# HOMOTOPY, HOMOLOGY, AND PERSISTENT HOMOLOGY USING CLOSURE SPACES AND FILTERED CLOSURE SPACES

# PETER BUBENIK AND NIKOLA MILIĆEVIĆ

ABSTRACT. We develop persistent homology in the setting of filtered (Čech) closure spaces. Examples of filtered closure spaces include filtered topological spaces, metric spaces, weighted graphs, and weighted directed graphs. We use various products and intervals for closure spaces to obtain six homotopy theories, six cubical singular homology theories and three simplicial singular homology theories. Applied to filtered closure spaces, these homology theories produce persistence modules. We extend the definition of Gromov-Hausdorff distance to filtered closure spaces and use it to prove that these persistence modules and their persistence diagrams are stable. We also extend the definitions of Vietoris-Rips and Čech complexes to give functors on closure spaces and prove that their persistent homology is stable. The Vietoris-Rips functor has a left adjoint, which is defined using stars of simplices; in contrast the Čech functor does not have a left or right adjoint.

## Contents

| Introduction |                                                 | 1  |
|--------------|-------------------------------------------------|----|
| 1.           | Closure spaces                                  | 6  |
| 2.           | Graph products from closure space products      | 16 |
| 3.           | Closures induced by metrics                     | 18 |
| 4.           | Homotopy in closure spaces                      | 21 |
| 5.           | Homology in closure spaces                      | 32 |
| 6.           | Simplicial complexes from closure spaces        | 36 |
| 7.           | Filtered closure spaces and persistent homology | 42 |
| 8.           | Stability                                       | 47 |
| References   |                                                 | 53 |

# Introduction

A primary tool in applied algebraic topology is persistent homology [36, 60, 51], which is a key component of topological data analysis [43, 52]. For data encoded as a metric space, consider the cover by balls of a fixed radius r and its nerve, called the Čech complex, or the clique complex of the 1-skeleton of this nerve, called the Vietoris-Rips complex. Allowing r to vary, we obtain a filtered simplicial complex. Applying homology with coefficients in a field produces a persistence module. Under mild hypotheses, this persistence module has a complete invariant called a barcode or persistence diagram [30, 25, 24, 26, 55].

This approach uses simplicial homology, or, if one uses filtered topological spaces instead of filtered simplicial complexes, singular homology. An alternative approach to applied algebraic topology has developed homology theories and homotopy theories for metric spaces [4], graphs [7, 33], and directed graphs [44, 34]. Digital images, the object of study of digital topology, are a special case of graphs and their homology and homotopy theories have been defined as well [14, 50]. However, there is a more general axiomatization of topological spaces, namely Eduard Čech's closure spaces [21] (Definition 1.1), that includes topological spaces, graphs, and directed graphs as full subcategories, which suggests that these approaches may be combined [54]. Closure spaces are also called pretopological spaces. Closure spaces have been used in shape recognition [39, 41], image analysis [47, 13], supervised learning [40, 42] and complex systems modeling [1, 49].

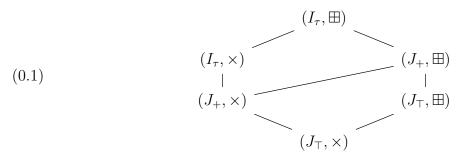
Our contributions. We develop homotopy, homology, and persistent homology for closure spaces. A closure space (X, c), consists of a set X and a closure operation c, which sends subsets of X to subsets of X and satisfies certain axioms (Definition 1.1). Let Cl denote the category of closure spaces and continuous maps (Definition 1.6).

Homotopy. We define homotopies between maps of closure spaces using cylinders, which are given by taking a product operation (Definition 4.1) with an interval (Definition 4.8). For examples of intervals, we have (Definition 1.21):  $I_{\tau}$ , the unit interval with the topological closure;  $J_{\top}$ , the set  $\{0,1\}$  with the indiscrete closure, in which  $c(\{0\}) = \{0,1\}$  and  $c(\{1\}) = \{0,1\}$ ; and the Sierpinski space  $J_{+}$ , in which  $c(\{0\}) = \{0,1\}$  and  $c(\{1\}) = \{1\}$ . For examples of product operations, we have  $\times$ , the (categorical) product (Definition 1.22), and  $\boxplus$ , the inductive product (Definition 1.24).

**Definition** (Definition 4.20). For each interval J and product operation  $\otimes$  and each pair of closure spaces X and Y there is a equivalence relation  $\sim_{(J,\otimes)}$ , which we call  $(J,\otimes)$  homotopy, on the set of continuous maps from X to Y.

For closure spaces X and Y we have a partial order on pairs  $(J, \otimes)$ , where J is an interval and  $\otimes$  is a product operation, given by  $(J, \otimes) \leq (J', \otimes')$  if for all  $f, g : X \to Y$ ,  $f \sim_{(J, \otimes)} g$  implies that  $f \sim_{(J', \otimes')} g$ . We consider numerous intervals and reduce to the following poset, which is independent of the choices of X and Y.

**Theorem** (Theorems 4.36 and 4.37). There is a poset of intervals and product operations with distinct non-trivial homotopy relations given by the following Hasse diagram.



*Homology*. We study cubical and simplicial singular homology theories for closure spaces.

**Definition** (Definitions 5.1 and 5.2). For each pair consisting of an interval J and a closure operation  $\otimes$  there is a corresponding cubical singular homology theory.

**Theorem** (Theorem 5.6). Each of the these cubical homology theories is invariant with respect to the corresponding homotopy relation.

**Definition** (Definitions 5.13 and 5.14). For each interval J and the (categorical) product,  $\times$ , there is a corresponding simplicial singular homology theory.

Persistent homology. We develop a new framework for applied algebraic topology using filtered closure spaces. A filtered closure space consists of a family of closure spaces  $\{(X_a, c_a)\}_{a \in \mathbb{R}}$  such that for  $a \leq b$ ,  $X_a \subset X_b$  and for all  $A \subset X$ ,  $c_a(A) \subset c_b(A)$ . Let **FCl** denote the category of filtered closure spaces and natural transformations (Definition 7.1).

Let **Met** denote the category of metric spaces and 1-Lipschitz (i.e. non-expansive) maps. A weighted graph is a graph in which each vertex and each edge has a real number called its weight, such that the weight of an edge is not less than the weight of its boundary vertices. Let **wGph** denote the category of weighted simple graphs and non-weight-increasing graph homomorphisms. Similarly, we have the category **wDiGph** of weighted simple directed graphs.

**Proposition** (Proposition 7.11). We have the following full embeddings of categories

$$\mathbf{Met} \hookrightarrow \mathbf{wGph} \hookrightarrow \mathbf{wDiGph} \hookrightarrow \mathbf{FCl}.$$

Let **Lip** denote the category of metric spaces and Lipschitz maps. Let  $\mathbf{w}^+\mathbf{Gph}$  and  $\mathbf{w}^+\mathbf{DiGph}$  be the categories of weighted simple graphs and weighted simple directed graphs in which maps are allowed to increase weights by at most some fixed constant. Similarly, let  $\mathbf{F}^+\mathbf{Cl}$  denote the categories of filtered closure spaces and *shifted* morphisms (Definition 7.16).

**Proposition** (Proposition 7.18). We have the following full embeddings of categories

$$Lip \hookrightarrow w^+Gph \hookrightarrow w^+DiGph \hookrightarrow F^+Cl.$$

Filtered closure spaces are isomorphic if and only if they are 0-interleaved (Definition 7.3). More generally, we have the following.

**Theorem** (Theorem 7.19). Filtered closure spaces are isomorphic in  $\mathbf{F^+Cl}$  via maps with shift L if and only if they are L-interleaved. In particular, metric spaces are isomorphic in  $\mathbf{Lip}$  via maps with Lipschitz constant  $K \geq 1$  if and only if their corresponding filtered closure spaces are  $\log(K)$ -interleaved.

Let **Simp** denote the category of (abstract) simplicial complexes and simplicial maps. We generalize the Vietoris-Rips complex and Čech complex constructions to define functors  $VR, \check{C}: \mathbf{Cl} \to \mathbf{Simp}$  (Definitions 6.7 and 6.8). We use stars of simplices to define a functor st:  $\mathbf{Simp} \to \mathbf{Cl}$  (Definitions 6.10 and 6.11). Let  $\mathbf{Gph}$  denote the category of simple graphs and graph homomorphisms.

**Theorem** (Theorems 6.5, 6.12 and 6.15). The Vietoris-Rips functor VR has left adjoint the star functor st. This adjunction factors through **Gph**.

$$VR : \mathbf{Cl} \xrightarrow{\perp} \mathbf{Gph} \xrightarrow{\perp} \mathbf{Simp} : st$$

In contrast, the Čech functor, Č does not have a left or right adjoint.

If we apply the Vietoris-Rips or Čech functors elementwise to a filtered closure space, we obtain a filtered simplicial complex. Applying simplicial homology we obtain a persistence module. The stability of this persistence module and its persistence diagram will be based on the following result.

**Theorem** (Theorem 6.17). The functors VR and  $\check{C}$  send one-step  $(J_{\top}, \times)$ -homotopic maps to contiguous simplicial maps. Conversely, the functor st sends contiguous simplicial maps to one-step  $(J_{\top}, \times)$ -homotopic maps.

If we apply any of our cubical or simplicial singular homology theories elementwise to a filtered closure space we obtain a persistence module (Section 7.2). For a persistence module M with values in a category of vector spaces, denote its persistence diagram [29, 18] by D(M).

Given a closure space (X, c) and a function  $f: X \to \mathbb{R}$ , we have a filtered closure space  $\mathrm{Sub}(f)$  given by sublevel sets of f. That is,  $\mathrm{Sub}(f)_a = f^{-1}(-\infty, a]$ ). Let  $d_I$  denote the interleaving distance (Definition 7.3) and let  $d_B$  denote the bottleneck distance [29].

**Theorem** (Theorem 8.2). Let  $(X,c) \in \mathbf{Cl}$  and  $f,g:X \to \mathbb{R}$ . Let H denote one of our singular cubical or simplicial homology theories and let  $j \geq 0$ . Then

$$d_I(H_j(\operatorname{Sub}(f)), H_j(\operatorname{Sub}(g))) \le \sup_{x \in X} |f(x) - g(x)|, \text{ and}$$
  
$$d_B(D(H_j(\operatorname{Sub}(f))), D(H_j(\operatorname{Sub}(g)))) \le \sup_{x \in X} |f(x) - g(x)|.$$

For filtered closure spaces, we define a distance  $d_{GH}$ , which we call the Gromov-Hausdorff distance (Definition 8.13).

**Theorem** (Theorem 8.14). The Gromov-Hausdorff distance for filtered closure spaces is reflexive, symmetric, and satisfies the triangle inequality.

**Theorem** (Theorem 8.18). There is an isometric embedding (Met,  $d_{GH}$ )  $\hookrightarrow$  (FCl,  $d_{GH}$ ).

The following theorems prove that the persistent homology of filtered closure spaces is stable and that persistent homology may be used to provide lower bounds for the Gromov-Hausdorff distance.

**Theorem** (Theorems 8.27 and 8.28). Let X and Y be filtered closure spaces. Let H be one of our cubical or simplicial singular homology theories and let  $j \geq 0$ . Then

$$d_I(H_j(X), H_j(Y)) \le 2d_{GH}(X, Y), \text{ and } d_B(D(H_j(X)), D(H_j(Y))) \le 2d_{GH}(X, Y).$$

Let H denote simplicial homology and let  $j \geq 0$ .

**Theorem** (Theorem 8.30). Let X and Y be filtered closure spaces. Let S denote either of the functors VR and  $\check{C}$ . Then

$$d_I(H_j(S(X)), H_j(S(Y))) \le 2d_{GH}(X, Y), \text{ and } d_B(D(H_j(S(X))), D(H_j(S(Y)))) \le 2d_{GH}(X, Y).$$

The stability theorems above (Theorems 8.2, 8.27, 8.28 and 8.30) follow from the next fundamental theorem which relies on a generalization of the notion of  $\varepsilon$ -correspondence from metric spaces to filtered closure spaces (Definition 8.9).

**Theorem** (Theorem 8.26). If there exists an  $\varepsilon$ -correspondence between two filtered closure spaces then they are  $\varepsilon$ -interleaved up to one-step  $(J_{\top}, \times)$ -homotopy and their Vietoris-Rips and Čech complexes are  $\varepsilon$ -interleaved up to contiguity. If two filtered simplicial complexes are  $\varepsilon$ -interleaved up to contiguity then their star filtered closure spaces are  $\varepsilon$ -interleaved up to one-step  $(J_{\top}, \times)$ -homotopy.

Special cases of the stability theorems above include: stability for sublevel sets of real-valued functions on topological spaces [29, 22]; stability for Vietoris-Rips and Čech complexes for metric spaces [23, 26]; stability for Vietoris-Rips complexes for finite metric spaces with real-valued functions [23]; stability for Vietoris-Rips and Čech complexes for weighted graphs [26]; and stability for Vietoris-Rips and source and sink Čech complexes for finite edge-weighted digraphs [27].

Application to graphs and directed graphs. Recall that simple graphs and simple directed graphs are full subcategories of closure spaces. Simple (directed) graphs have the (di)graph product (Definition 2.3) and the cartesian product (Definition 2.6).

**Proposition** (Propositions 2.4 and 2.7). Restricted to simple (directed) graphs, the product and the inductive product of closure spaces are the (di)graph product and the cartesian product, respectively.

Our homotopy theories and cubical singular homology theories are of interest in the special cases of graphs and directed graphs and some of these have been previously studied (Lemmas 4.42 and 5.15).

Application to metric spaces. Above we stated that we have a full embedding of the category of metric spaces in the category of filtered closure spaces. In fact, we have three such embeddings.

**Definition** (Definition 3.1). For each metric space, we may obtain a closure space by 'thickening' using either open balls, closed balls, or Hausdorff distance.

**Theorem** (Theorem 7.5). In each of these three cases, we obtain a full embedding  $Met \hookrightarrow Cl$ . For each metric space, applying these three functors results in three filtered closure spaces whose interleaving distance (Definition 7.3) is zero and furthermore these interleavings are coherent [19].

**Theorem** (Theorem 3.13). For each of the three embeddings of metric spaces into closure spaces, the product of the closures equals the closure of the product.

A weaker statement holds in the case of the inductive product (Theorem 3.14).

**Related work.** Antonio Rieser [54] and Demaria and Bogin [31] used the unit interval and the categorical product to define a homotopy theory for closure spaces. The latter also used this interval and product to define a simplicial singular homology theory for closure spaces. Our work is particularly indebted to [54].

Babson, Barcelo, de Longueville, Kramer, Laubenbacher, and Weaver used the simple graph with one edge as an interval together with the inductive/cartesian product on graphs to define the discrete homotopy theory of simple graphs, which they first called A-theory [7, 8, 3]. Barcelo, Capraro and White [4] used the same interval and product to define a cubical singular homology theory. They also observed that as a special case, these homotopy and

homology theories may be applied to metric spaces at a fixed scale. Dochtermann [33] used the same interval and the categorical product to define a homotopy theory for simple graphs. A special case of these homotopy theories, in which the underlying set is a finite subset of the lattice  $\mathbb{Z}^n$ , is studied in digital topology [14, 50]. Grigor'yan, Lin, Muranov, and Yau [44] used the simple directed graph with a single directed edge as an interval together with the inductive/cartesian product on directed graphs to define a homotopy theory of simple directed graphs. Dochtermann and Singh [34] used the same interval with the categorical product to define a homotopy theory for simple directed graphs.

In a companion paper [17], we use acyclic models to show that for an interval J and the categorical product  $\times$ , corresponding cubical and simplicial singular homology theories agree. In fact, we show that their underlying chain complexes are chain homotopic. We also show that they satisfy a Mayer-Vietoris property and the excision property. Rieser [53] and Palacios [59] have previously defined Vietoris-Rips homology and Čech homology, respectively for closure spaces.

Our results on stability with respect to Gromov-Hausdorff distance are indebted to Chazal, de Silva, and Oudot [26]. Correspondences have also been defined and used by Segarra for finite edge-weighted digraphs [56] and by Chowdhury and Mémoli for finite weighted digraphs [28]. Turner has studied filtered simplicial complexes and persistence modules obtained from weighted digraphs [58].

## 1. Closure spaces

In this section we provide background on Eduard Čech's closure spaces [21]. To start, we give three equivalent definitions of closure spaces using closures, interiors, and neighborhoods. In each case, with an additional axiom we obtain topological spaces. For any set X, let  $2^X$  denote the collection of subsets of X.

1.1. Closures. We begin by defining a closure operator, which assigns subsets to subsets.

**Definition 1.1.** Let X be a set. A function  $c: 2^X \to 2^X$  is called a *closure* or *closure* operator on X if the following axioms are satisfied for all  $A, B \subset X$ :

- (1) (grounded)  $c(\emptyset) = \emptyset$ ,
- (2) (extensive)  $A \subset c(A)$ ,
- (3) (monotone)  $A \subset B$  implies that  $c(A) \subset c(B)$ , and
- (4) (subadditive)  $c(A \cup B) \subset c(A) \cup c(B)$ .

Note that by monotonicity, for all  $A, B \subset X$ ,  $c(A) \subset c(A \cup B)$ , so together with subadditivity we have that

$$c(A \cup B) = c(A) \cup c(B).$$

In this case, the ordered pair (X, c) is called a  $(\check{C}ech)$  closure space. Elements of X are called *points*. Subsets  $A \subset X$  for which c(A) = A are called *closed*. If in addition we have the following axiom for all  $A \subset X$ ,

(5) (idempotent) c(c(A)) = c(A),

then we call c a Kuratowski closure.

**Example 1.2.** Let X be a set. The identity map  $\mathbf{1}_{2^X}: 2^X \to 2^X$  is a closure operator on X, called the *discrete* closure on X. The closure operator defined by the map  $A \mapsto X$  for  $A \neq \emptyset$  and  $\emptyset \mapsto \emptyset$  is called the *indiscrete* closure on X. These are both Kuratowski closures.

**Example 1.3.** Consider  $\mathbb{R}^n$  with the euclidean metric d. Let  $r \geq 0$  and let  $c_r$  be the closure on  $\mathbb{R}^n$  defined by  $c_r(A) = \{x \in \mathbb{R}^n \mid d(x,A) \leq r\}$  for  $A \subset \mathbb{R}^n$ , where  $d(x,A) = \inf_{y \in A} d(x,y)$ . Then  $c_0$  is Kuratowski and for r > 0,  $c_r$  is not Kuratowski.

1.2. **Interiors.** Dual to a closure we have the following.

**Definition 1.4.** Let X be a set. A function  $i: 2^X \to 2^X$  is called an *interior (operator)* on X if the following axioms are satisfied for all  $A, B \subset X$ :

- (1) (grounded)  $i(\emptyset) = \emptyset$ ,
- (2) (intensive)  $i(A) \subset A$ ,
- (3) (monotone)  $A \subset B$  implies that  $i(A) \subset i(B)$ , and
- (4) (superadditive)  $i(A \cap B) \supset i(A) \cap i(B)$ .

Note that by monotonicity, for all  $A, B \subset X$ ,  $i(A \cap B) \subset i(A)$ , so together with superadditivity we have that

$$i(A \cap B) = i(A) \cap i(B).$$

Subsets  $A \subset X$  for which i(A) = A are called *open*. If in addition, we have the following axiom for all  $A \subset X$ ,

(5) (idempotent) i(i(A)) = i(A),

then we call i a Kuratowski interior.

**Proposition 1.5.** For a set X, let  $n: 2^X \to 2^X$  be the complement operator given by  $n(A) = X \setminus A$ , for  $A \subset X$ . Then a closure c has a corresponding interior i, and vice versa, under the following relationships,

$$i = ncn$$
, and  $c = nin$ .

A subset is closed iff its complement is open and vice versa. Furthermore, c is a Kuratowski closure iff i is a Kuratowski interior.

1.3. Continuous maps. Next, we consider morphisms of closure spaces.

**Definition 1.6.** [21, 16.A.1] Let (X,c) and (Y,d) be closure spaces. A continuous map  $f:(X,c)\to (Y,d)$  is a function  $f:X\to Y$  such that for every  $A\subset X$ ,  $f(c(A))\subset d(f(A))$ . A continuous map f is called a homeomorphism if f is a bijection and has a continuous inverse.

For closure spaces (X, c) and (Y, d), any function  $f: X \to Y$  is continuous if c is the discrete closure or if d is the indiscrete closure.

**Lemma 1.7.** [21, 16.A.3] The composition of continuous maps is continuous.

**Definition 1.8.** Let Cl denote the category of closure spaces and continuous maps.

The initial object in **Cl** is the empty set with its unique closure and the terminal object in **Cl** is the one point set \* with its unique closure. Both of these are Kuratowski closure spaces.

1.4. **The poset of closures.** The collection of closures on a set has a partial order, which is induced by the partial order on the collection of subsets given by inclusion.

**Definition 1.9.** Let X be a set. Suppose  $c_1$  and  $c_2$  are two closures on X. We say  $c_1$  is finer than  $c_2$  and  $c_2$  is coarser than  $c_1$  if  $c_1(A) \subset c_2(A)$  for all  $A \subset X$ . Write  $c_1 \leq c_2$ . Observe that  $c_1$  is finer than  $c_2$  if and only if the identity map  $\mathbf{1}_X : (X, c_1) \to (X, c_2)$  is continuous.

Under the relation  $\leq$ , the collection of closure operators on a set X forms a poset with initial element the discrete closure and terminal element the indiscrete closure.

1.5. **Neighborhoods.** Neighborhood functions assign each element a collection of subsets.

**Definition 1.10.** Let X be a set. Let  $\mathcal{N}: X \to 2^{2^X}$  be a function such that for all  $x \in X$ ,

- (1) (nonempty)  $\mathcal{N}(x) \neq \emptyset$ ,
- (2) (contains x) for all  $A \in \mathcal{N}(x)$ ,  $x \in A$ ,
- (3) (upward closed) if  $A \in \mathcal{N}(x)$  and  $A \subset B$  then  $B \in \mathcal{N}(x)$ , and
- (4) (closed under binary intersections) if  $A, B \in \mathcal{N}(x)$  then  $A \cap B \in \mathcal{N}(x)$ .

The last two conditions say that  $\mathcal{N}(x)$  is a filter. Thus we have that  $\mathcal{N}$  specifies for each  $x \in X$  a nonempty filter, each of whose sets contains x. For  $x \in X$ , call  $A \in \mathcal{N}(x)$  a neighborhood of x and call  $\mathcal{N}(x)$  a neighborhood filter. Call  $\mathcal{N}$  a collection of neighborhood filters and call  $(X, \mathcal{N})$  a neighborhood space. If in addition, the following axiom is satisfied,

(5) if  $A \in \mathcal{N}(x)$  then there exists a  $B \in \mathcal{N}(x)$  with  $B \subset A$  such that for all  $y \in B$ , there exists  $C \in \mathcal{N}(y)$  such that  $C \subset B$ .

then call  $(X, \mathcal{N})$  a topological space [45, p.213].

**Lemma 1.11.** Given a set X, we may define a unique neighborhood space by specifying for each  $x \in X$ , a base for a neighborhood filter. That is, a nonempty collection  $\mathcal{B}(x)$  of subsets of X such that each  $U \in \mathcal{B}(x)$  contains x and if  $U, V \in \mathcal{B}(x)$  then there exists a  $W \in \mathcal{B}(x)$  such that  $W \subset U \cap V$ .

**Definition 1.12.** Let  $(X, \mathcal{N})$  and  $(Y, \mathcal{M})$  be neighborhood spaces. A *continuous* map  $f:(X,\mathcal{N})\to (Y,\mathcal{M})$  is a function  $f:X\to Y$  such that for all  $x\in X$  and for all  $A\in\mathcal{M}(f(x)), f^{-1}(A)\in\mathcal{N}(x)$ . Equivalently, f is continuous if and only if for each  $x\in X$  and for each  $A\in\mathcal{M}(f(x))$  there is a  $B\in\mathcal{N}(x)$  such that  $f(B)\subset A$ .

If we have a base  $\mathcal{B}$  for  $\mathcal{N}$  and a base  $\mathcal{C}$  for  $\mathcal{M}$  then f is continuous iff for each  $x \in X$  and for each  $A \in \mathcal{C}(f(x))$  there is a  $B \in \mathcal{B}(x)$  such that  $f(B) \subset A$ .

1.6. Correspondence of closures and neighborhoods. For topological spaces, closures and interiors may be defined using neighborhoods and vice versa; the same is true for closure spaces.

**Definition 1.13.** Let X be a set. Given a closure c and corresponding interior i, define  $\mathcal{N}: X \to 2^{2^X}$  by

$$\mathcal{N}(x) = \{ A \subset X \mid x \in i(A) \}$$
$$= \{ A \subset X \mid x \notin c(X \setminus A) \}.$$

Given a collection of neighborhood filters  $\mathcal{N}$ , define  $i, c: 2^X \to 2^X$  by

$$i(A) = \{x \in X \mid \exists U \in \mathcal{N}(x) \text{ such that } U \subset A\},\$$
  
 $c(A) = \{x \in X \mid \forall U \in \mathcal{N}(x), U \cap A \neq \emptyset\}.$ 

**Proposition 1.14.** [21, 16.A.4, 16.A.5] The constructions in Definition 1.13 together with the identity map on functions define an isomorphism of categories between closure spaces and continuous maps and neighborhood spaces and continuous maps. Furthermore, this isomorphism restricts to an isomorphism of the full subcategories of Kuratowski closure spaces and topological spaces.

We will use this isomorphism of categories implicitly. For example, we will consider topological spaces to be synonymous with Kuratowski closure spaces. Under this correspondence, a neighborhood U of  $x \in X$  is open iff i(U) = U iff for all  $y \in U$  there is a neighborhood V of Y such that  $Y \subset U$ . Therefore, if in Lemma 1.11, for each  $X \in X$ ,  $\mathcal{B}(X)$  consists of open neighborhoods, then we obtain a topology on X.

1.7. **Topological spaces.** Topological spaces are special cases of closure spaces and for each closure space there is a canonical topological space.

**Definition 1.15.** Let **Top** denote the full subcategory of **Cl** whose objects are Kuratowski closure spaces. That is, **Top** is the category of topological spaces and continuous maps.

**Lemma 1.16.** [21, 16.A.10] Let  $(X, c) \in \mathbf{Cl}$  and  $(Y, d) \in \mathbf{Top}$ . A function  $f: X \to Y$  is a continuous map if and only if the inverse image of every open set is open.

**Lemma 1.17.** [21, 16.B.1-16.B.3] Let (X, c) be a closure space. For  $A \subset X$ , define  $\tau(c)(A)$  to be the intersection of all closed sets containing A. Then  $\tau(c)$  is is the finest Kuratowski closure coarser than c, and is called the topological modification of c.

**Proposition 1.18.** [21, 16.B.4] Let (X,c) be a closure space and let  $(Y,\tau)$  be a Kuratowski closure space. Consider a function  $f: X \to Y$ . Then  $f: (X,c) \to (Y,\tau)$  is continuous if and only if  $f: (X,\tau(c)) \to (Y,\tau)$  is continuous. That is, there exists a natural bijection between the sets of morphisms

$$\mathbf{Cl}((X,c),(Y,\tau)) \cong \mathbf{Top}((X,\tau(c)),(Y,\tau)).$$

Equivalently,  $\tau$  is the left adjoint to the inclusion functor  $\iota : \mathbf{Top} \to \mathbf{Cl}$ .

1.8. Subspaces, covers, and pasting. Similarly to topological spaces, we define subspaces and covers to obtain a pasting lemma.

**Definition 1.19.** Let (X,c) be a closure space and let  $A \subset X$ . For  $B \subset A$ , define  $c_A(B) = c(B) \cap A$ . Then  $(A,c_A)$  is a closure space called a *subspace* of (X,c).

A cover of a closure space (X, c) is a family of subsets of X whose union is X. A cover is called *locally finite* if each  $x \in X$  has a neighborhood intersecting only finitely many elements of the cover.

**Theorem 1.20.** [21, 17.A.16] Let (X, c) and (Y, d) be closure spaces and let  $\{U_{\alpha} \mid \alpha \in A\}$  be a locally finite cover of (X, c). Let  $f: X \to Y$  be a map of sets. If  $f|_{c(U_{\alpha})} : (c(U_{\alpha}), c_{c(U_{\alpha})}) \to (Y, d)$  is continuous for each  $\alpha \in A$ , then  $f: (X, c) \to (Y, d)$  is continuous.

- 1.9. **Elementary examples.** We will use some of these examples in Sections 4 and 5. Let  $m \ge 0$ .
- **Definition 1.21.** (1) Let  $I_{\tau}$  denote the unit interval [0, 1] with the Kuratowski closure given the closure  $c_0$  from Example 1.3. This closure corresponds to the standard topology on the unit interval.
  - (2) Let  $J_{m,\perp}$  denote the set  $\{0,\ldots,m\}$  with the discrete closure. As a special case, set  $J_{\perp} = J_{1,\perp}$ .
  - (3) Let  $J_{m,\top}$  denote the set  $\{0,\ldots,m\}$  with the indiscrete closure. As a special case, set  $J_{\top} = J_{1,\top}$ .
  - (4) Let  $J_m$  denote the set  $\{0, \ldots, m\}$  with the closure operator  $c(i) = \{j \in \{0, \ldots, m\} \mid |i-j| \le 1\}$ . Note that  $J_1 = J_{\perp}$ .
  - (5) Let  $J_+$  denote the set  $\{0,1\}$  with the closure operator  $c_+(0) = \{0,1\}$ ,  $c_+(1) = \{1\}$ . Let  $J_-$  denote the set  $\{0,1\}$  with the closure operator  $c_-(0) = \{0\}$ ,  $c_-(1) = \{0,1\}$ . These are homeomorphic Kuratowski closure spaces. In fact,  $J_-$  is the *Sierpinski space*, which has open sets  $\varnothing$ ,  $\{1\}$ , and  $\{0,1\}$ .
  - (6) For each  $0 \le k \le 2^m 1$  we define a closure operator  $c_k$  on the set  $\{0, \ldots, m\}$  as follows. Consider the binary representation of k. For  $1 \le i \le m$ , i-1 is contained in  $c_k(i)$  iff the ith lowest order bit is 0 and i is contained in  $c_k(i-1)$  iff the ith lowest order bit is 1. We denote this closure space by  $J_{m,k}$ . Note that  $J_{1,1} = J_+$  and  $J_{1,0} = J_-$ .
  - (7) Let  $J_{m,\leq}$  denote the set  $\{0,1,\ldots,m\}$  with the Kuratowski closure operator  $c(i)=\{j\mid i\leq j\}$ . The open sets are the down-sets. Note that  $J_{1,\leq}=J_+$ .

$$0 \longrightarrow 1$$
  $0 \longleftarrow 1$   $0 \longrightarrow 1 \longleftarrow 2 \longrightarrow 3 \longrightarrow 4 \longrightarrow 5$ 

- FIGURE 1. Representations of the closure spaces  $J_+$  (left),  $J_-$  (middle), and  $J_{5,29}$  (right). The head of the arrow is contained in the closure of the tail of the arrow. Note that 29 in binary is 11101.
- 1.10. **Products and inductive products.** Closure spaces have two canonical products, the product and the inductive product, which we describe below.

