
Diversity-Driven Automated Formal Verification

Emily First
University of Massachusetts Amherst

Amherst, MA, USA

efirst@cs.umass.edu

Yuriy Brun
University of Massachusetts Amherst

Amherst, MA, USA

brun@cs.umass.edu

ABSTRACT

Formally verified correctness is one of the most desirable properties

of software systems. But despite great progress made via interactive

theorem provers, such as Coq, writing proof scripts for verification

remains one of the most effort-intensive (and often prohibitively

difficult) software development activities. Recent work has cre-

ated tools that automatically synthesize proofs or proof scripts.

For example, CoqHammer can prove 26.6% of theorems completely

automatically by reasoning using precomputed facts, while TacTok

and ASTactic, which use machine learning to model proof scripts

and then perform biased search through the proof-script space,

can prove 12.9% and 12.3% of the theorems, respectively. Further,

these three tools are highly complementary; together, they can

prove 30.4% of the theorems fully automatically. Our key insight is

that control over the learning process can produce a diverse set of

models, and that, due to the unique nature of proof synthesis (the

existence of the theorem prover, an oracle that infallibly judges a

proof’s correctness), this diversity can significantly improve these

tools’ proving power. Accordingly, we develop Diva, which uses a

diverse set of models with TacTok’s and ASTactic’s search mech-

anism to prove 21.7% of the theorems. That is, Diva proves 68%

more theorems than TacTok and 77% more than ASTactic. Com-

plementary to CoqHammer, Diva proves 781 theorems (27% added

value) that CoqHammer does not, and 364 theorems no existing

tool has proved automatically. Together with CoqHammer, Diva

proves 33.8% of the theorems, the largest fraction to date. We ex-

plore nine dimensions for learning diverse models, and identify

which dimensions lead to the most useful diversity. Further, we

develop an optimization to speed up Diva’s execution by 40×. Our

study introduces a completely new idea for using diversity in ma-

chine learning to improve the power of state-of-the-art proof-script

synthesis techniques, and empirically demonstrates that the im-

provement is significant on a dataset of 68K theorems from 122

open-source software projects.

CCS CONCEPTS

• Software and its engineering → Software verification; For-

mal software verification; • Theory of computation → Auto-

mated reasoning.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9221-1/22/05. . . $15.00
https://doi.org/10.1145/3510003.3510138

KEYWORDS

Automated formal verification, language models, Coq, interactive

proof assistants, proof synthesis

ACM Reference Format:

Emily First and Yuriy Brun. 2022. Diversity-Driven Automated Formal Veri-

fication. In 44th International Conference on Software Engineering (ICSE ’22),

May 21–29, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 13 pages.

https://doi.org/10.1145/3510003.3510138

1 INTRODUCTION

Building provably correct systems is critical in high-stakes domains,

such as aerospace engineering and software for medical devices.

However, most industrial verification tools either aim to simplify

the verification process by sacrificing soundness [11] or signifi-

cantly restrict the programming language in which the system is

written [53]. A promising method for building correct software has

been to use programming languages that are designed to inherently

support program verification, such as interactive theorem provers

(ITPs), including Coq [79], Agda [84], and Isabelle/HOL [61]. ITPs

have had significant impact on industry. For example, Airbus France

uses the Coq-verified CompCert C compiler [50] to ensure safety

and improve performance of its aircraft [75]. Chrome and Android

both use cryptographic code formally verified in Coq to secure

communication [25], while Mozilla has its own verified crypto-

graphic library for Firefox, improving performance [44]. Multiple

companies have been successful in using proof assistants to pro-

vide formal verification services, including BedRock Systems, who

builds formally verified solutions for the healthcare, infrastructure,

and financial domains [9], Certora, who formally verifies smart

contracts [17], and Galois, Inc., who verifies compiler correctness

and hardware design [29]. Meanwhile Amazon successfully ap-

plies formal verification to cloud security problems in Amazon

Web Services, providing tools for users to detect entire classes of

misconfigurations that can potentially expose vulnerable data [6].

With ITPs, the user (a programmer) specifies a theorem about

a property of the software and writes a proof script, a series of

annotated proof tactics, that the interactive theorem prover uses

to attempt to construct a proof of the theorem. Still, even with the

help of an ITP, the effort required to write proof scripts is often

prohibitive. The Coq proof of the C compiler is more than three

times that of the compiler code itself and took three person years

of work [50]. Meanwhile, it took 11 person years to write the proof

script to verify a microkernel [59]. As a general rule, because of

the expense of verification, nearly all software companies ship is

unverified.

However, some formal verification can be fully automated by syn-

thesizing either the underlying proofs or the guiding proof scripts.

A series of tools called hammers (e.g., CoqHammer [21]) use a set

of precomputed mathematical facts to attempt to “hammer” out

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Emily First and Yuriy Brun

a proof. Evaluated on the CoqGym benchmark [90], CoqHammer

can automatically prove 26.6% of theorems found in open-source

Coq projects. But hammers are restricted by their precomputed

facts and cannot reason about proof approaches such as induc-

tion, greatly limiting their power. To overcome these limitations,

researchers have used machine learning to model existing proof

scripts, and then, given a new theorem, applied that model to guide

metaheuristic search [35] to attempt to synthesize a new proof

script [28, 69, 90]. While these tools tend to prove fewer theorems,

e.g., ASTactic proves 12.3% [90] and TacTok proves 12.9% [28], they

are capable of applying higher-order proof approaches learnt from

existing proofs, including induction, and so are complementary to

hammers. Together with CoqHammer, they prove 30.4% of the the-

orems. The central goal of this paper is to improve on this fraction,

particularly focusing on the tools that model existing proofs.

We make two key observations that enable us to improve the

proving power of proof-script-synthesis techniques. First, the for-

mal verification domain is a unique application of machine learning

because it has a correctness oracle. In most machine learning appli-

cations, it is not known when the model is correct. This is why mod-

els are typically evaluated for precision or accuracy. In the formal

verification domain, however, the interactive theorem prover can

use a synthesized proof script to determine whether it truly proves

the underlying theorem. If the prover can get to Qed, then the syn-

thesized proof script must be correct. Thus, proof-script-synthesis

systems always have a precision of 100%: they never return a failed

script, instead continuing the search or timing out. While recall

may be low, precision is always perfect. Second, variations in the

models can alter the search-based synthesis of a proof script enough

that two models can potentially produce different scripts for the

same theorem. This, in turn, can, hypothetically, lead to models that

prove complementary sets of theorems. And because of our first

observation, they can be combined without sacrificing their power.

The combined system can synthesize successful proof scripts for

all theorems each one of the models can prove individually; if one

model fails to synthesize a successful script, the theorem prover

unequivocally tells us so, and we instead use the other model’s suc-

cessful script. Thus, if one can learn models that differ in a way to

produce different scripts, potentially, this set of models may be able

to prove far more theorems than a single model. The central ques-

tion this paper answers is whether model diversity can be created

to improve the proving power of proof-script-synthesis techniques,

and whether such an approach improves on the state-of-the-art au-

tomated formal verification techniques. We find that the answer to

both questions is “yes.” As we will demonstrate on a benchmark of

68,501 theorems from 122 open-source software projects in Coq, we

are able to create a set of 62 models by varying learning parameters

and learning data that, together, prove 68% more theorems than

TacTok and 77% more than ASTactic, despite using the same search

method. Combining our approach, Diva, with CoqHammer [21],

we can prove 33.8% of all the theorems, the highest such result to

date. Diva proves 364 theorems that none of the prior tools have

been able to prove. The difficulty of manually writing proof scripts

for formal verification is so great, that even small improvements in

proving power can be significant, and the savings in human effort

that our approach represents are quite substantial.

Our insights enable for a completely new way to combine ma-

chine learning models. Of course, the idea of combining models is

not new. Ensemble learning allows weighting the results of multiple

models to improve the precision or recall of a single model [68].

And stacking uses a classifier to decide which model to apply to

each input [24]. While both these methods can improve precision

and recall in practice, they can also, hypothetically, reduce them,

and often cannot properly amplify the correct results of a small

minority of models. By contrast, in our domain, our method for

combining models can never produce a wrong result or ignore the

correct result produced by even a single model. This represents a

killer app for ensemble learning and stacking. We are the first to

combine the idea of ensemble learning with an oracle to produce

optimal stacking.

This paper explores nine dimensions for learning diverse models,

and identifies which dimensions lead to the most useful diversity.

Altering the types of information (the proof script, state, and term)

the model learns from resulted in the greatest diversity, while vary-

ing the depth of the proof script and the learning rate provided the

second most diversity. As running a large number of models can be

inefficient, we develop a model interrupts optimization that speeds

up Diva’s execution by 40×.

The main contributions of our work are:

• A novel approach for combining varied machine learning

models to formally verify software properties.

• A systematic exploration of which learning dimensions pro-

vide usable model diversity.

• An implementation of our approach, Diva, that proves 68%

more theorems than TacTok and 77%more than ASTactic, the

prior work most closely related to ours. Diva is open-source

and is available at https://github.com/LASER-UMASS/Diva/.

• An optimization for improving Diva’s performance.

• Aplatform for evaluatingmodels and rerunning experiments,

and all data and source code used in our experiments for

replications [27].

The rest of this paper is structured as follows. Section 2 explains

verification in Coq. Section 3 presents Diva, and Section 4 evaluates

our use of diversity to increase the proving power of automated for-

mal verification tools. Section 5 places our research in the context

of related work, and Section 6 summarizes our contributions.

2 THEOREM PROVING IN COQ

Coq is a dependently-typed language with a small kernel, which

provides a high assurance that Coq-verified programs are truly

correct. However, program verification in Coq is not automatic. To

prove a theorem in Coq, a programmer must write a proof script (in

Ltac), which, when executed, helps automatically generate a proof

(in Gallina) of the theorem. Alternatively, metaheuristic search

techniques [35] can automatically search for a proof script, thus

alleviating the burden for the programmer [28, 69, 90]. However,

metaheuristic search is only as good as the predictive model that

is used to bias the search. In this section, we will discuss how a

programmer interactively writes proof scripts in Coq (Section 2.1),

how metaheuristic search can be used to automatically generate a

proof script (Section 2.2), and design considerations for building a

predictive model to generate proof scripts (Section 2.3).

