)(1− u)

]
Ī0

[
1

2
(si + sj)(1 + u)

]
× exp((min{si, sj}+ sk)(u− 1))(u− 1) du.

(21)



(iii) The second order derivatives of c̄(S) with respect to sk
are given by

∂2c̄(S)

∂s2k
=∫ 1

−1

1

2
Ī0

[
1

2
(si − sj)(1− u)

]
Ī0

[
1

2
(si + sj)(1 + u)

]
× exp((min{si, sj}+ sk)(u− 1))(u− 1) du.

(22)

Also, the second order mixed derivatives are

∂2c̄(S)

∂si∂sj
=∫ 1

−1

1

4
Ī1

[
1

2
(sj − sk)(1− u)

]
Ī0

[
1

2
(sj + sk)(1 + u)

]
× u(1− u) exp((si + min{sj , sk})(u− 1))

+
1

4
Ī0

[
1

2
(sj − sk)(1− u)

]
Ī1

[
1

2
(sj + sk)(1 + u)

]
× u(1 + u) exp((si + min{sj , sk})(u− 1)) du

− ∂c̄(S)

∂si
− ∂c̄(S)

∂sj
− c̄(S). (23)

(iv) The derivatives of c(S) can be rediscovered by

∂c(S)

∂si
= etr[S]

(
c̄(S) +

∂c̄(S)

∂si

)
, (24)

∂2c(S)

∂si∂sj
= etr[S]

(
c̄(S) +

∂c̄(S)

∂si
+
∂c̄(S)

∂sj
+
∂2c̄(S)

∂si∂sj

)
.

(25)

Proof: Substitute (16) into (8), and rearrange. When
si ≥ sj , it reduces to

c(S) =

esi
∫ 1

−1

1

2
Ī0

[
1

2
(si − sj)(1− u)

]
Ī0

[
1

2
(si + sj)(1 + u)

]
× exp((sj + sk)u) du,

or when sj ≥ si,

c(S) =

esj
∫ 1

−1

1

2
Ī0

[
1

2
(si − sj)(1− u)

]
Ī0

[
1

2
(si + sj)(1 + u)

]
× exp((si + sk)u) du,

for any (i, j, k) ∈ I. From (19), these show (20). Taking the
derivatives of (20) with respect to sk, it is straightforward to
show (21) and (22).

Next, taking the derivatives of (21) with respect to si or
sj is cumbersome as Ī0(x) is not differentiable at x = 0.
Instead, in [10], the mixed second order derivatives of c(S)
has been given by

∂2c(S)

∂si∂sj
=

∫ 1

−1

1

4
I1

[
1

2
(sj − sk)(1− u)

]
× I0

[
1

2
(sj + sk)(1 + u)

]
u(1− u) exp(siu)

+
1

4
I0

[
1

2
(sj − sk)(1− u)

]
× I1

[
1

2
(sj + sk)(1 + u)

]
u(1 + u) exp(siu) du,

(26)

Substitute (16) and (17) to (26) to obtain

∂2c(S)

∂si∂sj
= etr[S]∫ 1

−1

1

4
Ī1

[
1

2
(sj − sk)(1− u)

]
Ī0

[
1

2
(sj + sk)(1 + u)

]
× u(1− u) exp((si + min{sj , sk})(u− 1))

+
1

4
Ī0

[
1

2
(sj − sk)(1− u)

]
Ī1

[
1

2
(sj + sk)(1 + u)

]
× u(1 + u) exp((si + min{sj , sk})(u− 1)) du. (27)

It is straightforward to show (24) and (25) from (19).
Substituting (20), (21), and (27) to (25) yields (23).

B. Alternative Formulation of Bayesian Attitude Estimation

We can rewrite all of the stochastic properties of the
matrix Fisher distribution and the attitude estimation schemes
proposed in [10] in terms of the exponentially scaled normal-
izing constant and its derivatives. These yield more numer-
ically robust implementation that avoid numerical overflows
that possibly appear particularly when the proper singular
values are large. The following theorem shows two selected
properties reformulated in terms of the scaled normalizing
constant.

Theorem 3 Consider a matrix Fisher distribution given by
(3), where the matrix parameter F is decomposed as (4).
Suppose R ∼M(F ), and let Q = UTRV ∈ SO(3).
(i) The probability density can be rewritten as

p(R) =
1

c̄(S)
exp(tr[FTR]− tr[S]). (28)

(ii) The first moment of Q is given by

E[Qij ] =


1 +

1

c̄(S)

∂c̄(S)

∂si
= 1 +

∂ log c̄(S)

∂si
if i = j,

0 otherwise,
(29)

for i, j ∈ {1, 2, 3}.