**Definition 1.22.** [21, 17.C.1 and 17.C.3] Let  $\{(X_{\alpha}, c_{\alpha})\}_{\alpha \in A}$  be a collection of closure spaces. For  $\alpha \in A$ , let  $\mathcal{N}_{\alpha}$  denote the corresponding collection of neighborhood filters, or more generally, a collection of neighborhood filter bases. Let X denote the set  $\prod_{\alpha \in A} X_{\alpha}$ , and for  $\alpha \in A$ , let  $\pi_{\alpha} : X \to X_{\alpha}$  denote the projection map. For  $x \in X$ , define  $\mathcal{N}(x)$  to be given by finite intersections of sets of the form  $\pi_{\alpha}^{-1}(V_{\alpha})$ , where  $V_{\alpha} \in \mathcal{N}_{\alpha}(x_{\alpha})$ , and  $x_{\alpha} \in X_{\alpha}$ . Then  $\mathcal{N}$  is a collection of neighborhood filter bases for X. We call the corresponding closure c the product closure for X and call the pair (X, c) the product closure space.

When we have two closure spaces (X,c) and (Y,d) we will denote the product closure space by  $(X \times Y, c \times d)$ . In this case, if X and Y have collections of neighborhood filters or neighborhood filter bases  $\mathcal{N}$  and  $\mathcal{M}$  then for  $(x,y) \in X \times Y$ ,  $\mathcal{N}(x,y) = \mathcal{N}(x) \times \mathcal{M}(y)$ . It follows that for  $A \subset X \times Y$ ,  $(c \times d)(A) = \{(x,y) \in X \times Y \mid \forall U \in \mathcal{N}(x), V \in \mathcal{M}(y), (U \times V) \cap A \neq \emptyset\}$ .

**Theorem 1.23.** [21, 17.C.6] The product closure is the coarsest closure for which the projection maps are continuous.

**Definition 1.24.** [21, 17.D.1] Let (X, c) and (Y, d) be closure spaces with corresponding collections of neighborhood filters or neighborhood filter bases,  $\mathcal{N}$  and  $\mathcal{M}$ , respectively. For  $(x, y) \in X \times Y$ , let  $\mathcal{P}(x, y)$  be the collection of all sets of the form

$$(1.1) \qquad (\{x\} \times V) \cup (U \times \{y\})$$

where  $V \in \mathcal{M}(y)$  and  $U \in \mathcal{N}(x)$ . Then  $\mathcal{P}$  is a collection of neighborhood filter bases for  $X \times Y$ . We call the corresponding closure  $c \boxplus d$  the *inductive product closure*, and call  $(X \times Y, c \boxplus d)$  the inductive product closure space. The sets in (1.1) may be written as  $\{(x', y') \in U \times V \mid x' = x \text{ or } y' = y\}$ .

The terminology 'inductive product' is due to the following result, which may be used to define the inductive product as an 'inductively generated closure' on the product of the underlying sets [21, 33.D.1], whereas the product may be called the 'projective product' and may be defined as a 'projectively generated closure' on the same set [21, 32.A.3(f)].

**Theorem 1.25.** [21, 17.D.3] Let (X,c) and (Y,d) be closure spaces. The inductive product closure is the finest closure for  $X \times Y$  for which all of the maps

- $X \to X \times Y$  given by  $x \mapsto (x, y_0)$ , where  $y_0 \in Y$ , and
- $Y \to X \times Y$  given by  $y \mapsto (x_0, y)$ , where  $x_0 \in X$ ,

are continuous.

**Proposition 1.26.** [21, 17.D.2] The inductive product closure is finer than the product closure.

**Lemma 1.27.** Let X be a closure space and let Y be a discrete space. Then  $X \times Y = X \boxplus Y$ .

*Proof.* Let  $\mathcal{N}$  be the corresponding collection of neighborhood filters for X. Since Y is discrete it has a corresponding collection of neighborhood filter bases given by  $\mathcal{M}(y) = \{y\}$ , for  $y \in Y$ . Let  $(x, y) \in X \times Y$ . Then  $\{U \times \{y\} \mid U \in \mathcal{N}(x)\}$  is a neighborhood filter base of (x, y) for both closures.

**Proposition 1.28.** [21, 17.C.11] Suppose we are given for each  $a \in A$  closure spaces  $(X_a, c_{X_a})$  and  $(Y_a, c_{Y_a})$  and a map of sets  $f_a : X_a \to Y_a$ . If for all  $a \in A$ ,  $f_a$  is continuous, then the mapping  $f : (\prod_{a \in A} X_a, \prod_{a \in A} c_{X_a}) \to (\prod_{a \in A} Y_a, \prod_{a \in A} c_{Y_a})$  defined by  $\{x_a\}_{a \in A} \mapsto \{f_x(x_a)\}_{a \in A}$  is continuous. Conversely, if f is continuous and  $\prod_{a \in A} X_a \neq \emptyset$ , then for all  $a \in A$ ,  $f_a$  is continuous.

**Proposition 1.29.** [21, 17.D.5] Let (X,c), (Y,d) and (Z,e) be closure spaces. A function  $f: X \times Y \to Z$  is a continuous map  $f: (X,c) \boxplus (Y,d) \to (Z,e)$  if and only if all of the maps

- $X \to Z$  given by  $x \mapsto f(x, y_0)$ , where  $y_0 \in Y$ , and
- $Y \to Z$  given by  $y \mapsto f(x_0, y)$ , where  $x_0 \in X$ ,

are continuous.

**Corollary 1.30.** Let  $f:(X,c) \to (Y,d)$  and  $g:(X',c') \to (Y',d')$  be continuous maps of closure spaces. Then the map  $f \times g:(X,c) \boxplus (X',c') \to (Y,d) \boxplus (Y',d')$  defined by  $(f \times g)(x,x') = (f(x),g(x'))$  is continuous.

1.11. Coproducts and pushouts. Closure spaces have (small) colimits and, in particular, have pushouts.

**Definition 1.31.** [21, 17.B.1] Let  $\{(X_i, c_i)\}_{i \in I}$  be a collection of closure spaces. The coproduct of  $\{(X_i, c_i)\}_{i \in I}$  is the disjoint union of sets  $X = \coprod_i X_i$  with the closure operator c defined by  $c(\coprod_i A_i) = \coprod_i c_i(A_i)$  for any subset  $\coprod_i A_i$  of X.

**Definition 1.32.** Given continuous maps  $(X,c) \xrightarrow{f \atop g} (Y,d)$  the coequalizer of f and g consists of the closure space (Q,e) and the map  $p:Y\to Q$  defined as follows. Let Q be the quotient set  $Y/\sim$  for the equivalence relation given by  $f(x)\sim g(x)$  for all  $x\in X$ . Let  $p:Y\to Q$  be the quotient map. For  $A\subset Q$ , define  $e(A)=p(d(p^{-1}(A)))$ .

**Theorem 1.33.** [21, 33.A.4 and 33.A.5] The coproduct and coequalizer defined above are the categorical coproduct and coequalizer in the category Cl and hence Cl is cocomplete.

As an application, we have pushouts of closure spaces.

**Definition 1.34.** The *pushout* in **Cl** is defined as follows. Given the solid arrow diagram

$$(A, c') \xrightarrow{f} (X, c)$$

$$\downarrow^{g} \qquad \downarrow^{i}$$

$$(Y, d) \xrightarrow{f} (P, d')$$

define  $P = (X \coprod Y)/\sim$  where  $f(a) \sim g(a)$  for all  $a \in A$ , let i, j be the induced maps, and for  $B \subset P$ , define  $d'(B) = i(c(i^{-1}(B))) \cup j(d(j^{-1}(B)))$ .

**Lemma 1.35.**  $J_{m,\perp}$ ,  $J_m$  and  $J_{m,k}$  are obtained by m-fold pushouts of  $J_{\perp}$ ,  $J_{\top}$ , and  $J_{-}$ ,  $J_{+}$ , respectively, under \*.

*Proof.* For m=2 consider the following pushouts.

For the general case proceed by induction.

**Lemma 1.36.** The identity maps  $J_{m,k} \xrightarrow{1} J_m$  are continuous for all  $m \geq 0$  and  $0 \leq k \leq 2^m - 1$ . The 'round up' map  $f_+: I_\tau \to J_+$  defined by f(x) = 0 if  $x < \frac{1}{2}$  and f(x) = 1 if  $x \geq \frac{1}{2}$  and the 'round down' map  $f_-: I_\tau \to J_-$  defined by f(x) = 0 if  $x \leq \frac{1}{2}$  and f(x) = 1 if  $x > \frac{1}{2}$  are continuous. For any  $m \geq 1$  and  $0 \leq k \leq 2^m - 1$ , these may be combined to obtain continuous maps  $f: [0, m] \to J_{m,k}$ , where [0, m] has the Kuratowski closure corresponding to the standard topology. Precomposing with the map  $t \mapsto mt$ , we obtain a continuous surjective map  $f: I_\tau \to J_{m,k}$ .

*Proof.* For each  $m \geq 0$  and  $0 \leq k \leq 2^m - 1$  the closure operators for  $J_{m,k}$  are finer than the one for  $J_m$ . For the 'round up' map, note that  $J_+$  is a topological space with nonempty open sets  $\{0\}$  and  $\{0,1\}$ . By Lemma 1.16, it is sufficient to show that  $f_+^{-1}(0)$  and

 $f_+^{-1}(\{0,1\})$  are open in  $I_\tau$ , which they are by the definition of f. The 'round down' map is similar. For the third statement consider the cover of [0,m] consisting of the closed sets  $[0,1],[1,2],\ldots,[m-1,m]$ . By Lemma 1.35, for each  $i \in \{1,\ldots,m\}$ , we have either a 'round up' or a 'round down' map from [i-1,i] to  $J_{m,k}$  whose image is  $\{i-1,i\}$  and which sends i-1 to i-1 and i to i. The third statement follows from Theorem 1.20. The last statement follows from Lemma 1.7.

1.12. Pullbacks. Closure spaces have (small) limits and, in particular, have pullbacks.

**Definition 1.37.** Given continuous maps  $(X,c) \xrightarrow{f \atop g} (Y,d)$  the equalizer of f and g consists of the closure space (E,e) and the map  $i:E \to X$  defined as follows. Let E be the subset  $\{x \in X \mid f(x) = g(x)\}$  with i the inclusion map. For  $A \subset E$ , define  $e(A) = c(A) \cap E$ .

**Theorem 1.38.** [21, 32.A.4 and 32.A.10] The product (Definition 1.22) and equalizer defined above are the categorical product and equalizer in the category Cl and hence Cl is complete.

**Proposition 1.39.** Every limit of topological spaces in Cl is a topological space. On the other hand, colimits of topological spaces in Cl are not necessarily topological spaces.

*Proof.* The inclusion functor  $\iota : \mathbf{Top} \to \mathbf{Cl}$  is a right-adjoint by Proposition 1.18 and thus preserves limits. For the second statement, consider the second pushout diagram in the proof of Lemma 1.35. Note that the one point space and  $J_{\top}$  are both topological spaces (with the indiscrete topology), however the pushout  $J_2$ , is not a topological space. See also [54, Example 2.52] which is a more modern take on [21, Introduction to Section 33.B].

1.13. **Monomorphisms and epimorphisms.** The monomorphisms and epimorphisms in **Cl** are easy to describe.

**Lemma 1.40.** Consider  $f:(X,c)\to (Y,d)\in \mathbf{Cl}$ . Then

- (1) f is a monomorphism if an only if the underlying map of sets is injective, and
- (2) f is an epimorphism if and only if the underlying map of sets is surjective.

*Proof.* Let  $U: \mathbf{Cl} \to \mathbf{Set}$  denote the underlying set functor.

- (1) ( $\Leftarrow$ ) This implication holds in any concrete category: fh = fg implies that U(f)U(h) = U(fh) = U(fg) = U(f)U(g), which implies that Uh = Ug, which implies that h = g.
- $(\Rightarrow)$  Let  $x, x' \in X$ . Consider the maps  $x, x' : * \to X$  with image x and x'. Then f(x) = f(x') implies that x = x'.
- (2) ( $\Leftarrow$ ) This implication holds in any concrete category: if gf = hf then U(g)U(h) = U(gh) = U(hf) = U(h)U(f) which implies that U(g) = U(h) and thus g = h.
- (⇒) Consider the maps  $g, h: Y \to (\{0,1\}, c_{\top})$  given by g(y) = 1 if y is in the image of f and 0 otherwise, and h(y) = 1 for all  $y \in Y$ . Then hf = gf implies that h = g and thus Uf is surjective.
- 1.14. Symmetric closures and Alexandroff closures. In Section 1.15, we will relate simple directed graphs and simple graphs to Alexandroff closures spaces and symmetric Alexandroff spaces, respectively.

**Definition 1.41.** A closure space (X, c) is *symmetric* if  $y \in c(x)$  implies  $x \in c(y)$  for all  $x, y \in X$ .

A closure space is symmetric if and only if it is *semi-uniformizable* [21, Definition 23.A.3 and Theorem 23.B.3].

**Definition 1.42.** [21, Example 14.A.5(f)] [32, Section 3.6] Let (X, c) be a closure space. Say that the closure c is Alexandroff if for every collection  $\{A_i\}_{i\in I}$  of subsets of X,  $c(\bigcup_{i\in I}A_i) = \bigcup_{i\in I}c(A_i)$ . Equivalently, c is Alexandroff if for every  $A\subset X$ ,  $c(A)=\bigcup_{a\in A}c(a)$ .

Note that every finite closure space is Alexandroff. For a closure space (X, c), if the closure is Alexandroff and Kuratowski then the corresponding topological space is an *Alexandroff* space [2].

**Definition 1.43.** We denote by  $Cl_s$ ,  $Cl_A$  and  $Cl_{sA}$  the full subcategories of Cl consisting of symmetric, Alexandroff, and symmetric Alexandroff closure spaces, respectively.

**Proposition 1.44.** Suppose (X, c) is an Alexandroff closure space. Let (Y, d) be a closure space. Then  $f: (X, c) \to (Y, d)$  is continuous if and only if  $\forall x \in X$ ,  $f(c(x)) \subset d(f(x))$ .

*Proof.* The forward direction follows from the definition of continuity. For the reverse direction, let  $A \subset X$ . Then  $f(c(A)) = f(\bigcup_{x \in A} c(x)) = \bigcup_{x \in A} (f(c(x))) \subset \bigcup_{x \in A} d(f(x)) \subset d(f(A))$ . Thus f is continuous.

**Definition 1.45.** Let X be a set and let  $\rho: X \to 2^X$  such that  $x \in \rho(x)$ . Define  $c: 2^X \to 2^X$  by  $c(A) = \bigcup_{x \in A} \rho(x)$  for  $A \subset X$ . It is easy to verify that c is an Alexandroff closure operator, which we call the *induced Alexandroff closure operator*.

**Definition 1.46.** Let (X,c) be a closure space. Let A(c) denote the induced Alexandroff closure operator on the restriction of c to one-point sets. Then A(c) is finer than c and is called the *Alexandroff modification* of c ([21, Definition 26.A.1]). The mappings  $(X,c) \mapsto (X,A(c))$  and  $(f:(X,c)\to(Y,d))\mapsto (f:(X,A(c))\to(Y,A(d)))$  define a functor  $A:\mathbf{Cl}\to\mathbf{Cl}_A$ .

**Proposition 1.47.** Let  $(X,c) \in \mathbf{Cl_A}$  and  $(Y,d) \in \mathbf{Cl}$ . Given a set map  $f: X \to Y$ ,  $f: (X,c) \to (Y,A(d))$  is continuous iff  $f: (X,c) \to (Y,d)$  is continuous. Thus, we have a natural bijection

$$\mathbf{Cl}((X,c),(Y,d)) \cong \mathbf{Cl_A}((X,c),(Y,\mathbf{A}(d))).$$

That is, A is right adjoint to the inclusion functor  $Cl_A \hookrightarrow Cl$ .

*Proof.* ( $\Rightarrow$ ) Let  $A \subset X$ . Then  $f(c(A)) \subset A(d)(f(A)) \subset d(f(A))$ .

 $(\Leftarrow)$  Let  $x \in X$ . Then  $f(c(x)) \subset d(f(x)) = A(d)(f(x))$ . The result follows from Proposition 1.44.

**Definition 1.48.** Let  $(X,c) \in \mathbf{Cl_A}$ . Let the *reverse closure*,  $c^T$ , be the induced Alexandroff closure operator of  $\rho(x) = \{y \in X \mid x \in c(y)\}$ . That is, for  $A \subset X$ ,  $c^T(A) = \{y \in X \mid c(y) \cap A \neq \emptyset\}$ .

**Lemma 1.49.** We have a reverse functor  $(-)^T : \mathbf{Cl_A} \to \mathbf{Cl_A}$  mapping (X, c) to  $(X, c^T)$  and sending functions to themselves.

Proof. Let  $(X,c), (Y,d) \in \mathbf{Cl_A}$  and  $f: X \to Y$  such that for all  $x \in X$ ,  $f(c(x)) \subset d(f(x))$ . Let  $x \in X$ . It remains to check that  $f(c^T(x)) \subset d^T(f(x))$ . Let  $a \in c^T(x)$ . Then  $x \in c(a)$  and thus  $f(x) \in f(c(a)) \subset d(f(a))$ . Therefore  $f(a) \in d^T(f(x))$ .

**Definition 1.50.** Let  $(X,c) \in \mathbf{Cl_A}$ . Let s(c) be the Alexandroff closure induced by  $\rho(x) = \{y \in c(x) \mid x \in c(y)\}$ . If  $y \in \rho(x)$  then  $y \in c(x)$  and  $x \in c(y)$ . So  $x \in \rho(y)$ . That is, s(c) is symmetric. Thus s(c) is a symmetric Alexandroff closure finer than c, called the symmetrization of c. Let  $f: (X,c) \to (Y,d)$ . For  $x \in X$ ,  $f(s(c)(x)) = f\{y \in c(x) \mid x \in c(y)\}$  and  $s(d)(f(x)) = \{z \in d(f(x)) \mid f(x) \in d(z)\}$ . Now  $y \in c(x)$  implies that  $f(y) \subset d(f(x))$  and  $x \in c(y)$  implies that  $f(x) \in d(f(y))$ . Therefore  $f(s(c)(x)) \subset s(d)(f(x))$ . That is,  $f: (X,s(c)) \to (Y,s(d))$ . Let  $s: \mathbf{Cl_A} \to \mathbf{Cl_{sA}}$  denote the functor defined by these mappings.

**Proposition 1.51.** Let  $(X,c) \in \mathbf{Cl_{sA}}$  and  $(Y,d) \in \mathbf{Cl_{A}}$ . Given a set map  $f: X \to Y$ ,  $f: (X,c) \to (Y,s(d))$  is continuous iff  $f: (X,c) \to (Y,d)$  is continuous. Thus, we have a natural isomorphism

$$\mathbf{Cl}_{\mathbf{A}}((X,c),(Y,d)) \cong \mathbf{Cl}_{\mathbf{s}\mathbf{A}}((X,c),(Y,s(d))).$$

That is, s is right adjoint to the inclusion functor  $Cl_{sA} \hookrightarrow Cl_A$ .

*Proof.* ( $\Rightarrow$ ) Let  $x \in X$ . Then  $f(c(x)) \subset s(d)(f(x)) \subset d(f(x))$ .

 $(\Leftarrow)$  Let  $x \in X$ . Then  $f(c(x)) \subset d(f(x))$ . Let  $y \in c(x)$ . Then  $f(y) \in d(f(x))$ . Also,  $x \in c(y)$ . Thus  $f(x) \in d(f(y))$ . Hence  $f(y) \in s(d)(f(x))$  and therefore  $f(c(x)) \subset s(d)(f(x))$ .  $\square$ 

By definition, the following functors are equal.

Proposition 1.52.  $s \circ (-)^T = s$ .

1.15. Simple graphs and simple directed graphs as closure spaces. The categories of simple directed graphs and simple graphs are isomorphic to the categories of Alexandroff closure spaces and symmetric Alexandroff spaces, respectively [21, Chapter 26] [32, Section 3.6]. We allow the sets of vertices and edges of graphs to have arbitrary cardinality. Given a set X, let  $\Delta = \{(x, x) \mid x \in X\}$ .

**Definition 1.53.** A simple graph is a pair (X, E) where X is a set and E is a collection of pairs of elements of X. That is, E is a symmetric relation on X such that  $E \cap \Delta = \emptyset$ . More generally, a simple directed graph or simple digraph is a pair (X, E) where X is a set and E is a relation on X such that  $E \cap \Delta = \emptyset$ . Let a spatial digraph be a pair (X, E) where X is a set and E is a reflexive relation on X. For each simple digraph there is a corresponding spatial digraph  $(X, \overline{E})$ , where  $\overline{E} = E \cup \Delta$ . Note that  $E = \overline{E} \setminus \Delta$ . A map of sets  $f: X \to Y$  is (di)graph homomorphism between (X, E) and (Y, F) if whenever  $x\overline{E}x'$ , we have  $f(x)\overline{F}f(x')$ .

Let **DiGph** denote the category of simple digraphs and digraph homomorphisms, and let **Gph** denote the full subcategory of simple graphs and graph homomorphisms. Recall the categories,  $Cl_A$  and  $Cl_{sA}$ , of Alexandroff closure spaces and symmetric Alexandroff closure spaces, respectively (Definition 1.43).

**Definition 1.54.** Let  $\Psi : \mathbf{DiGph} \to \mathbf{Cl_A}$  be the functor that assigns to each simple digraph (X, E) the closure space  $(X, c_E)$ , where  $c_E$  is the induced Alexandroff closure (Definition 1.45) determined by the map  $\rho_E : X \to 2^X$  given by

(1.2) 
$$\rho_E(x) = \{ y \in X \mid x\overline{E}y \}.$$

Given a digraph homomorphism  $f:(X,E)\to (Y,F)$ , the map  $\Psi(f):(X,c_E)\to (Y,c_F)$  is given by the map of sets f. By Proposition 1.44, the continuity of  $\Psi(f)$  is equivalent to the map f being a digraph homomorphism.

**Definition 1.55.** Let  $\Phi: \mathbf{Cl_A} \to \mathbf{DiGph}$  be the functor that assigns to each Alexandroff closure space (X, c) the simple digraph  $(X, E_c)$  defined by

$$x\overline{E}_c y \iff y \in c(x).$$

Given a continuous map  $f:(X,c)\to (Y,d)$ , let  $\Psi(f):(X,E_c)\to (Y,E_d)$  be the map of sets f. By Proposition 1.44, the continuity of  $\Psi(f)$  is equivalent to the f being a digraph homomorphism.

We therefore have the following.

**Proposition 1.56.** The functors  $\Psi$  and  $\Phi$  are inverses and thus define an isomorphism of categories  $\mathbf{Cl_A} \cong \mathbf{DiGph}$ . Furthermore, they restrict to an isomorphism  $\mathbf{Cl_{sA}} \cong \mathbf{Gph}$ .  $\square$ 

**Definition 1.57.** Let (X, E) be a digraph. The reverse digraph  $(X, E^T)$ , is given by  $yE^Tx$  iff xEy for  $x, y \in X$ . That is, it is the digraph obtained by reversing the directed edges. We have a reverse functor,  $(-)^T : \mathbf{DiGph} \to \mathbf{DiGph}$  sending a digraph (X, E) to its reverse digraph  $(X, E^T)$  and sending a digraph homomorphism  $(X, E) \to (Y, F)$  given by  $f : X \to Y$  to the digraph homomorphism  $(X, E^T) \to (Y, F^T)$  given by f.

Observe that the reverse functors on digraphs and Alexandroff closures are compatible. That is,  $\Phi \circ (-)^T = (-)^T \circ \Phi$  and thus  $(-)^T \circ \Psi = \Psi \circ (-)^T$ .

# 2. Graph products from closure space products

We observe that via the identification of graphs and directed graphs as closure spaces in Section 1.15, one may obtain the canonical product operations of graphs from the canonical product operations of closure spaces.

2.1. A neighborhood filter base for a digraph. We identify a base for the neighborhood filter corresponding to the Alexandroff closure for a digraph, which we will be used in Section 2.2.

**Definition 2.1.** Let (X, E) be a digraph. The complement digraph  $(X, E^c)$  is given by  $xE^cy$  iff  $x \neq y$  and not xEy. That is, a directed edge is in  $E^c$  iff it is not in E.

**Lemma 2.2.** Given a digraph (X, E), we have the corresponding Alexandroff closure  $c_E$  (Definition 1.54), the reverse digraph  $E^T$  (Definition 1.57), and the function  $\rho_{E^T}: X \to 2^X$  given by (1.2). Let  $x \in X$ . Then, the singleton  $\{\rho_{E^T}(x)\}$  is a base for a neighborhood filter at x (Definition 1.10) in the closure space  $(X, c_E)$ .

*Proof.* Let  $x \in X$ . Let  $i_E$  denote the interior corresponding to the closure  $c_E$ . By definition and because the closure operator  $c_E$  is Alexandroff, we have

$$i_{E}(\rho_{E^{T}}(x)) = X \setminus c_{E}(X \setminus \rho_{E^{T}}(x)) = X \setminus c_{E}(X \setminus (\{y \in X \mid y\overline{E}^{c}x\})) = X \setminus \bigcup_{y \in X, y\overline{E}^{c}x} \rho_{E}(y).$$

For all  $y \in X$ , if  $y\overline{E}^c x$  then  $x \notin \rho_E(y)$ . Therefore  $x \in i_E(\rho_{E^T}(x))$ . Thus,  $\rho_{E^T}(x)$  is a neighborhood of  $\{x\}$ . Now let U be a neighborhood of x. Then  $x \in i_E(U) = X \setminus c_E(X \setminus U)$ . Suppose  $y \in X \setminus U$ . Then  $c_E(y) \subset c_E(X \setminus U)$ . Thus  $x \notin c_E(y)$  and hence  $y \notin c_{E^T}(x) = \rho_{E^T}(x)$ . That is,  $y \in X \setminus \rho_{E^T}(x)$ . Therefore  $\rho_{E^T}(x) \subset U$ . Hence  $X \setminus U \subset X \setminus \rho_{E^T}(x)$  and thus  $\rho_{E^T}(x)$  is a base for a neighborhood filter at x.

2.2. Graph products as special cases of closure space products. We will now prove that the product of digraphs and the cartesian product of digraphs are special cases of the product of closure spaces and the inductive product of closure spaces, respectively.

**Definition 2.3.** Let (X, E) and (Y, F) be two digraphs. Define the digraph product  $X \times Y$  to be the digraph  $(X \times Y, E \times F)$ , where  $(x, y)\overline{E \times F}(x', y')$  iff  $x\overline{E}_X x'$  and  $y\overline{E}_Y y'$ .

**Proposition 2.4.** Let (X, E) and (Y, F) be digraphs. Then  $(X \times Y, c_{E \times F}) = (X \times Y, c_{E} \times c_{F})$  (Definition 1.22).

*Proof.* We will show that both closures share a base for a neighborhood filter (Definition 1.10) at each point. It follows by Lemma 1.11 that they are equal.

Let  $x \in X$  and  $y \in Y$ . By Lemma 2.2,  $c_E$  has a base for a neighborhood filter  $\{\rho_{E^T}(x)\}$  at x,  $c_F$  has a base for a neighborhood filter  $\{\rho_{F^T}(y)\}$  at y, and  $c_{E\times F}$  has a base for a neighborhood filter  $\{\rho_{(E\times F)^T}(x,y)\}$  at (x,y). By Definition 1.22,  $c_E \times c_F$  has a base for a neighborhood filter  $\{\rho_{E^T}(x) \times \rho_{F^T}(y)\}$  at (x,y). By Equation (1.2) and Definition 2.3,  $\rho_{E^T}(x) = \{x' \in X \mid x'\overline{E}_X x\}, \ \rho_{F^T}(y) = \{y' \in Y \mid y'\overline{E}_Y y\}, \ \text{and} \ \rho_{(E\times F)^T}(x,y) = \{(x',y') \in X \times Y \mid x'\overline{E}_X x \text{ and } y'\overline{E}_Y y\}.$  Therefore  $\rho_{(E\times F)^T} = \rho_{E^T} \times \rho_{F^T}$ .

Combining Proposition 1.56 and Proposition 2.4 we have the following.

**Corollary 2.5.** Let (X, c) and (Y, d) be two Alexandroff closure spaces. Then  $(X \times Y, c \times d)$  is also Alexandroff.

**Definition 2.6.** [44, Definition 2.3] Let (X, E) and (Y, F) be two digraphs. Define the cartesian product  $X \boxplus Y$  to be the digraph  $(X \times Y, E \boxplus F)$ , where for  $x, x' \in X$  and  $y, y' \in Y$ ,  $(x, y)(E \boxplus F)(x', y')$  if and only if either x = x' and yFy', or xEx' and y = y'. Equivalently,  $(x, y)\overline{E \boxplus F}(x', y')$  iff  $x\overline{E}_Xx'$  and  $y\overline{E}_Yy'$  and either x = x' or y = y'.

**Proposition 2.7.** Let (X, E) and (Y, F) be digraphs. Then  $(X \times Y, c_{E \boxplus F}) = (X \times Y, c_{E} \boxplus c_{F})$  (Definition 1.24).

*Proof.* We will show that both closures share a base for a neighborhood filter (Definition 1.10) at each point. It follows by Lemma 1.11 that they are equal.

Let  $x \in X$  and  $y \in Y$ . By Lemma 2.2,  $c_E$  has a base for a neighborhood filter  $\{\rho_{E^T}(x)\}$  at x,  $c_F$  has a base for a neighborhood filter  $\{\rho_{F^T}(y)\}$  at y, and  $c_{E \boxplus F}$  has a base for a neighborhood filter  $\{\rho_{(E \boxplus F)^T}(x,y)\}$  at (x,y). By Definition 1.24,  $c_E \boxplus c_F$  has a base for a neighborhood filter  $\{(x',y') \in \rho_{E^T}(x) \times \rho_{F^T}(y) \mid x' = x \text{ or } y' = y\}$  at (x,y). By Equation (1.2) and Definition 2.6,  $\rho_{E^T}(x) = \{x' \in X \mid x'\overline{E}_X x\}$ ,  $\rho_{F^T}(y) = \{y' \in Y \mid y'\overline{E}_Y y\}$ , and  $\rho_{(E \boxplus F)^T}(x,y) = \{(x',y') \in X \times Y \mid x'\overline{E}_X x \text{ and } y'\overline{E}_Y y \text{ and either } x' = x \text{ or } y' = y\}$ . Therefore  $\rho_{(E \boxplus F)^T} = \rho_{E^T} \boxplus \rho_{F^T}$ .

Combining Proposition 1.56 and Proposition 2.7 we have the following.

**Corollary 2.8.** Let (X, c) and (Y, d) be two Alexandroff closure spaces. Then  $(X \times Y, c \boxplus d)$  is also Alexandroff.

Corollary 2.9. Given two symmetric Alexandroff closure spaces, their product and their indirect product are also symmetric and Alexandroff.

# 3. Closures induced by metrics

In this section, we consider closure operators induced by a metric. Our closure operators will be indexed by the set  $[0, \infty) \times \{-1, 0, 1\}$ , which we order by the lexicographic order. That is,  $(\varepsilon, a) \leq (\varepsilon', a')$  if  $\varepsilon < \varepsilon'$  or  $\varepsilon = \varepsilon'$  and  $a \leq a'$ . For  $\varepsilon \geq 0$  we denote  $(\varepsilon, -1)$ ,  $(\varepsilon, 0)$ , and  $(\varepsilon, 1)$  by  $\varepsilon^-$ ,  $\varepsilon$ , and  $\varepsilon^+$ , respectively.

3.1. Closures from thickenings. We introduce various 'thickening' closures on a metric space (X, d) and examine some properties of these closure operators. In particular, we investigate how they interact with Lipschitz maps between metric spaces, and we determine a base of the neighborhood filter at each point.