Diversity-Driven Automated Formal Verification ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

2.1 Interactively writing proof scripts

When a theorem is proven in Coq, this means that in Gallina (Coq’s

internal language), a proof term of the desired type has been con-

structed. The type of this term is the theorem itself. A programmer

could write the Gallina proof term themselves, but this can be a

long, unforgiving process [65]. To simplify this task, Coq has a

meta-programming language called Ltac in which programmers

can write proof scripts, which when completed and run, generate

the Gallina proof term automatically.

Programmers use an interactive proof assistant (e.g., CoqIDE or

Proof General) to write proof scripts, which consist of a sequence

of proof tactics. The proof assistant executes a proof script, even a

partial one, and provides immediate human-readable feedback after

each tactic’s execution. This feedback is Coq’s internal proof state,

which includes the goals to prove, the local context of assumptions,

and the environment of proven-so-far set of facts. The programmer

can even ask to see the intermediate Gallina proof term by writ-

ing and executing the Show Proof command in their proof script.

When starting to prove a theorem, Coq’s proof state is a single

goal, which is the theorem itself (the corresponding proof term is

?Goal). The aim is to manipulate the proof state through the use of

tactics until the goal is proven and thus removed from the proof

state. Since the search space of goal manipulation is too large, a

programmer helps manage the exploration by using the current

proof state to select a sequence of proof tactics to try.

The interactive proof assistant checks that a partially-written

proof script is valid and updates the current proof state, allowing the

programmer to incrementally develop a proof script. The program-

mer can choose a tactic, examine the output from the proof assistant,

and then choose the next tactic. If the programmer chooses an in-

valid tactic, the proof assistant displays an error. If the programmer

chooses tactics that are valid, but do not make progress, they can

use the proof assistant to backtrack to an earlier proof state and try

a different approach. The programmer continues selecting tactics

until the proof assistant prints no more subgoals, and then uses Qed
to complete the proof script.

2.2 Proof script synthesis via metaheuristic search

In interactive proof script generation, the burden is on the program-

mer to choose the sequence of tactics. To remove this burden from

the programmer, metaheuristic search techniques can sometimes

automatically generate a proof script.

The space of possible proof scripts is infinite and quite complex.

Because of this size and complexity, automatically searching blindly

through this space for a proof script that might prove a theorem

is unlikely to succeed. Metaheuristic search [35] can help guide

the search to improve the chances of success, and, in fact, is often

successful [28, 69, 90]. Such search starts with an empty proof

script, and predicts a first most likely proof step. This prediction

can be made based, for example, on the theorem being proven and

examples of past, successful proof scripts. The search executes the

partial proof script and determines, using some heuristic-based

fitness function, whether adequate progress has been made. If it

has not, the proof search can try another likely proof step. If it has,

the search can iteratively augment the partial proof script, adding

subsequent predicted proof steps, making progress toward proving

search and
predict

Proof Script Model Next Step 2

New
Proof Script 1

input

If compiles, proof state is not
duplicate, and subgoals still exist,
update Proof Script

If doesn't compile
or proof state is
duplicate, predict
another tactic

Final Proof
If no more subgoals, apply Qed

intros n;
induction n;

intros n;
induction n;
apply h;

simpl;

intros n;
induction n;
simpl;
qed;

Next Step 1

apply h;

Next Step 3

trivial;

(beam size 3)

New
Proof Script 2
intros n;
induction n;
simpl;

New
Proof Script 3
intros n;
induction n;
trivial;

apply

Figure 1: The process of synthesizing a proof script using

metaheuristic search, biased by a black box predictive model.

Given an incomplete proof script, a model can predict the

next proof step. Here, using a beam search of width 3, the

model predicts 3 likely next steps. If using the step satisfies

certain criteria (here, the proof script must compile and the

resulting proof state must not have been previously seen

within this proof script) the process iterates until, either,

the proof state has no subgoals and the proof script can be

completed using Qed, or the search reaches a timeout.

the theorem. Making reasonably accurate predictions is, of course,

a critical part of successful metaheuristic search, and Section 2.3

will describe possible ways to do that.

Figure 1 shows how beam search can use a predictive model to

bias a metaheuristic search for a proof script. In this example, the

model predicts 3 likely next proof script steps (the beam width is 3).

The search then uses a heuristic-based fitness function to determine

criteria for applying the candidate proof steps. Here, the criteria are

that the partial proof script compiles and results in a proof state that

has not been previously seen within this search. If successful, the

search appends the proof step to the script and iterates, growing the

script. Once the proof state has no more subgoals, the proof script

can be completed by using Qed. The search fails if it times out.

2.3 Proof script modeling

Prior proof script synthesis tools, such as ASTactic and TacTok, use

the predictions from learnt proof script models to bias the meta-

heuristic search for a proof script. Such a model is learnt from a set

of existing, successful proof scripts to predict the next proof step

(tactic and arguments) of an incomplete proof script. Recall from

Section 2.1 that there are three relevant aspects of proof scripts we

may want to encode to serve as input to such a model: the proof

state, the proof script, and the Gallina proof term. ASTactic only en-

codes the proof state, while TacTok encodes both the proof state and

the proof script. There has yet to be a proof script synthesis tool that

encodes the Gallina proof term. Next, Sections 2.3.1, 2.3.2, and 2.3.3

describe how to encode the proof state, proof script, and Gallina

proof term, respectively.

2.3.1 Encoding the proof state. The proof state consists of the goals

to be proven, local context, and the environment. While the pro-

grammer sees them in a human-readable format, each term of the

proof state has an underlying abstract syntax tree (AST) represen-

tation. ASTactic and TacTok serialize these ASTs and encode them

using a neural model, specifically a TreeLSTM [78]. Prior work has

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Emily First and Yuriy Brun

Environment

Local Context

Goal

Proof Script

Proof Term

ASTs

Seqs

Proof
State

Encoder

Proof
Script

Encoder

Proof
Term

Encoder

Embeddings

Tactic and
arguments
(next step)

AST
Tactic

Decoder

Figure 2: Model of proof script, which Diva uses internally

to drive search.

empirically argued that neural models are much more effective than

other architectures [10, 56, 76].

2.3.2 Encoding proof script features. The proof script is comprised

of a sequence of tokens in Ltac. For the model to encode these

tokens, each proof script needs to be preprocessed to remove high-

frequency low-signal tokens, such as punctuation. Then, encoding

such a sequence is traditionally done using a language model [10,

56, 76]. Language models are widely used in natural language pro-

cessing tasks [7, 74]. The primary function of a language model

is to predict the next token in a sequence of tokens. While prior

work has used n-grams to model Coq [37], TacTok found neural

language models work better to encode the sequence of tokens

because it can generate a representative vector (embedding) for

the sequence, that can then be combined with other types of in-

puts. Among the most extensively used neural language models are

transformers [23] and RNNs [62]. TacTok uses an RNN (specifically

a Bidirectional LSTM [62]) because transformers require massive

amounts of data to train [23], which is typically not available in the

formal verification domain.

2.3.3 Encoding the proof term. Prior tools have not encoded proof

terms, but, conceptually, the Gallina sequence is similar to the proof

script Ltac sequence, and we encode it in a similar way using a

Bidirectional LSTM [62]. This allows all three, the proof state, proof

script, and proof term, to be encoded with a single model.

3 DIVA: DIVERSITY-DRIVEN SYNTHESIS

Machine learning models can be sensitive to noise in the training

data [60, 82] and to parameters applied during the learning pro-

cess [31]. This sensitivity can cause great variability in the accuracy

of models. Of course, this can hurt the generalizability of machine

learning results, but we posit that in the right domain, this sensi-

tivity, and the diversity of models it can produce, can provide a

significant benefit.

In the formal verification domain, tools such as ASTactic [90],

Proverbot9001 [69], and TacTok [28] use a learnt model of a proof

script to guide metaheuristic search toward synthesizing a proof

script for a theorem. Variations in the models can alter the search,

resulting in potentially different attempted synthesized scripts. The

key uniqueness of this domain is that an interactive theorem prover

can act as an oracle for each proof script. If the proof script leads

the theorem prover to generate a proof terminating in Qed, then the

proof script is, by definition, correct. This allows a synthesis tool to

try applying many different models to bias the search in different

TreeLSTM

AST
Parse

Embedding

(a) Proof state encoder

Bidirectional
LSTM

Seq
Parse

Embedding

(b) Proof script and term encoders

Figure 3: The neural models used to encode the proof state

AST, proof script sequence, and the proof term sequence.

ways, and then pick out just the successful synthesis attempts,

discarding the failed ones.

This is not the typical case in applications of machine learning.

Ensemble learning [68] and stacking [24] attempt to combine the

results of multiple machine learning models to improve precision

or recall. However, without an oracle, ensembles and stacks are

unlikely to always pick the correct result, especially when relatively

few of the diverse models produce it. By contrast, in our domain,

with the theorem prover acting as an oracle, even a single model

producing the correct proof script can establish an answer.

To demonstrate this insight, we develop Diva, a proof-script-

synthesis tool that uses the diversity in machine learning to sig-

nificantly improve its proving power. Diva is open-source and is

available at https://github.com/LASER-UMASS/Diva/.

Diva’s key contributions are the generation of a diverse set of

models capable of proving complementary sets of theorems, a mech-

anism for combining the benefits of the models, and an optimization

to make running a large number of searches using independent

models feasible.

To automate proof script synthesis, Diva uses a learnt model of a

proof script to guide metaheuristic beam search. During this search,

Diva samples a fixed number (beamwidth) of the most likely tactics,

predicted by the model, across all search tree nodes at the same

level, and then uses these tactics to search for a complete proof

script. Diva backtracks when the Coq compiler fails to check the

attempted proof script step or detects a duplicate proof state. Diva

uses the same beam search configuration (width of 20, search depth

limit of 5, and a timeout of 10 minutes) as ASTactic and TacTok.

To intentionally produce a diverse set of models that prove com-

plementary sets of theorems, control over the learning process

is key. When training a model of proof scripts, Diva varies the

learning parameters and which features of the training data to

encode. Next, Section 3.1 describes what a Diva model looks like;

Sections 3.2 and 3.3 detail how Diva generates a diverse set of mod-

els by controlling learning parameters and the encoded features of

the training data, respectively; and Section 3.4 explains our Diva

efficiency optimization.

3.1 Diva’s learnt model

Figure 2 illustrates Diva’s proof script model, learnt from a set of

existing proof scripts. Diva uses the predictions from this model to

drive the search for a complete proof script.