Using this, (29) replaces (9), and this is useful for the
step 14 of Table I. More specifically, the following set of
equations should be solved for s = (s1, s2, s3) ∈ R3 with
given (E[Q11],E[Q22],E[Q33]),

f(s) =
1

c̄(S)

∂c̄(S)

∂s
−

E[Q11]− 1
E[Q22]− 1
E[Q33]− 1

 = 0. (30)

This can be solved via the following Newton’s iteration

s(q+1) = s(q) −
(
∂f(s)

∂s

∣∣∣∣
s=s(q)

)−1
f(s(q)), (31)



where the superscript (q) denotes the number of iterations,
and the gradient can be computed by

∂f(s)

∂s
=

1

c̄(S)

∂2c̄(S)

∂s2
− 1

c̄(S)2
∂c̄(S)

∂s

(
∂c̄(S)

∂s

)T
. (32)

These alternative formulation based on the proposed scaled
normalizing constant would avoid numerical overflow for
robust implementation.

IV. APPROXIMATE MATRIX FISHER DISTRIBUTION ON
SO(3)

In this section, we present two types of an approximate
matrix Fisher distribution when the proper singular values are
close to zero, or when they are sufficiently large. The former
corresponds to the case of almost uniformly distributed, and
the latter represents highly concentrated distributions.

There are two desirable properties. First, the evaluation of
the normalizing constant requires a one-dimensional integra-
tion as shown by (8) or (19). We formulate an explicit form
of the normalizing constant for approximate distributions,
and we also provide an explicit solution of (30) for compu-
tationally efficient implementation of the filtering schemes.
Second, we aim to identify the similarity between the matrix
Fisher distribution and other well-known distributions for
those special cases.

A. Almost Uniformly Distributed Cases

Suppose |s3| ≤ s2 ≤ s1 � 1. When S = 03×3, the
expression of the probability density (3) reduces to p(R) =
1, which represents the uniform distribution on SO(3). As
such, this case corresponds to when the attitude uncertainty
distribution is almost uniform. In this case, the normalizing
constant is approximated as follows.

Theorem 4 When |s3| ≤ s2 ≤ s1 � 1, the normalizing
constant of M(S) and its derivatives are approximated by

c(S) = 1 +
1

6
(s21 + s22 + s23) +

1

6
s1s2s3 +O(3), (33)

∂c(S)

∂s
=

1

3
s+

1

6

s2s3s3s1
s1s2

+O(2). (34)

Proof: We have

I0(x) =
∞∑
r=0

(
1

2
x)2r/(r!)2 = 1 +

1

4
x2 +O(x4)

exp(x) = 1 + x+
1

2
x2 +O(x3).

Substituting these into (8),

c(S) ≈
∫ 1

−1

1

2

{
1 +

1

16
(s1 − s2)2(1− u)2

}
×
{

1 +
1

16
(s1 + s2)2(1 + u)2

}
×
{

1 + s3u+
1

2
s23u

2

}
+O(s3) du,

which follows (33) and (34).

Ignoring the second or higher order terms, the implicit
equation (9) can be solved for si as

si = 3E[Qii], (35)

for i ∈ {1, 2, 3}.

B. Highly Concentrated Cases

Next, suppose 1 � s2 + s3 ≤ s3 + s1 ≤ s1 + s2. Let
Q = UTRV be parameterized as

Q(η) = exp(η̂) = I3×3 +
sin ‖η‖
‖η‖

η̂ +
1− cos ‖η‖
‖η‖2

η̂2

for η ∈ R3 with ‖η‖ ≤ π. The Haar measure is given by

dQ =
1− cos ‖η‖

4π2‖η‖2
dη.

When ‖η‖ � 1, it is expanded about η = 0 as

Q(η) = I3×3 + η̂ +
1

2
η̂2 +O(3)

=

1− 1
2 (η22 + η23) 1

2η1η2 − η3
1
2η1η3 + η2

1
2η1η2 + η3 1− 1

2 (η23 + η21) 1
2η2η3 − η1

1
2η1η3 − η2

1
2η2η3 + η3 1− 1

2 (η21 + η22)


+O(3).

Therefore, using dR = d(UQV T ) = dQ ≈ 1
8π2 dη,

p(R) ∝ exp(tr[FTR]) dR

= exp(tr[SQ(θ)]) dQ

=
1

8π2
exp(tr[S]) exp

 ∏
(i,j,k)∈I

−1

2
(sj + sk)η2i

 dη

+O(2). (36)

This shows that highly concentrated matrix Fisher distribu-
tion M(F ) can be approximated by mutually independent
Gaussian distributions for η with the zero mean and the
covariance,

E[ηηT ] =

 1
s2+s3

0 0

0 1
s3+s1

0

0 0 1
s1+s2


where η ∈ R3 is defined such hat

R = U exp(η̂)V T = UV T exp(V̂ η) = exp(Ûη)UV T .

As such, ηi corresponds to the angle of rotation of UV T

about the axis whose representation is given by Uei in the
inertial frame, or equivalently V ei in the body-fixed frame.