**Definition 3.1.** Let (X,d) be a metric space and let  $A \subset X$ . For  $\varepsilon \geq 0$  define

$$c_{\varepsilon^-,d}(A) = \bigcup_{x \in A} B_{\varepsilon}(x) \qquad c_{\varepsilon,d}(A) = \bigcup_{x \in A} \overline{B}_{\varepsilon}(x), \qquad c_{\varepsilon^+,d}(A) = \{x \in X \mid d(x,A) \le \varepsilon\},$$

where  $B_{\varepsilon}(x) = \{y \in X \mid d(x,y) < \varepsilon\}$  for  $\varepsilon > 0$ ,  $B_0(x) = \{x\}$ ,  $\overline{B}_{\varepsilon}(x) = \{y \in X \mid d(x,y) \le \varepsilon\}$ , and  $d(x,A) = \inf_{y \in A} d(x,y)$ . For all  $\varepsilon \ge 0$  and  $a \in \{-1,0,1\}$ ,  $c_{(\varepsilon,a),d}$  is a closure operator on X. If the metric d is clear from the context then we will denote the closure spaces  $(X, c_{(\varepsilon,a),d})$  by  $(X, c_{(\varepsilon,a)})$ . We will sometimes refer to these as *metric closures*.

Let (X, d) be a metric space. Then  $(X, c_{0+})$  is the Kuratowski closure space whose corresponding topology is the one induced by the metric d. Also  $(X, c_{0-}) = (X, c_0)$  and this closure is the discrete closure. If the metric d takes only integer values, then for all n,  $c_{(n+1)^-,d} = c_{n,d} = c_{n+d}$ .

**Example 3.2.** Consider ([0,1], d), the unit interval with d(x,y) = |x-y|. For  $(\varepsilon,a) \in [0,1] \times \{-1,0,1\}$ , we will denote the closure space ([0,1],  $c_{(\varepsilon,a)}$ ) by  $I_{(\varepsilon,a)}$ . Note that  $I_{0^-} = I_0$  is the unit interval with the discrete closure,  $I_{\perp}$ , and  $I_{0^+}$  is the unit interval with the closure corresponding to the standard topology,  $I_{\tau}$ . At the other extreme, note that  $I_1 = I_{1^+}$  is the unit interval with the indiscrete closure,  $I_{\perp}$ .

Let (X, d) be a metric space. Observe that for  $\varepsilon \geq 0$  the closure space  $(X, c_{\varepsilon^+})$  is symmetric and the closure spaces  $(X, c_{\varepsilon^-})$  and  $(X, c_{\varepsilon})$  are Alexandroff and symmetric (Definition 1.42). Furthermore, recall the functor  $A : \mathbf{Cl} \to \mathbf{Cl}_{\mathbf{A}}$  from Proposition 1.47. It follows from the definitions of  $c_{\varepsilon^+}$  and  $c_{\varepsilon}$  that given a metric space (X, d),  $A(X, c_{\varepsilon^+, d}) = (X, c_{\varepsilon, d})$ . From Definition 3.1, it is easy to see the following.

**Lemma 3.3.** Let (X, d) be a metric space and let  $(\varepsilon, a) \leq (\varepsilon', a') \in [0, \infty) \times \{-1, 0, 1\}$ . Then  $c_{(\varepsilon, a)} \leq c_{(\varepsilon', a')}$ .

**Lemma 3.4.** Let (X,d) be a metric space and let  $A \subset X$ . If  $r \geq 0$  then  $c_{r^+}(A) = \bigcap_{s>r} c_{s^-}(A) = \bigcap_{s>r} c_s(A) = \bigcap_{s>r} c_{s^+}(A)$ . If r > 0 then  $c_{r^-}(A) = \bigcup_{s<r} c_{s^-}(A) = \bigcup_{s<r} c_s(A) = \bigcup_{s<r} c$ 

Proof. By Lemma 3.3, we have that for all  $r \geq 0$ ,  $c_{r+}(A) \subset \bigcap_{s>r} c_{s-}(A) \subset \bigcap_{s>r} c_s(A) \subset \bigcap_{s>r} c_s(A)$ , and for all r > 0,  $\bigcup_{s>r} c_{s-}(A) \subset \bigcup_{s>r} c_s(A) \subset \bigcup_{s>r} c_s(A) \subset \bigcup_{s>r} c_s(A) \subset \bigcup_{s>r} c_s(A) \subset \bigcup_{s>r} c_s(A)$ . It remains to prove that for  $r \geq 0$ ,  $\bigcap_{s>r} c_{s+}(A) \subset c_{r+}(A)$  and for r > 0,  $c_{r-}(A) \subset \bigcup_{s<r} c_{s-}(A)$ . If  $x \in \bigcap_{s>r} c_{s+}(A)$  then  $d(x,A) \leq s$  for all s > r. Thus  $d(x,A) \leq r$  and hence  $x \in c_{r+}(A)$ . Finally,  $\bigcup_{s<r} c_{s-}(A) = \bigcup_{s<r} \bigcup_{x\in A} B_s(x) = \bigcup_{x\in A} \bigcup_{s<r} B_s(x) = \bigcup_{x\in A} B_r(x) = c_{r-}(A)$ .  $\square$ 

Using the triangle inequality one obtains the following.

**Lemma 3.5.** Let (X, d) be a metric space and let  $\varepsilon, \delta \geq 0$ . Then  $c_{\varepsilon^-}(c_{\delta^-}) \leq c_{(\varepsilon+\delta)^-}, c_{\varepsilon}(c_{\delta}) \leq c_{\varepsilon+\delta}$  and  $c_{\varepsilon^+}(c_{\delta^+}) \leq c_{(\varepsilon+\delta)^+}$ .

Let (X, d) and (Y, e) be metric spaces and let  $r \ge 0$ . A map  $f: X \to Y$  is said to be r-Lipschitz if for  $x, x' \in X$ ,  $e(fx, fx') \le rd(x, x')$ . Maps that are 1-Lipschitz are also said to be nonexpansive or short. Let **Met** denote the category of metric spaces and 1-Lipschitz maps. It is easy to check the following.

**Lemma 3.6.** Let  $\varepsilon \in [0, \infty) \times \{-1, 0, 1\}$  and  $f : (X, d) \to (Y, e)$  be a 1-Lipschitz map. Then  $f : (X, c_{\varepsilon,d}) \to (Y, c_{\varepsilon,e})$  is a continuous map. Thus, for each each  $\varepsilon \in [0, \infty) \times \{-1, 0, 1\}$  we have a functor  $\mathbf{Met} \to \mathbf{Cl_s}$ .

3.2. **Neighborhood filter bases for metric closures.** It will be useful to have a neighborhood filter base for our metric closures.

**Lemma 3.7.** Let (X, d) be a metric space,  $x \in X$ , and  $\varepsilon \geq 0$ .

- (1) The singleton  $\{B_{\varepsilon}(x)\}$  is a base for a neighborhood filter at x in  $(X, c_{\varepsilon^{-}})$ . (Recall that  $B_0(x) = \{x\}$ .)
- (2) The singleton  $\{\overline{B}_{\varepsilon}(x)\}\$  is a base for a neighborhood filter at x in  $(X, c_{\varepsilon})$ .
- (3) The collection  $\{\overline{B}_{\varepsilon+\delta}(x)\}_{\delta>0}$  is a base for a neighborhood filter at x in  $(X, c_{\varepsilon^+})$ .

Proof of Lemma 3.7. We will prove the third case. The other cases are similar. Let  $i_{\varepsilon^+}$  denote the interior corresponding to the closure  $c_{\varepsilon^+}$ . Let  $\delta > 0$ . First we verify that  $\overline{B}_{\varepsilon+\delta}(x)$  is a neighborhood of x in  $(X, c_{\varepsilon^+})$ . We have

$$i_{\varepsilon^{+}}(\overline{B}_{\varepsilon+\delta}(x)) = X \setminus c_{\varepsilon^{+}}(X \setminus \overline{B}_{\varepsilon+\delta}(x)) = X \setminus \{ y \in X \mid d(y, X \setminus \overline{B}_{\varepsilon+\delta}(x)) \le \varepsilon \}$$
$$= \{ y \in X \mid d(y, X \setminus \overline{B}_{\varepsilon+\delta}(x)) > \varepsilon \}.$$

Now observe that  $d(x, X \setminus \overline{B}_{\varepsilon+\delta}(x)) = \inf_{y \in X - \overline{B}_{\varepsilon+\delta}(x)} d(x, y)$ . However, note that for all  $y \in X \setminus \overline{B}_{\varepsilon+\delta}(x)$ ,  $d(x, y) > \varepsilon + \delta$ . Since  $\delta > 0$ , it follows that  $\inf_{y \in X \setminus \overline{B}_{\varepsilon+\delta}(x)} d(x, y) > \varepsilon$ . Therefore  $x \in i_{\varepsilon^+}(\overline{B}_{\varepsilon+\delta}(x))$ .

Now suppose  $A \subset X$  is a neighborhood of x in  $(X, c_{\varepsilon^+})$ . By definition we have that  $x \in i_{\varepsilon^+}(A) = X \setminus c_{\varepsilon^+}(X \setminus A) = \{y \in X \mid d(y, X \setminus A) > \varepsilon\}$ . Thus

$$d(x,X\setminus A)=\inf_{y\in X\setminus A}d(x,y)>\varepsilon.$$

Therefore there exists an  $\delta > 0$  such that  $\forall y \in X \setminus A$ ,  $d(x,y) \geq \varepsilon + 2\delta$ . Hence if  $y \in X$  is such that  $d(x,y) \leq \varepsilon + \delta$ , the previous inequality implies that  $y \in A$ . Thus  $\overline{B}_{\varepsilon+\delta}(x) \subset A$ .  $\square$ 

3.3. Lipschitz maps and metric closures. For Lipschitz maps we obtain continuous maps between appropriate metric closure spaces. In some cases we also have the converse.

First we have a slight generalization of Lemma 3.6.

**Lemma 3.8.** Let  $(X,d), (Y,e) \in \mathbf{Met}$  and let  $r \geq 0$ . Let  $\varepsilon \in [0,\infty)$  and  $a \in \{-1,0,1\}$ . If  $f: X \to Y$  is r-Lipschitz then we have a continuous map  $f: (X, c_{(\varepsilon,a),d}) \to (Y, c_{(r\varepsilon,a),e})$ .

A continuous map  $f:(X,c_{1,d})\to (Y,c_{r,e})$  need not be r-Lipschitz as the following example shows.

**Example 3.9.** Let  $X = \{x_1, x_2\}$  be a two point metric space with distance  $d(x_1, x_2) = 2$ . Let  $Y = \{y_1, y_2\}$  be a two point metric space with distance  $e(y_1, y_2) = 5$ . Let  $f: X \to Y$  be a map of sets defined by  $f(x_i) = y_i$  for i = 1, 2. Then observe that  $f: (X, c_{1,d}) \to (Y, c_{2+,e})$  is continuous. However, f is not a 2-Lipschitz map. Indeed,  $5 = e(y_1, y_2) \ge 2d(x_1, x_2) = 4$ .

For a converse to Lemma 3.8, we need a stronger hypothesis.

**Lemma 3.10.** Let  $(X,d), (Y,e) \in \mathbf{Met}$ . Assume that d takes only integer values and that for all n,  $c_{1,d}^n = c_{n,d}$ . Then  $f: (X,c_{1,d}) \to (Y,c_{r,e})$  is continuous if and only if  $f: X \to Y$  is r-Lipschitz.

Proof. Assume that  $\operatorname{im}(d) \subset \mathbb{Z}_{\geq 0}$  and that for all n,  $c_{1,d}^n = c_{n,d}$ . Consider a continuous map  $f: (X, c_{1,d}) \to (Y, c_{r,e})$ . Let  $x, y \in X$  and let m = d(x, y). Then  $y \in c_{m,d}(x)$  and thus  $f(y) \in f(c_{m,d}(x)) = f(c_{1,d}^m(x)) = f(c_{1,d}(c_{1,d}^{m-1}(x))) \subset c_{r,e}(f(c_{1,d}^{m-1}(x)))$ . By induction,  $f(y) \in c_{r,e}^m(f(x))$ , which by the triangle inequality is contained in  $c_{mr,e}(f(x))$ . Hence  $e(f(x), f(y)) \leq mr$  and therefore  $f: X \to Y$  is r-Lipschitz.

The hypotheses of Lemma 3.10 hold for the following examples.

# Example 3.11. Let $n, m \in \mathbb{N}$ .

- The set of n elements with pairwise distance 1.
- $\{0, 1, ..., n\}$ ,  $\mathbb{Z}_{\geq 0}$ , or  $\mathbb{Z}$  with the absolute value metric.
- $\{0,1,\ldots,n\}^m, \overline{\mathbb{Z}}_{>0}^m$  or  $\mathbb{Z}^m$  with the metric induced by the 1-norm or the  $\infty$ -norm.

3.4. **Products of metric closures.** The products and inductive products of metric closures are related to the closures associated to two canonical product metrics.

**Definition 3.12.** Let (X, d) and (Y, e) be metric spaces. Define the metrics d + e and  $d \lor e$  on  $X \times Y$  by

$$(d+e)((x,y),(x',y')) = d(x,x') + e(y,y')$$
$$(d \lor e)((x,y),(x',y')) = \max(d(x,x'),e(y,y'))$$

**Theorem 3.13.** Let (X,d) and (Y,e) be metric spaces. Let  $\varepsilon \geq 0$ ,  $a \in \{-1,0,1\}$  Then  $(X \times Y, c_{(\varepsilon,a),d} \times c_{(\varepsilon,a),e}) = (X \times Y, c_{(\varepsilon,a),d\vee e})$ .

*Proof.* We prove the case for a=1. The other cases are similar. First we show that  $c_{\varepsilon^+,d} \times c_{\varepsilon^+,e}$  is coarser than  $c_{\varepsilon^+,d\vee e}$ . We proceed by showing the projection  $\pi_X: (X \times Y, c_{\varepsilon^+,d\vee e}) \to (X, c_{\varepsilon^+,d})$  is continuous. Let  $A \subset X \times Y$ . Let  $x \in \pi_X(c_{\varepsilon^+,d\vee e}(A))$ . Thus, there is a  $y \in Y$  such that  $(x,y) \in c_{\varepsilon^+,d\vee e}(A)$ . Thus, by definition we have:

$$d_{d \vee e}((x,y),A) = \inf_{(x',y') \in A} d_{d \vee e}((x,y),(x',y')) \le \varepsilon$$

It follows that  $\inf_{x' \in \pi_X(A)} d(x, x') \leq \varepsilon$ . Thus  $x \in c_{\varepsilon^+,d}(\pi_X(A))$ . Therefore  $\pi_X$  is continuous. Similarly,  $\pi_Y : (X \times Y, c_{\varepsilon^+,d \vee e}) \to (Y, c_{\varepsilon^+,e})$  is continuous. By Theorem 1.23, the product closure is the coarsest closure so that each projection map is continuous. Thus,  $c_{\varepsilon^+,d} \times c_{\varepsilon^+,e}$  is coarser than  $c_{\varepsilon^+,d \vee e}$ .

Now we show that  $c_{\varepsilon^+,d\vee e}$  is coarser than  $c_{\varepsilon^+,d}\times c_{\varepsilon^+,e}$ . Let  $A\subset X\times Y$ . Now let  $(x,y)\in c_{\varepsilon^+,d}\times c_{\varepsilon^+,e}(A)$ . Let  $\delta>0$ . Then by Definition 1.22, Lemma 1.11, and Lemma 3.7  $\pi_X^{-1}(\overline{B}_{\varepsilon+\delta,d}(x))\cap\pi_Y^{-1}(\overline{B}_{\varepsilon+\delta,e}(y))\cap A\neq\varnothing$ . Observe that  $\pi_X^{-1}(\overline{B}_{\varepsilon+\delta,d}(x))\cap\pi_Y^{-1}(\overline{B}_{\varepsilon+\delta,e}(y))=\overline{B}_{\varepsilon+\delta,d\vee e}(x,y)$ . Thus,  $d_{d\vee e}((x,y),A)\leq\varepsilon$ . Therefore,  $(x,y)\in c_{\varepsilon^+,d\vee e}(A)$  and thus  $c_{\varepsilon^+,d}\times c_{\varepsilon^+,e}(A)\subset c_{\varepsilon^+,d\vee e}(A)$ .

**Theorem 3.14.** Let (X,d) and (Y,e) be metric spaces and let  $\varepsilon \geq 0$ ,  $a = \{-1,0,1\}$ . Then for  $X \times Y$ ,  $c_{(\varepsilon,a),d+e}$  is coarser than  $c_{(\varepsilon,a),d} \boxplus c_{(\varepsilon,a),e}$  (Definition 1.24). If e takes only integer values then  $(X \times Y, c_{1,d+e}) = (X \times Y, c_{1,d} \boxplus c_{1,e})$ .

Proof. We prove the first statement for the case a=1. The other cases are similar. To show that  $c_{\varepsilon^+,d+e}$  is coarser than  $c_{\varepsilon^+,d} \boxplus c_{\varepsilon^+,e}$  by Theorem 1.25 it is sufficient to show that for each  $x \in X$  and each  $y \in Y$  the functions  $f_y: (X, c_{\varepsilon^+,d}) \to (X \times Y, c_{\varepsilon^+,d+e})$  and  $f_x: (Y, c_{\varepsilon^+,e}) \to (X \times Y, c_{\varepsilon^+,d+e})$  defined by  $f_y(x') = (x',y)$  and  $f_x(y') = (x,y')$  are continuous. Let  $y \in Y$  and consider the mapping  $f_y$ . Let  $A \subset X$ . Let  $(x,y) \in f_y(c_{\varepsilon^+,d}(A))$ . Then  $x \in c_{\varepsilon^+,d}(A)$ , therefore  $d_d(x,A) \leq \varepsilon$ . Thus, by definition we have that  $(d+e)((x,y),A \times \{y\}) \leq \varepsilon$ . Therefore,  $(x,y) \in c_{\varepsilon^+,d+e}(f_y(A))$ . Thus  $f_y(c_{\varepsilon^+,d}(A)) \subset c_{\varepsilon^+,d+e}(f_y(A))$  and hence  $f_y$  is continuous. Similarly, given  $x \in X$ ,  $f_x$  is continuous. Therefore  $c_{\varepsilon^+,d+e}$  is coarser than  $c_{\varepsilon^+,d} \boxplus c_{\varepsilon^+,e}$ .

Now assume that im  $e \subset \mathbb{Z}_{\geq 0}$ . It remains to show that  $c_{1,d} \boxplus c_{1,e}$  is coarser than  $c_{1,d+e}$ . Let  $A \subset X \times Y$  and let  $(x,y) \in c_{1,d+e}(A)$ . Thus, there exists a  $(x',y') \in A$  such that  $d(x,y) + e(y,y') \leq 1$ . By Definition 1.24 and Lemma 3.7,  $(X \times Y, c_{1,d} \boxplus c_{1,e})$  has a base for a neighborhood filter at (x,y) consisting of the element  $W = \{x\} \times \overline{B}_{1,e}(y) \cup \overline{B}_{1,d}(x) \times \{y\}$ . If  $y \neq y'$  then, since im  $e \subset \mathbb{Z}_{\geq 0}$  it follows that e(y,y') = 1 and thus x = x'. If y = y' then e(y,y') = 0 and thus  $d(x,x') \leq 1$ . In either case we have that  $(x',y') \in W$ . Therefore  $W \cap A \neq \emptyset$  and thus  $(x,y) \in (c_{1,d} \boxplus c_{1,e})(A)$ . Hence, it follows that  $c_{1,d} \boxplus c_{1,e}$  is coarser than  $c_{1,d+e}$ .

The next example shows that we cannot remove the integer-value hypothesis.

**Example 3.15.** Let  $(X,d) = (Y,e) = (\mathbb{R},d)$  where d is the absolute value metric on  $\mathbb{R}$ . Let  $(0,0) \in \mathbb{R}^2$  and consider  $c_{1,d+d}((0,0))$ . Note that  $(\frac{1}{2},\frac{1}{2}) \in c_{1,d+d}((0,0))$ . However,  $(\frac{1}{2},\frac{1}{2}) \notin (c_{1,d} \boxplus c_{1,d})((0,0))$ .

The final example of this section shows that  $I_{\tau} \boxplus I_{\tau}$  is not the same as  $I_{\tau} \times I_{\tau}$ .

**Example 3.16.** Consider the unit interval [0,1] with the absolute value metric, d. The metric d generates a topology on [0,1] whose closure is  $c_{0^+,d}$ . Now consider  $[0,1] \times [0,1]$ . By Theorem 3.13 we have  $c_{0^+,d} \times c_{0^+,d} = c_{0^+,d\vee d}$ . Since the metrics d+d and  $d\vee d$  are equivalent they induce the same topology. Hence,  $c_{0^+,d\vee d} = c_{0^+,d+d}$ . Let  $A = (0,1) \times (0,1) \subset [0,1] \times [0,1]$ . Thus  $c_{0^+,d+d}(A) = [0,1] \times [0,1]$ . On the other hand, no neighborhood of the form  $\overline{B}_{\varepsilon}(0) \times \{0\} \cup \{0\} \times \overline{B}_{\delta}(0)$  for any  $\varepsilon, \delta > 0$  has a non-empty intersection with A. Thus, by Lemma 3.7 and Definition 1.24 and Lemma 1.11,  $(0,0) \notin c_{0^+} \boxplus c_{0^+}(A)$ . Therefore  $c_{0^+,d+d} \neq c_{0^+,d} \boxplus c_{0^+,d}$ .

## 4. Homotopy in closure spaces

In this section we define various homotopy theories for closure spaces using different intervals together with either the product or the inductive product. We will study the relationships between these theories. We will observe that these homotopy theories restrict to the full subcategories of closure spaces, Top,  $Cl_A$ ,  $Cl_{sA}$  where some of them have been previously studied under different names.

4.1. **Product operations.** We formalize the properties of the product and the inductive product that we will need. Recall that the category of sets, **Set**, together with the cartesian product and the one point set \* forms a symmetric monoidal category. In addition, there is

a functor  $U: \mathbf{Cl} \to \mathbf{Set}$  that forgets the closure. Also, the terminal object in  $\mathbf{Cl}$  is the one point set \* with its unique closure.

**Definition 4.1.** A product operation is a functor  $\otimes$  :  $\mathbf{Cl} \times \mathbf{Cl} \to \mathbf{Cl}$  for which  $\mathbf{Cl}$  has a symmetric monoidal category structure that commutes with the forgetful functor U and the cartesian symmetric monoidal category structure on  $\mathbf{Set}$ . That is, for all  $(X,c), (Y,d), (X,c) \otimes (Y,d) = (X \times Y, c \otimes d)$  for some closure operator  $c \otimes d$  on  $X \times Y$ , the unit object is the one point space \* with its unique closure, and the associator, unitors, and braiding are given by those on  $\mathbf{Set}$ .

**Example 4.2.** The product closure and inductive product closures are examples of product operations. Indeed, by their definition,  $\boxplus$  and  $\times$  commute with the forgetful functor. The unit object for both  $\boxplus$  and  $\times$  is the one point space \*.

The braiding isomorphisms  $\gamma_{XY}: X \times Y \to Y \times X$  and  $\gamma_{XY}: X \boxplus Y \to Y \boxplus X$  are both given by  $\gamma_{XY}(x,y) = (y,x)$ . We will show that  $\gamma_{XY}: X \times Y \to Y \times X$  is continuous. The proof that  $\gamma_{XY}: X \boxplus Y \to Y \boxplus X$  is continuous is similar. Let  $A \subset X \times Y$  and let  $(x,y) \in (c \times d)(A)$ . Let  $U_x$  and  $V_y$  be neighborhoods of x and y, respectively. Then by definition,  $(U_x \times V_y) \cap A \neq \emptyset$ . It follows that  $(V_y \times U_x) \cap \gamma_{XY}(A) \neq \emptyset$ . Thus, by definition,  $(y,x) \in (d \times c)(\gamma_{XY}(A))$ . Hence  $\gamma_{XY}((c \times d)(A)) \subset (d \times c)(\gamma_{XY}(A))$ . Therefore  $\gamma_{XY}$  is continuous.

The continuity of the associator  $a_{XYZ}: (X \times Y) \times Z \to X \times (Y \times Z)$  follows from observing that  $(X \times Y) \times Z$  and  $X \times (Y \times Z)$  share a base for a neighborhood filter at each (x,y,z) consisting of sets of the form  $(U_x \times U_y \times U_z)$  where  $U_x, U_y, U_z$  are neighborhoods of X, Y and Z respectively. The continuity of the associator  $a_{XYZ}: (X \boxplus Y) \boxplus Z \to X \boxplus (Y \boxplus Z)$  follows from observing that  $(X \boxplus Y) \boxplus Z$  and  $X \boxplus (Y \boxplus Z)$  share a base for a neighborhood filter at each (x,y,z) consisting of sets of the form  $U_x \times \{y,z\} \cup \{x\} \times U_y \times \{z\} \cup \{x,y\} \times U_z$  where  $U_x, U_y, U_z$  are neighborhoods of x, y and z respectively.

Let  $A \subset X$ . Since  $(c_* \times c)(* \times A) = * \times c(A)$ , the left unitor  $\lambda_X : * \times X \to X$  is continuous. Similarly, the left unitor  $\lambda_X : * \boxplus X \to X$  is continuous and both right unitors are continuous. The triangle and pentagon identities are satisfied for both  $\times$  and  $\boxplus$  since they are satisfied for the underlying sets and all the maps in question are continuous.

**Definition 4.3.** Define a partial order on product operations by setting  $\otimes_1 \leq \otimes_2$  if there exists natural transformation  $\alpha$  from  $\otimes_1$  to  $\otimes_2$  such that for all closure spaces X and Y,  $\alpha_{(X,Y)}: X \otimes_1 Y \to X \otimes_2 Y$  is the identity map.

**Lemma 4.4.** Let  $\otimes$  be a product operation and let (X,c) and (Y,d) be closure spaces. Then the projection maps  $\pi_X: (X \times Y, c \otimes d) \to (X,c)$  and  $\pi_Y: (X \times Y, c \otimes d) \to (Y,d)$  are continuous.

*Proof.* We verify the first case; the second is similar. Let  $\mathbf{1}_X: X \to X$  be the identity and  $a: Y \to *$  be the constant map. Then, by functoriality, we have that  $\mathbf{1}_X \otimes a: X \otimes Y \to X \otimes *$  is continuous. The result follows from composing with the right unitor isomorphism,  $X \otimes * \stackrel{\cong}{\to} X$ .

**Lemma 4.5.** Let  $\otimes$  be a product operation, let (X, c), (Y, d) be closure spaces and let  $x_0 \in X$  and  $y_0 \in Y$ . Then the maps  $Y \to X \otimes Y$  given by  $y \mapsto (x_0, y)$  and  $X \to X \otimes Y$  given by  $x \mapsto (x, y_0)$  are continuous.

*Proof.* Consider the continuous maps  $x_0 : * \to X$  given by  $x_0(*) = x_0$  and  $\mathbf{1}_Y : Y \to Y$ , the identity map. By functoriality,  $x_0 \otimes \mathbf{1}_Y : * \otimes Y \to X \otimes Y$  is continuous. By precomposing with the right unitor isomorphism  $Y \xrightarrow{\cong} * \otimes Y$ , we get that the map  $Y \to X \otimes Y$  given by  $y \mapsto (x_0, y)$  is continuous. The other case is similar.

From Theorems 1.23 and 1.25 and Lemmas 4.4 and 4.5 we get the following.

**Proposition 4.6.** Let  $\otimes$  be a product operation. Then  $\boxplus \leq \otimes \leq \times$ .

**Lemma 4.7.** Let (X,c), (Y,d) be closure spaces and assume that d is the discrete closure. Then for any product operation  $\otimes$ ,  $(X \times Y, c \otimes d) = (X \times Y, c \times d)$ .

*Proof.* Let  $\otimes$  be a product operation. By Proposition 4.6, we have the following partial ordering on closures on  $X \times Y$ ,  $c \boxplus d \leq c \otimes d \leq c \times d$ . By Lemma 1.27,  $c \boxplus d = c \times d$ . Therefore  $c \otimes d = c \times d$ .

4.2. **Intervals.** We formalize the structure of an interval which we will use to develop a homotopy theory and give examples. Our definitions and terminology are closely related to those of Berger and Moerdijk [11]. Recall that the terminal object in **Cl** is the one point closure space \* with its unique closure. Also recall that maps from a discrete closure space are always continuous.

**Definition 4.8.** Let  $\otimes$  be a product operation. An *interval* for  $\otimes$  is a closure space J together with two continuous maps  $* \stackrel{0}{\rightarrow} J \stackrel{1}{\leftarrow} *$  and a symmetric, associative continuous map  $\vee : J \otimes J \to J$  which has 0 as its *neutral* element and 1 as its *absorbing* element. That is, if we write  $s \vee t$  for  $\vee (s,t)$  then  $0 \vee t = t$  and  $1 \vee t = 1$ . A *morphism of intervals* is a continuous map of intervals  $f: J \to K$  that preserves the distinguished points and commutes with the symmetric, associative continuous maps. That is,  $f0_J = 0_K$ ,  $f1_J = 1_K$ , and  $f(s \vee_J t) = f(s) \vee_K f(t)$ . Let  $\mathbf{Int}(\otimes)$  denote the category whose objects are intervals for  $\otimes$  and whose morphisms are morphisms of intervals. Let  $\mathbf{Int}_{0\neq 1}(\otimes)$  be the full subcategory of  $\mathbf{Int}(\otimes)$  whose objects are intervals with  $0 \neq 1$ .

**Example 4.9.** Consider the discrete closure space  $* \amalg *$ , which we also write as  $J_{\perp} = (\{0,1\}, c_{\perp})$ . We have continuous maps  $0,1:* \to \{0,1\}$  with the specified image. By Lemma 4.7,  $J_{\perp} \otimes J_{\perp} = (\{0,1\}\} \times \{0,1\}, c_{\perp})$ . Let  $\vee : \{0,1\}^2 \to \{0,1\}$  be the continuous map given by  $s \vee t = \max(s,t)$ . With this structure,  $* \amalg *$  is an interval for  $\otimes$ . Furthermore, using the universal property of the coproduct, for any interval J for  $\otimes$  there is a unique morphism of intervals  $* \amalg * \to J$ . That is,  $* \amalg *$  is the initial object in  $\mathbf{Int}(\otimes)$  and  $\mathbf{Int}_{0\neq 1}(\otimes)$ .

The one point space \* has unique continuous maps  $0: * \to *$  and  $1: * \to *$ . It follows from the definition that  $* \otimes * = *$  and thus we have a unique continuous map  $\vee : * \to *$ . With this structure \* is an interval for  $\otimes$  and furthermore it is the terminal object in  $\mathbf{Int}(\otimes)$ .

**Example 4.10.** In each of the following, we show that the maximum map gives us an interval with  $0 \neq 1$  for  $\times$ . By Proposition 4.6 and Lemma 4.14 it will follow that these are also intervals with  $0 \neq 1$  for any product operation  $\otimes$ .

(1)  $I_{\tau}$  with the inclusions of 0 and 1 (Definition 1.21) is an interval for  $\times$ . It is elementary to show that the map  $I_{\tau} \times I_{\tau} \to I_{\tau}$  given by the maximum function is a continuous map of topological spaces.