Figure 3 details the encoders used in the Diva model to encode

relevant aspects of proof scripts. Figure 3(a) presents the proof state

encoder, which Diva uses to encode the goal, local context, and

environment, in AST form. To encode a tree, it uses a TreeLSTM

network [20], which generates embeddings for each proof state

term. Figure 3(b) details the proof script encoder, which Diva uses

to encode the proof script sequence. We encode the parsed sequence

Diversity-Driven Automated Formal Verification ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

of previous tokens using a Bidirectional LSTM, which generates an

embedding for the sequence. A Bidirectional LSTM improves on the

LSTM by capturing more contextual information by processing the

input sequence in two ways, forward and backward [62], allowing

the output layer to simultaneously see both directions of informa-

tion. Diva encodes the Gallina proof term (the first synthesis tool to

do this) using the same encoder in Figure 3(b). Similar to the proof

script sequence encoding, we choose to encode the sequence of

proof term tokens using a Bidirectional LSTM, generating an embed-

ding. Diva jointly learns embeddings for the sequences and ASTs.

Diva’s tactic decoder is modified from the tactic decoder first

used in ASTactic and, later, TacTok. This tactic decoder is con-

ditioned on the sequence of embeddings. In Diva, however, the

embeddings are a concatenation of a subset of the embeddings gen-

erated from the proof script, proof term, and proof state encoders.

This allows for modeling of more relevant proof script aspects and

the choice of which subset to combine allows us to create variability

in the models (see Section 3.3). The tactic decoder then generates a

tactic by sequentially growing an AST [91]. It chooses a production

rule from the context free grammar of the tactic space at a non-

terminal node in the AST, while it synthesizes arguments based on

semantic constraints at a terminal node. A GRU [19, 20] controls

this process of growing the tree, as it updates its hidden state using

the input embeddings of the partially generated AST.

Diva trains the model on a set of existing proof scripts. Each

proof script in this set is broken down into training instances, which

are the inputs to the model. A training instance is comprised of the

proof state before the tactic execution, the proof script up to the

tactic execution, the Gallina proof term before the tactic execution,

and the next step of the proof script. The Diva model jointly learns

embeddings for the proof state ASTs, the proof script, and proof

term sequence, and then uses these embeddings to predict the

next proof script step in the form of an AST. The model sends

the predicted AST along with ground-truth next tactic AST to the

trainer, where the trainer compares these tactic ASTs and back-

propagates the loss.

Unlike prior tools, Diva jointly trains a language model over the

tokens in the proof term. Section 3.2 details further modifications

in this training process for creating Diva’s diverse models.

3.2 Diversity via varying learning parameters

One way in which we create a diverse set of models is by varying

the learning parameters, which affects the model’s size and the

learning algorithm itself. For this, we start with the Tac model from

TacTok, and explore varying six dimensions: sequence tactic depth,

sequence token depth, the learning rate, the embedding size, the

number of layers, and the order of the training data.

Tactic and token sequence depth. The sequence depth denotes the

size of the input the learning algorithm considers. When training,

the model can consider the entire proof script written so far, or part

of it, such as only themost recent tactic and its arguments, or several

most recent tactics with arguments, or only several most recent

tokens. The proof script encoder considers only that portion of the

proof script (and, symmetrically, the decoder will consider the same

depth when decoding the next proof step). Diva varies the sequence

depth along both tactics and tokens, from a depth of 0, which does

not consider the proof script at all (it considers only proof state,

making the model equivalent to ASTactic’s model), to the entire

proof script. Diva considers sequence depth sizes (excluding the

start token) of 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 29 and 30.

Learning rate. During training, the algorithmupdates themodel’s

weights in every iteration. The learning rate is a hyperparameter

that determines how much the weights can be changed in each

iteration. A larger learning rate is less likely to result in the train-

ing getting stuck in a local optimum, but may also take longer to

converge or fail to explore a region long enough to find an optimal

solution. Accordingly, the models produced by varying the rate

can be quite different. Diva considers learning rates of 3 × 10𝑘 for

𝑘 ∈ {−2,−3,−4,−5,−6,−7,−8}.

Model size (embedding and layers). The model’s size is defined by

two hyperparameters, the number of model layers and embedding

size, which is the size the vector space in which a proof aspect is

embedded. Diva varies the proof script encoder size by trying 1, 2,

3, 4, and 5 layers and embedding sizes of 64, 128, 256, and 512.

Training data order. The order of the training data can affect

the model [31]. We vary the order in which Diva sees the training

instances by creating ten random orders.

3.3 Diversity via varying training data

The second way in which we create a diverse set of models is

by varying aspects of the training data available to the learning

algorithm. There are three types of data in the training proof scripts:

the proof state, the proof script tactics and tokens, and the proof

term that the proof assistant generates when it executes the proof

script (recall Section 2.3). When training a model, we either include

each of these three types of data or we exclude them. For the proof

script, we include either the tactics or the tokens, since they encode

fundamentally the same information. This leads us to a total of 11

models. For the models that do not include proof state, when we

encode the training instance that represents the very start of proof-

script synthesis, we include the theorem being proven (otherwise

the model would not know what it is trying to prove). Similarly, at

test time, when synthesizing the first proof script step, we include

the theorem being proven.

3.4 Efficiently combining model executions

Executing a large set of models in sequence is slow since Diva has to

wait for a model to finish its proof script synthesis attempt before it

can try the next one.We developmodel interrupts to improve Diva’s

efficiency. In model interrupts, given a set of models, Diva assigns

an arbitrary order of model application. In order, each model will be

given a specified amount of time to try to synthesize a proof script.

Once the time runs out, the next model attempts to synthesize a

proof script from scratch. Figure 4 illustrates this concept. The first

model attempts synthesis from scratch for 𝑋 seconds, at which

point, if a complete proof script is not generated, the partial proof

script is stored and the second model attempts to synthesize a proof

script from scratch for 𝑋 seconds. And so on. Once each model is

given an opportunity to try for 𝑋 seconds and a complete proof

script is not found, the models will be given more time to synthesize

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Emily First and Yuriy Brun

 Model1 Model2

time

tactic1

Model

Prediction

tactic1. ...
tactick.

...

...tactic1.

tactick tactick+1

Proof
Script

...

...

...

...

X s 2X s

...

tactick+1

Figure 4: Model interrupts allows Diva to let models take

turns synthesizing proof scripts from scratch.

a proof script starting from the stored partial proof script associated

with the model.

4 EVALUATION

We evaluate Diva to measure howmuch diversity of models of proof

scripts can increase the effectiveness of proof script generation.

We follow the methodologies of prior evaluations of proof-script

synthesis tools [28, 90], in terms of the dataset (Section 4.1.1) and

metrics (Section 4.1.2) used; we compare to two state-of-the-art

proof-script-synthesis tools, ASTactic [90] and TacTok [28], which

use the samemetaheuristic search for proof-script synthesis as Diva.

We further compare Diva to the state-of-the-art proof-synthesis

tool CoqHammer [21].

Our evaluation answers four research questions:

RQ1: Does diverse-modeling significantly improve proof-

script synthesis over state-of-the-art approaches

CoqHammer, ASTactic, and TacTok?

RQ2: How much model diversity results from varying the

model learning parameters sequence depth, learn-

ing rate, number of layers, size of embeddings, and

training order, and how does this model diversity

affect proof script synthesis effectiveness?

RQ3: How much model diversity results from varying

which aspects of the training proofs— tactics, to-

kens, proof state, Gallina proof terms— are available

to the learning process and how does this model

diversity affect proof script synthesis effectiveness?

RQ4: How effective is our interrupts mechanism for im-

proving Diva efficiency?

All of our evaluation data and the source code to reproduce our

results are available [27].

4.1 Evaluation methodology

We first describe the dataset and metrics we use to evaluate Diva.

4.1.1 Dataset. In our evaluation, we use CoqGym [90], the state-of-

the-art benchmark used in prior evaluations of formal verification

tools [28, 51, 90]. The benchmark consists of 70,856 theorems from

123 open-source software projects in Coq. The CoqGym benchmark

comes with a preselected training set of 96 projects with 57,719

human-written proof scripts, and test set of the remaining 13,137

theorems from 27 projects.

Our earlier TacTok evaluation [28] was unable to reproduce

prior results for ASTactic’s performance [90] for one project, coq-

library-undecidability, due to internal Coq errors when processing

the proof scripts. Accordingly, we exclude this project from our

evaluation. We were able to reproduce the results for the remaining

26 projects of 10,782 theorems. In total, our training and test sets

have 68,501 theorems from 122 projects.

4.1.2 Metrics. We measure four quantities in answering our re-

search questions: success rate, added value, diversity, and mean

time to prove a theorem.

Success Rate. The success rate of a tool, widely used in prior

evaluations [28, 41, 90], is the fraction of all theorems for which

the tool generates a succesful proof script.

Added Value. The added value of tool A over tool B is the

number of new theorems tool A proves that tool B does not, divided

by the number of theorems tool B proves.

Diversity. Given a set of models, we wish to know how much

diversity they yield with respect to their ability to prove theorems.

And so, we think of the diversity of a set of models as the diversity

of the corresponding sets of theorems that the models prove. Our

goal with the diversity measure is to be able to compare how much

diversity results from various methods for creating models, so that

we can compare the different methods.

Informally, given a set of sets of objects (theorems) we define a

family of diversity functions, such that the 𝑘th diversity function,

𝑑𝑘 , measures the relative increase in objects contained in 𝑘 sets,

as compared to 𝑘 − 1 sets. So, for example, for a set of models,

𝑑5 denotes the fraction of the additional theorems (out of all the

theorems proved by at least one model) that are able to be proved

by adding a fifth model to a set of four models, on average.

More formally, let𝑇 be a set of objects and let𝑀 be a set of subsets

of 𝑇 such that the union of all sets in 𝑀 is equal to 𝑇 . Then, for
each 𝑘 ∈ {1, 2, 3, . . . , |𝑀 |}, the 𝑘th diversity function 𝑑𝑘 : 2

𝑇 → R

is the average increase, in terms of the fraction of 𝑇 , that the union
of 𝑘 elements of𝑀 contains over the union of 𝑘 − 1 elements of𝑀 .

Thus, for all 𝑀𝑘 ⊆ 𝑀 , such that |𝑀𝑘 | = 𝑘 , and for all 𝑀𝑘−1 ⊆ 𝑀 ,

such that |𝑀𝑘−1 | = 𝑘 − 1, 𝑑𝑘 (𝑀) is the average value of
|𝑀𝑘\𝑀𝑘−1 |

|𝑇 |
.