Theorem 5 When 1 � s2 + s3 ≤ s3 + s1 ≤ s1 + s2,
the normalizing constant of M(S) and its derivatives are
approximated by

c(S) ≈ exp(tr[S])√
8π(s1 + s2)(s2 + s3)(s3 + s1)

, (37)

1

c(S)

∂c(S)

∂si
≈ 1− 1

2

(
1

si + sj
+

1

sk + si

)
. (38)



Proof: From (36),

c(S) ≈ exp(tr[S])

8π2

∫
‖η‖≤π

exp

{
−1

2

∑
(i,j,k)∈I

(si+sj)θ
2
k

}
dη,

which can be further approximated with 1� si + sj as

c(S) ≈ exp(tr[S])

8π2

∫
R3

exp

{
− 1

2

∑
(i,j,k)∈I

(si + sj)θ
2
k

}
dη.

In multivariate Gaussian distributions, it is well known that
the above integral is evaluated as

√
8π3√

(s1 + s2)(s2 + s3)(s3 + s1)
,

which yields (37) and (38).
Similar with the almost uniform distributions, rearranging

with (38), the implicit equation (9) can be solved for si
explicitly as

si =
1

2

{
− 1

1 + E[Qii]− E[Qjj ]− E[Qkk]

+
1

1− E[Qii] + E[Qjj ]− E[Qkk]

+
1

1− E[Qii]− E[Qjj ] + E[Qkk]

}
, (39)

for any (i, j, k) ∈ I.

V. NUMERICAL EXAMPLES

A. Normalizing Constant

First, the probability density given by (3) is numerically
compared with the alternative expression (28) based on the
scaled normalizing constant. For a single variable s, define

S(s) = diag[
1

2
s,

1

3
s,

1

6
s], (40)

with tr[S(s)] = s. The probability density for M(S(s)) at
R = I3×3 is numerically evaluated for varying s. When
simulated in Matlab with the largest possible floating number
of 1.7977×10308, numerical overflow appears when s > 700
approximately for (3). However, when using the exponen-
tially scaled expression (28), the overflow happens when
s > 108. This illustrates robustness of the scaled expressions
in numerical implementation.

Next, we compare the approximate normalizing constants
and their derivatives presented in Section IV with the true
values. Figure 1 illustrates the computed values for S(s) in
(40) with varying s. It is shown that the approximation for the
almost uniform cases is reasonable when tr[S] ≤ 1, and the
approximation for highly concentrated cases is appropriate
when si + sj ≥ 10.

B. Attitude Estimation

We consider one of the numerical examples of attitude
estimation presented in [10]. The reference attitude trajec-
tories is constructed by a complex rotational maneuver of
a 3D pendulum [14]. The angular velocity is measured at
the rate of 50 Hz with H = diag[1.8, 1.6, 2.4], and the
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Fig. 1. Comparison between the normalizing constants and approximate
ones (solid/black: true, dotted/red:(33),(34), dashed/blue:(37),(38))

attitude is measured at 10 Hz following (14) with FZ =
diag[40, 50, 35]. The mean angular velocity measurement
error is 0.45 rad/s, and the mean attitude measurement error
is 10.45◦. The initial distribution is given by R ∼ M(F ())
with

F (0) = 03×3,

which corresponds to the uniform distribution on SO(3), i.e.,
the initial attitude is completely unknown.

Two cases are considered, depending on how the implicit
equation (9) is solved (at the step 14 of Table I): in the first
case, it is solved via Newton iteration as (31), and in the
second case, the approximate solutions are utilized according
to the following logic:
• If max{E[Qii]} < 0.1, use the almost uniform approx-

imation (35),
• Else if max{E[Qii]} > 0.9, use the highly concentrated

approximation (39),
• Otherwise, perform the Newton iteration with (31).
The corresponding simulation results are illustrated in Ta-

ble II and Figure 2. The estimation based on the approxima-
tion solution yields slightly greater attitude estimation error,
but the difference is negligible. Whereas the computation
time becomes drastically reduced.



TABLE II
SIMULATION RESULTS

estimation error CPU time

Newton iteration 6.48◦ 95.75 sec
Approx. solution 6.51◦ 3.70 sec
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Fig. 2. Simulation results: Newton-iteration (black), approximate solution
(blue)

VI. CONCLUSIONS

The matrix Fisher distribution on the special orthogonal
group is a compact form of attitude probability densities that
resemble the Gaussian distribution on R3, and it has been
successfully utilized in Bayesian attitude estimation. This
paper has presented a robust numerical implementation based
on an exponentially scaled normalizing constant, and two
approximate distributions for almost uniformly distributed
cases and highly concentrated cases. It turns out that a highly
concentrated matrix Fisher distribution can be approximated
by a Gaussian distribution for the rotation angles from the
mean attitude. Also, it is shown that the approximated distri-
butions yield an explicit form of Bayesian attitude estimation
that reduces the computational load substantially, while caus-
ing minimal performance degradation. Future works include
generalizing the matrix Fisher distribution to model the
coupling between the uncertainties in the rotational dynamics
and the translational dynamics of a rigid body.
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