- (2) For  $m \geq 1$  and  $0 \leq k \leq 2^m 1$ , each of  $J_{m,\perp}$ ,  $J_{m,\top}$ ,  $J_m$ ,  $J_{m,\leq}$ , and  $J_{m,k}$  with the inclusions of the points 0 and m (Definition 1.21) and the maximum map is an interval for  $\times$ . We will show that the maximum map is continuous in each case.
  - (a) Since  $J_{m,\perp} \times J_{m,\perp}$  is a discrete space, the maximum map is continuous.
  - (b) Similarly, since  $J_{m,\top}$  is an indiscrete space, the maximum map is continuous.
  - (c)  $J_m$ . Suppose  $(s', t') \in (c \times c)(s, t)$ . Then  $|s s'| \le 1$  and  $|t t'| \le 1$ . Therefore  $|\max(s, t) \max(s', t')| \le 1$  and thus  $\max(s', t') \in c(\max(s, t))$ .
  - (d)  $J_{m,\leq}$ . Suppose that  $(s',t') \in (c \times c)(s,t)$ . Then  $s \leq s'$  and  $t \leq t'$ . It follows that  $\max(s,t) \leq \max(s',t')$  and thus  $\max(s',t') \in c(\max(s,t))$ .
  - (e)  $J_{m,k}$ . Suppose that  $(s',t') \in (c \times c)(s,t)$ . Then  $s' \in c(s)$  and  $t' \in c(t)$ . If  $\max(s,t) = s$  and  $\max(s',t') = s'$  or  $\max(s,t) = t$  and  $\max(s',t') = t'$  then  $\max(s',t') \in c(\max(s,t))$ . If not, then s' = t and t' = s and we also have that  $\max(s',t') \in c(\max(s,t))$ .

As special cases, we have the intervals  $J_{\perp}, J_{\top}, J_{+}$ , and  $J_{-}$ .

(3) Let  $\varepsilon \in [0,1]$ . Then  $I_{\varepsilon^-}$ ,  $I_{\varepsilon}$ , and  $I_{\varepsilon^+}$  with the inclusions of the points 0 and 1 (Example 3.2) and the maximum map is an interval for  $\times$ . We give the proof the case  $I_{\varepsilon^+}$ . The other cases are similar. Let  $A \subset [0,1] \times [0,1]$  and suppose that  $(x,y) \in (c_{\varepsilon^+} \times c_{\varepsilon^+})(A)$ . Then by Lemma 3.7, for all  $\delta_1, \delta_2 > 0$ ,  $(\overline{B}_{\varepsilon+\delta_1}(x) \times \overline{B}_{\varepsilon+\delta_2}(y)) \cap A \neq \varnothing$ . Thus for all  $n \geq 1$ , there exists  $(x_n, y_n) \in A$  such that  $|x - x_n| \leq \varepsilon + \frac{1}{n}$  and  $|y - y_n| \leq \varepsilon + \frac{1}{n}$ . It follows that  $|\max(x, y) - \max(x_n, y_n)| \leq \varepsilon + \frac{1}{n}$ . Therefore  $d(\max(x, y), \max(A)) \leq \varepsilon$ . Hence  $\max(x, y) \in c_{\varepsilon^+}(\max(A))$ .

# **Lemma 4.11.** Let J and K be intervals for $\otimes$ . Then so are the following:

- (1) the product  $J \otimes K$ ,
- (2) the coproduct  $J \coprod K$ , and
- (3) the wedge product, given by the pushout (Definition 1.34)

$$\begin{array}{ccc}
* & \xrightarrow{1} & J \\
\downarrow 0 & & \downarrow \iota \\
K & \xrightarrow{--} & J \vee K
\end{array}$$

which we will also call the concatenation of J and K. We will denote the m-fold concatenation of J with itself by  $J^{\vee m}$ .

Furthermore, if J and K are intervals with  $0 \neq 1$  then so are  $J \otimes K$ ,  $J \coprod K$ , and  $J \vee K$ .

*Proof.* By assumption there are symmetric, associative continuous maps  $\vee_J : J \otimes J \to J$  and  $\vee_K : K \otimes K \to K$  which have  $0_J$ ,  $0_K$  and  $1_J$ ,  $1_K$  as their neutral elements and absorbing elements, respectively.

(1) Let  $0_{J\otimes K}=(0_J,0_K)$  and  $1_{J\otimes K}=(1_J,1_K)$ . Let  $\vee_{J\otimes K}$  be the continuous map  $(J\otimes K)\otimes (J\otimes K)\stackrel{\cong}{\to} J\otimes J\otimes K\otimes K\stackrel{\vee_{J}\otimes\vee_{K}}{\longrightarrow} J\otimes K$ . One may check that it is symmetric and associative and has  $0_{J\otimes K}$  as its neutral element and  $1_{J\otimes K}$  as its absorbing element.

(2) Let  $0_{J \coprod K} = 0_J$  and  $1_{J \coprod K} = 1_K$ . Define  $\vee_{J \coprod K} : (J \coprod K) \otimes (J \coprod K) \to J \coprod K$  by

(4.1) 
$$s \vee_{J \coprod K} t = \begin{cases} s \vee_J t, & s, t \in J \\ s \vee_K t, & s, t \in K \\ t, & s \in J, t \in K \\ s, & s \in K, t \in J. \end{cases}$$

By Lemma 4.4 and Theorem 1.20,  $\forall_{J \coprod K}$  is continuous. One may also check that it is symmetric and associative and has  $0_J$  as its neutral element and  $1_K$  as its absorbing element.

(3) Let  $0_{J\vee K} = \iota \circ 0_J$  and  $1_{J\vee K} = \kappa \circ 1_K$ . There is a universal continuous map  $J \coprod K \to J \vee K$ . One may check that the map (4.1) induces a well-defined continuous map  $\vee_{J\vee K} : (J\vee K)\otimes (J\vee K)\to J\vee K$ . It is symmetric and associative and has  $0_{J\vee K}$  as its neutral element and  $1_{J\vee K}$  as its absorbing element.

In each of these constructions, if  $0_J \neq 1_J$  and  $0_K \neq 1_K$ , then the induced neutral and absorbing elements will be distinct as well.

**Proposition 4.12.** Let J, K be intervals for the product operation  $\otimes$ . There are canonical morphisms of intervals  $J \coprod K \to J \vee K \to J \otimes K \to J, K$ .

*Proof.* The first map is given by the universal continuous map. The second is obtained from Lemma 4.5 and the universal property of the pushout. The third is obtained from Lemma 4.4. One may check that each of these maps respects the inclusion of 0 and 1 and the symmetric associative map.  $\Box$ 

By the universal property of the pushout, we have the following.

**Proposition 4.13.** The category  $Int(\otimes)$  together with tensor product given by concatenation and unit element given by the terminal interval \* is a monoidal category.

4.3. Relations between product operations and intervals. We study relations between product operations and between intervals which will later give us relations between their corresponding homotopy theories.

**Lemma 4.14.** Suppose  $\otimes_1 \leq \otimes_2$ . If J is an interval for  $\otimes_2$  then J is also an interval for  $\otimes_1$ .

*Proof.* Let  $\vee: J \otimes_2 J \to J$  be the associative morphism for J an interval for  $\otimes_2$ . Precomposing  $\vee$  with the set-theoretic identity map  $J \otimes_1 J \to J \otimes_2 J$ , which is continuous by the assumption that  $\otimes_1 \leq \otimes_2$ , we get an associative morphism  $\vee: J \otimes_1 J \to J$ .

**Definition 4.15.** Define a preorder on intervals for  $\otimes$  by setting  $J \leq K$  if there exists a morphism of intervals  $f: J \to K$ .

From Proposition 4.12, we have the following.

Corollary 4.16. Let J, K be intervals for  $\otimes$ . Then  $J \coprod K \leq J \vee K \leq J \otimes K \leq J, K$ .

**Lemma 4.17.** For any K in  $\mathbf{Int}_{0\neq 1}(\otimes)$ ,  $K \leq J_{\top}$ .

*Proof.* Let K be an interval with  $0 \neq 1$  for  $\otimes$ . Define a map  $f: K \to J_{\top}$  by f(t) = 1 if  $t \neq 0_K$  and  $f(0_K) = 0$ . One may check that this is a morphism of intervals.

We will also give examples of this preorder relation among many of the intervals in Example 4.10. First we prove the following.

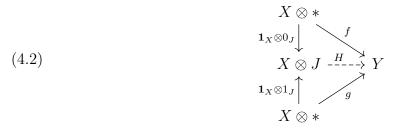
# **Lemma 4.18.** Given $m \geq 0$ , $J_m$ is a retract of $([0, m], c_1)$ .

Proof. The inclusion  $i: J_m \hookrightarrow [0, m]$  is continuous since the closure on  $J_m$  is the restriction of  $c_1$  to the subset  $J_m$ . In the other direction, let  $r: [0, m] \to J_m$  be given by rounding up. That is, for  $i = 0, 1, \ldots, m$ , let r(x) = i if  $x \in [i - \frac{1}{2}, i + \frac{1}{2})$ . Let  $A \subset [0, m]$ . We want to show that  $r(\overline{A}) \subset c(r(A))$ . By definition,  $i \in r(\overline{A})$  iff there exists  $x \in \overline{A}$  such that  $x \in [i - \frac{1}{2}, i + \frac{1}{2})$ . Also,  $i \in c(r(A))$  iff there exists  $x \in A$  such that  $x \in [i - \frac{3}{2}, i + \frac{3}{2})$ . Therefore  $r(\overline{A}) \subset c(r(A))$ .

- **Example 4.19.** (1) Let  $m \geq 1$  and  $0 \leq k \leq 2^m 1$ . Recall (Lemma 1.36) that we have continuous maps  $I_{\tau} \xrightarrow{f} J_{m,k} \xrightarrow{1} J_{m}$ . These maps respect the inclusion of the two distinguished points and also commute with taking maximums. Thus they are morphisms of intervals and we write  $I_{\tau} \leq J_{m,k} \leq J_{m}$ . In particular,  $I_{\tau} \leq J_{+} \leq J_{\top}$ .
  - (2) Let  $(\varepsilon, a) \leq (\varepsilon', a')$ . By Lemma 3.3, the identity map gives a morphisms of intervals  $I_{(\varepsilon,a)} \to I_{(\varepsilon',a')}$ . Therefore  $I_{(\varepsilon,a)} \leq I_{(\varepsilon',a')}$ .
  - (3) Let  $1 \leq m \leq n$ . There is a morphism of intervals  $J_n \to J_m$  given by  $i \mapsto \min(i, m)$ . Therefore  $J_n \leq J_m$ . The same map gives morphisms of intervals  $J_{n,\perp} \to J_{m,\perp}$ ,  $J_{n,\top} \to J_{m,\perp}$ , and  $J_{n,\leq} \to J_{m,\leq}$ . Therefore  $J_{n,\perp} \leq J_{m,\perp}$ ,  $J_{n,\top} \leq J_{m,\top}$ , and  $J_{n,\leq} \leq J_{m,\leq}$ . In particular,  $J_m \leq J_{\top}$ ,  $J_{m,\perp} \leq J_{\perp}$ ,  $J_{m,\top} \leq J_{\top}$  and  $J_{m,\leq} \leq J_{1,\leq} = J_{+}$ .
  - (4) Let  $1 \leq m \leq n$ . Let  $0 \leq k \leq 2^m 1$  and  $0 \leq \ell \leq 2^n 1$ , where the binary representation of k is the first m lowest order bits of the binary representation of  $\ell$ . Then the map  $i \mapsto \min(i, m)$  gives a morphism on intervals  $J_{n,\ell} \to J_{m,k}$ . Therefore  $J_{n,\ell} \leq J_{m,k}$ . In particular, for any  $m \geq 1$  and  $0 \leq k \leq 2^n 1$ , if k is odd then  $J_{m,k} \leq J_+$  and if k is even then  $J_{m,k} \leq J_-$ .
  - (5) Let  $m \geq 1$ . There is a morphism of intervals  $J_{1,\leq} \to J_{m,\leq}$  given by  $0 \mapsto 0$  and  $1 \mapsto m$ . The same map gives morphisms of intervals  $J_{\perp} \to J_{m,\perp}$  and  $J_{\top} \to J_{\top}$ . Therefore  $J_{+} = J_{1,\leq} \leq J_{m,\leq}, J_{\perp} \leq J_{m,\perp}$ , and  $J_{\top} \leq J_{m,\top}$ .
  - (6) Let  $m \geq 1$ . We have morphisms of intervals  $i: J_m \to ([0, m], c_1)$  and  $r: ([0, m], c_1) \to J_m$  (see Lemma 4.18). Furthermore, by rescaling we have  $([0, m], c_1) \cong ([0, 1], c_{\frac{1}{m}})$  and this homeomorphism is given by inverse morphisms of intervals. Thus we have morphisms of intervals  $J_m \to I_{\frac{1}{m}}$  and  $I_{\frac{1}{m}} \to J_m$ . Therefore  $J_m \leq I_{\frac{1}{m}}$  and  $I_{\frac{1}{m}} \leq J_m$ .
  - (7) Let  $f: I_{\perp} \to J_{\perp}$  be the map of sets given by rounding up. This map is continuous because  $I_{\perp}$  is discrete and it respects the structure of the intervals. Therefore it is a morphism of intervals and  $I_{\perp} \leq J_{\perp}$ .
- 4.4. **Homotopy.** An interval and a product operation give rise to a homotopy. For a product operation  $\otimes$  and a closure space X, by Lemma 4.7, there is a canonical isomorphism  $X \otimes * \cong X$ .

**Definition 4.20.** Let  $f, g: X \to Y \in \mathbf{Cl}$ . Let  $\otimes$  be a product operation and let J be an interval for  $\otimes$ . An *elementary*  $(J, \otimes)$  *homotopy* from f to g is a morphism H making the

following diagram commute.



Say that the ordered pair (f,g) is one-step  $(J,\otimes)$ -homotopic. Note that the existence of an elementary homotopy from f to g does not imply the existence of an elementary homotopy from g to f. However, for any  $f: X \to Y \in \mathbf{Cl}$ , we have an elementary  $(J,\otimes)$  homotopy from f to f given by  $f\pi_X$ , where  $\pi_X$  is the canonical continuous projection  $\pi_X: X \otimes J \to X$ . Let  $\sim_{(J,\otimes)}$  be the equivalence relation on the set  $\mathbf{Cl}(X,Y)$  generated by elementary  $(J,\otimes)$  homotopies. It is given by zigzags of elementary  $(J,\otimes)$  homotopies. If  $f \sim_{(J,\otimes)} g$ , say f and g are  $(J,\otimes)$ -homotopic. Call the equivalence relation,  $\sim_{(J,\otimes)}$ ,  $(J,\otimes)$  homotopy.

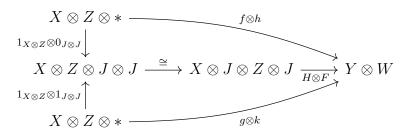
**Lemma 4.21.** Let  $\otimes$  be a product operation and let J be an interval for  $\otimes$ . Then  $\vee$  is an elementary  $(J, \otimes)$  homotopy from the identity map on J to the composite map  $J \to * \xrightarrow{1} J$ .

*Proof.* By definition, for all  $s \in J$ ,  $s \vee 0 = s$  and  $s \vee 1 = 1$ . The result follows.

**Example 4.22.** Let  $\otimes$  be a product operation. Recall that  $J_{\perp}$  and \* are the initial and terminal objects, respectively, in  $\mathbf{Int}(\otimes)$ . Since  $J_{\perp} \cong * \coprod *, X \otimes J_{\perp} \cong X \coprod X$  and we may define  $H = f \coprod g$ . Therefore, any  $f, g: X \to Y \in \mathbf{Cl}$  are one-step  $(J_{\perp}, \otimes)$ -homotopic. Since  $X \otimes * \cong X$ , we have H = f and H = g. It follows that  $f \sim_{(*, \otimes)} g$  if and only if f = g.

**Lemma 4.23.** Let  $\otimes$  be a product operation and J be an interval for  $\otimes$ . By Lemma 4.11,  $J \otimes J$  is also an interval for  $\otimes$ . If (f,g) are one-step  $(J,\otimes)$ -homotopic and (h,k) are one-step  $(J,\otimes)$ -homotopic then  $(f \otimes h, g \otimes k)$  are one-step  $(J \otimes J, \otimes)$ -homotopic.

*Proof.* Let H and F be elementary  $(J, \otimes)$  homotopies between f and g and h and k, respectively. Then the following diagram commutes.



**Corollary 4.24.** Let  $\otimes$  be a product operation and J be an interval for  $\otimes$ . If  $f \sim_{(J,\otimes)} g$  and  $h \sim_{(J,\otimes)} k$  then  $f \otimes h \sim_{(J\otimes J,\otimes)} g \otimes k$ .

*Proof.* By assumption, we have a zigzag of elementary homotopies from f to g and a zigzag of elementary homotopies from h to k. By adding identity maps as needed, we may assume that these zigzags have the same length and have matching elementary homotopies in the same direction. The result then follows from applying Lemma 4.23 to each of the paired elementary homotopies.

**Lemma 4.25.** Let X be a closure space. Then the diagonal map  $\Delta: X \to X \times X$  is continuous.

*Proof.* Let  $A \subset X$ . Let  $x \in c(A)$ . Then, for each neighborhood U of x,  $U \cap A \neq \emptyset$ . It follows that  $(U \times U) \cap \Delta(A) \neq \emptyset$ . Therefore  $(x, x) \in (c \times c)(\Delta(A))$ .

**Lemma 4.26.** Let J be an interval for  $\times$ . Then  $\Delta: J \to J \times J$  is a morphism of intervals. In particular,  $J \leq J \times J$ .

*Proof.* By Lemma 4.25,  $\Delta$  is continuous. Furthermore  $\Delta(0) = (0,0)$ ,  $\Delta(1) = (1,1)$  and  $\Delta(s \vee t) = \Delta(s) \vee \Delta(t)$ .

**Example 4.27.** Let X be a closure space. The diagonal map  $\Delta: X \to X \boxplus X$  need not be continuous. Consider the following. Let X be  $J_{\top}$  or  $J_{+}$ . Then  $1 \in c(0)$  but  $(1,1) \notin c(0,0)$ . Let X = I. Consider A = [0,1). Then  $1 \in c(A)$  but  $(1,1) \notin c(\Delta(A))$ .

We end this section with a characterization of one-step  $(J_{\top}, \times)$ -homotopy.

**Proposition 4.28.** Let  $f, g: (X, c) \to (Y, d) \in \mathbf{Cl}$ . Then f, g are one-step  $(J_{\top}, \times)$ -homotopic iff for all  $A \subset X$ ,  $f(c(A)) \cup g(c(A)) \subset d(f(A)) \cap d(g(A))$ .

*Proof.* Let e denote the indiscrete closure on  $J_{\perp}$ .

- (⇒) Let  $H: X \times J_{\top} \to Y$  be an elementary  $(J_{\top}, \times)$  homotopy from f to g. For all  $x \in X$ , H(x,0) = f(x) and H(x,1) = g(x). Let  $A \subset X$ . Then  $f(c(A)) \cup g(c(A)) = H(c(A) \times J_{\top}) = H((c \times e)(A \times 0)) \subset d(H(A \times 0)) = d(f(A))$ . Similarly  $f(c(A)) \cup g(c(A)) \subset d(g(A))$ .
- (⇐) Define  $H: X \times J_{\top} \to Y$  by H(x,0) = f(x) and H(x,1) = g(x). Let  $A \subset X \times J_{\top}$ . Let  $A_0 = \{(x,0) \in A\}$  and  $A_1 = \{(x,1) \in A\}$ . Then  $H((c \times e)(A)) = H((c \times e)(A_0 \cup A_1)) = H((c \times e)(A_0) \cup (c \times e)(A_1)) = H((c \times e)(A_0)) \cup H((c \times e)(A_1)) = f(c(A_0) \cup g(c(A_0)) \cup f(c(A_1)) \cup g(c(A_1)) \subset d(f(A_0)) \cap d(g(A_0)) \cup d(f(A_1)) \cap d(g(A_1)) \subset d(f(A_0)) \cup d(g(A_1)) = d(H(A_0)) \cup d(H(A_1)) = d(H(A_0) \cup H(A_1)) = d(H(A_0) \cup H(A_1)) = d(H(A_0))$ . Therefore H is continuous. □

As a special case, consider  $(X, E), (Y, F) \in \mathbf{DiGph}$ . Recall that  $f: X \to Y$  is a digraph homomorphism iff whenever  $x\overline{E}x'$  we have that  $fx\overline{F}fx'$ . Note that  $J_{\top}$  is the complete digraph on  $\{0,1\}$  and  $(x,i)\overline{E} \times J_{\top}(x',j)$  iff  $x\overline{E}x'$ .

**Lemma 4.29.** Let  $f, g : (X, E) \to (Y, F) \in \mathbf{DiGph}$ . Then f, g are one-step  $(J_{\top}, \times)$ -homotopic iff whenever  $x\overline{E}x'$ , we have that  $fx\overline{F}qx'$  and  $qx\overline{F}fx'$ .

*Proof.* A map  $H: X \times J_{\top} \to Y$  with H(x,0) = f(x) and H(x,1) = g(x) is a digraph homomorphism iff whenever  $x\overline{E}x'$  we have that for all  $i, j \in J_{\top}$ ,  $H(x,i)\overline{F}H(x',j)$ .

4.5. Relations between homotopy equivalences. We study relations between our homotopy theories.

**Lemma 4.30.** Let  $\otimes$  be a product operation. Let  $f, g: X \to Y \in Cl$ .

- (1) f, g are  $(I_{\tau}, \otimes)$ -homotopic iff f, g are one-step  $(I_{\tau}, \otimes)$ -homotopic.
- (2) f, g are  $(J_{\top}, \otimes)$ -homotopic iff there exists  $m \geq 1$  such that f, g are one-step  $(J_m, \otimes)$ -homotopic.
- (3) f, g are  $(J_+, \otimes)$ -homotopic iff there exists  $m \ge 1$  and  $0 \le k \le 2^m 1$  such that f, g are one-step  $(J_{m,k}, \otimes)$ -homotopic.

Proof. Suppose that f, g are  $(J_+, \otimes)$ -homotopic. A  $(J_+, \otimes)$  homotopy is obtained by the symmetric transitive closure of the elementary  $(J_+, \otimes)$  homotopy. Thus for some  $m \geq 1$ , there is a finite sequence  $f = f_0, f_1, \ldots, f_m = g$  of maps where consecutive maps  $f_i, f_{i+1}$  or  $f_{i+1}, f_i$  are one-step  $(J_+, \otimes)$ -homotopic. We may concatenate the homotopies to obtain a homotopy  $H: X \otimes J_{m,k} \to Y$  between f and g. The other cases are easier since the elementary homotopies are symmetric. Note that  $I_{\tau}^{\vee m}$  is homeomorphic to  $I_{\tau}$ .

**Proposition 4.31.** Let  $\otimes_1$ ,  $\otimes_2$  be product operations with  $\otimes_1 \leq \otimes_2$  and let J, K be intervals for  $\otimes_2$  such that  $J \leq K$ . If  $f, g: X \to Y$  are one-step  $(K, \otimes_2)$ -homotopic then they are also one-step  $(J, \otimes_1)$ -homotopic. (By Lemma 4.14, J, K are intervals for  $\otimes_1$ .)

*Proof.* Let  $h: J \to K$  be a morphism of intervals. Consider the following diagram.



The left squares commute by the natural transformation  $\otimes_1 \Rightarrow \otimes_2$ . The middle triangles commute because h is a morphism on intervals. If f and g are one-step  $(K, \otimes_2)$ -homotopic then there exists a map H such that right triangles commute. It follows that f and g are one-step  $(J, \otimes_1)$ -homotopic.

**Corollary 4.32.** Let J, K be intervals for  $\otimes_2$  with  $J \leq K$  and let  $\otimes_1, \otimes_2$  be product operations with  $\otimes_1 \leq \otimes_2$ . Let  $f, g: X \to Y \in \mathbf{Cl}$ . If  $f \sim_{(K, \otimes_2)} g$  then  $f \sim_{(J, \otimes_1)} g$ .

Corollary 4.33. Let  $J \in \{I_{\tau}, J_{\top}, J_{+}\}$ . If  $f \sim_{(J, \otimes)} g$  and  $h \sim_{(J, \otimes)} k$  then  $f \otimes h \sim_{(J, \otimes)} g \otimes k$ .

Proof. By Corollary 4.24,  $f \otimes h \sim_{(J \otimes J, \otimes)} g \otimes k$ . By Corollary 4.16 and Proposition 4.31, this implies that  $f \otimes h \sim_{(J \vee J, \otimes)} g \otimes k$ . Thus, there is a zigzag of elementary  $(J \vee J, \otimes)$  homotopies from  $f \otimes h$  to  $g \otimes k$ . Let m denote the number of elementary homotopies in the zigzag. If  $J = I_{\tau}$  then these m elementary homotopies combine to give an elementary  $([0, 2m]_{c_0+}, \otimes)$  homotopy. Since  $I_{\tau}$  is homeomorphic to  $[0, 2m]_{c_0+}$ , this is an elementary  $(I_{\tau}, \otimes)$  homotopy. If  $J = J_{\tau}$  then these m elementary homotopies combine to give an elementary  $(J_{2m}, \otimes)$  homotopy. If  $J = J_{+}$  then these m elementary homotopies combine to give an elementary  $(J_{2m,k}, \otimes)$  homotopy for some  $0 \leq k \leq 2^{2m} - 1$ . In each case, the result then follows by Lemma 4.30.

**Theorem 4.34.** Let  $m \ge 1$ ,  $0^+ < (\varepsilon, a) \le 1$  and let  $\otimes$  be a product operation. Let  $f, g: X \to Y$  be a continuous map of closure spaces. The following are equivalent.

- (1) f, g are  $(J_{\top}, \otimes)$ -homotopic.
- (2) f, g are  $(J_m, \otimes)$ -homotopic.
- (3) f, g are  $(J_{m,\top}, \otimes)$ -homotopic.
- (4) f, g are  $(I_{(\varepsilon,a)}, \otimes)$ -homotopic.

*Proof.* By Example 4.19(3),  $J_m \leq J_{\top}$ . By Corollary 4.32, (1) implies (2). By Lemma 4.30(2), if f, g are one-step  $(J_m, \otimes)$ -homotopic then f, g are  $(J_{\top}, \otimes)$ -homotopic. If f, g are  $(J_m, \otimes)$ -homotopic then they are connected by a finite sequence of elementary  $(J_m, \otimes)$  homotopies. So they are  $(J_{\top}, \otimes)$ -homotopic. Thus (2) implies (1).

By Example 4.19(3),  $J_{m,\top} \leq J_{\top}$ . By Corollary 4.32, (1) implies (3). Similarly, by Example 4.19(5),  $J_{\top} \leq J_{m,\top}$  and thus (3) implies (1).

Choose integers n, N, with  $1 \le n \le N$  such that  $\frac{1}{N} \le (\varepsilon, a) \le \frac{1}{n}$ . By Example 4.19(2) and Example 4.19(6),  $J_N \le I_{\frac{1}{N}} \le I_{(\varepsilon,a)} \le I_{\frac{1}{n}} \le J_n$ . Thus (4) implies that f, g are  $(J_N, \otimes)$ -homotopic, which we have shown implies that they are  $(J_\top, \otimes)$ -homotopic. In addition, we have shown that (1) implies that f, g are  $(J_n, \otimes)$ -homotopic and since  $I_{(\varepsilon,a)} \le J_n$  this implies (4).

**Theorem 4.35.** Let  $m \ge 1$  and  $0 \le k \le 2^m - 1$  and let  $\otimes$  be a product operation. Let  $f, g: X \to Y$  be continuous maps of closure spaces. The following are equivalent.

- (1) f, g are  $(J_+, \otimes)$ -homotopic.
- (2) f, g are  $(J_{m,<}, \otimes)$ -homotopic.
- (3) f, g are  $(J_{m,k}, \otimes)$ -homotopic.

Proof. By Example 4.19(3),  $J_{m,\leq} \leq J_+$ . By Corollary 4.32, (1) implies (2). Similarly, by Example 4.19(5),  $J_+ \leq J_{m,\leq}$  and thus (2) implies (1). By Lemma 4.30(3), if f, g are one-step  $(J_{m,k}, \otimes)$ -homotopic then they are  $(J_+, \otimes)$ -homotopic. If f, g are  $(J_{m,k}, \otimes)$ -homotopic then they are connected by a sequence of elementary  $(J_{m,k}, \otimes)$  homotopies. So they are  $(J_+, \otimes)$ -homotopic. That is, (3) implies (1). Finally, note that the equivalence relation generated by elementary  $(J_+, \otimes)$  homotopy equals the equivalence relation generated by elementary  $(J_-, \otimes)$  homotopy. Since by Example 4.19(4) either  $J_{m,k} \leq J_+$  or  $J_{m,k} \leq J_-$ , it follows that (1) implies (3).

**Theorem 4.36.** Let X and Y be closure spaces. Let  $f, g : X \to Y$  be continuous maps. Then we have the following implications

$$f \sim_{(J_{\top},\times)} g \Longrightarrow f \sim_{(J_{+},\times)} g \Longrightarrow f \sim_{(I_{\tau},\times)} g$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

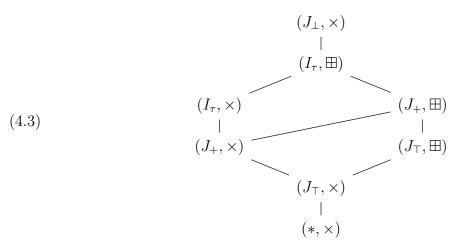
$$f \sim_{(J_{\top},\boxplus)} g \Longrightarrow f \sim_{(J_{+},\boxplus)} g \Longrightarrow f \sim_{(I_{\tau},\boxplus)} g$$

Furthermore, among homotopy relations obtained from an interval with  $0 \neq 1$  and a product operation, the relation  $\sim_{(J_{\top},\times)}$  implies any other such homotopy relation.

*Proof.* Combining Proposition 4.6 and Corollary 4.32 gives the vertical implications. The horizontal implications follow from Example 4.19(1) and Corollary 4.32. The second statement follows from Corollary 4.32, Lemma 4.17, and Proposition 4.6.  $\Box$ 

For closure spaces X and Y define a partial order on pairs  $(J, \otimes)$ , where J is an interval and  $\otimes$  is a product operation, given by  $(J, \otimes) \leq (J', \otimes')$  if for all  $f, g: X \to Y$ ,  $f \sim_{(J, \otimes)} g$  implies that  $f \sim_{(J', \otimes')} g$ . That is  $(J, \otimes) \leq (J', \otimes')$  if  $(J', \otimes')$  gives a coarser partition of the set of continuous maps from X to Y. By Theorem 4.36 and Example 4.22, we have the following poset, which is independent of X and Y.

**Theorem 4.37.** With the above partial order on intervals and product operations, we have the following Hasse diagram,



where  $f \sim_{(*,\times)} g$  if and only if f = g and thus  $(*,\times)$  is the minimum and  $f \sim_{(J_{\perp},\times)} g$  for all  $f,g:X\to Y$  and thus  $(J_{\perp},\times)$  is the maximum.

**Proposition 4.38.** For each of the equivalence relations in Theorem 4.36 there exist  $f, g: X \to Y$  such that f is not homotopy equivalent to g.

*Proof.* By Theorem 4.36, it suffices to verify the statement for the case  $(I_{\tau}, \boxplus)$ . Let X be the two point discrete space. Then the identity map  $\mathbf{1}_X$  is not  $(I_{\tau}, \boxplus)$  homotopic to a constant map. Indeed, if it was then we would have a homotopy  $H: X \boxplus I_{\tau} \to X$  between the two maps. However, since X is discrete, by Lemma 1.27, this would be equivalent to asking for a homotopy  $H: X \times I_{\tau} \to X$  between the two maps, which we know does not exist since the two point discrete space X is not  $(I_{\tau}, \times)$ -contractible.