Given a set of models, we compute the diversity functions em-

pirically. We use each model to attempt to synthesize proof scripts

to prove theorems. We then compute 𝑇 , the set of all theorems

that can be proven by at least one model. Then, to compute 𝑑𝑘 , we,
for each model, compute how many additional theorems it proves

compared to each set of 𝑘 −1 models. We then compute the average

of those numbers, and divide it by |𝑇 | for normalization. In the end,

𝑑𝑘 (𝑀) is the average fraction of theorems proven by adding a 𝑘th

model to a set of 𝑘 − 1 models. Note that the sum of 𝑑𝑘 for all 𝑘 is

1, and that diversity is monotonically non-increasing with respect

to 𝑘 (that is, 𝑑𝑘−1 ≤ 𝑑𝑘 .)
Mean Time to Prove a Theorem. To measure efficiency, we

compute the mean time it takes to generate a proof script for a

theorem, averaged over all the theorems for which we produce a

successful proof script, and over all the possible orderings of the

models used in the metaheuristic search.

Diversity-Driven Automated Formal Verification ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

tool theorems proven Diva’s value added

ASTactic 1,322 (12.3%) 908 (76.9%)

TacTok 1,388 (12.9%) 842 (68.4%)

CoqHammer 2,865 (26.6%) 781 (27.3%)

all 3 prior tools 3,282 (30.4%) 364 (11.1%)

Diva 2,338 (21.7%) —

Diva & CoqHammer 3,646 (33.8%) —

Figure 5: Theorems proven by and the success rate of Diva,

ASTactic, TacTok, CoqHammer, and the combination of these

tools out of the 10,782 theorems in CoqGym’s test dataset.

Diva provides value added over each of these tools, and 11.1%

value added over the combination of all three.

4.2 RQ1: Does diversity help Diva outperform
the state-of-the-art?

We created models by varying learning parameters and aspects

of proof scripts to encode (recall the models described in Sec-

tions 3.2 and 3.3). Overall, we generated these 62 models for Diva

to use.

We compare Diva to the state-of-the-art synthesis tools, ASTac-

tic [90], TacTok [28], and CoqHammer [21]. ASTactic and TacTok,

like Diva, learn from existing proof scripts to predict the next step

of the proof script. CoqHammer uses a fundamentally different

approach. Whereas CoqHammer produces proofs in Coq’s logic

(Gallina), Diva searches the proof-script space. When the Coq com-

piler executes a proof script, it generates a proof. Proofs cannot

be wrong, while proof scripts can be (e.g., a proof script that con-

cludes with Proof completed, may not lead to a valid proof when it

is checked by the Coq compiler). Thus, it is reasonable to compare

proof script synthesis tools, such as Diva, to CoqHammer with

respect to the theorems they are able to prove. However, since their

approaches are so fundamentally different, it is expected that these

tools are likely to be complementary, performing well for different

theorems. While CoqHammer and Diva are likely to perform simi-

larly well for some simpler classes of theorems, CoqHammer is at

a fundamental disadvantage, though, for other classes of theorems,

such as ones that require induction to prove.

On our evaluation set of 10,782 theorems, ASTactic proves 1,322

(12.3%) and TacTok proves 1,388 (12.9%) theorems. CoqHammer

proves 2,865 (26.6%) theorems. Prior to performing our evaluation,

we expected that Diva would prove strictly more theorems than AS-

Tactic and TacTok (though how many more remained an important

question), that it would not prove more theorems than CoqHam-

mer, but that it would prove some complementary theorems, thus

providing significant added value compared to CoqHammer, as was

the case in ASTactic and TacTok evaluations [28, 90].

Figure 5 shows the success rates, as well as the raw number of

theorems proven by the four tools, and the value Diva adds over

each tool, as well as their combination. Diva proves 2,338 (21.7%)

of the theorems. This means Diva proves 2,338−1,322
1,322 = 76.9% more

theorems than ASTactic and 2,338−1,388
1,388 = 68.4% more theorems

than TacTok. Since these tools use the same search mechanism,

364
(3.4%)

TacTok

ASTactic

7,136 (66.2%) unproven theorems

Diva

388
(3.6%)

88
(0.8%)

0
(0.0%)

1,308
(12.1%)

0
(0.0%)

0
(0.0%)

0
(0.0%)910

(8.4%)
149

(1.4%)

214
(2.0%)

110
(1.0%)

0
(0.0%)

CoqHammer

115
(1.1%)

0
(0.0%)

Figure 6: The breakdown of how many theorems are proven

by each combination of tools. Diva proves 364 theorems no

other tool proves.

these significant improvements are due entirely to the use of model

diversity.

While CoqHammer provesmore theorems thanDiva, Diva proves

781 theorems that CoqHammer does not, an added value of 781
2,865 =

27.3%. Figure 6 shows a Venn diagram of the theorems Diva, AS-

Tactic, TacTok, and CoqHammer prove. Together, these four tools

prove 3,646 theorems, for a success rate of 33.8%, whereas without

Diva, the other three tools prove 3,282 theorems. (Because ASTactic

and TacTok have an added value of 0% over Diva, CoqHammer

and Diva prove the 3,282 theorems on their own, without the other

tools’ help.) Diva adds a value of 11.1% over the combined state of

the art, and proves 364 theorems no tool has previously proven.

RA1: Our Diva diversity mechanisms are successful in

creating model diversity sufficient to significantly improve

the proving power of metaheuristic-search-based tools

(68%–77% added value). Diva also generates 27.3% added

value over CoqHammer, and proves 364 theorems no prior

tool has proven. Together with CoqHammer, Diva reaches

a new milestone, proving over one third of all theorems

completely automatically.

4.3 RQ2: Learning-parameter diversity

To investigate the effectiveness of varying learning parameters on

generating diverse models, we conduct a series of experiments by

generating models varying those parameters, using the resulting

models to synthesize proof scripts, and then measuring the diversity

of the sets of theorems the models prove. As Section 3.2 described,

the factors we investigate are sequence depth, learning rate, number

of layers, embedding size, and training order. Figure 7 details how

much diversity Diva produces by varying learning parameters in

training its models.

Tactic depth diversity. We vary the tactic sequence depth,

considering depths of 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 29 and

30; a total of 16 models. (Note that the depth 0 model is equivalent

to ASTactic, and the depth 3 model is equivalent to the Tac model

in TacTok.) Overall these 16 models prove 1,858 theorems, whereas

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Emily First and Yuriy Brun

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
kth model added

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

a
v
e
ra

g
e
 d

iv
e
rs

it
y
 o

f
a
d

d
in

g
 k

th
 m

o
d

e
l

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
k

0

500

1000

1500

a
v
e
ra

g
e
 t

h
e
o
re

m
s

p
ro

v
e
n

 b
y
 k

 m
o
d

e
ls

(a) Tactic sequence depth (total 1,858 theorems)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
kth model added

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

a
v
e
ra

g
e
 d

iv
e
rs

it
y
 o

f
a
d

d
in

g
 k

th
 m

o
d

e
l

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
k

0

500

1000

1500

a
v
e
ra

g
e
 t

h
e
o
re

m
s

p
ro

v
e
n

 b
y
 k

 m
o
d

e
ls

(b) Token sequence depth (total 1,810 theorems)

1 2 3 4 5 6 7
kth model added

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

a
v
e
ra

g
e
 d

iv
e
rs

it
y
 o

f
a
d

d
in

g
 k

th
 m

o
d

e
l

1 2 3 4 5 6 7
k

0

200

400

600

800

1000

1200

1400

1600

a
v
e
ra

g
e
 t

h
e
o
re

m
s

p
ro

v
e
n

 b
y
 k

 m
o
d

e
ls

(c) Learning rate (total 1,730 theorems)

1 2 3 4
kth model added

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

a
v
e
ra

g
e
 d

iv
e
rs

it
y
 o

f
a
d

d
in

g
 k

th
 m

o
d

e
l

1 2 3 4
k

0

200

400

600

800

1000

1200

1400

a
v
e
ra

g
e
 t

h
e
o
re

m
s

p
ro

v
e
n

 b
y
 k

 m
o
d

e
ls

(d) Embedding size (total 1,496 theorems)

1 2 3 4 5
kth model added

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

a
v
e
ra

g
e
 d

iv
e
rs

it
y
 o

f
a
d

d
in

g
 k

th
 m

o
d

e
l

1 2 3 4 5
k

0

200

400

600

800

1000

1200

1400

a
v
e
ra

g
e
 t

h
e
o
re

m
s

p
ro

v
e
n

 b
y
 k

 m
o
d

e
ls

(e) Number of layers (total 1,476 theorems)

1 2 3 4 5 6 7 8 9 10
kth model added

0.0

0.2

0.4

0.6

0.8

1.0

a
v
e
ra

g
e
 d

iv
e
rs

it
y
 o

f
a
d

d
in

g
 k

th
 m

o
d

e
l

1 2 3 4 5 6 7 8 9 10
k

0

200

400

600

800

1000

1200

a
v
e
ra

g
e
 t

h
e
o
re

m
s

p
ro

v
e
n

 b
y
 k

 m
o
d

e
ls

(f) Training data order (total 1,232 theorems)

Figure 7: The diversity exhibited by altering learning parameters tactic sequence depth (a), token sequence depth (b), learning

rate (c), embedding size (d), number of layers (e), and training data order (f). The left graph in each pair shows the diversity

measure, as a function of the number of models (e.g., the 𝑘 = 5 bar is the mean fraction of additional theorems proven by

picking a random 5th model that a random disjoint set of 4 models has not proven). The right graph in each pair shows the

mean number of theorems proven by 𝑘 models. The box-and-whiskers indicate the maximum, 75%-, 50%-, and 25%-tiles, and

minimum values.

on average, a single model proves 1,064 theorems. Diva’s diversity

is responsible for a 74.6% increase in proving power! The left graph

in Figure 7(a) shows the diversity of the set of tactic sequence depth

models (recall the diversity metric from Section 4.1.2). The 𝑘th bar

shows 𝑑𝑘 for the 16 models. That is, the 𝑘th bar states the fraction

of extra theorems proven by 𝑘 random models, that a random set of

𝑘 − 1 models does not prove. For example, the 𝑘 = 1 bar is simply

the effectiveness of using a single model, 0.573 (on average, 57.3%

of the theorems proven by all models together are proven by using

one random model). The remaining 42.7% need Diva’s diversity

mechanism. For 𝑘 = 2, the diversity is 0.138, meaning that adding

the second model, on average, adds an additional 13.8% of the total

theorems proven. Two randomly chosen models prove, on average,

57.3% + 13.8% = 71.1% of all the theorems proven by at least one

model. The right graph in Figure 7(a) shows the average number of

theorems that 𝑘 of the tactic sequence depth models prove. The box-

and-whiskers indicate the variability in the choice: how important

is it to select specific 𝑘 models, or can they simply be selected at

random. For example, a single model can prove between 957 (8.9%)

and 1,322 (12.3%) theorems from the test set. We leave developing

mechanisms for selecting models to future work.

Token depth diversity. Similar to tactic depth, we considered

token depths of 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 29 and 30; a

total of 16 models. (Note that the depth 0 model is, again, equivalent

to ASTactic, and the depth 30 model is equivalent to the Tok model

in TacTok.) Overall these 16 models prove 1,810 theorems (slightly

fewer than tactic depth diversity models did), whereas on average, a

single model proves 1,080 theorems. Diva’s diversity is responsible

for a 67.6% increase in proving power. The left graph in Figure 7(b)

shows the diversity of the token depth models. A single random

model proves a slightly larger fraction, 59.7%, of all the proven

Diversity-Driven Automated Formal Verification ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

theorems than was the case for tactic depth models, indicating

again that token depth provides slightly less useful diversity. Still,

the remaining 40.3% of the theorems require Diva’s diversity to

be proven. The right graph in Figure 7(a) shows the variability in

a selected 𝑘 models. Here, a single model can prove between 992

(9.2%) and 1,322 (12.3%) theorems from the test set. Overall, token

depth provides significant diversity, but less than tactic depth did.

Learning rate. We explore 7 different learning rates: 3 × 10𝑘

for 𝑘 ∈ {−2,−3,−4,−5,−6,−7,−8}. Overall these 7 models prove

1,730 theorems (slightly fewer than the depth diversity models did),

whereas on average, a single model proves 945 theorems. Diva’s

diversity is responsible for a 83.1% increase in proving power. The

left graph in Figure 7(c) shows the diversity of the learning rate

models. A single random model proves 54.6% of all the proven

theorems. The remaining 45.4% of the theorems require Diva’s

diversity to be proven. The right graph in Figure 7(c) shows the

variability in a selected 𝑘 models. Here, a single model can prove

between 505 (4.7%) and 1,115 (10.3%) theorems from the test set.

Overall, learning rate provides significant diversity, and the models

are more diverse from one another than the sequence depth models,

but, overall, result in slightly less proving power.

Embedding size. We explore 4 different embedding sizes: 64,

128, 256, 512. Overall these 4 models prove 1,496 theorems (fewer

than the already discussed models), whereas on average, a single

model proves 1,100 theorems. Diva’s diversity is responsible for a

36.0% increase in proving power. The left graph in Figure 7(d) shows

the diversity of the embedding size models. A single random model

proves 73.5% of all the proven theorems. The remaining 26.5% of

the theorems require Diva’s diversity to be proven. The right graph

in Figure 7(d) shows the variability in a selected 𝑘 models. Here,

a single model can prove between 1,056 (9.8%) and 1,134 (10.5%)

theorems from the test set. Overall, embedding size provides some

diversity, though less than sequence depth and learning rate.

Number of layers. We explore 5 different numbers of layers: 1,

2, 3, 4, and 5. Overall these 5 models prove 1,476 theorems (similar

to the embedding size), whereas on average, a single model proves

1,109 theorems. Diva’s diversity is responsible for a 33.1% increase

in proving power. The left graph in Figure 7(e) shows the diversity of

the number of layers models. A single random model proves 75.2%

of all the proven theorems. The remaining 24.8% of the theorems

require Diva’s diversity to be proven. The right graph in Figure 7(e)

shows the variability in a selected 𝑘 models. Here, a single model

can prove between 1,063 (9.9%) and 1,158 (10.5%) theorems from the

test set. Overall, varying the number of layers provides a similar

amount of diversity as embedding size. Both parameters effect the

size of the learnt model.

Training data order.We explore 10 randomly chosen orderings

of the training data. Overall these 10 models prove 1,232 theorems,

the smallest number of all the learning parameters, whereas on

average, a single model proves 1,073 theorems. Diva’s diversity is

responsible for a 14.8% increase in proving power. The left graph

in Figure 7(f) shows the diversity of the training data order models.

A single random model proves 87.1% of all the proven theorems.

The remaining 12.9% of the theorems require Diva’s diversity to

be proven. The right graph in Figure 7(f) shows the variability in a

selected 𝑘 models. Here, a single model can prove between 1,058

(9.8%) and 1,098 (10.2%) theorems from the test set. Overall, even

just varying the training data order provided some useful diversity

and enabled proving more theorems, though the diversity benefits

were much smaller than those of the other parameters.

RA2: Varying learning parameters resulted in significant

diversity, which, in turn, led to significant improvement

in proving power. Varying the depth of the tactics and

tokens the model learnt from and the learning rate led to

the greatest diversity, while varying the size of the model

led to moderate diversity. Varying the order of the training

data marginally increased the proving power.

4.4 RQ3: Training-data diversity

Recall from Section 3.3 that there are three types of data in the

training proof scripts: the proof state, the proof script tactics and

tokens, and the Gallina proof term. We train models for all possible

combinations of these data types, except no model includes both

tactics and tokens, and we exclude the model that is the empty

combination. In total, we learn 11 models.

We first measure the value added by adding each of the three

types of information. The value of adding proof script tactics to

a model already encoding the proof state and the Gallina proof

term is 134.2%, proving an additional 345 theorems. (The value of

adding proof script tokens instead of tactics is similar, 136.6%, 351

theorems). The value of adding Gallina proof term to a model al-

ready encoding the proof script and the proof state is much smaller,

8.0%, proving an additional 89 theorems. (If using tokens instead of

tactics, the added value is 10.6%, 124 theorems.) Finally, the value of

adding proof state to a model already encoding the proof script and

the Gallina proof term is 21.8%, proving an additional 135 theorems.

(If using tokens instead of tactics, the added value is 53.5%, 281

theorems. We observe that while in previous scenarios, tactics and

tokens behaved similarly, here, tokens exhibit much more diversity

than tactics.) In all three cases, tokens exhibited greater diversity

than tactics in encoding the proof script, suggesting that tokens

are a more different representation than tactics of the other types

of information. The Gallina proof term contained the least diver-

sity compared to the other types of data, whereas the proof script

contained the most.

Overall, these 11 models prove 2,053 theorems, which is sig-

nificantly more than any of the learning parameter models from

Section 4.3. A single model, on average, proves 785 theorems. Diva’s

diversity is responsible for a 161.5% increase in proving power! The

left graph in Figure 8 shows the diversity of the training-data-types

models. A single random model proves 38.3% of all the proven theo-

rems. The remaining 61.7% of the theorems require Diva’s diversity

to be proven. The right graph in Figure 8 shows the variability

in a selected 𝑘 models. Here, a single model can prove between

257 (2.4%) and 1,322 (12.3%) theorems from the test set. Overall,

training data types provide the most diversity of all the dimensions

we explored, leading to the greatest proving power.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Emily First and Yuriy Brun

1 2 3 4 5 6 7 8 9 10 11
kth model added

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

a
v
e
ra

g
e
 d

iv
e
rs

it
y
 o

f
a
d

d
in

g
 k

th
 m

o
d

e
l

1 2 3 4 5 6 7 8 9 10 11
k

0

500

1000

1500

2000

a
v
e
ra

g
e
 t

h
e
o
re

m
s

p
ro

v
e
n

 b
y
 k

 m
o
d

e
ls

Figure 8: Training data aspects (total 2,053 theorems)

RA3: Including different data types in training resulted in

the most diversity of all the dimensions we considered,

leading to the greatest proving power increase. Adding

proof script tactics or tokens provided the most diversity,

followed by the proof state.

4.5 RQ4: Synthesis efficiency

To explore improving Diva’s efficiency, we implement model inter-

rupts described in Section 3.4. We evaluate the efficiency improve-

ment of model interrupts by measuring the mean time to prove a

theorem with and without interrupts. Of course, the order in which

Diva considers the models matters. Without interrupts, in the worst

case, the last model produces the successful proof script, and Diva

wastes 10 minutes on each of the other models, before they time

out. For our evaluation, we measure the mean time over a random

sample of 20 possible model orderings.

Without interrupts, the mean time to prove a theorem is 685.5

seconds. However, we observe that most models either synthesize

the proof script relatively quickly, or don’t at all, though with some

notable exceptions. Usingmodel interrupts allows us to benefit from

proving theorems quickly in the initial burst of each model, without

spending the long time in the tail of each model’s distribution,

unless it is necessary.Withmodel interrupts, we explore 15 different

switching times: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, and 60 seconds.

We explore two different interrupt schemes. First, we attempt

to synthesize a proof script using each model for 𝑋 seconds. If

none of the models find a proof script in that time, we return and

give each model another 𝑋 seconds. And so on, until each model

has attempted its search for 10 minutes. The left graph in Figure 9

shows the mean time to prove a theorem for this interrupt scheme.

For 𝑋 = 1 second, this interrupt scheme achieves the minimal

mean time to prove a theorem of 17.2 seconds, and the proving

time increases monotonically for larger 𝑋 . For 𝑋 = 1, the speed

up compared to not using interrupts is 97%, or 40×. This suggests

that many theorems are proven very early in the synthesis process,

and while some theorems do get proven after a lengthy synthesis

search, prioritizing the first seconds of synthesis using the diverse

models greatly improves synthesis efficiency.