**Definition 4.39.** Let J be an interval and let  $\otimes$  be a product operation. We say that X and Y are  $(J, \otimes)$ -homotopy equivalent if there exist morphisms  $f: X \to Y$  and  $g: Y \to X$  such that  $gf \sim_{(J, \otimes)} \mathbf{1}_X$  and  $fg \sim_{(J, \otimes)} \mathbf{1}_Y$ . We say that X is  $(J, \otimes)$ -contractible if it is  $(J, \otimes)$ -homotopy equivalent to the one-point space.

**Example 4.40.** Let  $\otimes$  be a product operation and J be an interval for  $\otimes$ . By Lemma 4.21, J is  $(J, \otimes)$ -contractible. Furthermore, for  $n \geq 0$  and  $J \in \{I_{\tau}, J_{\top}, J_{+}\}$ ,  $J^{\otimes n}$  is  $(J, \otimes)$ -contractible, which follows by induction using Corollary 4.33.

**Example 4.41.** Consider  $(\mathbb{Z}, d)$  where d(x, y) = |x - y|. Then  $(\mathbb{Z}, c_1)$  is  $(I_\tau, \times)$ -contractible [54, Lemma 4.49]. In contrast, we will show that the space  $(\mathbb{Z}, c_1)$  is not  $(J_+, \boxplus)$  contractible. Indeed, suppose that  $f_0, \ldots, f_m$  is a zigzag of one-step  $(J_+, \boxplus)$ -homotopic maps where  $f_0 = \mathbf{1}_{\mathbb{Z}}$  is the identity map and  $f_m = 0$  is the constant map to 0. A map  $f : \mathbb{Z} \to \mathbb{Z}$  gives a continuous map  $f : (\mathbb{Z}, c_1) \to (\mathbb{Z}, c_1)$  iff for all  $n, |f(n) - f(n-1)| \le 1$ . Let f and g be two such maps. By Definitions 1.24 and 4.20, the ordered pair (f, g) is one-step  $(J_+, \boxplus)$ -homotopic iff for all  $n, |f(n) - g(n)| \le 1$ . Since  $f_0(m+1) = m+1, f_m(m+1) \ge 1$ , we have a contradiction.

4.6. **Restrictions to full subcategories.** We end this section by remarking that a number of our homotopy theories have been previously studied in various full subcategories of closure spaces.

The interval I lies in the full subcategory **Top**. The intervals  $J_{m,k}$ , for  $m \geq 1, 0 \leq k \leq 2^{m-1}$  lie in the full subcategory  $\mathbf{Cl_A} \cong \mathbf{DiGph}$ . The intervals  $J_m$  for  $m \geq 1$  and  $I_{(\varepsilon,a)}$ , for a = -1, 0 and  $0 \leq \varepsilon \leq 1$  lie in the full subcategory  $\mathbf{Cl_{sA}} \cong \mathbf{Gph}$ .

The product closure restricts to **Top**, **Gph** and **DiGph** by Propositions 1.39 and 2.4. The inductive product closure restricts to **Gph** and **DiGph** by Proposition 2.7 and Corollary 2.8, where it is known as the cartesian product of graphs and digraphs.

**Lemma 4.42.** (1)  $(I_{\tau}, \times)$ -homotopy restricts to **Top** where it is called homotopy.

- (2)  $(I_{\varepsilon^-}, \times)$ -homotopy restricts to **Gph** where it is called homotopy ([57]).
- (3)  $(J_{\top}, \boxplus)$ -homotopy restricts to **Gph** where it is called A-homotopy or discrete homotopy (/46, 7, 8, 3).
- (4)  $(J_{\top}, \times)$ -homotopy restricts to **Gph** where it is called  $\times$ -homotopy ([33]).
- (5)  $(J_+, \boxplus)$ -homotopy restricts to **DiGph** where it is called homotopy ([44]).
- (6)  $(J_{\top}, \times)$ -homotopy restricts to **DiGph** where it is called bihomotopy ([34]).

## 5. Homology in closure spaces

In this section we define several homology theories for closure spaces. We start by using some of our previously defined intervals and product operations to define various simplices and cubes. We then use the standard constructions to produce corresponding simplicial and cubical homology theories. For a closure space X, let  $X^n = X^{\times n}$  and  $X^{\boxplus n}$  denote the n-fold product and n-fold inductive product, respectively, of X with itself.

5.1. **Cubical homology.** We use intervals and either the product or the inductive product to define cubical singular homology theories. Let J be one of the intervals  $I_{\tau}, J_{\top}, J_{+}$  and let  $\otimes$  denote either  $\times$  or  $\boxplus$ .

**Definition 5.1.** For  $n \ge 1$ , define the  $(J, \otimes)$  n-cube to be  $|\Box^n|^{(J, \otimes)} = J^{\otimes n}$ . By Definition 4.1, if J = (J, c) then  $|\Box^n|^{(J, \otimes)} = (J^n, c^{\otimes n})$ . Define  $|\Box^0|^{(J, \otimes)}$  to be the one point space. Denote  $|\Box^n|^{(J, \times)}$  by  $|\Box^n|^J$ . Note that  $|\Box^n|^{J_{\top}}$  is the set  $\{0, 1\}^n$  with the indiscrete topology.

**Definition 5.2.** Let X be a closure space. Given a  $(J, \otimes)$  singular n-cube,  $\sigma : |\Box^n|^{(J, \otimes)} \to X$ , for  $1 \le i \le n$  define

(5.1) 
$$A_i^n(\sigma)(a_1,\ldots,a_{n-1}) = \sigma(a_1,\ldots,a_{i-1},0,a_i,\ldots,a_{n-1})$$

(5.2) 
$$B_i^n(\sigma)(a_1,\ldots,a_{n-1}) = \sigma(a_1,\ldots,a_{i-1},1,a_i,\ldots,a_{n-1}).$$

Say  $\sigma$  is degenerate if  $A_i^n \sigma = B_i^n \sigma$  for some i. Let  $C_n^{(J,\otimes)}(X)$  be the quotient of the free abelian group on the  $(J,\otimes)$  singular n-cubes in X, which we will denote by  $Q_n^{(J,\otimes)}(X)$ , by the free abelian group on the degenerate singular n-cubes. Elements of  $C_n^{(J,\otimes)}(X)$  are called  $(J,\otimes)$  singular cubical n-chains in X. The boundary map  $\partial_n: C_n^{(J,\otimes)}(X) \to C_{n-1}^{(J,\otimes)}(X)$  is the linear map defined by

$$\partial_n \sigma = \sum_{i=1}^n (-1)^i (A_i^n \sigma - B_i^n \sigma).$$

One can check that  $\partial_{n-1}\partial_n = 0$  and thus  $(C^{(J,\otimes)}_{\bullet}(X), \partial_{\bullet})$  is a chain complex of abelian groups. The *cubical singular homology groups* are the homology groups of this chain complex, which we denote by  $H^{(J,\otimes)}_{\bullet}(X)$ .

**Definition 5.3.** We may augment the singular chain complex with the augmentation map  $\varepsilon: C_0^{(J,\otimes)}(X) \to \mathbb{Z}$  given by  $\sum_i n_i \sigma_i = \sum_i n_i$ . The homology of the augmented singular chain complex is called reduced homology and denoted  $\tilde{H}_{\bullet}^{(J,\otimes)}(X)$ .

**Example 5.4.** Let \* denote the one point space. There is a single nondegenerate  $(J, \otimes)$  0-cube given by the identity map and for  $k \geq 1$  the  $(J, \otimes)$  singular k-cubes are all degenerate. Therefore  $\tilde{H}_k^{(J, \otimes)}(*) = 0$  for all  $k \geq 0$ .

**Definition 5.5.** Let  $f: X \to Y$  be a continuous map of closure spaces. Let  $\sigma: |\Box^n|^{(J,\otimes)} \to X$  be a  $(J,\otimes)$  singular n-cube. Then  $f \circ \sigma: |\Box^n|^{(J,\otimes)} \to Y$  is a  $(J,\otimes)$  singular n-cube in Y. Furthermore f induces a group homomorphism  $f_\#: Q_n^{(J,\otimes)}(X) \to Q_n^{(J,\otimes)}(Y)$ , which sends degenerate cubes to degenerate cubes. Thus it also induces a group homomorphism  $f_\#: C_n^{(J,\otimes)}(X) \to C_n^{(J,\otimes)}(Y)$ . It can be checked that for all  $n \geq 0$  these maps respect the boundary operators and thus they induce maps on homology  $f_*: H_n^{(J,\otimes)}(X) \to H_n^{(J,\otimes)}(Y)$ . In particular, for each  $n \geq 0$ , we have a functor  $H_n^{(J,\otimes)}(-): \mathbf{Cl} \to \mathbf{Ab}$ .

**Theorem 5.6.** Let  $f, g: (X, c) \to (Y, d)$ . If  $f \sim_{(J, \otimes)} g$ , then  $f_* = g_*: H_n^{(J, \otimes)}(X, c) \to H_n^{(J, \otimes)}(Y, d)$ .

*Proof.* It is sufficient to assume that f and g are one-step  $(J, \otimes)$ -homotopic. That is, there exists  $H: X \otimes J \to Y$  such that H(-,0) = f(-) and H(-,1) = g(-). By definition,  $|\Box^n|^{(J,\otimes)} \otimes J$  is  $|\Box^{n+1}|^{(J,\otimes)}$ .

Let  $\sigma: |\Box^n|^{(J,\otimes)} \to (X,c)$  be a singular n-cube. Consider the composition  $H \circ (\sigma \times \mathbf{1}): |\Box^n|^{(J,\otimes)} \otimes J \to X \otimes J \to Y$ . Define a map  $P: C_n^{(J,\otimes)}(X,c) \to C_{n+1}^{(J,\otimes)}(Y,d)$  as follows. For a  $(J,\otimes)$  singular n-cube  $\sigma: |\Box^n|^{(J,\otimes)} \to (X,c)$  let

$$P(\sigma) = \tilde{\sigma},$$

where  $\tilde{\sigma}$  is the  $(J, \otimes)$  singular (n+1)-cube such that  $A_1^{n+1}(\tilde{\sigma}) = H(\sigma, 0)$  and  $B_1^{n+1}(\tilde{\sigma}) = H(\sigma, 1)$ . We now show that  $\partial P = g_{\#} - f_{\#} - P\partial$ . We have

$$\partial P(\sigma) = \partial \tilde{\sigma} = \sum_{j=1}^{n+1} (-1)^j (A_j^{n+1} \tilde{\sigma} - B_j^{n+1} \tilde{\sigma}) = (-1)^1 (A_1^{n+1} \tilde{\sigma} - B_1^{n+1} \tilde{\sigma}) + \sum_{j=2}^{n+1} (-1)^j (A_j^{n+1} \tilde{\sigma} - B_j^{n+1} \tilde{\sigma})$$

$$= -(H(\sigma, 0) - H(\sigma, 1)) + \sum_{j=1}^{n} (-1)^{j+1} (H(A_{j+1}^n \sigma, -) - H(B_{j+1}^n \sigma, -)),$$

where - in  $H(A_j^n\sigma,-)$  and  $H(B_j^n\sigma,-)$  denotes either 0 or 1. The first sum in the equation above is  $H(\sigma,1)-H(\sigma,0)=g_\#(\sigma)-f_\#(\sigma)$ . The second sum is precisely  $-P\partial\sigma$  as can be seen by unwrapping the definitions of  $\partial$  and P. Thus  $\partial P(\sigma)=g_\#(\sigma)-f_\#(\sigma)-P\partial(\sigma)$ . Extending linearly we get that  $\partial P=g_\#-f_\#-P\partial$ . Furthermore, if  $\sigma$  is degenerate,  $P(\sigma)$  is also degenerate. Thus, P is induces a homomorphism  $P:C_n^{(J,\otimes)}(X,c)\to C_{n+1}^{(J,\otimes)}(Y,d)$ . Therefore, P is a chain homotopy between  $f_\#$  and  $g_\#$  and hence  $f_*=g_*$ .

By Theorem 5.6 and Example 5.4 we get the following corollary.

Corollary 5.7. Let X be a  $(J, \otimes)$ -contractible closure space. Then  $\tilde{H}_n^{(J, \otimes)}(X) = 0$  for all  $n \geq 0$ .

The following examples will help demonstrate that our six cubical singular homology groups are distinct.

**Example 5.8.** The only continuous maps from  $J_{\top}$  to  $J_{+}$  are the constant maps, which are degenerate  $(J_{\top}, \times)$  and  $(J_{\top}, \boxplus)$  singular 1-cubes, and thus  $H_0^{(J_{\top}, \boxplus)}(J_{+}) = H_0^{(J_{\top}, \times)}(J_{+}) = \mathbb{Z}^2$ .

**Example 5.9.** Consider the space  $(\mathbb{R}, c_{0^+})$ . The only continuous maps from  $|\Box^1|^{J_{\top}}$ ,  $|\Box^1|^{(J_{\top}, \boxplus)}$ ,  $|\Box^1|^{J_{+}}$  and  $|\Box^1|^{(J_{+}, \boxplus)}$  into  $(\mathbb{R}, c_{0^+})$  are the constant maps. Therefore

$$H_0^{(J_{\top},\times)}(\mathbb{R},c_{0^+}) = H_0^{(J_{\top},\boxplus)}(\mathbb{R},c_{0^+}) = H_0^{(J_{+},\times)}(\mathbb{R},c_{0^+}) = H_0^{(J_{+},\boxtimes)}(\mathbb{R},c_{0^+}) = \bigoplus_{x\in\mathbb{R}}\mathbb{Z}.$$

**Example 5.10.** Consider  $|\Box^2|^{(J_+,\boxplus)} = J_+^{\boxplus 2}$ . We will show that  $H_1^{(J_+,\times)}(|\Box^2|^{(J_+,\boxplus)}) \cong \mathbb{Z}$ . Let a,b,c,d, denote the vertices (0,0), (0,1), (1,0) and (1,1) of  $|\Box^2|^{(J_+,\boxplus)}$ . Denote the singular k cubes by the images of the vertices of  $|\Box^k|^{J_+}$ , when those vertices are listed in lexicographic order. Then,  $C_0^{(J_+,\times)}(|\Box^2|^{(J_+,\boxplus)}) = \mathbb{Z}\langle a,b,c,d\rangle$  and  $C_1^{(J_+,\times)}(|\Box^2|^{(J_+,\boxplus)}) = \mathbb{Z}\langle ab,ac,bd,cd\rangle$ . Furthermore,  $C_2^{(J_+,\times)}(|\Box^2|^{(J_+,\boxplus)}) = \langle aaab,abbb,aaac,accc,bbbd,bddd,cccd,cddd\rangle$ . Note that, for example, abab is degenerate, and the map corresponding to abcd is not continuous. One can check that  $\partial_2 = 0$ . Since,  $\ker \partial_1 = \mathbb{Z}\langle \tau \rangle$ , where  $\tau = ab + bd - ac - cd$ , the result follows.

**Example 5.11.** Consider  $|\Box^2|^{(J_{\top}, \boxplus)} = J_{\top}^{\boxplus 2}$ . We will show that  $H_1^{(J_{\top}, \times)}(|\Box^2|^{(J_{\top}, \boxplus)}) \cong \mathbb{Z}$ . Let a, b, c, d, denote the vertices (0, 0), (0, 1), (1, 0) and (1, 1) of  $|\Box^2|^{(J_{\top}, \boxplus)}$ . Denote the singular k cubes by the images of the vertices of  $|\Box^k|^{J_{\top}}$ , when those vertices are listed in lexicographic order. Then,  $C_0^{(J_{\top}, \times)}(|\Box^2|^{(J_{\top}, \boxplus)}) = \mathbb{Z}\langle a, b, c, d \rangle$  and  $C_1^{(J_{\top}, \times)}(|\Box^2|^{(J_{\top}, \boxplus)}) = \mathbb{Z}\langle ab, ba, ac, ca, bd, db, cd, dc \rangle$ .

Furthermore,  $C_2^{(J_\top,\times)}(|\Box^2|^{(J_\top,\boxplus)})$  is the free abelian group with generators of the form uuuv, uuvu, uvuu, uvuu, and uvvu where  $(u,v) \in \{(a,b),(b,a),(a,c),(c,a),(b,d),(d,b),(c,d),(d,c)\}$ . Note that, for example,  $\partial_2(abaa) = ab + ba - 2aa = ab + ba$  since aa is degenerate. No map whose image contains 3 distinct vertices of  $J_\top \boxplus J_\top$  is continuous, and the map corresponding to abcd is not continuous. The result follows from checking that  $\ker \partial_1 = \mathbb{Z}\langle ab + ba, ac + ca, bd + db, cd + dc, \tau \rangle$ , where  $\tau = ab + bd - ac - cd$  and  $\operatorname{im} \partial_2 = \mathbb{Z}\langle ab + ba, ac + ca, bd + db, cd + dc \rangle$ .

**Proposition 5.12.** With the possible exception of  $H^{(I_{\tau},\times)}_{\bullet}$  and  $H^{(I_{\tau},\boxplus)}_{\bullet}$  our six cubical singular homology theories are distinct.

Proof. Since  $(\mathbb{R}, c_{0^+})$  is  $(I_{\tau}, \times)$ -contractible it is also  $(I_{\tau}, \boxplus)$ -contractible by Theorem 4.36. Thus  $H_0^{(I_{\tau}, \times)}(\mathbb{R}, c_{0^+}) \cong H_0^{(I_{\tau}, \boxplus)}(\mathbb{R}, c_{0^+}) \cong \mathbb{Z}$  by Theorem 5.6. Therefore by Example 5.9 each of  $H_{\bullet}^{(J_{\tau}, \times)}(-), H_{\bullet}^{(J_{\tau}, \boxplus)}(-), H_{\bullet}^{(J_{\tau}, \times)}(-), H_{\bullet}^{(J_{\tau}, \boxplus)}(-)$  is distinct from each of  $H_{\bullet}^{(I_{\tau}, \times)}(-), H_{\bullet}^{(I_{\tau}, \boxplus)}(-)$ . By Example 4.40 and Theorem 5.6 we have that  $H_0^{(J_{\tau}, \times)}(J_{+}) \cong H_0^{(J_{\tau}, \boxplus)}(J_{+}) \cong \mathbb{Z}$ . Combined with Example 5.8 we have that  $H_{\bullet}^{(J_{\tau}, \boxplus)}(-), H_{\bullet}^{(J_{\tau}, \times)}(-)$  are each distinct from each of  $H_{\bullet}^{(J_{\tau}, \times)}(-), H_{\bullet}^{(J_{\tau}, \oplus)}(-)$ .

By Example 4.40 and Theorem 5.6 we have that  $J_{+}^{\boxplus 2}$  is  $(J_{+}, \boxplus)$ -contractible and thus  $H_{1}^{(J_{+}, \boxplus)}(J_{+}^{\boxplus 2}) = 0$ . By Example 5.10 we then have that  $H_{\bullet}^{(J_{+}, \boxplus)}(-)$  is distinct from  $H_{\bullet}^{(J_{+}, \times)}(-)$ . Similarly,  $H_{1}^{(J_{+}, \boxplus)}(J_{+}^{\boxplus 2}) = 0$ , which together with Example 5.11 shows that  $H_{\bullet}^{(J_{+}, \boxplus)}(-)$  is distinct from  $H_{\bullet}^{(J_{+}, \boxtimes)}(-)$ .

5.2. Simplicial homology. In the case of the product, we define corresponding simplicial singular homology theories. Let J be one of  $I_{\tau}$ ,  $J_{\top}$ , or  $J_{+}$ . Denote  $(J, \times)$  simply by J.

**Definition 5.13.** For 
$$n \ge 0$$
 define  $\iota_n : \{0, ..., n\} \to \{0, 1\}^n$  by  $\iota(k) = (\underbrace{1, ..., 1}_{k}, \underbrace{0, ..., 0}_{n-k})$ .

Let  $|\Delta^n|^{I_{\tau}}$  denote the convex hull of  $\operatorname{im}(\iota)$  in  $|\Box^n|^{I_{\tau}}$  with the subspace closure. Let  $|\Delta^n|^{J_+}$  and  $|\Delta^n|^{J_{\tau}}$  denote  $\operatorname{im}(\iota)$  in  $|\Box^n|^{J_+}$  and  $|\Box^n|^{J_{\tau}}$ , respectively, with the subspace closure. Call  $|\Delta^n|^J$  the J n-simplex. For  $0 \le i \le n$ , the i-face of  $|\Delta^n|^J$  is the convex hull of the image of  $\iota|_{\{0,\ldots,\hat{\iota},\ldots,n\}}$  if  $J = I_{\tau}$  or the image of  $\iota|_{\{0,\ldots,\hat{\iota},\ldots,n\}}$  if  $J = J_{\tau}$ .

Note that  $|\Delta^n|^{I_{\tau}}$  is homeomorphic to the standard n-simplex,  $|\Delta^n|^{J_{\tau}}$  is homeomorphic to  $J_{n,\top}$ , the set  $\{0,1,\ldots,n\}$  with the indiscrete topology, and  $|\Delta^n|^{J_+}$  is homeomorphic to  $J_{n,\leq}$ , the set  $\{0,1,\ldots,n\}$  with the closure operator  $c(i)=\{j\mid i\leq j\}$ .

**Definition 5.14.** Let X be a closure space. Let  $C_n^J(X)$  be the free abelian group on the J singular n-simplices,  $\sigma: |\Delta^n|^J \to X$ . For  $n \ge 1$ , let  $\partial_n: C_n^J(X) \to C_{n-1}^J(X)$  be the map defined by

$$\partial_n \sigma = \sum_{i=0}^n (-1)^i d_i \sigma,$$

where  $d_i\sigma$  is the restriction of  $\sigma$  to the *i*-th face of  $|\Delta^n|^J$ . Since  $\partial_{n-1}\partial_n = 0$  we have a chain complex of free abelian groups,  $(C^J_{\bullet}(X), \partial_{\bullet})$  whose homology groups we denote by  $H_n^J(X)$  and are called the simplicial singular homology groups.

Let  $f: X \to Y$  be a continuous map of closure spaces. Let  $\sigma: |\Delta^n|^J \to X$  be a J singular n-simplex. Then  $f \circ \sigma: |\Delta^n|^J \to Y$  is a singular J singular n-simplex in Y. Furthermore f induces a group homomorphism  $f_\#: C_n^J(X) \to C_n^J(Y)$ . It can be checked that for all  $n \geq 0$  these maps respect the boundary operators and thus they induce maps on homology  $f_*: H_n^J(X) \to H_n^J(Y)$ . In particular, for each  $n \geq 0$  we have a functor  $H_n^J(-): \mathbf{Cl} \to \mathbf{Ab}$ .

In a companion paper [17] we show that the corresponding simplicial singular homology groups and cubical singular homology groups agree.

5.3. Restrictions to full subcategories. We end this section by remarking that a number of our homology theories have been previously studied in various full subcategories of closure spaces.

Recall that  $\mathbf{Cl_{sA}} \cong \mathbf{Gph}$ . Under this isomorphism,  $|\Delta^n|^{J_{\top}}$  corresponds to  $K_{n+1}$ , the complete graph on n+1 vertices, and  $|\Box^n|^{(J_{\top},\boxplus)}$  corresponds to the hypercube graph  $Q_n$ . Also recall that  $\mathbf{Cl_A} \cong \mathbf{DiGph}$ . Under this isomorphism,  $|\Delta^n|^{J_{+}}$  corresponds to  $K_{n+1}^{\nearrow}$ , the digraph of the poset  $(\{0,\ldots,n\},\leq)$  and  $|\Box^{n+}|^{(J_{+},\boxplus)}$  corresponds to the hypercube digraph  $Q_n^{\nearrow}$ , where the vertices are the elements of  $\{0,1\}^n$  and the directed edges given by  $(a,a+e_i)$  where  $e_i$  is a standard basis vector.

**Lemma 5.15.** (1)  $H^{(I_{\tau},\times)}_{\bullet}(X)$  restricts to **Top** where it is called singular homology.

- (2)  $H_{\bullet}^{(J_{\top},\times)}(X)$  restricts to **Gph** where it is the homology of the clique complex of a graph.
- (3)  $H^{(J_{\top}, \boxplus)}_{\bullet}(X)$  restricts to **Gph** where it is called discrete (cubical) homology ([4, 5, 6]).
- (4)  $H_{\bullet}^{(J_+,\times)}(X)$  restricts to **DiGph** where it is the homology of the directed clique complex.

5.4. Homology with coefficients. Let C be one of the chain complexes of Section 5.1 or Section 5.2. Let A be an abelian group, which we consider to be a chain complex concentrated in degree zero. Then the tensor product  $C \otimes A$  is a chain complex whose homology  $H_{\bullet}(C \otimes A)$  is called the homology of C with coefficients in A. As a special case, for a field k, the homology groups  $H_i(C \otimes k)$  are k-vector spaces.

#### 6. Simplicial complexes from closure spaces

In this section we give functorial constructions of simplicial complexes and hypergraphs from closure spaces and vice-versa. As special cases, we obtain generalizations of the Vietoris-Rips complex and Čech complex constructions.

6.1. **Hypergraphs and simplicial complexes.** We define hypergraphs and simplicial complexes and related categories and functors. We obtain a sequence of adjunctions connecting closure spaces and hypergraphs via graphs and simplicial complexes.

**Definition 6.1.** A simple hypergraph H is a pair H = (X, E) where X is a set and E is a collection of non-empty subsets of X. We will call a simple hypergraph a hypergraph. Elements of X are called vertices of the hypergraph H and elements of E are called hyperedges of the hypergraph H. A hypergraph homomorphism  $f:(X,E)\to (Y,F)$  between two hypergraphs is a map  $f:X\to Y$  such that for each  $e\in E$ ,  $f(e)\in F$ . Let **HypGph** denote the category of hypergraphs and hypergraph homomorphisms. Say that a hypergraph has finite type if its hyperedges are finite sets. Say that a hypergraph is downward closed if  $\tau\in E$  and  $\emptyset\neq \sigma\subset \tau$  implies that  $\sigma\in E$  and  $x\in X$  implies that  $\{x\}\in E$ . A simplicial complex is a downward-closed finite-type hypergraph. Let  $\mathbf{HypGph_{ft}}$ ,  $\mathbf{HypGph_{dc}}$ , and  $\mathbf{Simp}$  denote the full subcategories of  $\mathbf{HypGph}$  consisting of finite type hypergraphs, downward closed hypergraphs, and simplicial complexes. In  $\mathbf{Simp}$ , hyperedges and hypergraph homomorphisms are called simplices and simplicial maps, respectively.

Let  $(X, E) \in \mathbf{HypGph}$ . Define the downward closure of E,  $\mathrm{dc}(E)$ , to be the collection of nonempty subsets  $\sigma$  of X such there exists  $\tau \in E$  with  $\sigma \subset \tau$  or  $\sigma = \{x\}$  for some  $x \in X$ . Assume  $f: (X, E) \to (Y, F) \in \mathbf{HypGph}$ . Given  $\varnothing \neq \sigma \subset \tau \in E, \varnothing \neq f(\sigma) \subset f(\tau) \in F$ . So  $f(\sigma) \in \mathrm{dc}(F)$ . Also  $f(\{x\}) = \{f(x)\} \in Y$ . So  $f(\{x\}) \in \mathrm{dc}(F)$ . Therefore  $f: (X, \mathrm{dc}(E)) \to (Y, \mathrm{dc}(F)) \in \mathbf{HypGph}$ . Thus the mappings (X, E) to  $(X, \mathrm{dc}(E))$  and  $f: (X, E) \to (Y, E)$  to  $f: (X, \mathrm{dc}(E)) \to (Y, \mathrm{dc}(F))$  define a functor  $\mathrm{dc}: \mathbf{HypGph} \to \mathbf{HypGph_{dc}}$ .

**Proposition 6.2.** Let  $(X, E) \in \mathbf{HypGph}$  and  $(Y, E) \in \mathbf{HypGph_{dc}}$ . Given a set map  $f: X \to Y$ ,  $f: (X, E) \to (Y, F)$  is a hypergraph homomorphism iff  $f: (X, \mathrm{dc}(E)) \to (Y, F)$  is a hypergraph homomorphism. Thus, we have a natural isomorphism

$$\mathbf{HypGph_{dc}}((X, \mathrm{dc}(E)), (Y, F)) \cong \mathbf{HypGph}((X, E), (Y, F)).$$

That is, dc is left adjoint to the inclusion functor  $\mathbf{HypGph_{dc}} \hookrightarrow \mathbf{HypGph}$ .

*Proof.* ( $\Rightarrow$ ) If  $\tau \in E$  and  $\varnothing \neq \sigma \subset \tau$  then  $\varnothing \neq f(\sigma) \subset f(\tau) \in F$  and thus  $f(\sigma) \in F$ . If  $x \in X$  then  $f(\{x\}) = \{f(x)\} \in F$ . ( $\Leftarrow$ )  $E \subset dc(E)$ .

Let  $(X, E) \in \mathbf{HypGph_{dc}}$ . Define  $\mathrm{tr}_{\infty}(E) = \{ \sigma \in E \mid |\sigma| < \infty \}$ . Let  $\mathrm{tr}_{\infty} : \mathbf{HypGph_{dc}} \to \mathbf{Simp}$  denote the functor defined by mapping (X, E) to  $(X, \mathrm{tr}_{\infty}(E))$  and mapping  $f : (X, E) \to (Y, F)$  to  $f : (X, \mathrm{tr}_{\infty}(E)) \to (Y, \mathrm{tr}_{\infty}(F))$ .

Let  $(X, E) \in \mathbf{Simp}$ . Define  $\operatorname{cosk}_{\infty}(E)$  be the collection of nonempty subsets  $\tau$  of X such that for all finite nonempty subsets  $\sigma \subset \tau$ ,  $\sigma \in E$ . Note that  $\sigma \in \operatorname{cosk}_{\infty}(E)$  and  $|\sigma| < \infty$  implies that  $\sigma \in E$ . Let  $\operatorname{cosk}_{\infty} : \mathbf{Simp} \to \mathbf{HypGph_{dc}}$  denote the functor defined by mapping (X, E) to  $(X, \operatorname{cosk}_{\infty}(E))$  and mapping  $f : (X, E) \to (Y, F)$  to  $f : (X, \operatorname{cosk}_{\infty}(E)) \to (Y, \operatorname{cosk}_{\infty}(F))$ .

**Proposition 6.3.** Let  $(X, E) \in \mathbf{HypGph_{dc}}$  and  $(Y, E) \in \mathbf{Simp}$ . Given a set map  $f: X \to Y$ ,  $f: (X, \operatorname{tr}_{\infty}(E)) \to (Y, F)$  is a simplicial map iff  $f: (X, E) \to (Y, \operatorname{cosk}_{\infty}(F))$  is a hypergraph homomorphism. Thus, we have a natural isomorphism

$$\mathbf{Simp}((X, \mathrm{tr}_{\infty}(E)), (Y, F)) \cong \mathbf{HypGph}_{\mathbf{dc}}((X, E), (Y, \mathrm{cosk}_{\infty}(F))).$$

That is,  $\operatorname{tr}_{\infty}$  is left adjoint to  $\operatorname{cosk}_{\infty}$ .

Proof. ( $\Rightarrow$ ) Let  $\tau \in E$ . Note that for all nonempty finite subsets of  $f(\tau)$  equal  $f(\sigma)$  for some nonempty finite  $\sigma \subset \tau$ . Since  $\tau \in E$ , for all nonempty, finite subsets  $\sigma \subset \tau$ ,  $\sigma \in \operatorname{tr}_{\infty}(E)$  and hence  $f(\sigma) \in F$ . Thus for all nonempty finite subsets  $\sigma' \subset f(\tau)$ ,  $\sigma' \in F$ . Therefore  $f(\tau) \in \operatorname{cosk}_{\infty}(F)$ .

$$(\Leftarrow)$$
 If  $\sigma \in \operatorname{tr}_{\infty}(E)$  then  $f(\sigma) \in \operatorname{cosk}_{\infty}(F)$  and  $|f(\sigma)| < \infty$ . Therefore  $f(\sigma) \in F$ .