Second, we allow each model to attempt to synthesize a proof

script for 𝑋 seconds, and then give each model the remainder of

its 600 −𝑋 seconds, thus switching only once per model. The right

graph in Figure 9 shows the mean time to prove a theorem for

this interrupt scheme. For 𝑋 = 5 seconds, this interrupt scheme

1 2 3 4 5 6 7 8 9 101520253060
switching time

0
200
400
600
800

1000
1200
1400

m
ea

n
tim

e
to

 p
ro

ve
 th

eo
re

m

1 2 3 4 5 6 7 8 9 101520253060
switching time

0
200
400
600
800

1000
1200
1400

m
ea

n
tim

e
to

 p
ro

ve
 th

eo
re

m

Figure 9: Mean time to prove a theorem using the model

interrupts optimization for different switching times (in sec-

onds). Executing eachmodel’s search for𝑋 seconds, and then

again each model’s search for 𝑋 seconds, and so on until

each model’s search has been executed for 600 seconds (left

graph), achieves the minimal mean time to prove a theorem

of 17.2 seconds when𝑋 = 1 second. Interrupting eachmodel’s

search once, first executing each model for 𝑋 seconds, and

then each model for 600 − 𝑋 seconds, (right graph), achieves

the minimal mean time to prove a theorem of 44.7 seconds

when 𝑋 = 5 seconds. The box-and-whiskers indicate the max-

imum, 75%-, 50%-, and 25%-tiles, and minimum values over

20 different model orderings.

achieves the minimal mean time to prove a theorem of 44.7 seconds,

a speed up of 93%, or 15×, compared to not using interrupts.

RA4: Model interrupts is incredibly effective, cutting down

the mean time to prove a theorem by up to 97%.

4.6 Threats to validity

The CoqGym benchmark we evaluate our work on has been used

by prior evaluations of proof-script synthesis [28, 90] and uses the-

orems from 122 open-source projects, improving the likelihood that

our results generalize. Our analysis focuses on the Coq interactive

proof assistant and may not extend to other assistants, such as

HOL4 [72] and HOL Light [36]. Transformers have outperformed

Bidirectional LSTM in some natural language tasks [23], andmay be

able to improve Diva’s performance beyond what we find here, but

they require significantly larger training sets than what is available

today in projects written in Coq. Accordingly, future work should

explore other neural modeling architectures.

5 RELATEDWORK

We now place our research in the context of related work.

Interactive Theorem Provers (ITPs). ITPs, such as Coq [79],

Agda [84], Dafny [49], F* [77], Liquid Haskel [83], Mizar [80], Is-

abelle [61], HOL4 [72], and HOL Light [36] are semi-automated

systems for formally proving theorems. We focus on Coq, but our

approach is applicable to other ITPs. Coq has been used to build

and verify a C compiler [50], an operating system kernel [32], an

x86 model [57], a file system [42], distributed protocols [71] and

systems [88], a browser [45], and network controllers [33].

Automation for Proof Systems. Heuristic-based search can par-

tially automate ITPs [5, 12, 14, 15]. Hammers use external ATPs

Diversity-Driven Automated Formal Verification ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

to automatically find proofs for ITPs [21]. Classical search algo-

rithms, such as A*, can also search for proofs in HOL4 [30], as can

reinforcement-learning-based methods [89]. By contrast, Diva mod-

els existing proof scripts, uses native tactics, and proves theorems

within the ITP framework.

Software Engineering for Interactive Proof Assistants. Pump-

kin Patch generates proof patches when software evolves [67] by

learning from a template of a human-written fix to a similar evolu-

tion. Unlike Pumpkin Patch, Diva does not require a nearly-working

proof script and generates proof scripts from scratch. Pumpkin Pi

repairs the proof term of a broken proof and then uses a decompiler

to generate a proof script [66]. Pumpkin Pi’s proof script consists

of predefined tactics, whereas Diva predicts tactics from a learnt

model.

iCoq [16] finds failing proof scripts in evolving projects by prior-

itizing proof scripts affected by a revision. iCoq tracks fine-grained

dependencies between Coq definitions, propositions, and proof

scripts to narrow down the potentially affected proof scripts. Diva

does not require a failing proof script, but our ideas could poten-

tially be used to repair proof scripts. QuickChick [48], a random

Coq testing tool, searches for counterexamples to executable the-

orems and helps a programmer gain confidence that a theorem is

correct.

Language Models for Code. Language modeling of source code

can detect bugs and generate tests [1, 26, 64]. Modeling code with

𝑛-grams can help code completion [39, 40]. Modified 𝑛-grams can

be used as a cache to capture local dependencies in code [81]. How-

ever, such applications have not been applied to ITPs. Applying

language models to Coq and HOL4 proof scripts showed that 𝑛-
gram models outperform recurrent neural networks [37]. Unlike

Diva, this approach did not consider the proof state or proof term

and does not synthesize complete proof scripts.

Machine Learning in Formal Verification. Machine learning

can simplify formal verification: ML4PG helps Coq users construct

proof scripts by showing proof scripts of similar theorems [38, 47].

Machine learning can similarly help with premise selection, the task

of selecting lemmas that are relevant to a given theorem [3, 43, 86].

NeuroTactic represents theorems and premises with graph neural

networks for prediction [51]. GamePad [41] and Proverbot9001 [69]

model the proof state in Coq using RNNs. Diva similarly captures

the proof state, but unlike GamePad and Proverbot9001, also models

the proof script and Gallina proof term for script synthesis. Diva

is a generalization of ASTactic [90] and TacTok [28]. These tools

use the CoqGym [90] benchmark for evaluation, which is also a

learning environment. Large transformer models can be applied to

theorem proving in the MetaMath formalization language and the

Lean interactive proof assistant [34, 63]. However, these powerful

models require much larger training sets than what is available

today in Coq projects.

Metaheuristic Search.Metaheuristic-search-based software en-

gineering [35] has been used for developing test suites [55, 85],

finding safety violations [4], refactoring [70], project management

and effort estimation [8], and automated program repair [2, 46, 87].

In search, low-quality fitness functions can lead to low-quality re-

sults, such as, for example, incorrect bug patches [58, 73]. With

Diva, the interactive theorem prover provides a strong assurance

that the final produced proof script leads to a correct proof, and thus,

proof script synthesis is particularly well suited for metaheuristic-

search-based methods.

Ensemble Learning. Ensemble learning is the generation and

combination of multiple models to make a decision. This is typically

used in supervised machine learning tasks [68]. The idea is that

weighing and combining several opinions is better than simply

choosing a single one. When generating a model to be used in an

ensemble learning method, the model should be sufficiently diverse

for the ensemble to achieve a desired predictive performance [22],

and the individual model’s predictive performance should be as

high as possible. There are several approaches to generating diverse

models, including input manipulation [18], manipulation of the

learning algorithm [13, 52, 54], and combinations of strategies.

Ensemble learningmethods either have dependentmodels, where

the output of each model affects the generation of the next, or in-

dependent models, where each model is constructed independently

from the others [68]. Another way to combine classifiers is through

stacking [24], which uses a classifier to decide which model to apply

to each input. Diva differs from these methods by using indepen-

dent models in separate searches of the proof script space since the

Coq proof assistant serves as an oracle for whether the resulting

proof scripts are valid.

6 CONTRIBUTIONS

We have identified a method for using diversity to significantly im-

prove the proving power of proof-script-synthesis tools. We create

Diva, implementing our diversity-based approach, which proves

68% more theorems than TacTok and 77% more than ASTactic, two

state-of-the-art proof-script-synthesis tools. Diva automatically

proves 364 theorems no existing tool has proved. Together with

CoqHammer, Diva proves more than a third of all the theorems in

our benchmark of 122 open-source projects, the largest fraction to

date. Our model interrupts optimization improves Diva’s running

time by 40×. Along the way we identify a killer app for ensemble

learning, by using the theorem prover as an oracle for optimally

aggregating learnt model results. Our findings strongly suggest

that using diversity for improving automated formal verification is

fruitful and warrants further research.

ACKNOWLEDGMENTS

This work is supported by the National Science Foundation under

grant no. CCF-1763423, and by Amazon. This work was performed

in part using high performance computing equipment obtained

under a grant from the Collaborative R&D Fund managed by the

Massachusetts Technology Collaborative.

DATA AVAILABILITY

All of our data and source code to reproduce our results are avail-

able [27]. Diva is open-source and is available at https://github.com/

LASER-UMASS/Diva/.

REFERENCES
[1] Tony Abou-Assaleh, Nick Cercone, Vlado Keselj, and Ray Sweidan. 2004. N-gram-

based detection of new malicious code. In Annual International IEEE Computer
Software and Applications Conference, Vol. 2. 41–42. https://doi.org/10.1109/
CMPSAC.2004.1342667

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Emily First and Yuriy Brun

[2] Afsoon Afzal, Manish Motwani, Kathryn T. Stolee, Yuriy Brun, and Claire Le
Goues. 2021. SOSRepair: Expressive Semantic Search for Real-World Program
Repair. IEEE Transactions on Software Engineering (TSE) 47, 10 (October 2021),
2162–2181. https://doi.org/10.1109/TSE.2019.2944914

[3] Jesse Alama, Tom Heskes, Daniel Kühlwein, Evgeni Tsivtsivadze, and Josef Urban.
2014. Premise selection for mathematics by corpus analysis and kernel methods.
Journal of Automated Reasoning 52, 2 (2014), 191–213. https://doi.org/10.1007/
s10817-013-9286-5

[4] Enrique Alba and Francisco Chicano. 2007. Finding safety errors with ACO. In
Conference on Genetic and Evolutionary Computation (GECCO). London, England,
UK, 1066–1073. https://doi.org/10.1145/1276958.1277171

[5] Peter B Andrews and Chad E Brown. 2006. TPS: A hybrid automatic-interactive
system for developing proofs. Journal of Applied Logic 4, 4 (2006), 367–395.
https://doi.org/10.1016/j.jal.2005.10.002

[6] AWS [n.d.]. AWS Provable Security. https://aws.amazon.com/security/provable-
security.

[7] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural Machine
Translation by Jointly Learning to Align and Translate. In International Conference
on Learning Representations (ICLR). San Diego, CA, USA. https://arxiv.org/abs/
1409.0473

[8] Ahilton Barreto, Márcio Barros, and Cláudia Werner. 2008. Staffing a software
project: A constraint satisfaction approach. Computers and Operations Research
35, 10 (2008), 3073–3089.

[9] BedRock [n.d.]. BedRock Systems Inc. https://bedrocksystems.com.
[10] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. 2003. A

Neural Probabilistic Language Model. Journal of Machine Learning Research 3,
Feb. (2003), 1137–1155.

[11] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles
Henri-Gros, Asya Kamsky, Scott McPeak, and Dawson Engler. 2010. A Few
Billion Lines of Code Later: Using Static Analysis to Find Bugs in the Real World.
Commun. ACM 53, 2 (Feb. 2010), 66–75. https://doi.org/10.1145/1646353.1646374

[12] Jasmin Christian Blanchette, Lukas Bulwahn, and Tobias Nipkow. 2011. Auto-
matic proof and disproof in Isabelle/HOL. In International Symposium on Frontiers
of Combining Systems. Springer, 12–27. https://doi.org/10.1007/978-3-642-24364-
6_2

[13] Gavin Brown, Jeremy L Wyatt, Peter Tino, and Yoshua Bengio. 2005. Managing
diversity in regression ensembles. Journal of machine learning research (JMLR) 6,
9 (2005).