Let  $(X, E) \in \mathbf{Simp}$ . Define  $\operatorname{tr}_1(E) = \{ \sigma \in E \mid |\sigma| = 2 \}$ . Let  $\operatorname{tr}_1 : \mathbf{Simp} \to \mathbf{Gph}$  denote the functor defined by mapping (X, E) to  $(X, \operatorname{tr}_1(E))$  and mapping  $f : (X, E) \to (Y, F)$  to  $f : (X, \operatorname{tr}_1(E)) \to (Y, \operatorname{tr}_1(F))$ .

Let  $(X, E) \in \mathbf{Simp}$ . Define  $\operatorname{cosk}_1(E)$  be the collection of nonempty finite subsets  $\tau$  of X such that for all distinct  $x, y \in \tau$ ,  $\{x, y\} \in E$ . Note that this includes all subsets of X of cardinality one. Let  $\operatorname{cosk}_1 : \mathbf{Gph} \to \mathbf{Simp}$  denote the functor defined by mapping (X, E) to  $(X, \operatorname{cosk}_1(E))$  and mapping  $f : (X, E) \to (Y, F)$  to  $f : (X, \operatorname{cosk}_1(E)) \to (Y, \operatorname{cosk}_1(F))$ . Given a graph (X, E), the simplicial complex  $(X, \operatorname{cosk}_1(E))$  is called the *clique complex* of the graph. A simplicial complex in the image of  $\operatorname{cosk}_1 : \mathbf{Gph} \to \mathbf{Simp}$  is called a *flag complex* or, equivalently, is said to satisfy Gromov's  $\operatorname{no-}\Delta$  condition. Observe that for a graph (X, E),  $(X, \operatorname{tr}_1(\operatorname{cosk}_1(E))) = (X, E)$ .

**Proposition 6.4.** Let  $(X, E) \in \mathbf{Simp}$  and  $(Y, E) \in \mathbf{Gph}$ . Given a set map  $f: X \to Y$ ,  $f: (X, \operatorname{tr}_1(E)) \to (Y, F)$  is a graph homomorphism iff  $f: (X, E) \to (Y, \operatorname{cosk}_1(F))$  is a simplicial map. Thus, we have a natural isomorphism

$$\mathbf{Gph}((X, \mathrm{tr}_1(E)), (Y, F)) \cong \mathbf{Simp}((X, E), (Y, \mathrm{cosk}_1(F))).$$

That is,  $tr_1$  is left adjoint to  $cosk_1$ .

*Proof.* ( $\Rightarrow$ ) Let  $\sigma \in E$ . For all  $x \neq y \in \sigma$ ,  $\{x,y\} \in \operatorname{tr}_1(E)$ . Thus f(x) = f(y) or  $\{f(x), f(y)\} \in F$ . Therefore  $f(\sigma) \in \operatorname{cosk}_1(F)$ .

 $(\Leftarrow)$  Let  $x, y \in X$  such that  $\{x, y\} \in E$  and  $x \neq y$ . Then  $f(\{x, y\}) \in \operatorname{cosk}_1(F)$ , which implies that either f(x) = f(y) or  $\{f(x), f(y)\} \in F$ . Therefore f is a graph homomorphism.

Combining Propositions 1.47, 1.51 and 1.56 with Propositions 6.2 to 6.4, we have the following sequence of adjunctions. Recall that adjunctions compose to give adjoint functors.

Theorem 6.5. We have the following composite adjunction between Cl and HypGph.

$$Cl \xrightarrow[A]{\bot} Cl_{A} \xrightarrow[s]{\bot} Cl_{sA} \xrightarrow[\Phi]{\Psi} Gph \xrightarrow[\cosh_{1}]{tr_{1}} Simp \xrightarrow[cosk_{\infty}]{tr_{\infty}} HypGph_{dc} \xrightarrow[L]{dc} HypGph$$

We end this section by defining one more functor that will be used the Section 6.2.

**Definition 6.6.** Let  $(X, c) \in \mathbf{Cl_A}$ . Define  $\Gamma(c)$  to be the downward closure of the collection of subsets of X,  $\{c(x)\}_{x \in X}$ . Let  $\Gamma : \mathbf{Cl_A} \to \mathbf{HypGph_{dc}}$  be the functor defined by mapping  $(X, c) \to (X, \Gamma(c))$  and mapping  $f : (X, c) \to (Y, d)$  to  $f : (X, \Gamma(c)) \to (Y, \Gamma(d))$ .

6.2. Vietoris-Rips and Čech complexes. We give functorial constructions of Vietoris-Rips complexes and Čech complexes for closure spaces which send one-step  $(J_{\top}, \times)$ -homotopic maps to contiguous simplicial maps. We give an adjoint functor to the Vietoris-Rips construction which sends contiguous simplicial maps to one-step  $(J_{\top}, \times)$ -homotopic maps.

Let (X,c) be a closure space. Let  $\operatorname{VR}(c)$  be the collection of nonempty finite subsets  $\sigma \subset X$ , such that for all  $x \in \sigma$ ,  $\sigma \subset c(x)$ . Note that for all  $x \in X$ ,  $x \in c(x)$ , so  $\{x\} \in \operatorname{VR}(c)$ . Also, if  $\tau \in \operatorname{VR}(c)$  and  $\varnothing \neq \sigma \subset \tau$  then  $\sigma \in \operatorname{VR}(c)$ . Thus,  $(X,\operatorname{VR}(c))$  is a simplicial complex. Assume  $f:(X,c) \to (Y,d) \in \operatorname{Cl}$ . Let  $\sigma \in \operatorname{VR}(X)$ . Then  $f(\sigma)$  is a finite nonempty subset of Y. Furthermore, all elements of  $f(\sigma)$  are of the form f(x) for some  $x \in \sigma$ . As  $\sigma \subset c(x)$ , it follows that  $f(\sigma) \subset f(c(x)) \subset d(f(x))$ . Therefore  $f(\sigma) \in \operatorname{VR}(d)$ , which implies that  $f:(X,\operatorname{VR}(c)) \to (Y,\operatorname{VR}(d))$  is a simplicial map.

**Definition 6.7.** Define the functor  $VR : \mathbf{Cl} \to \mathbf{Simp}$  by mapping (X, c) to (X, VR(c)) and  $f : (X, c) \to (Y, d)$  to  $f : (X, VR(c)) \to (Y, VR(d))$ .

Let (X, d) be a metric space and  $\varepsilon > 0$ . Then  $(X, \operatorname{VR}(c_{\varepsilon,d}))$  consists of simplices  $\{x_0, \ldots, x_n\}$  where  $d(x_i, x_j) \leq \varepsilon$  for all i, j. That is, it is the usual Vietoris-Rips complex on (X, d)). We also have the variant,  $(X, \operatorname{VR}(c_{\varepsilon^-,d}))$  consisting of simplices  $\{x_0, \ldots, x_n\}$  where  $d(x_i, x_j) < \varepsilon$  for all i, j, which is sometime used.

Let (X,c) be a closure space. Define  $\check{C}(c)$  to be the collection of nonempty finite subsets  $\sigma \subset X$  such that there exists  $x \in X$  with  $\sigma \subset c(x)$ . Note that for all  $x \in X$ ,  $x \in c(x)$ , so  $\{x\} \in \check{C}(c)$ . Furthermore, if  $\tau \in \check{C}(c)$  and  $\varnothing \neq \sigma \subset \tau$  then  $\sigma \in \check{C}(c)$ . That is,  $(X,\check{C}(c))$  is a simplicial set. Assume  $f: (X,c) \to (Y,d) \in \mathbf{Cl}$ . Let  $\sigma \in \check{C}(c)$ . Then  $f(\sigma)$  is a nonempty finite subset of Y. There exists  $x \in X$  such that  $\sigma \subset c(x)$ , which implies that  $f(\sigma) \subset f(c(x)) \subset d(f(x))$ . Therefore  $f(\sigma) \in \check{C}(d)$  and thus  $f: (X,\check{C}(c)) \to (Y,\check{C}(d))$  is a simplicial map.

**Definition 6.8.** Define the functor  $\check{C}: \mathbf{Cl} \to \mathbf{Simp}$  by mapping (X,c) to (X,C(c)) and  $f:(X,c)\to (Y,d)$  to  $f:(X,\check{C}(c))\to (Y,\check{C}(d))$ .

Let (X, d) be a metric space and  $\varepsilon > 0$ . Then  $(X, \check{C}(c_{\varepsilon,d}))$  consists of simplices  $\{x_0, \ldots, x_n\}$  such that there is a  $x \in X$  with  $d(x_i, x) \leq \varepsilon$  for all i. That is, it is the usual (intrinsic) Čech complex on (X, d)). We also have the variant,  $(X, \check{C}(c_{\varepsilon^-,d}))$  consisting of simplices  $\{x_0, \ldots, x_n\}$  such that there is a  $x \in X$  with  $d(x_i, x) < \varepsilon$  for all i.

It is straightforward from the definitions to check that  $VR = VR \iota A$  and  $\check{C} = \check{C}\iota A$ , where  $\iota : \mathbf{Cl_A} \to \mathbf{Cl}$  is the inclusion functor. That is, for an closure space (X, c), we have  $(X, VR(c)) = (X, VR(A(c))), (X, \check{C}(c)) = (X, \check{C}(A(c))).$ 

**Example 6.9.** Let  $X = \{x, y, z\}$  be a 3-point set with the closure operator c, defined by

$$c(x) = \{x, y\}, c(y) = \{x, y\}, c(z) = \{x, y, z\}$$

Note that c does not arise from a metric since it is not symmetric. From the definitions,  $VR(c) = \{\{x\}, \{y\}, \{z\}, \{x,y\}\} \text{ and } \check{C}(c) = \{\{x\}, \{y\}, \{z\}, \{x,y\}, \{x,z\}, \{y,z\}, \{x,y,z\}\}.$  See Figure 2.

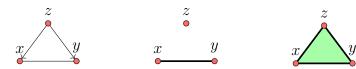


FIGURE 2. For the Alexandroff closure space in Example 6.9, we have its corresponding directed graph (left), its Vietoris-Rips complex (middle), and its Čech complex (right).

**Definition 6.10.** Let  $(X, E) \in \mathbf{Simp}$ . For  $x \in X$ , let the *star* of x denoted  $\mathrm{st}(x)$  be the union of the simplices in E containing x. Since  $\{x\} \in E$ ,  $x \in \mathrm{st}(x)$ . By Definition 1.45, let the *star* closure,  $\mathrm{st}(E)$ , be the induced Alexandroff closure, given by  $\mathrm{st}(E)(A) = \bigcup_{a \in A} \mathrm{st}(a)$ , which equals the union of the simplices in E that intersect A.

Assume  $f:(X,E)\to (Y,F)\in \mathbf{Simp}$ . For  $A\subset X$ ,  $f(\mathrm{st}(E)(A))$  is the union of  $f(\sigma)$ , where  $\sigma$  is a simplex in E that intersects A, which implies that  $f(\sigma)$  intersects f(A). Therefore  $f(\mathrm{st}(E)(A))\subset \mathrm{st}(F)(f(A))$ . Hence  $f:(X,\mathrm{st}(E))\to (Y,\mathrm{st}(F))$  is a continuous map.

**Definition 6.11.** Define st: **Simp**  $\to$  **Cl** to be the functor given by mapping (X, E) to  $(X, \operatorname{st}(E))$  and mapping  $f: (X, E) \to (Y, F)$  to  $f: (X, \operatorname{st}(E)) \to (Y, \operatorname{st}(F))$ .

**Theorem 6.12.** Let  $(X, E) \in \mathbf{Simp}$  and  $(Y, c) \in \mathbf{Cl}$ . Given a set map  $f: X \to Y$ ,  $f: (X, \mathrm{st}(E)) \to (Y, c)$  is a continuous map iff  $f: (X, E) \to (Y, \mathrm{VR}(c))$  is a simplicial map. Thus, we have a natural isomorphism

$$Cl((X, st(E)), (Y, c)) \cong Simp((X, E), (Y, VR(c))).$$

That is, VR is right adjoint to st.

*Proof.* ( $\Rightarrow$ ) Let  $\sigma \in E$ . Let  $x \in \sigma$ . Then  $\sigma \subset \operatorname{st}(E)(x)$ , which implies that  $f(\sigma) \subset f(\operatorname{st}(E)(x)) \subset c(f(x))$ . Therefore  $f(\sigma) \in \operatorname{VR}(c)$ .

( $\Leftarrow$ ) Let  $A \subset X$ . Then  $f(\operatorname{st}(E)(A)) = f(\bigcup_{\sigma \in E, \sigma \cap A \neq \emptyset} \sigma) = \bigcup_{\sigma \in E, \sigma \cap A \neq \emptyset} f(\sigma)$ . If  $\sigma \in E$  then  $f(\sigma) \in \operatorname{VR}(c)$ , which implies that for all  $x \in \sigma$ ,  $f(\sigma) \subset c(f(x))$ . So,  $\bigcup_{\sigma \in E, \sigma \cap A \neq \emptyset} f(\sigma) \subset c(f(A))$ .

The following two examples show that the functor  $\check{C}$  does not preserve limits or colimits.

**Example 6.13.** The functor  $\check{C}$  does not preserve pushouts. Let P be the closure space on the left of Figure 2. Let A be the set  $\{x,y\}$  with the discrete closure. Let X be the set  $\{x,y\}$  with the indiscrete closure. Let Y be the closure space corresponding the directed graph on the left of Figure 2 with the bottom (undirected) edge removed. Then P is the pushout of the continuous maps  $A \to X$  and  $A \to Y$  given by  $x \mapsto x$  and  $y \mapsto y$ . The Čech complex of P is the simplicial complex on the right of Figure 2. However, if we apply the functor  $\check{C}$  first and then take the pushout then we obtain the boundary of this simplicial complex.





FIGURE 3. The closure space  $J_+ \times J_+$  (left) and its Čech complex (right).

**Example 6.14.** The functor  $\check{C}$  does not preserve equalizers. Consider the closure space  $J_+ \times J_+$  on the left of Figure 3, its subset  $A = \{(1,0),(0,1)\}$ , and the the maps from  $J_+ \times J_+$  to  $J_\top$  given by the constant function 1 and the indicator function on A. The equalizer of these maps is the subspace A and its Čech complex is the simplicial complex with two vertices and no edges. In contrast, if we apply  $\check{C}$  to the equalizer diagram we obtain two maps from the 3-simplex to the 1-simplex whose equalizer is the 1-simplex.

Since right adjoints preserve limits and left adjoints preserve colimits, from Examples 6.13 and 6.14 we have the following.

**Theorem 6.15.** The functor  $\check{C}: \mathbf{Cl} \to \mathbf{Simp}$  does not have a have a right or a left adjoint.

We observe that the functors VR,  $\check{C}$ , and st may be written as composition of the more elementary functors in Theorem 6.5 and Definition 6.6.

**Proposition 6.16.**  $VR = cosk_1 \circ \Phi \circ s \circ A$ ,  $st = \Psi \circ tr_1$ , and  $\check{C} = tr_\infty \circ \Gamma \circ A$ . It follows that restricted to  $Cl_{sA}$ ,  $st \circ VR = \mathbf{1}_{Cl_{sA}}$ .

It follows from Proposition 1.52 that the Vietoris-Rips functor is symmetric in the sense that  $VR = \cosh_1 \circ \Phi \circ s \circ A = \cosh_1 \circ \Phi \circ s \circ (-)^T \circ A$ . On the other hand, there is a reverse  $\check{C}ech$  functor given by  $\check{C}^T = \operatorname{tr}_{\infty} \circ \Gamma \circ (-)^T \circ A$ . Following [28], we may also call  $\check{C}$  the source  $\check{C}ech$  functor and  $\check{C}^T$  the sink  $\check{C}ech$  functor. Note that  $\check{C}^T = \operatorname{tr}_{\infty} \circ \Gamma \circ (-)^T \circ A = \operatorname{tr}_{\infty} \circ \Gamma \circ A \circ (-)^T \circ A = \check{C} \circ (-)^T \circ A$ . Figure 4 shows that  $\check{C} \neq \check{C}^T$ . As was the case for  $\check{C}$ ,  $\check{C}^T$  does not preserve pushouts or equalizers and hence does not have a left or right adjoint.







FIGURE 4. A closure space given by a digraph (left), its source Čech complex (middle), and its sink Čech complex (right).

6.3. Contiguous maps. We relate elementary  $(J_{\top}, \times)$  homotopies and contiguous simplicial maps via the functors VR,  $\check{C}$ , and st. Simplicial maps  $f, g: (X, E) \to (Y, F)$  are said to be contiguous if for all  $\sigma \in E$ ,  $f(\sigma) \cup g(\sigma) \in F$ . The contiguous relation is a reflexive and symmetric relation on the set of simplicial maps  $\mathbf{Simp}((X, E), (Y, F))$ . Taking the transitive closure of this relation yields an equivalence relation whose equivalence classes are known as contiguity classes. Two simplicial complexes (X, E) and (Y, F) are said to be strongly equivalent if there are simplicial maps  $f: (X, E) \to (Y, F), g: (Y, F) \to (X, E)$  such that fg is in the same contiguity class as  $1_Y$  and gf is in the same contiguity class as  $1_X$  [9]. Two simplicial complexes are strongly equivalent if and only if they have the same strong homotopy type [9], a notion that has been used to study discrete Morse functions [35].

**Theorem 6.17.** Let  $f, g: (X, c) \to (Y, d) \in \mathbf{Cl}$  be one-step  $(J_\top, \times)$ -homotopic maps. Then  $f, g: (X, \mathrm{VR}(c)) \to (Y, \mathrm{VR}(d))$  are contiguous simplicial maps and so are  $f, g: (X, \check{C}(c)) \to (Y, \check{C}(d))$  and  $f, g: (X, \check{C}(c)) \to (Y, \check{C}(d))$ . Conversely, let  $f, g: (X, E) \to (Y, F)$  be contiguous simplicial maps. Then  $f, g: (X, \mathrm{st}(E)) \to (Y, \mathrm{st}(F))$  are one-step  $(J_\top, \times)$ -homotopic.

Proof. Let  $\sigma \in VR(c)$ . For  $x \in \sigma$ ,  $\sigma \subset c(x)$ . Then  $f(\sigma) \subset f(c(x))$  and  $g(\sigma) \subset g(c(x))$ , and by Proposition 4.28,  $f(c(x)) \cup g(c(x)) \subset d(f(x)) \cap d(g(x))$ . Therefore  $f(\sigma) \cup g(\sigma) \subset d(f(x)) \cap d(g(x))$ . Thus, for all  $y \in f(\sigma) \cup g(\sigma)$ ,  $f(\sigma) \cup g(\sigma) \subset d(y)$ . Hence  $f(\sigma) \cup g(\sigma) \in VR(d)$ . Therefore f and g are contiguous.

Let  $\sigma \in \check{C}(c)$ . Then there exists  $x \in X$  such that  $\sigma \subset c(x)$ . Then by Proposition 4.28,  $f(\sigma) \subset f(c(x)) \subset d(f(x)) \cap d(g(x))$ . Similarly,  $g(\sigma) \subset g(c(x)) \subset d(f(x)) \cap d(g(x))$ . Therefore  $f(\sigma) \cup g(\sigma) \subset d(f(x)) \cap d(g(x)) \subset d(f(x))$ . Hence  $f(\sigma) \cup g(\sigma) \in \check{C}(d)$ , and thus f and g are contiguous.

Recall that  $\check{C}^T = \check{C} \circ (-)^T \circ A$ . We will show if  $f, g : (X, c) \to (Y, d)$  are one-step  $(J_\top, \times)$ -homotopic then so are  $f, g : (X, A(c)) \to (Y, A(d))$  and  $f, g : (X, (A(c))^T) \to (Y, (A(d))^T)$ , from which it follows that  $f, g : (X, \check{C}^T(d)) \to (Y, \check{C}^T(d))$  are contiguous. First, assume that H is a one-step  $(J_\top, \times)$ -homotopy from  $f : (X, c) \to (Y, d)$  to  $g : (X, c) \to (Y, d)$ . Apply the functor A to the commutative diagram (4.2). One may check that  $(X \times \{0, 1\}, A(c \times c_\top)) = (X \times \{0, 1\}, A(c) \times c_\top)$ . Indeed, the latter closure is Alexandroff and both closures agree for points in  $X \times \{0, 1\}$ . Thus, we have the desired one-step  $(J_\top, \times)$ -homotopy. Second, apply Lemma 4.29.

Assume that  $f, g: (X, E) \to (Y, F)$  are contiguous simplicial maps. Let  $A \subset X$ . Then  $\operatorname{st}(E)(A)$  is the union of all simplices in E that intersect A. Hence

$$f(\operatorname{st}(E)(A)) \cup g(\operatorname{st}(E)(A)) = \bigcup_{\sigma \in E, \sigma \cap A \neq \varnothing} f(\sigma) \cup g(\sigma) \subset \bigcup_{\tau \in F, \tau \cap f(A) \neq \varnothing} \tau = \operatorname{st}(F)(f(A)).$$

Similarly  $f(\operatorname{st}(E)(A)) \cup g(\operatorname{st}(E)(A)) \subset \operatorname{st}(F)(g(A))$ . Therefore

$$f(\operatorname{st}(E)(A)) \cup g(\operatorname{st}(E)(A)) \subset \operatorname{st}(F)(f(A)) \cap \operatorname{st}(F)(g(A)).$$

So by Proposition 4.28,  $f, g: (X, \operatorname{st}(E)) \to (Y, \operatorname{st}(F))$  are one-step  $(J_{\top}, \times)$ -homotopic.  $\square$ 

Applying Theorem 6.17 inductively to a sequence of one-step  $(J_{\top}, \times)$ -homotopy maps or a sequence of contiguous maps yields the following corollary.

**Corollary 6.18.** Let  $f, g: (X, c) \to (Y, d) \in \mathbf{Cl}$  and suppose that  $f \sim_{(J_\top, \times)} g$ . Then  $f, g: (X, \mathrm{VR}(c)) \to (Y, \mathrm{VR}(d))$  are in the same contiguity class and so are  $f, g: (X, \check{C}(c)) \to (Y, \check{C}(d))$  and  $f, g: (X, \check{C}^T(c)) \to (Y, \check{C}^T(d))$ . Conversely, let  $f, g: (X, E) \to (Y, F)$  be simplicial maps in the same contiguity class. Then  $f, g: (X, \mathrm{st}(E)) \to (Y, \mathrm{st}(F))$  are  $(J_\top, \times)$ -homotopic.

We also have the following.

**Theorem 6.19.** Let  $f, g: (X, c) \to (Y, d) \in \mathbf{Cl_{sA}}$ . Then  $f, g: (X, c) \to (Y, d) \in \mathbf{Cl_{sA}}$  are one-step  $(J_{\top}, \times)$ -homotopic iff  $f, g: (X, \mathrm{VR}(c)) \to (Y, \mathrm{VR}(d)) \in \mathbf{Simp}$  are contiguous. Furthermore,  $f, g: (X, c) \to (Y, d) \in \mathbf{Cl_{sA}}$  are  $(J_{\top}, \times)$ -homotopic iff  $f, g: (X, \mathrm{VR}(c)) \to (Y, \mathrm{VR}(d)) \in \mathbf{Simp}$  are in the same contiguity class.

*Proof.* The forward direction of the two statements is contained in Theorem 6.17 and Corollary 6.18, respectively. For the reverse direction, we also use Theorem 6.17 and Corollary 6.18, respectively, together with Proposition 6.16, which gives us that st(VR(c)) = c and st(VR(d)) = d.

Finally, as a consequence of these results we have the following.

**Theorem 6.20.** Suppose that (X,c) and (Y,d) are closure spaces that are  $(J_{\top},\times)$  homotopy equivalent. Then (X, VR(c)) and (Y, VR(d)) are strongly equivalent, and so are  $(X, \check{C}(c))$  and  $(Y, \check{C}(d))$ , as well as  $(X, \check{C}^T(c))$  and  $(Y, \check{C}^T(d))$ . Conversely, if (X, E) and (Y, E) are simplicial complexes that are strongly equivalent, then  $(X, \operatorname{st}(E))$  and  $(Y, \operatorname{st}(F))$  are  $(J_{\top}, \times)$  homotopy equivalent. Furthermore, if  $(X, c), (Y, d) \in \mathbf{Cl_{sA}}$  then (X, c) and (Y, d) are  $(J_{\top}, \times)$ -homotopy equivalent iff  $(X, \operatorname{VR}(c))$  and  $(Y, \operatorname{VR}(d))$  are strongly equivalent.

## 7. FILTERED CLOSURE SPACES AND PERSISTENT HOMOLOGY

Given a metric space, we use the three closure operators of Section 3 to give functorial constructions of filtered closure spaces. Combined with our cubical and simplicial homology functors, we obtain functors from metric spaces to persistence modules. Furthermore, we extend these results to get functors from metric spaces and Lipschitz maps to persistence modules and graded maps.

7.1. **Filtered closure spaces.** We start by defining closure spaces filtered by a partially ordered set. Let P be a partially ordered set. An example of interest to topological data analysis is  $P = (\mathbb{R}^n, \leq)$ , where  $\leq$  is the product partial order on  $\mathbb{R}^n$ . We will mainly use the totally ordered set  $(\mathbb{R}, \leq)$ , which we will denote by R, and its subset  $[0, \infty)$ .

**Definition 7.1.** Let P be a partially ordered set. We define a P-filtered closure space to be a P-indexed set of closure spaces  $\{(X_p, c_p)\}_{p \in P}$  such that for all  $p \leq q \in P$ ,  $X_p \subset X_q$  and the inclusion map  $(X_p, c_p) \to (X_q, c_q)$  is continuous. That is, for all  $A \subset X_p$ ,  $c_p(A) \subset c_q(A)$ .

A morphism of P-filtered closure spaces,  $f:(X_{\bullet},c_{\bullet})\to (Y_{\bullet},d_{\bullet})$  consists of continuous maps  $f_p:(X_p,c_p)\to (Y_p,d_p)$  for all  $p\in P$  such that for all  $p\leq q$ ,  $f_p=f_q|_{X_p}$ . Equivalently, a morphism  $f:(X_{\bullet},c_{\bullet})\to (Y_{\bullet},d_{\bullet})$  is a set map  $f:X\to Y$ , where  $X=\bigcup_{p\in P}X_p$  and  $Y=\bigcup_{p\in P}Y_p$ , such that for all  $p\in P$ ,  $f(X_p)\subset Y_p$  and  $f|_{X_p}:(X_p,c_p)\to (Y_p,d_p)$  is continuous. Let  $\mathbf{F_PCl}$  denote the category of P-filtered closure spaces and their morphisms.

**Example 7.2.** Consider the following three examples. First, let X be a set together with closure operators  $\{c_p\}_{p\in P}$  such that for all  $p \leq q$ ,  $c_p \leq c_q$ . Then  $(X, c_{\bullet}) \in \mathbf{F_PCl}$ . Second, consider a closure space (X, c) together with a set map  $f: X \to P$ . For  $p \in P$ , let  $X_p = f^{-1}(D_p)$ , where  $D_p = \{q \in P \mid q \leq p\}$ , and let  $c_p$  be the subspace closure. That is, for  $A \subset X_p$  define  $c_p(A) = c(A) \cap X_p$ . Then  $(X_{\bullet}, c_{\bullet}) \in \mathbf{F_PCl}$ . Third, consider a set X together with both a set map  $f: X \to P$  and with closures  $\{c_p\}_{p\in P}$  compatible with the partial order on P. Let  $X_p = f^{-1}(D_p)$  as above and let  $d_p$  be the subspace closure on  $X_p$  inherited from  $(X, c_p)$ . Then  $(X_{\bullet}, d_{\bullet}) \in \mathbf{F_PCl}$ .

Note that a P-filtered closure space is a functor from  $\mathbf{P}$  to  $\mathbf{Cl}$  for which inequalities are mapped to monomorphisms and that a morphism of P-filtered closure spaces is a natural transformation of such functors.

7.2. **Persistence modules and interleaving.** We recall the definitions of persistence modules, persistence diagrams, interleavings and matchings, and their corresponding distances.

A functor from  $\mathbf{P}$  to a category  $\mathbf{C}$  is called a *persistence module* indexed by P and with values in  $\mathbf{C}$  [15].

**Definition 7.3.** Let **C** be a category, let P be either of the totally ordered sets  $[0, \infty)$  or  $R = (\mathbb{R}, \leq)$  and let  $\varepsilon \geq 0$ . Let  $M, N : \mathbf{P} \to \mathbf{C}$ . We say M and N are  $\varepsilon$ -interleaved if there are collections of maps  $\{\varphi_p : M_p \to N_{p+\varepsilon}\}_{p\in P}$  and  $\{\psi_p : N_p \to M_{p+\varepsilon}\}_{p\in P}$  such that:

- (1) For all  $p, q \in P$  with  $p \leq q$ ,  $\varphi_q \circ M_{p \leq q} = N_{p+\varepsilon \leq q+\varepsilon} \circ \varphi_p$ .
- (2) For all  $p, q \in P$  with  $p \leq q$ ,  $\psi_q \circ N_{p \leq q} = M_{p+\varepsilon \leq q+\varepsilon} \circ \psi_p$ .
- (3) For all  $p \in P$ ,  $\psi_{p+\varepsilon} \circ \varphi_p = M_{p+2\varepsilon}$ .
- (4) For all  $p \in P$ ,  $\varphi_{p+\varepsilon} \circ \psi_p = N_{p+2\varepsilon}$ .

The interleaving distance between M and N is then defined to be

$$d_I(M, N) = \inf\{\varepsilon \mid M \text{ and } N \text{ are } \varepsilon\text{-interleaved}\}\$$

For  $P = [0, \infty)$  or R as above, and  $\varepsilon \geq 0$ , let  $I_{\varepsilon^+}$  denote the poset  $P \times \{0, 1\}$  where  $(a, i) \leq (b, j)$  iff  $a + \varepsilon < b$  or  $a \leq b$  and i = j. Then  $d_I(M, N) = \varepsilon$  iff the functors  $M, N : \mathbf{P} \to \mathbf{C}$  extend to a functor  $\mathbf{I}_{\varepsilon^+} \to \mathbf{C}$  [16].

Assume that we have persistence modules indexed by  $R = (\mathbb{R}, \leq)$  and with values in **Vect**, where **Vect** is the category of k-vector spaces and k-linear maps for some field k. Such a persistence module M is called q-tame if for each s < t, the linear map  $M_{s < t} : M_s \to M_t$  has finite rank. Persistence modules that are q-tame have well-defined persistence diagrams [10, 25]. For a persistence module M that is q-tame, we denote its persistence diagram by D(M). Let  $\varepsilon \geq 0$ . An  $\varepsilon$ -matching between persistence diagrams is a partial bijection such that matched pairs are within  $\varepsilon$  of each other and unmatched elements are within  $\varepsilon$  of the diagonal. The bottleneck distance between two persistence diagrams is the infimum of all  $\varepsilon \geq 0$  such that there exists an  $\varepsilon$ -matching between them [29].

7.3. Filtered closure spaces from metric spaces. Here we consider filtered closure spaces obtained from the three 1-parameter families of closure operators obtained from a metric space in Definition 3.1. Recall that Cl has full subcategories  $Cl_A$  and  $Cl_{sA}$  (Definition 1.43).

Let  $\mathbf{F_PCl_s}$ ,  $\mathbf{F_PCl_A}$ , and  $\mathbf{F_PCl_{sA}}$  denote the corresponding full subcategories of  $\mathbf{F_PCl}$ . In particular, using the isomorphism  $\mathbf{Cl_A} \cong \mathbf{DiGph}$  (Proposition 1.56), we have the category  $\mathbf{F_PDiGph}$ , whose objects are P-filtered digraphs  $(X_{\bullet}, E_{\bullet})$ , where for all  $p \in P$ ,  $(X_p, E_p)$  is a digraph, and for all  $p \leq q$ ,  $X_p \subset X_q$  and  $E_p \subset E_q$ , and whose morphisms  $f: (X_{\bullet}, E_{\bullet}) \to (Y_{\bullet}, F_{\bullet})$  are given by functions  $f_p: X_p \to Y_p$  such that for all  $p \in P$ ,  $f(E_p) \subset F_p$  and for  $p \leq q$ ,  $f_p = f_q|_{X_p}$ .

Recall the poset  $[0, \infty) \times \{-1, 0, 1\}$  with the lexicographic order from Section 3 and the corresponding closure operators (Definition 3.1). Given a metric space (X, d), there is a  $[0, \infty) \times \{-1, 0, 1\}$ -filtered symmetric closure space  $(X, \{c_{\varepsilon}\}_{\varepsilon \in [0,\infty) \times \{-1,0,1\}})$ . This filtered closure space restricts to the  $[0, \infty)$ -filtered symmetric Alexandroff closure space  $(X, \{c_{\varepsilon}\}_{\varepsilon \in [0,\infty)})$ , the  $[0, \infty)$ -filtered symmetric closure space  $(X, \{c_{\varepsilon}\}_{\varepsilon \in [0,\infty)})$ , the  $[0, \infty)$ -filtered symmetric closure space  $(X, \{c_{\varepsilon}\}_{\varepsilon \in [0,\infty)})$ .

The latter three are persistence modules indexed by  $[0, \infty)$  with values in  $\mathbf{Cl_s}$ . For each of the three distinct pairs in the set  $\{-1,0,1\}$ ,  $(X,\{c_{\varepsilon}\}_{\varepsilon\in[0,\infty)\times\{-1,0,1\}})$  restricts to a persistence module indexed by  $I_{0^+}$ , which shows that each of the three  $[0,\infty)$ -indexed persistence modules have pairwise interleaving distance zero. Furthermore,  $(X,\{c_{\varepsilon}\}_{\varepsilon\in[0,\infty)\times\{-1,0,1\}})$  gives a coherent interleaving of these three persistence modules [19]. Combining this construction with Lemma 3.6, and using the next definition we obtain the subsequent result.

**Definition 7.4.** Say that  $F, G : \mathbf{C} \to \mathbf{D}^{\mathbf{P}}$  are objectwise interleaved if for all  $C \in \mathbf{C}$ , F(C) and G(C) are interleaved.

**Theorem 7.5.** Let  $\mathbf{Met} \to \mathbf{F}_{[\mathbf{0},\infty)\times\{-1,\mathbf{0},\mathbf{1}\}}\mathbf{Cl_s}$  be the functor defined by mapping (X,d) to  $(X,c_{\bullet,d})$  and mapping  $f:(X,d)\to (Y,e)$  to  $f:(X,c_{\bullet,d})\to (Y,c_{\bullet,e})$ . Restricting to -1 and 0, this functor specializes to two functors  $\mathbf{Met}\to \mathbf{F}_{[\mathbf{0},\infty)}\mathbf{Cl_{sA}}$ . Restricting to 1 this functor specializes to a functor  $\mathbf{Met}\to \mathbf{F}_{[\mathbf{0},\infty)}\mathbf{Cl_s}$ . The objectwise interleaving distance between the resulting three functors  $\mathbf{Met}\to \mathbf{F}_{[\mathbf{0},\infty)}\mathbf{Cl_s}$  is zero and these interleavings are coherent.

Let  $H_{\bullet}$  be one of the singular cubical homology functors,  $H_{\bullet}^{(I_{\tau},\times)}$ ,  $H_{\bullet}^{(J_{\tau},\times)}$ ,  $H_{\bullet}^{(J_{\tau},\times)}$ ,  $H_{\bullet}^{(J_{\tau},\boxplus)}$ , or  $H_{\bullet}^{(J_{\tau},\boxplus)}$ , from Section 5.1 or one of the singular simplicial homology functors,  $H_{\bullet}^{I_{\tau}}$ ,  $H_{\bullet}^{J_{\tau}}$ ,  $H_{\bullet}^{J_{\tau}}$ , from Section 5.2, each with coefficients in the field k (Section 5.4). By composing the functors in Theorem 7.5 with one of these homology functors we obtain the following [15, 16].

Corollary 7.6. For each of our singular cubical and simplicial homology functors and for each  $j \geq 0$ , there is a functor  $\mathbf{Met} \to \mathbf{Vect}^{[\mathbf{0},\infty)\times\{-1,\mathbf{0},\mathbf{1}\}}$ , which maps (X,d) to  $H_j(X,c_{\bullet,d})$  and  $f:(X,d)\to (Y,e)$  to  $f_*:H_j(X,c_{\bullet,d})\to H_j(Y,c_{\bullet,e})$ . Choosing one of  $\{-1,0,1\}$ , this functor specializes to three functors  $\mathbf{Met}\to\mathbf{Vect}^{[\mathbf{0},\infty)}$ , the objectwise interleaving distance between these functors is zero, and these interleavings are coherent.

For the remainder of this section, we restrict to the case  $0 \in \{-1, 0, 1\}$ . That is, we consider the closures  $(X, c_{r,d})$  for  $r \geq 0$ , where for  $A \subset X$ ,  $c_{r,d}(A) = \{x \in X \mid d(a, x) \leq r \text{ for some } a \in A\}$ .

7.4. Full subcategories of filtered closure spaces. We consider a sequence of generalizations from metric spaces to filtered closure spaces and their corresponding persistence modules.

**Definition 7.7.** Let **Lawv** denote the category of small Lawvere metric spaces, i.e., extended quasi-pseudo-metric spaces and 1-Lipschitz maps.

**Definition 7.8.** Let P be a poset. Recall that we may identify a simple digraph (X, E) with its corresponding spatial digraph  $(X, \overline{E})$ , where  $\overline{E} = E \cup \Delta$ . A P-weighted digraph consists of a (simple) digraph (X, E) and a function  $w : \overline{E} \to P$ , called the weight, such that for xEx',  $w(x, x), w(x', x') \le w(x, x')$ . For xEx' we call w(x, x') the weight of the directed edge (x, x') and for  $x \in X$  we call w(x, x) the weight of the vertex x, which we also denote by w(x). A morphism of weighted digraphs  $f : (X, E, w) \to (Y, F, v)$  is a digraph homomorphisms  $f : (X, E) \to (Y, F)$  such that for all xEx',  $v(f(x), f(x')) \le w(x, x')$ . Let  $\mathbf{w_PDiGph}$  be the category of P-weighted digraphs (X, E, w) and their morphisms.

If P has a minimum element  $p_0$  then we have the special case of P-edge-weighted digraphs for which each vertex has weight  $p_0$ .

Consider the category  $\mathbf{w}_{[0,\infty)}\mathbf{DiGph}$  of  $[0,\infty)$ -weighted digraphs. Note that we can also view  $\mathbf{w}_{[0,\infty)}\mathbf{DiGph}$  as the category of  $[0,\infty]$ -weighted complete digraphs. Indeed, given a  $[0,\infty)$ -weighted digraph (X,E,w) we can associate to it the complete digraph  $(X,X\times X\setminus\Delta,w)$ , where we extend w by assigning elements of  $X\times X\setminus\Delta\setminus E$  the value  $\infty$ . Conversely, given an edge in a complete simple digraph with weight  $\infty$ , delete it.

For each Lawvere metric space (X, d), there is a corresponding  $[0, \infty]$ -edge-weighted digraph  $(X, X \times X \setminus \Delta, d)$ . Under this mapping, 1-Lipschitz maps become morphisms of  $[0, \infty]$ -weighted digraphs. Another example of a  $[0, \infty)$ -edge-weighted digraph is given be a set X together with a Bregman divergence [38, 37].

For each  $[0,\infty)$ -weighted digraph, (X,E,w), there is a corresponding  $[0,\infty)$ -filtered digraph  $(X_{\bullet},E_{\bullet})$ , where for  $a\in[0,\infty)$ ,  $X_a=\{x\in X\mid w(x)\leq a\}$  and  $E_a=\{(x,x')\in E\mid w(x,x')\leq a\}$ . Under this mapping, morphisms of weighted digraphs become morphisms of filtered digraphs. This  $[0,\infty)$ -filtered weighted graph is right continuous. That is, for all  $r\geq 0$ ,  $X_r=\cap_{\varepsilon>0}X_{r+\varepsilon}$  and  $E_r=\cap_{\varepsilon>0}E_{r+\varepsilon}$ . Denote the full subcategory of right continuous  $[0,\infty)$ -filtered digraphs by  $\mathbf{F}^{\mathbf{rc}}_{[0,\infty)}\mathbf{DiGph}$ .

Similarly, say that a  $[0, \infty)$ -filtered closure space  $(X_{\bullet}, c_{\bullet})$  is right continuous if for all  $r \geq 0$ ,  $X_r = \bigcap_{\varepsilon > 0} X_{r+\varepsilon}$  and for all  $A \subset X_r$ ,  $c_r(A) = \bigcap_{\varepsilon > 0} c_{r+\varepsilon}(A)$ . Let  $\mathbf{F}^{\mathbf{rc}}_{[0,\infty)}\mathbf{Cl_A}$  denote the full subcategory of  $\mathbf{F}_{[0,\infty)}\mathbf{Cl}$  of right continuous  $[0,\infty)$ -filtered Alexandroff closure spaces. Then  $\mathbf{F}^{\mathbf{rc}}_{[0,\infty)}\mathbf{DiGph} \cong \mathbf{F}^{\mathbf{rc}}_{[0,\infty)}\mathbf{Cl_A}$ .

Combining these observations we have the following.

**Proposition 7.9.** We have the following full embeddings of categories

$$\mathbf{Met} \hookrightarrow \mathbf{Lawv} \hookrightarrow \mathbf{w}_{[\mathbf{0},\infty)} \mathbf{DiGph} \hookrightarrow \mathbf{F}^{\mathbf{rc}}_{[\mathbf{0},\infty)} \mathbf{DiGph} \xrightarrow{\cong} \mathbf{F}^{\mathbf{rc}}_{[\mathbf{0},\infty)} \mathbf{Cl_A} \hookrightarrow \mathbf{F}_{[\mathbf{0},\infty)} \mathbf{Cl}$$
whose composition sends the metric space  $(X,d)$  to  $(X,c_{\bullet,d})$ .

Composing these functors with homology we have the following.

Corollary 7.10. For each of our singular cubical and simplicial homology functors and for each of the categories Met, Lawv,  $\mathbf{w}_{[0,\infty)}\mathbf{DiGph}$ ,  $\mathbf{F}_{[0,\infty)}\mathbf{Cl}$ , we have a functor to  $\mathbf{Vect}^{[0,\infty)}$ .

Let R denote the ordered set  $(\mathbb{R}, \leq)$ . We may extend  $[0, \infty)$ -filtered closure spaces to R-filtered closure spaces by setting  $X_a$  to be the empty set for a < 0. In particular,  $[0, \infty)$ -filtered digraphs become R-filtered digraphs by setting  $X_a$  to be empty for a < 0.

**Proposition 7.11.** We have the following full embeddings of categories

$$Met \hookrightarrow Lawv \hookrightarrow w_RDiGph \hookrightarrow F_R^{rc}DiGph \xrightarrow{\cong} F_R^{rc}Cl_A \hookrightarrow F_RCl,$$

whose composition sends the metric space (X, d) to the R-filtered closure space  $(X_{\bullet}, c_{\bullet,d})$ , where  $X_a = \emptyset$  if a < 0 and  $X_a = X$  if  $a \ge 0$ .

Note that the image of the composition  $\mathbf{Met} \hookrightarrow \mathbf{Lawv} \hookrightarrow \mathbf{w_RDiGph} \hookrightarrow \mathbf{F_RDiGph}$  lies in  $\mathbf{F_RGph}$ . In particular, a metric space (X, d) is mapped to the R-filtered graph  $(X_{\bullet}, E_{\bullet})$ , where for  $x \in X$ ,  $x \in X_t$  iff  $t \geq 0$  and for  $x, x' \in X$ ,  $x\overline{E}_t x'$  iff  $d(x, x') \leq t$ .

Again, composing the functors in Proposition 7.11 with homology we have the following.

Corollary 7.12. For each of our singular cubical and simplicial homology functors and for each of the categories Met, Lawv,  $w_RDiGph$ ,  $F_RCl$ , we have a functor to  $Vect^R$ .

7.5. Lipschitz maps. We now extend our results to the case of Lipschitz maps.

**Definition 7.13.** Let **Lip** denote the category of metric spaces and Lipschitz maps. Let **LipLawv** denote the category of small Lawvere metric spaces and Lipschitz maps.

**Definition 7.14.** Let  $\mathbf{w}_{[0,\infty)}^{\times}$  **DiGph** denote the category  $[0,\infty)$ -weighted digraphs and maps  $f:(X,E,w)\to (Y,F,v)$  given by digraph homomorphisms  $f:(X,E)\to (Y,F)$  such that there exists a  $K\geq 1$  such that for all  $x\overline{E}x', v(f(x),f(x'))\leq Kw(x,x')$ .

Let  $\mathbf{F}_{[\mathbf{0},\infty)}^{\times}$ Cl denote the category of  $[0,\infty)$ -filtered closure spaces together with morphisms  $f:(X_{\bullet},c_{\bullet})\to (Y_{\bullet},d_{\bullet})$  given by functions  $f:X\to Y$ , where  $X=\bigcup_{r\in[0,\infty)}X_r$  and  $Y=\bigcup_{r\in[0,\infty)}X_r$ 

 $\bigcup_{r\in[0,\infty)} Y_r$ , such that there exists a  $K\geq 1$  such that for all  $r\geq 0$   $f(X_r)\subset Y_{Kr}$  and  $f|_{X_r}:(X_r,c_r)\to (Y_{Kr},d_{Kr})$  is continuous. That is, for all  $A\subset X_r$ ,  $f(c_r(A))\subset d_{Kr}(f(A))$ . Similarly, define  $\mathbf{F}_{[0,\infty)}^{\times}\mathbf{DiGph}$ .

Following Proposition 7.9, we have the following.

**Proposition 7.15.** We have the following full embeddings of categories

$$\mathbf{Lip} \hookrightarrow \mathbf{LipLawv} \hookrightarrow \mathbf{w}_{[\mathbf{0},\infty)}^{\times} \mathbf{DiGph} \hookrightarrow \mathbf{F}_{[\mathbf{0},\infty)}^{\mathbf{rc},\times} \mathbf{DiGph} \xrightarrow{\cong} \mathbf{F}_{[\mathbf{0},\infty)}^{\mathbf{rc},\times} \mathbf{Cl_A} \hookrightarrow \mathbf{F}_{[\mathbf{0},\infty)}^{\times} \mathbf{Cl}$$

whose composition sends the metric space (X,d) to  $(X,c_{\bullet,d})$ .

**Definition 7.16.** Let  $\mathbf{w}_{[\infty,\infty)}^+$  **DiGph** denote the category of  $[-\infty,\infty)$ -weighted digraphs and maps  $f:(X,E,w)\to (Y,F,v)$  given by digraph homomorphisms  $f:(X,E)\to (Y,F)$  such that there exists an  $L\geq 0$  such that for all  $x\overline{E}x'$ ,  $v(f(x),f(x'))\leq w(x,x')+L$ .

Let  $\mathbf{F}_{\mathbf{R}}^{\mathbf{rc},+}\mathbf{DiGph}$  denote the category of right-continuous R-filtered digraphs together with morphisms  $f:(X_{\bullet},E_{\bullet})\to (Y_{\bullet},F_{\bullet})$  consisting of functions  $f:X\to Y$ , where  $X=\bigcup_{t\in R}X_t$  and  $Y=\bigcup_{t\in R}Y_t$ , such that there exists an  $L\geq 0$  for which for all  $t, f(X_t)\subset Y_{t+L}$  and whenever  $x\overline{E}x'$  we have that  $f(x)\overline{F}_{t+L}f(x')$ .

Similarly, let  $\mathbf{F}_{\mathbf{R}}^+\mathbf{Cl}$  denote the category of R-filtered closure spaces together with morphisms  $f:(X_{\bullet},c_{\bullet})\to (Y_{\bullet},d_{\bullet})$  consisting of functions  $f:X\to Y$ , where  $X=\bigcup_{t\in R}X_t$  and  $Y=\bigcup_{t\in R}Y_t$ , such that there exists an  $L\geq 0$  for which for all  $t, f(X_t)\subset Y_{t+L}$  and for all  $A\subset X_t, f(c_t(A))\subset d_{t+L}(f(A))$ . Say that f has shift L. For such a map f, call the infimum of such shifts its distortion, denoted dist(f).

There is an isomorphism of categories  $\mathbf{w}_{[\mathbf{0},\infty)}^{\times}\mathbf{DiGph} \stackrel{\cong}{\to} \mathbf{w}_{[-\infty,\infty)}^{+}\mathbf{DiGph}$  given by mapping (X, E, w) to  $(X, E, \log w)$  where we set  $\log(0) = -\infty$ .

**Lemma 7.17.** There is an isomorphism of categories  $\mathbf{F}^{\mathbf{rc},+}_{[-\infty,\infty)}\mathbf{DiGph}\cong \mathbf{F}^{\mathbf{rc},+}_{\mathbf{R}}\mathbf{DiGph}$ .

*Proof.* For a right-continuous  $[-\infty, \infty)$ -filtered digraph  $(X_{\bullet}, E_{\bullet})$ , we obtain a right-continuous R-filtered digraph by forgetting  $(X_{\infty}, E_{\infty})$ . For a morphism  $f: (X_{\bullet}, E_{\bullet}) \to (Y_{\bullet}, F_{\bullet})$ , send the function  $f: X \to Y$ , where  $X = \bigcup_t X_t$  and  $Y = \bigcup_t Y_t$ , to itself.

In the other direction, given a right-continuous R-filtered digraph  $(X_{\bullet}, E_{\bullet})$ , define  $X_{-\infty} = \bigcap_t X_t$  and  $E_{-\infty} = \bigcap_t E_t$ . For a morphism  $f: (X_{\bullet}, E_{\bullet}) \to (Y_{\bullet}, F_{\bullet})$ , send the function  $f: X \to Y$  to itself. It remains to check that  $f|_{X_{-\infty}}$  is a digraph homomorphism. If  $x\overline{E}_{-\infty}x'$  then for all  $t \in \mathbb{R}$ ,  $x\overline{E}_tx'$ , which implies that  $f(x)\overline{F}_tf(x')$ , and hence  $f(x)\overline{F}_{-\infty}f(x')$ .

These constructions define the desired functors.

**Proposition 7.18.** We have the following full embeddings of categories

$$Lip\hookrightarrow LipLawv\hookrightarrow w^+_{[-\infty,\infty)}DiGph\hookrightarrow F^{rc,+}_{\mathbf{R}}DiGph\stackrel{\cong}{\to} F^{rc,+}_{\mathbf{R}}Cl_{\mathbf{A}}\hookrightarrow F^+_{\mathbf{R}}Cl$$

whose composition sends the metric space (X, d) to  $(X, c_{\exp(\bullet), d})$  and sends a map f with Lipschitz constant  $K \geq 1$  to a map with shift  $\log K$ .

*Proof.* It remains to verify the last part of the statement. Let  $(X, d) \in \mathbf{Lip}$ . Its image in  $\mathbf{w}_{[-\infty,\infty)}^+$  **DiGph** is  $(X, X \times X \setminus \Delta, \log d)$ . This weighted digraph gives the filtered digraph  $(X, E_{\bullet})$ , where  $E_t = \{(x, x') \mid \log d(x, x') \leq t\} = \{(x, x') \mid d(x, x') \leq \exp t\}$ . Hence this filtered digraph corresponds to the filtered closure space  $(X, c_{\exp(\bullet), d})$ .

Suppose  $f:(X,d) \to (Y,d)$  has Lipschitz constant  $K \ge 1$ . Let  $L = \log K$ . Let  $x \in X$  and let  $x' \in c_{\exp(t),d}(x)$ . That is,  $d(x,x') \le \exp t$ . Thus,  $e(fx,fx') \le K \exp t = \exp(t+L)$ . That is,  $fx' \in d_{\exp(t+L),e}(fx)$ . Therefore,  $f:(X,c_{\exp(\bullet),d}) \to (Y,c_{\exp(\bullet),e})$  has shift  $\log K$ .

It follows directly from the definitions that  $(X_{\bullet}, c_{\bullet}), (Y_{\bullet}, d_{\bullet}) \in \mathbf{F_RCl}$  are isomorphic if and only if they are 0-interleaved (Definition 7.3). More generally, we have the following.

**Theorem 7.19.** Let  $L \geq 0$ . Then  $(X_{\bullet}, c_{\bullet}), (Y_{\bullet}, d_{\bullet}) \in \mathbf{F}^+_{\mathbf{R}}\mathbf{Cl}$  are isomorphic via maps with shift L if and only if they are L-interleaved. In particular,  $(X, d), (Y, e) \in \mathbf{Lip}$  are isomorphic via maps with Lipschitz constant  $K \geq 1$  if and only if  $(X, c_{\exp(\bullet),d})$  and  $(Y, c_{\exp(\bullet),e})$  are  $\log(K)$ -interleaved.

*Proof.* Let  $(X_{\bullet}, c_{\bullet}), (Y_{\bullet}, d_{\bullet}) \in \mathbf{F}_{\mathbf{R}}^{+}\mathbf{Cl}$ . Let  $X = \bigcup_{t} X_{t}$  and  $Y = \bigcup_{t} Y_{t}$ .

- $(\Rightarrow)$  There exist functions  $f: X \to Y$  and  $g: Y \to X$  such that for all t,  $f|_{X_t}: (X_t, c_t) \to (Y_{t+L}, d_{t+L})$  and  $g|_{Y_t}: (Y_t, d_t) \to (X_{t+L}, c_{t+L})$ ,  $gf = 1_X$ , and  $fg = 1_Y$ . These maps provide the desired L-interleaving.
- ( $\Leftarrow$ ) For all t we have maps  $f_t: (X_t, c_t) \to (Y_{t+L}, d_{t+L})$  and  $g_t: (Y_t, d_t) \to (X_{t+L}, c_{t+L})$  satisfying the four conditions in Definition 7.3. By Definition 7.3(1), the maps  $\{f_t\}$  define a function  $f: X \to Y$  with  $f|_{X_t} = f_t$ . By Definition 7.3(2), the maps  $\{g_t\}$  define a function  $g: Y \to X$  with  $g|_{Y_t} = g_t$ . By Definition 7.3(3),  $gf = 1_X$ . By Definition 7.3(4),  $fg = 1_Y$ . Therefore we have the desired isometry.

Let  $f: (X_{\bullet}, c_{\bullet}) \to (Y_{\bullet}, d_{\bullet}) \in \mathbf{F}_{\mathbf{R}}^{\mathbf{rc},+}\mathbf{Cl}$ . Then there exists an  $L \geq 0$  such that for all  $t \in \mathbb{R}$  and for all  $A \subset X_t$ ,  $f(c_t(A)) \subset d_{t+L}(f(A))$ . Since  $(Y_{\bullet}, d_{\bullet})$  is right continuous, for all  $t \in \mathbb{R}$  and all  $A \subset X_t$ ,  $f(c_t(A)) \subset d_{t+\mathrm{dist}\,f}(f(A))$ . That is, for all  $t \in \mathbb{R}$ ,  $f: (X, c_t) \to (Y, c_{t+\mathrm{dist}\,f})$  is continuous.

**Definition 7.20.** Let  $\overline{\mathbf{Vect^R}}$  denote the category whose objects are R-indexed persistence modules with values in  $\mathbf{Vect}$  and whose morphisms are given by pairs (f, L) where  $L \geq 0$  and  $f: M_{\bullet} \to N_{\bullet + L}$ .

**Theorem 7.21.** Let  $H_{\bullet}$  be one of our singular cubical homology functors or singular simplicial homology functors and let  $j \geq 0$ . Then we have a functor  $\mathbf{F}_{\mathbf{R}}^{\mathbf{rc},+}\mathbf{Cl} \to \overline{\mathbf{Vect}^{\mathbf{R}}}$  given by mapping  $(X, c_{\bullet})$  to  $H_{j}(X, c_{\bullet})$  and mapping  $f: (X, c_{\bullet}) \to (Y, d_{\bullet})$  to  $f_{*}: H_{j}(X, c_{\bullet}) \to H_{j}(Y, d_{\bullet + \operatorname{dist} f})$ .

Composing our functors we have the following.

**Theorem 7.22.** For each of our singular cubical or simplicial homology functors  $H_{\bullet}$  and  $j \geq 0$ , we have

 $\begin{aligned} \mathbf{Lip} \hookrightarrow \mathbf{LipLawv} \hookrightarrow \mathbf{w}_{[-\infty,\infty)}^{+} \mathbf{DiGph} \hookrightarrow \mathbf{F}_{\mathbf{R}}^{\mathbf{rc},+} \mathbf{DiGph} &\stackrel{\cong}{\to} \mathbf{F}_{\mathbf{R}}^{\mathbf{rc},+} \mathbf{Cl}_{\mathbf{A}} \hookrightarrow \mathbf{F}_{\mathbf{R}}^{\mathbf{rc},+} \mathbf{Cl} \xrightarrow{H_{j}} \overline{\mathbf{Vect}^{\mathbf{R}}}, \\ whose composition maps <math>(X,d)$  to  $H_{j}(X,c_{\exp(\bullet),d})$  and maps  $f:(X,d) \to (Y,e)$  to  $f_{*}:H_{j}(X,c_{\exp(\bullet),d}) \to H_{j}(Y,c_{\exp(\bullet+\log\|f\|),e}), \text{ where } \|f\| \text{ denotes the best Lipschitz constant of } f \text{ that is greater than or equal to } 1. \end{aligned}$ 

## 8. Stability

We prove a number of stability theorems for filtered closure spaces and the persistence modules arising from them. We show that the homology of sublevel set filtrations is stable. For a pair of filtered closure spaces we define their Gromov-Hausdorff distance and we show that our singular cubical and simplicial homology persistence modules are stable with respect to this distance. We also show that the Vietoris-Rips and Čech constructions are stable with respect to Gromov-Hausdorff distance.

8.1. **Sublevel sets.** We start by defining sublevel set filtrations and showing that they are stable. The following is a special case of Example 7.2.

**Definition 8.1.** Let  $(X, c) \in \mathbf{Cl}$  and let  $f : X \to \mathbb{R}$  be a set map. Define  $\mathrm{Sub}(f) \in \mathbf{F_RCl}$  to be given by  $\mathrm{Sub}(f)_t = f^{-1}(-\infty, t]$  together with the subspace closure.

For a closure space (X, c) and  $f, g: X \to \mathbb{R}$ , let  $d_{\infty}(f, g) = \sup_{x \in X} |f(x) - g(x)|$ . Then for  $\varepsilon = d_{\infty}(f, g)$ ,  $\operatorname{Sub}(f)$ ,  $\operatorname{Sub}(g) \in \mathbf{F_RCl}$  are  $\varepsilon$ -interleaved. It follows that for any of our singular cubical and simplicial homology theories,  $H_j(\operatorname{Sub}(f))$  and  $H_j(\operatorname{Sub}(g))$  are  $\varepsilon$ -interleaved [15, 16]. Furthermore, if coefficients are in a field and  $H_j(\operatorname{Sub}(f))$  and  $H_j(\operatorname{Sub}(g))$  are q-tame, then there is an  $\varepsilon$ -matching between  $D(H_j(\operatorname{Sub}(f)))$  and  $D(H_j(\operatorname{Sub}(g)))$  [10, 25].

**Theorem 8.2** (Sublevel set Stability Theorem). Let  $(X, c) \in \mathbf{Cl}$  and  $f, g : X \to \mathbb{R}$ . Let H denote one of our singular cubical or simplicial homology theories and let  $j \geq 0$ . Then

$$d_I(H_i(\operatorname{Sub}(f)), H_i(\operatorname{Sub}(g))) \le d_{\infty}(f, g).$$

If coefficients are in a field and  $H_i(Sub(f))$  and  $H_i(Sub(g))$  are q-tame then

$$d_B(D(H_i(\operatorname{Sub}(f))), D(H_i(\operatorname{Sub}(g)))) \le d_\infty(f, g).$$

8.2. Correspondences and Gromov-Hausdorff distance. Next, we use multivalued maps and correspondences to define a Gromov-Hausdorff distance for filtered closure spaces.

**Definition 8.3.** A multivalued map  $C: X \rightrightarrows Y$  from a set X to a set Y is a subset of  $X \times Y$ , also denoted C, that projects surjectively onto X through the canonical projection  $\pi_X: X \times Y \to X$ . The image C(A) of a subset A of X is the canonical projection of  $\pi_X^{-1}(A)$  onto Y. That is,  $C(A) = \{y \in Y \mid \exists a \in A, aCy\}$ .

**Definition 8.4.** A (single-valued) map f from X to Y is subordinate to C if we have  $(x, f(x)) \in C$  for every  $x \in X$ . In that case we write  $f: X \xrightarrow{C} Y$ . The composition of two multivalued maps  $C: X \rightrightarrows Y$  and  $D: Y \rightrightarrows Z$  is the multivalued map  $D \circ C: X \rightrightarrows Z$  defined by:

$$x(D \circ C)z \Longleftrightarrow \exists y \in Y, xCy, yDz$$

**Lemma 8.5.** Let  $X \rightrightarrows Y$  be a multivalued map. Then there exists a single-valued map  $f: X \to Y$  subordinate to C.

*Proof.* For each 
$$x \in X$$
, choose  $(x, f(x)) \in \pi_X^{-1}(x)$ .

Note that if f is subordinate to C and g is subordinate to D then  $g \circ f$  is subordinate to  $D \circ C$ . In addition, if  $A \subset X$ , then  $(D \circ C)(A) = D(C(A))$ .

**Definition 8.6.** If  $C: X \rightrightarrows Y$  is a multivalued map, the *transpose* of C, denoted  $C^T$ , is the image of C through the symmetry map  $(x,y) \mapsto (y,z)$ . Although  $C^T$  is well-defined as a subset of  $Y \times X$ , it is not always a multivalued map because it may not project surjectively onto Y.

**Definition 8.7.** A multivalued map  $C: X \rightrightarrows Y$  is a correspondence if the canonical projection  $\pi_Y: C \to Y$  is surjective, or equivalently, if  $C^T$  is also a multivalued map.

Note that if  $C:X \Rightarrow Y$  is a correspondence then the identity maps  $\mathbf{1}_X$  and  $\mathbf{1}_Y$  are subordinate to the compositions  $C^T \circ C$  and  $C \circ C^T$ , respectively.

**Definition 8.8.** Let  $(X,d), (Y,e) \in \mathbf{Met}$  and let  $\varepsilon \geq 0$ . Say that  $C: X \rightrightarrows Y$  is a metric  $\varepsilon$ -multivalued map if whenever xCy and x'Cy' then  $e(y,y') \leq d(x,x') + \varepsilon$ . Say that a correspondence  $C: X \rightrightarrows Y$  is a metric  $\varepsilon$ -correspondence if C and  $C^T$  are metric  $\varepsilon$ -multivalued maps. The metric distortion of a correspondence  $C: X \rightrightarrows Y$  is given by  $\mathrm{mdist}(C) = \inf\{\varepsilon \geq$  $0 \mid C$  is a metric  $\varepsilon$ -correspondence, with  $\mathrm{mdist}(C) = \infty$  if there is no such  $\varepsilon$ . The Gromov-Hausdorff distance between (X,d) and (Y,e) is given by  $d_{GH}((X,d),(Y,e)) = \frac{1}{2}\inf \operatorname{mdist}(C)$ , where the infimum is taken over all correspondences  $C: X \rightrightarrows Y$  [20, Section 7.3].