[14] Alan Bundy. 1998. A science of reasoning. In International Conference on Auto-
mated Reasoning with Analytic Tableaux and Related Methods. Springer, 10–17.
https://doi.org/10.1007/3-540-69778-0_2

[15] Alan Bundy, Frank Van Harmelen, Christian Horn, and Alan Smaill. 1990. The

OYSTER-CLAM system. In International Conference on Automated Deduction
(CADE). Springer, 647–648. https://doi.org/10.1007/3-540-52885-7_123

[16] Ahmet Celik, Karl Palmskog, and Milos Gligoric. 2017. ICoq: Regression proof se-
lection for large-scale verification projects. In IEEE/ACM International Conference
on Automated Software Engineering (ASE). Urbana-Champaign, IL, USA, 171–182.
https://doi.org/10.1109/ASE.2017.8115630

[17] Certora [n.d.]. Certora. https://www.certora.com.
[18] Philip K Chan and Salvatore J Stolfo. 1995. A comparative evaluation of voting

and meta-learning on partitioned data. InMachine Learning Proceedings. Elsevier,
90–98.

[19] Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning Phrase
Representations using RNN Encoder-Decoder for Statistical Machine Translation.
In Conference on Empirical Methods in Natural Language Processing (EMNLP).
Doha, Qatar, 1724–1734. https://doi.org/10.3115/v1/D14-1179

[20] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. 2014.
Empirical evaluation of gated recurrent neural networks on sequence modeling.
In Deep Learning and Representation Learning Workshop (DL&RL). http://arxiv.
org/abs/1412.3555

[21] Łukasz Czajka and Cezary Kaliszyk. 2018. Hammer for Coq: Automation for
Dependent Type Theory. Journal of Automated Reasoning 61, 1-4 (2018), 423–453.
https://doi.org/10.1007/s10817-018-9458-4

[22] Houtao Deng, George Runger, Eugene Tuv, and Martyanov Vladimir. 2013. A
time series forest for classification and feature extraction. Information Sciences
239 (2013), 142–153.

[23] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert:
Pre-training of deep bidirectional transformers for language understanding. In
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (NAACL-HLT). Minneapolis, MN, USA,
4171–4186. https://doi.org/10.18653/v1/N19-1423

[24] Saso Džeroski and Bernard Ženko. 2004. Is combining classifiers with stacking
better than selecting the best one? Machine learning 54, 3 (2004), 255–273.

[25] Andres Erbsen, Jade Philipoom, Jason Gross, Robert Sloan, and Adam Chlipala.
2019. Simple High-Level Code for Cryptographic Arithmetic — With Proofs,
Without Compromises. In IEEE Symposium on Security and Privacy (S&P). 1202–
1219. https://doi.org/10.1109/SP.2019.00005

[26] Michael D. Ernst. 2017. Natural Language is a Programming Language: Applying
Natural Language Processing to Software Development. In Summit on Advances
in Programming Languages (SNAPL), Vol. 71. Dagstuhl, Germany, 4:1–4:14. https:
//doi.org/10.4230/LIPIcs.SNAPL.2017.4

[27] Emily First and Yuriy Brun. 2022. Replication package for “Diversity-Driven
Automated Verification”. https://doi.org/10.5281/zenodo.5903318.

[28] Emily First, Yuriy Brun, and Arjun Guha. 2020. TacTok: Semantics-Aware Proof
Synthesis. Proceedings of the ACM on Programming Languages (PACMPL) Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA) issue 4
(November 2020), 231:1–231:31. https://doi.org/10.1145/3428299

[29] Galois [n.d.]. Galois, Inc. https://galois.com.
[30] Thibault Gauthier, Cezary Kaliszyk, and Josef Urban. 2017. TacticToe: Learning to

reason with HOL4 tactics. In International Conference on Logic for Programming,
Artificial Intelligence, and Reasoning (LPAR), Vol. 46. 125–143.

[31] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT
Press. http://www.deeplearningbook.org.

[32] Ronghui Gu, Zhong Shao, Hao Chen, XiongnanWu, Jieung Kim, Vilhelm Sjöberg,
and David Costanzo. 2016. CertiKOS: An Extensible Architecture for Building
Certified Concurrent OS Kernels. In Proceedings of the 12th USENIX Conference
on Operating Systems Design and Implementation. https://www.usenix.org/
conference/osdi16/technical-sessions/presentation/gu

[33] Arjun Guha, Mark Reitblatt, and Nate Foster. 2013. Machine Verified Network
Controllers. In ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI). Seattle, WA, USA. https://doi.org/10.1145/2491956.
2462178

[34] Jesse Michael Han, Jason Rute, Yuhuai Wu, Edward W Ayers, and Stanislas Polu.
2021. Proof Artifact Co-training for Theorem Proving with Language Models.
CoRR (2021). https://arxiv.org/abs/2102.06203

[35] Mark Harman. 2007. The Current State and Future of Search Based Software
Engineering. InACM/IEEE International Conference on Software Engineering (ICSE).
342–357. https://doi.org/10.1109/FOSE.2007.29

[36] John Harrison. 1996. HOL Light: A tutorial introduction. In International Confer-
ence on Formal Methods in Computer-Aided Design (FMCAD). Palo Alto, CA, USA,
265–269. https://doi.org/10.1007/BFb0031814

[37] Vincent J. Hellendoorn, Premkumar T. Devanbu, and Mohammad Amin Alipour.
2018. On the naturalness of proofs. In ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE) New Ideas and Emerging Results track. Orlando, FL, USA, 724–728.

[38] Jónathan Heras and Ekaterina Komendantskaya. 2014. Recycling proof patterns
in Coq: Case studies. Mathematics in Computer Science 8, 1 (2014), 99–116.
https://doi.org/10.1007/s11786-014-0173-1

[39] Abram Hindle, Earl T. Barr, Mark Gabel, Zhendong Su, and Premkumar Devanbu.
2016. On the Naturalness of Software. Communications of the ACM (CACM) 59,
5 (April 2016), 122–131. https://doi.org/10.1145/2902362

[40] Abram Hindle, Earl T Barr, Zhendong Su, Mark Gabel, and Premkumar Devanbu.
2012. On the naturalness of software. In Proceedings of the 34th International
Conference on Software Engineering (ICSE). 837–847. https://doi.org/10.1109/
ICSE.2012.6227135

[41] Daniel Huang, Prafulla Dhariwal, Dawn Song, and Ilya Sutskever. 2018. GamePad:
A Learning Environment for Theorem Proving. CoRR (2018). https://arxiv.org/
abs/1806.00608

[42] Atalay İleri, Tej Chajed, Adam Chlipala, M. Frans Kaashoek, and Nickolai Zel-
dovich. 2018. Proving Confidentiality in a File System Using DiskSec. In USENIX
Symposium on Operating Systems Design and Implementation (OSDI). Carlsbad,
CA, 323–338. https://www.usenix.org/conference/osdi18/presentation/ileri

[43] Geoffrey Irving, Christian Szegedy, Alexander A Alemi, Niklas Eén, François
Chollet, and Josef Urban. 2016. Deepmath-deep sequence models for premise se-
lection. InAdvances in Neural Information Processing Systems (NeurIPS). Barcelona,
Spain, 2235–2243. https://papers.nips.cc/paper/6280-deepmath-deep-sequence-
models-for-premise-selection

[44] Kevin Jacobs and Benjamin Beurdouche. 2020. Performance Im-
provements via Formally-Verified Cryptography in Firefox. https:
//blog.mozilla.org/security/2020/07/06/performance-improvements-via-
formally-verified-cryptography-in-firefox/.

[45] Dongseok Jang, Zachary Tatlock, and Sorin Lerner. 2012. Establishing Browser
Security Guarantees Through Formal Shim Verification. In USENIX Security
Symposium (USENIX Security). Bellevue, WA, USA, 113–128. https://www.usenix.
org/conference/usenixsecurity12/technical-sessions/presentation/jang

[46] Yalin Ke, Kathryn T. Stolee, Claire Le Goues, and Yuriy Brun. 2015. Repairing
Programs with Semantic Code Search. In Proceedings of the 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE) (9–13). Lincoln,
NE, USA, 295–306. https://doi.org/10.1109/ASE.2015.60

[47] Ekaterina Komendantskaya, Jónathan Heras, and Gudmund Grov. 2012. Machine
learning in proof general: Interfacing interfaces. In International Workshop on
User Interfaces for Theorem Provers (UITP), Vol. 118. Bremen, Germany. https:
//doi.org/10.4204/EPTCS.118.2

[48] Leonidas Lampropoulos, Zoe Paraskevopoulou, and Benjamin C. Pierce. 2017.
Generating Good Generators for Inductive Relations. Proceedings of the ACM

Diversity-Driven Automated Formal Verification ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

on Programming Languages (PACMPL) 2, POPL (Dec. 2017), 45:1–45:30. https:
//doi.org/10.1145/3158133

[49] K. Rustan M. Leino. 2010. Dafny: An automatic program verifier for functional
correctness. In International Conference on Logic for Programming Artificial Intel-
ligence and Reasoning (LPAR). Dakar, Senegal. https://doi.org/10.1007/978-3-642-
17511-4_20

[50] Xavier Leroy. 2009. Formal verification of a realistic compiler. Communications of
the ACM (CACM) 52, 7 (2009), 107–115. https://doi.org/10.1145/1538788.1538814

[51] Zhaoyu Li, Binghong Chen, and Xujie Si. 2021. Graph Contrastive Pre-training
for Effective Theorem Reasoning. In International Conference on Machine Learning
(ICML), Vol. PLMR 139. http://arxiv.org/abs/2108.10821

[52] Shih-Wei Lin and Shih-Chieh Chen. 2012. Parameter determination and feature
selection for C4.5 algorithm using scatter search approach. Soft Computing 16, 1
(2012), 63–75.

[53] Laurent Mauborgne. 2004. AstrÉe: Verification of Absence of Runtime Error. In
Building the Information Society. 385–392. https://doi.org/10.1007/978-1-4020-
8157-6_30

[54] Jesús Maudes, Juan J Rodríguez, and César García-Osorio. 2009. Disturbing neigh-
bors diversity for decision forests. In Applications of supervised and unsupervised
ensemble methods. Springer, 113–133.

[55] Christoph C. Michael, Gary McGraw, and Michael A. Schatz. 2001. Generating
Software Test Data by Evolution. IEEE Transactions on Software Engineering (TSE)
27, 12 (Dec. 2001), 1085–1110. https://doi.org/10.1109/32.988709

[56] Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černockỳ, and Sanjeev Khu-
danpur. 2010. Recurrent Neural Network Based Language Model. In Annual Con-
ference of the International Speech Communication Association (INTERSPEECH).
Makuhari, Chiba, Japan. https://doi.org/10.1109/IALP.2016.7875937

[57] Greg Morrisett, Gang Tan, Joseph Tassarotti, Jean-Baptiste Tristan, and Edward
Gan. 2012. RockSalt: Better, Faster, Stronger SFI for the x86. In ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI). Beijing,
China. https://doi.org/10.1145/2345156.2254111

[58] Manish Motwani, Mauricio Soto, Yuriy Brun, René Just, and Claire Le Goues. 2021.
Quality of Automated Program Repair on Real-World Defects. IEEE Transactions
on Software Engineering (TSE) (2021). https://doi.org/10.1109/TSE.2020.2998785
DOI: 10.1109/TSE.2020.2998785.

[59] Toby Murray, Daniel Matichuk, Matthew Brassil, Peter Gammie, Timothy Bourke,
Sean Seefried, Corey Lewis, Xin Gao, and Gerwin Klein. 2013. seL4: From general
purpose to a proof of information flow enforcement. In IEEE Symposium on
Security and Privacy (S&P). San Francisco, CA, USA, 415–429.

[60] David F. Nettleton, Albert Orriols-Puig, and Albert Fornells. 2010. A study of
the effect of different types of noise on the precision of supervised learning
techniques. Artificial Intelligence Review 33 (2010), 275–306. https://doi.org/10.
1007/s10462-010-9156-z

[61] Tobias Nipkow, Lawrence C Paulson, and Markus Wenzel. 2002. Isabelle/HOL:
A proof assistant for higher-order logic. Vol. 2283. Springer Science & Business
Media.

[62] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher
Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep Contextualized Word
Representations. In Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies (NAACL-HLT), Vol. 1.
Association for Computational Linguistics, New Orleans, LA, USA, 2227–2237.
https://doi.org/10.18653/v1/N18-1202

[63] Stanislas Polu and Ilya Sutskever. 2020. Generative language modeling for auto-
mated theorem proving. CoRR (2020). https://arxiv.org/abs/2009.03393

[64] Baishakhi Ray, Vincent Hellendoorn, Saheel Godhane, Zhaopeng Tu, Alberto
Bacchelli, and Premkumar Devanbu. 2016. On the naturalness of buggy code. In
IEEE/ACM 38th International Conference on Software Engineering (ICSE). Austin,
TX, USA, 428–439. https://doi.org/10.1145/2884781.2884848

[65] Talia Ringer. 2021. Proof Repair. Ph.D. Dissertation. University of Washington.
[66] Talia Ringer, RanDair Porter, Nathaniel Yazdani, John Leo, and Dan Grossman.

2021. Proof Repair Across Type Equivalences. In ACM SIGPLAN International
Conference on Programming Language Design and Implementation (PLDI) (20–26).
112–127. https://doi.org/10.1145/3453483.3454033

[67] Talia Ringer, Nathaniel Yazdani, John Leo, and Dan Grossman. 2018. Adapting
proof automation to adapt proofs. In ACM SIGPLAN International Conference
on Certified Programs and Proofs (CPP). Los Angeles, CA, USA, 115–129. https:
//doi.org/10.1145/3167094

[68] Omer Sagi and Lior Rokach. 2018. Ensemble learning: A survey. Wiley Interdisci-
plinary Reviews: Data Mining and Knowledge Discovery 8, 4 (2018), e1249.

[69] Alex Sanchez-Stern, Yousef Alhessi, Lawrence Saul, and Sorin Lerner. 2020. Gen-
erating correctness proofs with neural networks. In ACM SIGPLAN International
Workshop on Machine Learning and Programming Languages (MAPL). 1–10.

[70] Olaf Seng, Johannes Stammel, and David Burkhart. 2006. Search-based determina-
tion of refactorings for improving the class structure of object-oriented systems.
In Conference on Genetic and Evolutionary Computation (GECCO). Seattle, WA,
USA, 1909–1916. https://doi.org/10.1145/1143997.1144315

[71] Ilya Sergey, James R. Wilcox, and Zachary Tatlock. 2017. Programming and
Proving with Distributed Protocols. Proceedings of the ACM on Programming

Languages (PACMPL) 2, POPL (Dec. 2017), 28:1–28:30. https://doi.org/10.1145/
3158116

[72] Konrad Slind and Michael Norrish. 2008. A brief overview of HOL4. In Interna-
tional Conference on Theorem Proving in Higher Order Logics (TPHOLs). Montreal,
QC, Canada, 28–32. https://doi.org/10.1007/978-3-540-71067-7_6

[73] Edward K. Smith, Earl Barr, Claire Le Goues, and Yuriy Brun. 2015. Is the
Cure Worse than the Disease? Overfitting in Automated Program Repair. In
Joint Meeting of the European Software Engineering Conference and ACM SIGSOFT
Symposium on the Foundations of Software Engineering (ESEC/FSE) (2–4). Bergamo,
Italy, 532–543. https://doi.org/10.1145/2786805.2786825

[74] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning,
Andrew Ng, and Christopher Potts. 2013. Recursive deep models for semantic
compositionality over a sentiment treebank. In Conference on Empirical Methods
in Natural Language Processing (EMNLP). 1631–1642. https://www.aclweb.org/
anthology/D13-1170

[75] Jean Souyris. 2014. Industrial Use of CompCert on a Safety-Critical Software
Product. http://projects.laas.fr/IFSE/FMF/J3/slides/P05_Jean_Souyiris.pdf.

[76] Martin Sundermeyer, Ralf Schlüter, and Hermann Ney. 2012. LSTM Neural
Networks for Language Modeling. In Annual Conference of the International
Speech Communication Association (INTERSPEECH). Portland, OR, USA. https:
//doi.org/10.21437/Interspeech.2012-65

[77] Nikhil Swamy, Cătălin Hriţcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-
Lavaud, Simon Forest, Karthikeyan Bhargavan, Cédric Fournet, Pierre-Yves Strub,
Markulf Kohlweiss, Jean-Karim Zinzindohoue, and Santiago Zanella-Béguelin.

2016. Dependent types and multi-monadic effects in F*. In ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL), Vol. 51. St.
Petersburg, FL, USA, 256–270. https://doi.org/10.1145/2914770.2837655

[78] Kai Sheng Tai, Richard Socher, and Christopher D. Manning. 2015. Improved
Semantic Representations From Tree-Structured Long Short-Term Memory Net-
works. In Annual Meeting of the Association for Computational Linguistics (ACL),
Vol. 1. Beijing, China, 1556–1566. https://doi.org/10.3115/v1/P15-1150

[79] The Coq Development Team. 2017. Coq, v.8.7. https://coq.inria.fr.
[80] Andrzej Trybulec and Howard A Blair. 1985. Computer Assisted Reasoning

with MIZAR. In International Joint Conferences on Artificial Intelligence (IJCAI),
Vol. 85. Los Angeles, CA, USA, 26–28. https://www.ijcai.org/Proceedings/85-
1/Papers/006.pdf

[81] Zhaopeng Tu, Zhendong Su, and Premkumar Devanbu. 2014. On the Localness of
Software. In ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE). Hong Kong, China, 269–280. https://doi.org/10.1145/2635868.
2635875

[82] Brendan van Rooyen, Aditya Menon, and Robert C Williamson. 2015.
Learning with Symmetric Label Noise: The Importance of Being Un-
hinged. In Advances in Neural Information Processing Systems, Vol. 28.
Curran Associates, Inc. https://proceedings.neurips.cc/paper/2015/file/
45c48cce2e2d7fbdea1afc51c7c6ad26-Paper.pdf

[83] Niki Vazou. 2016. Liquid Haskell: Haskell as a theorem prover. Ph.D. Dissertation.
University of California, San Diego.

[84] Philip Wadler, Wen Kokke, and Jeremy G. Siek. 2020. Programming Language
Foundations in Agda. http://plfa.inf.ed.ac.uk/20.07/

[85] Kristen R. Walcott, Mary Lou Soffa, Gregory M. Kapfhammer, and Robert S. Roos.
2006. Time-aware test suite prioritization. In International Symposium on Software
Testing and Analysis (ISSTA). Portland, ME, USA, 1–12. https://doi.org/10.1145/
1146238.1146240

[86] Mingzhe Wang, Yihe Tang, Jian Wang, and Jia Deng. 2017. Premise se-
lection for theorem proving by deep graph embedding. In Advances in
Neural Information Processing Systems (NeurIPS). Long Beach, CA, USA,
2786–2796. https://papers.nips.cc/paper/6871-premise-selection-for-theorem-
proving-by-deep-graph-embedding

[87] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest.
2009. Automatically finding patches using genetic programming. In ACM/IEEE
International Conference on Software Engineering (ICSE). Vancouver, BC, Canada,
364–374. https://doi.org/10.1109/ICSE.2009.5070536

[88] James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang,
Michael D. Ernst, and Thomas Anderson. 2015. Verdi: A framework for imple-
menting and formally verifying distributed systems. In ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI). Portland, OR, USA,
357–368.

[89] Minchao Wu, Michael Norrish, Christian Walder, and Amir Dezfouli. 2021. Tac-
ticZero: Learning to Prove Theorems from Scratch with Deep Reinforcement
Learning. CoRR abs/2102.09756 (2021). http://arxiv.org/abs/2102.09756

[90] Kaiyu Yang and Jia Deng. 2019. Learning to prove theorems via interacting with
proof assistants. In International Conference on Machine Learning (ICML). Long
Beach, CA, USA. http://proceedings.mlr.press/v97/yang19a/yang19a.pdf

[91] Pengcheng Yin and Graham Neubig. 2017. A Syntactic Neural Model for General-
Purpose Code Generation. In Annual Meeting of the Association for Computational
Linguistics (ACL), Vol. 1. Vancouver, BC, Canada, 440–450. https://doi.org/10.
18653/v1/P17-1041