Recall that R denotes the totally ordered set  $(\mathbb{R}, \leq)$  and for  $(X_{\bullet}, c_{\bullet}) \in \mathbf{F_RCl}, X = \bigcup_t X_t$ .

**Definition 8.9.** Let  $(X_{\bullet}, c_{\bullet}), (Y_{\bullet}, d_{\bullet}) \in \mathbf{F_RCl}$ . A multivalued map from  $(X_{\bullet}, c_{\bullet})$  to  $(Y_{\bullet}, d_{\bullet})$ is a multivalued map  $C: X \rightrightarrows Y$ . Write  $C: (X_{\bullet}, c_{\bullet}) \rightrightarrows (Y_{\bullet}, d_{\bullet})$ . Similarly, a correspondence from  $(X_{\bullet}, c_{\bullet})$  to  $(Y_{\bullet}, d_{\bullet})$  is a correspondence  $C: X \rightrightarrows Y$ . Let  $\varepsilon \geq 0$ . Say that a multivalued map  $C: (X_{\bullet}, c_{\bullet}) \rightrightarrows (Y_{\bullet}, d_{\bullet})$  is an  $\varepsilon$ -multivalued map if for all t,

- (1) whenever  $x \in X_t$  and xCy we have that  $y \in Y_{t+\varepsilon}$ , and
- (2) whenever  $A \subset X_t$  and  $f: X \xrightarrow{C} Y$  we have that  $C(c_t(A)) \subset d_{t+\varepsilon}(f(A))$ .

Say that a correspondence  $C:(X_{\bullet},c_{\bullet}) \rightrightarrows (Y_{\bullet},d_{\bullet})$  is an  $\varepsilon$ -correspondence if  $C:(X_{\bullet},c_{\bullet}) \rightrightarrows$  $(Y_{\bullet}, d_{\bullet})$  is an  $\varepsilon$ -multivalued map and if  $C^T: (Y_{\bullet}, d_{\bullet}) \Longrightarrow (X_{\bullet}, c_{\bullet})$  is an  $\varepsilon$ -multivalued map.

**Lemma 8.10.** A multivalued map  $C:(X_{\bullet},c_{\bullet}) \rightrightarrows (Y_{\bullet},d_{\bullet})$  is an  $\varepsilon$ -multivalued map iff for all t,

- (1) whenever  $x \in X_t$  and xCy we have that  $y \in Y_{t+\varepsilon}$ , and
- (2) for all  $S \subset \pi_X^{-1}(X_t)$ ,  $C(c_t(\pi_X S)) \subset d_{t+\varepsilon}(\pi_Y S)$ .

*Proof.* ( $\Leftarrow$ ) Let  $A \subset X_t$  and  $f: X \xrightarrow{C} Y$ . Let  $S = \{(a, f(a) \mid a \in A\}$ . Then  $\pi_X(S) = A$ ,  $\pi_Y(S) = f(A)$ . Thus  $S \subset \pi_X^{-1}(X_t)$  and hence  $C(c_t(A)) \subset d_{t+\varepsilon}(f(A))$ .

 $(\Rightarrow)$  Let  $S \subset \pi_X^{-1} X_t$ . Let  $A = \pi_X(S)$ . Then  $A \subset X_t$ . Choose  $f: X \xrightarrow{C} Y$ . Then  $f(A) \subset \pi_Y(S)$ . Therefore  $C(c_t(\pi_X S)) \subset d_{t+\varepsilon}(f(A)) \subset d_{t+\varepsilon}(\pi_Y S)$ . 

**Lemma 8.11.** If  $C: (X_{\bullet}, c_{\bullet}) \rightrightarrows (Y_{\bullet}, d_{\bullet})$  is an  $\varepsilon$ -multivalued map and  $D: (Y_{\bullet}, d_{\bullet}) \rightrightarrows (Z_{\bullet}, e_{\bullet})$ is an  $\delta$ -multivalued map, then  $D \circ C : (X_{\bullet}, c_{\bullet}) \rightrightarrows (Z_{\bullet}, e_{\bullet})$  is an  $(\varepsilon + \delta)$ -multivalued map.

*Proof.* We will use Lemma 8.11.

- (1) For all t and  $x \in X_t$ , if xDCz then there is a  $y \in Y$  such that xCy, yDz. Since
- $x \in X_t, y \in Y_{t+\varepsilon} \text{ and thus } z \in Z_{t+\varepsilon+\delta}.$   $(2) \text{ Let } S \subset (\pi_X^{DC})^{-1}X_t. \text{ We want to show that } DC(c_t(\pi_X^{DC}(S))) \subset e_{t+\varepsilon+\delta}(\pi_Z^{DC}(S)).$   $\text{Let } T = (\pi_X^C)^{-1}(\pi_X^{DC}(S)). \text{ Then } \pi_X^C(T) = \pi_X^{DC}(S) \text{ and } T \subset (\pi_X^C)^{-1}(X_t). \text{ Thus }$   $\pi_Y^C(T) \subset Y_{t+\varepsilon} \text{ and } (DC)(c_t(\pi_X^{DC}(S))) = D(C(c_t(\pi_X^CT))) \subset D(d_{t+\varepsilon}(\pi_Y^CT)). \text{ Let } U =$   $(\pi_Y^D)^{-1}(\pi_Y^C(T)). \text{ Then } \pi_Y^D(U) = \pi_Y^C(T) \text{ and } U \subset (\pi_Y^D)^{-1}(Y_{t+\varepsilon}). \text{ Thus } D(d_{t+\varepsilon}(\pi_Y^C(T))) =$

 $D(d_{t+\varepsilon}(\pi_Y^D(U))) \subset e_{t+\varepsilon+\delta}(\pi_Z^D(U)). \text{ It remains to show that } \pi_Z^D(U) = \pi_Z^{DC}(S).$   $\pi_Z^{DC}(S) = \{z \in Z \mid \exists x \in X, \exists y \in Y, xCy, yDz, x \in \pi_X^{DC}(S)\}$   $= \{z \in Z \mid \exists (x,y) \in T, yDz\}$   $= \{z \in Z \mid \exists y \in \pi_Y^C T, yDz\}$   $= \pi_Z^D((\pi_Y^D)^{-1}(\pi_Y^C(T)))$   $= \pi_Z^D(U).$ 

**Definition 8.12.** Let  $(X_{\bullet}, c_{\bullet}), (Y_{\bullet}, d_{\bullet}) \in \mathbf{F_RCl}$ . For a correspondence  $C: (X_{\bullet}, c_{\bullet}) \rightrightarrows (Y_{\bullet}, d_{\bullet})$  define the *distortion* of C by  $\operatorname{dist}(C) = \inf\{\varepsilon \geq 0 \mid C \text{ is an } \varepsilon\text{-correspondence}\}$ , where  $\operatorname{dist}(C) = \infty$  if there is no such  $\varepsilon$ .

**Definition 8.13.** Let  $(X_{\bullet}, c_{\bullet}), (Y_{\bullet}, d_{\bullet}) \in \mathbf{F_RCl}$ . Define the *Gromov-Hausdorff distance* between  $(X_{\bullet}, c_{\bullet})$  and  $(Y_{\bullet}, d_{\bullet})$  to be given by  $d_{GH}((X_{\bullet}, c_{\bullet}), (Y_{\bullet}, d_{\bullet})) = \frac{1}{2}\inf \operatorname{dist}(C)$ , where the infimum is taken over all correspondences  $C: (X_{\bullet}, c_{\bullet}) \rightrightarrows (Y_{\bullet}, d_{\bullet})$ .

It follows from Lemma 8.11 that  $d_{GH}$  satisfies the triangle inequality. Also note that since the definition of  $\varepsilon$ -correspondence is symmetric,  $d_{GH}$  is symmetric. Furthermore if  $(X_{\bullet}, c_{\bullet}) \cong (Y_{\bullet}, d_{\bullet})$  then  $d_{GH}((X_{\bullet}, c_{\bullet}), (Y_{\bullet}, d_{\bullet})) = 0$ .

**Theorem 8.14.** The Gromov-Hausdorff distance is an extended pseudometric on isomorphism classes of R-filtered closure spaces.

**Proposition 8.15.** Let  $(X,c) \in \mathbf{Cl}$  and let  $f,g: X \to \mathbb{R}$ . Then  $d_{GH}(\mathrm{Sub}(f),\mathrm{Sub}(g)) \leq \frac{1}{2}d_{\infty}(f,g)$ .

Proof. Let  $\varepsilon = d_{\infty}(f,g)$ . Consider the correspondence of  $\operatorname{Sub}(f)$  and  $\operatorname{Sub}(g)$  given by the diagonal  $\Delta = \{(x,x) \mid x \in X\} \subset X \times X$ . By assumption, for all t,  $\operatorname{Sub}(f)_t \subset \operatorname{Sub}(g)_{t+\varepsilon}$  and  $\operatorname{Sub}(g)_t \subset \operatorname{Sub}(f)_{t+\varepsilon}$ . Furthermore, the only function  $f: X \to X$  subordinate to  $\Delta$  is the identity function. It follows that  $\Delta$  is an  $\varepsilon$ -correspondence.

The following example shows that the inequality in the previous proposition may be strict.

**Example 8.16.** Let  $(X,c)=(\{0,1\},c_\perp)$ . Let  $f,g:X\to\mathbb{R}$  be given by f(i)=i and g(i)=1-i, respectively. Then  $d_\infty(f,g)=1$ . Let  $C=\{(0,1),(1,0)\}\subset X\times X$ . We will use Definition 8.9 to show that C is a 0-correspondence. Note that  $\mathrm{Sub}(f)_t=\varnothing$  if t<0,  $\mathrm{Sub}(f)_t=\{0\}$  if  $0\le t<1$  and  $\mathrm{Sub}(f)_t=X$  if  $t\ge 1$ . Similarly,  $\mathrm{Sub}(g)_t=\varnothing$  if t<0,  $\mathrm{Sub}(g)_t=\{1\}$  if  $0\le t<1$  and  $\mathrm{Sub}(g)_t=X$  if  $t\ge 1$ . Thus, if xCy then  $x\in\mathrm{Sub}(g)_t$  iff  $y\in\mathrm{Sub}(f)_t$ . The only function  $h:X\to X$  subordinate to C is given by h(0)=1 and h(1)=0. Therefore for all  $A\subset X$ , C(A)=h(A) and  $C^T(A)=h(A)$ . Thus C is a 0-correspondence. Hence  $2d_{GH}(\mathrm{Sub}(f),\mathrm{Sub}(g))=0< d_\infty(f,g)=1$ .

Recall (Proposition 7.11) that **Met** is a full subcategory of  $\mathbf{F_RCl}$  given by mapping a metric space (X, d) to  $(X_{\bullet}, c_{\bullet, d})$ , where for t < 0,  $X_t = \emptyset$  and for  $t \ge 0$ ,  $X_t = X$  and for  $A \subset X$ ,  $c_{t,d}(A) = \{x \in X \mid d(a, x) \le t \text{ for some } a \in A\}$ .

**Lemma 8.17.** Let  $(X, d), (Y, e) \in \mathbf{Met}$ . Then  $(X, c_{\bullet,d}), (Y, c_{\bullet,e}) \in \mathbf{F_RCl}$ . Let  $C: X \rightrightarrows Y$  and let  $\varepsilon \geq 0$ . Then C is a metric  $\varepsilon$ -multivalued map iff C is an  $\varepsilon$ -multivalued map.

Proof. ( $\Rightarrow$ ) Since  $X_t \neq \emptyset$  implies that  $t \geq 0$  and hence  $Y_{t+\varepsilon} = Y$ , the first condition of Definition 8.9 is trivial. For the second condition, let  $A \subset X$  and  $f: X \xrightarrow{C} Y$ . Let  $y \in C(c_{t,d}(A))$ . Then,  $\exists a \in A, \exists x \in X, d(a,x) \leq t, xCy$ . Since aCf(a), it follows that  $e(f(a), y) \leq d(a, x) + \varepsilon \leq t + \varepsilon$  and thus  $y \in c_{t+\varepsilon,e}(f(A))$ . Therefore  $C(c_{t,d}(A)) \subset c_{t+\varepsilon,e}(f(A))$ . ( $\Leftarrow$ ) Assume xCy, x'Cy'. Let t = d(x, x') and let  $S = \{(x, y)\} \subset C$ . Since  $x' \in c_{t,d}(\pi_X(S))$ , we have that  $y' \in C(c_{t,d}(\pi_X(S)))$ , which by Lemma 8.10 is contained in  $c_{t+\varepsilon,e}(\pi_Y(S)) = c_{t+\varepsilon,e}(y)$ . Therefore  $e(y, y') \leq t + \varepsilon$ .

It follows that restricted to metric spaces our definition of Gromov-Hausdorff distance for *R*-filtered closure spaces Definition 8.13 agrees with the usual definition of the Gromov-Hausdorff distance of metric spaces Definition 8.8.

**Theorem 8.18.** The full embedding (Met,  $d_{GH}$ )  $\rightarrow$  ( $\mathbf{F_RCl}$ ,  $d_{GH}$ ) is an isometric embedding.

**Proposition 8.19.** Let  $\varepsilon \geq 0$ . If  $(X_{\bullet}, c_{\bullet}), (Y_{\bullet}, d_{\bullet}) \in \mathbf{F_RCl}$  and  $C : (X_{\bullet}, c_{\bullet}) \rightrightarrows (Y_{\bullet}, d_{\bullet})$  is an  $\varepsilon$ -multivalued map then  $C : (X_{\bullet}, A(c_{\bullet})) \rightrightarrows (Y_{\bullet}, A(d_{\bullet}))$  is an  $\varepsilon$ -multivalued map. Furthermore, if  $(X_{\bullet}, c_{\bullet}), (Y_{\bullet}, d_{\bullet}) \in \mathbf{F_RCl_A}$  and  $C : (X_{\bullet}, c_{\bullet}) \rightrightarrows (Y_{\bullet}, d_{\bullet})$  is an  $\varepsilon$ -multivalued map then  $C : (X_{\bullet}, s(c_{\bullet})) \rightrightarrows (Y_{\bullet}, s(d_{\bullet}))$  is an  $\varepsilon$ -multivalued map.

Proof. The first statement follows from specializing the second condition in Definition 8.9 to  $x \in X_t$ . By Lemma 8.10, we may write this specialized second condition as  $x \in X_t$ , xCy,  $x' \in c_t(x)$ , x'Cy' implies that  $y' \in d_{t+\varepsilon}(y)$ . From this it follows that  $x \in X_t$ , xCy,  $x' \in s(c_t(x))$ , x'Cy' implies that  $y' \in s(d_{t+\varepsilon}(y))$ . By Lemma 8.10, we obtain the desired result.

Corollary 8.20. Let  $(X_{\bullet}, c_{\bullet}), (Y_{\bullet}, d_{\bullet}) \in \mathbf{F_RCl}$ . Then

$$d_{GH}((X_{\bullet}, \mathcal{A}(c_{\bullet})), (Y_{\bullet}, \mathcal{A}(d_{\bullet}))) \leq d_{GH}((X_{\bullet}, c_{\bullet}), (Y_{\bullet}, d_{\bullet})), \text{ and}$$
  
$$d_{GH}((X_{\bullet}, s(\mathcal{A}(c_{\bullet}))), (Y_{\bullet}, s(\mathcal{A}(d_{\bullet})))) \leq d_{GH}((X_{\bullet}, \mathcal{A}(c_{\bullet})), (Y_{\bullet}, \mathcal{A}(d_{\bullet}))).$$

8.3. Correspondences, homotopy, contiguity, and interleaving. We connect elementary  $(J_{\top}, \times)$  homotopies,  $\varepsilon$ -correspondences, and contiguous simplicial maps.

**Lemma 8.21.** Let  $(X_{\bullet}, c_{\bullet}), (Y_{\bullet}, d_{\bullet}) \in \mathbf{F_RCl}$ . Let  $C : (X_{\bullet}, c_{\bullet}) \rightrightarrows (Y_{\bullet}, d_{\bullet})$  be an  $\varepsilon$ -multivalued map. Let  $f : X \xrightarrow{C} Y$ . Then for all t,  $f|_{X_t} : (X_t, c_t) \to (Y_{t+\varepsilon}, d_{t+\varepsilon})$  is continuous.

*Proof.* Let  $x \in X_t$ . Since xCf(x), by Definition 8.9 we have that  $f(x) \in Y_{t+\varepsilon}$ . Let  $A \subset X_t$ . Then, by Definition 8.9,  $f(c_t(A)) \subset C(c_t(A)) \subset d_{t+\varepsilon}(f(A))$ .

**Proposition 8.22.** Let  $(X_{\bullet}, c_{\bullet}), (Y_{\bullet}, d_{\bullet}) \in \mathbf{F_RCl}$ . Let  $C: (X_{\bullet}, c_{\bullet}) \rightrightarrows (Y_{\bullet}, d_{\bullet})$  be an  $\varepsilon$ -multivalued map. For all f, g subordinate to C, and for all  $t \in \mathbb{R}$ ,  $f|_{X_t}, g|_{X_t}: (X_t, c_t) \to (Y_{t+\varepsilon}, d_{t+\varepsilon})$  are one-step  $(J_{\top}, \times)$ -homotopic.

Proof. By Lemma 8.21,  $f|_{X_t}, g|_{X_t}: (X_t, c_t) \to (Y_{t+\varepsilon}, d_{t+\varepsilon}) \in \mathbf{Cl}$ . Let  $A \subset X_t$ . By the continuity of  $f|_{X_t}$  and  $g|_{X_t}$ , we have  $f(c_t(A)) \subset d_{t+\varepsilon}(f(A))$  and  $g(c_t(A)) \subset d_{t+\varepsilon}(g(A))$ . Since C is an  $\varepsilon$ -multivalued map, we also have  $g(c_t(A)) \subset C(c_t(A)) \subset d_{t+\varepsilon}(f(A))$  and similarly  $f(c_t(A)) \subset d_{t+\varepsilon}(g(A))$ . By Proposition 4.28,  $f|_{X_t}$  and  $g|_{X_t}$  are one-step  $(J_\top, \times)$ -homotopic.

Combining this result with Theorem 6.17, we have the following.

- Corollary 8.23. Let  $(X_{\bullet}, c_{\bullet}), (Y_{\bullet}, d_{\bullet}) \in \mathbf{F_RCl}$ . Let  $C : (X_{\bullet}, c_{\bullet}) \rightrightarrows (Y_{\bullet}, d_{\bullet})$  be an  $\varepsilon$ -multivalued map and let  $S \in \{VR, \check{C}, \check{C}^T\}$ . For all f, g subordinate to C, and for all t,  $f|_{X_t}, g|_{X_t} : (X_t, S(c_t)) \to (Y_{t+\varepsilon}, S(d_{t+\varepsilon}))$  are contiguous.
- **Definition 8.24.** Let  $(X_{\bullet}, c_{\bullet}), (Y_{\bullet}, d_{\bullet}) \in \mathbf{F_RCl}$ . Say that  $(X_{\bullet}, c_{\bullet})$  and  $(Y_{\bullet}, d_{\bullet})$  are  $\varepsilon$  onestep  $(J_{\top}, \times)$  homotopy interleaved if there exist  $f: (X_{\bullet}, c_{\bullet}) \to (Y_{\bullet}, d_{\bullet+\varepsilon})$  and  $g: (Y_{\bullet}, d_{\bullet}) \to (X_{\bullet}, c_{\bullet+\varepsilon})$  such that for all  $t, g|_{Y_{t+\varepsilon}} \circ f|_{X_t}$  is one-step  $(J_{\top}, \times)$  homotopic with  $X_t \hookrightarrow X_{t+2\varepsilon}$  and  $f|_{X_{t+\varepsilon}} \circ g|_{Y_t}$  is one-step  $(J_{\top}, \times)$  homotopic with  $Y_t \hookrightarrow Y_{t+2\varepsilon}$ .
- **Definition 8.25.** Let  $(X_{\bullet}, E_{\bullet}), (Y_{\bullet}, F_{\bullet}) \in \mathbf{F_RSimp}$ . Say that  $(X_{\bullet}, E_{\bullet})$  and  $(Y_{\bullet}, F_{\bullet})$  are  $\varepsilon$  contiguity interleaved if there exist  $f: (X_{\bullet}, E_{\bullet}) \to (Y_{\bullet}, F_{\bullet+\varepsilon})$  and  $g: (Y_{\bullet}, F_{\bullet}) \to (X_{\bullet}, E_{\bullet+\varepsilon})$  such that for all  $t, g|_{Y_{t+\varepsilon}} \circ f|_{X_t}$  is contiguous with  $X_t \hookrightarrow X_{t+2\varepsilon}$  and  $f|_{X_{t+\varepsilon}} \circ g|_{Y_t}$  is contiguous with  $Y_t \hookrightarrow Y_{t+2\varepsilon}$ .
- **Theorem 8.26.** Let  $(X_{\bullet}, c_{\bullet}), (Y_{\bullet}, d_{\bullet}) \in \mathbf{F_RCl}$  and let  $S \in \{VR, \check{C}, \check{C}^T\}$ . If there exists an  $\varepsilon$ -correspondence  $C: (X_{\bullet}, c_{\bullet}) \rightrightarrows (Y_{\bullet}, d_{\bullet})$  then  $(X_{\bullet}, c_{\bullet})$  and  $(Y_{\bullet}, d_{\bullet})$  are  $\varepsilon$  one-step  $(J_{\top}, \times)$  homotopy interleaved, and  $(X_{\bullet}, S(c_{\bullet}))$  and  $(Y_{\bullet}, S(d_{\bullet}))$  are  $\varepsilon$  contiguity interleaved. Let  $(X_{\bullet}, E_{\bullet}), (Y_{\bullet}, F_{\bullet}) \in \mathbf{F_RSimp}$ . If  $(X_{\bullet}, E_{\bullet})$  and  $(Y_{\bullet}, F_{\bullet})$  are  $\varepsilon$  contiguity interleaved, then  $(X_{\bullet}, \operatorname{st}(E_{\bullet}))$  and  $(Y_{\bullet}, \operatorname{st}(F_{\bullet}))$  are  $\varepsilon$  one-step  $(J_{\top}, \times)$  homotopy interleaved.
- *Proof.* Let  $C: (X_{\bullet}, c_{\bullet}) \rightrightarrows (Y_{\bullet}, d_{\bullet})$  be and  $\varepsilon$ -correspondence. By Lemma 8.21 there exist  $f: X \xrightarrow{C} Y$  and  $g: Y \xrightarrow{C^T} X$  such that  $f: (X_{\bullet}, c_{\bullet}) \to (Y_{\bullet + \varepsilon}, d_{\bullet + \varepsilon})$  and  $g: (Y_{\bullet}, d_{\bullet}) \to (X_{\bullet + \varepsilon}, c_{\bullet + \varepsilon})$ . Since the composition  $g \circ f: (X_{\bullet}, c_{\bullet}) \to (X_{\bullet + 2\varepsilon}, c_{\bullet + 2\varepsilon})$  given by  $(g \circ f)_t = g_{t+\varepsilon} \circ f_t$  and the inclusion map  $(X_{\bullet}, c_{\bullet}) \hookrightarrow (X_{\bullet + 2\varepsilon}, c_{\bullet + 2\varepsilon})$  are both subordinate to  $C^T \circ C$  and similarly the composition  $f \circ g: (Y_{\bullet}, d_{\bullet}) \to (Y_{\bullet + 2\varepsilon}, d_{\bullet + 2\varepsilon})$  given by  $(f \circ g)_t = f_{t+\varepsilon} \circ g_t$  and the inclusion map  $(Y_{\bullet}, d_{\bullet}) \hookrightarrow (Y_{\bullet + 2\varepsilon}, d_{\bullet + 2\varepsilon})$  are both subordinate to  $C \circ C^T$ , by Proposition 8.22 we have that  $(X_{\bullet}, c_{\bullet})$  and  $(Y_{\bullet}, d_{\bullet})$  are  $\varepsilon$  one-step  $(J_{\top}, \times)$  homotopy interleaved.
- Applying a functor  $S \in \{VR, \check{C}, \check{C}^T\}$ , we have morphisms  $f: (X_{\bullet}, S(c_{\bullet})) \to (Y_{\bullet+\varepsilon}, S(d_{\bullet+\varepsilon}))$ , and  $g: (Y_{\bullet}, S(d_{\bullet})) \to (X_{\bullet+\varepsilon}, S(c_{\bullet+\varepsilon}))$ . By Corollary 8.23,  $(X_{\bullet}, S(c_{\bullet}))$  and  $(Y_{\bullet}, S(d_{\bullet}))$  are  $\varepsilon$  contiguity interleaved.
- Now suppose that  $f:(X_{\bullet}, E_{\bullet}) \to (Y_{\bullet}, F_{\bullet})$  and  $g:(Y_{\bullet}, F_{\bullet}) \to (X_{\bullet}, E_{\bullet})$  provide an  $\varepsilon$  contiguity interleaving. By Theorem 6.17, it follows that  $f:(X_{\bullet}, \operatorname{st}(E_{\bullet})) \to (Y_{\bullet}, \operatorname{st}(F_{\bullet}))$  and  $g:(Y_{\bullet}, \operatorname{st}(F_{\bullet})) \to (X_{\bullet}, \operatorname{st}(E_{\bullet}))$  provide an  $\varepsilon$  one-step  $(J_{\top}, \times)$  homotopy interleaving.  $\square$
- **Theorem 8.27.** Let  $(X_{\bullet}, c_{\bullet}), (Y_{\bullet}, d_{\bullet}) \in \mathbf{F_RCl}$ . Assume there exists an  $\varepsilon$ -correspondence  $C: (X_{\bullet}, c_{\bullet}) \rightrightarrows (Y_{\bullet}, d_{\bullet})$ . Let H denote one of our singular cubical or simplicial homology theories and let  $j \geq 0$ . Then the persistence modules  $H_j(X_{\bullet}, c_{\bullet})$  and  $H_j(Y_{\bullet}, d_{\bullet})$  are  $\varepsilon$ -interleaved. If coefficients are in a field and  $H_j(X_{\bullet}, c_{\bullet})$  and  $H_j(Y_{\bullet}, d_{\bullet})$  are q-tame then there exists an  $\varepsilon$ -matching between  $D(H_j(X_{\bullet}, c_{\bullet}))$  and  $D(H_j(Y_{\bullet}, d_{\bullet}))$ , where D(-) denotes the persistence diagram.
- *Proof.* Given an  $\varepsilon$ -correspondence  $C:(X_{\bullet},c_{\bullet}) \Rightarrow (Y_{\bullet},d_{\bullet})$ , by Theorem 8.26,  $(X_{\bullet},c_{\bullet})$  and  $(Y_{\bullet},d_{\bullet})$  are  $\varepsilon$   $(J_{\top},\times)$  homotopy interleaved. The first statement follows from Theorems 4.36 and 5.6. The second statement follows from the Algebraic Stability Theorem [10, 25].
- 8.4. **Stability theorems.** We now use our results on  $\varepsilon$ -correspondences to obtain our desired stability theorems. As a direct consequence of Theorem 8.26 we have the following.

**Theorem 8.28** (Stability Theorem). Let  $(X_{\bullet}, c_{\bullet}), (Y_{\bullet}, d_{\bullet}) \in \mathbf{F_RCl}$ . Let H denote one of our singular cubical or simplicial homology theories and let  $j \geq 0$ . Then

$$d_I(H_j(X_{\bullet}, c_{\bullet}), H_j(Y_{\bullet}, d_{\bullet})) \le 2d_{GH}((X_{\bullet}, c_{\bullet}), (Y_{\bullet}, d_{\bullet})),$$

where  $d_I$  denotes the interleaving distance.

By Proposition 8.15, as a special case, this strengthens Theorem 8.2. As a direct consequence of Theorem 8.27 we have the following.

Corollary 8.29 (Bottleneck Stability Theorem). Let  $(X_{\bullet}, c_{\bullet}), (Y_{\bullet}, d_{\bullet}) \in \mathbf{F_RCl}$ . Let H denote one of our singular cubical or simplicial homology theories, where coefficients are in a field, and let  $j \geq 0$ . If  $H_j(X_{\bullet}, c_{\bullet})$  and  $H_j(Y_{\bullet}, d_{\bullet})$  are q-tame then

$$d_B(D(H_i(X_{\bullet}, c_{\bullet})), D(H_i(Y_{\bullet}, d_{\bullet}))) \le 2d_{GH}((X_{\bullet}, c_{\bullet}), (Y_{\bullet}, d_{\bullet})),$$

where D(-) denotes the persistence diagram and  $d_B$  denotes the bottleneck distance.

From Theorem 8.26 we also obtain the following stability theorem, where  $d_{HC}$  denotes the homotopy commutative interleaving distance [12, 48].

**Theorem 8.30** (Rips and Čech Stability Theorem). Let  $(X_{\bullet}, c_{\bullet}), (Y_{\bullet}, d_{\bullet}) \in \mathbf{F_RCl}$ . Let  $d = d_{GH}((X_{\bullet}, s(A(c))_{\bullet}), (Y_{\bullet}, s(A(d))_{\bullet}))$ , which by Corollary 8.20 is upper bounded by  $d_{GH}((X_{\bullet}, c_{\bullet}), (Y_{\bullet}, d_{\bullet}))$ . Let S denote one of VR,  $\check{C}$ , or  $\check{C}^T$ . Then

$$d_{HC}((X_{\bullet}, S(c_{\bullet})), (Y_{\bullet}, S(d_{\bullet}))) \le 2d.$$

Let H denote simplicial homology and let  $j \geq 0$ . Then

$$d_I(H_i(X_{\bullet}, S(c_{\bullet})), H_i(Y_{\bullet}, S(d_{\bullet}))) \le 2d.$$

If coefficients are in a field and the persistence modules are q-tame then

$$d_B(D(H_j(X_{\bullet}, S(c_{\bullet}))), D(H_j(Y_{\bullet}, S(d_{\bullet})))) \le 2d.$$

Acknowledgments. This research was partially supported by the Southeast Center for Mathematics and Biology, an NSF-Simons Research Center for Mathematics of Complex Biological Systems, under National Science Foundation Grant No. DMS- 1764406 and Simons Foundation Grant No. 594594. This material is based upon work supported by, or in part by, the Army Research Laboratory and the Army Research Office under contract/grant number W911NF-18-1-0307. We thank Jamie Scott for suggesting the use of concatenation.

## References

- [1] Murat Ahat, Sofiane Ben Amor, Marc Bui, Michel Lamure, and Marie-Françoise Courel. "Pollution modeling and simulation with multi-agent and pretopology". *International Conference on Complex Sciences*. Springer. 2009, pp. 225–231.
- [2] P. Alexandroff. "Diskrete Räume". Mat. Sbornik N.S. 2.44 (1937), pp. 501–519.
- [3] Eric Babson, Hélene Barcelo, Mark de Longueville, and Reinhard Laubenbacher. "Homotopy theory of graphs". *Journal of Algebraic Combinatorics* 24.1 (2006), pp. 31–44.
- [4] Hélène Barcelo, Valerio Capraro, and Jacob A White. "Discrete homology theory for metric spaces". Bulletin of the London Mathematical Society 46.5 (2014), pp. 889–905.
- [5] Hélène Barcelo, Curtis Greene, Abdul Salam Jarrah, and Volkmar Welker. "Discrete cubical and path homologies of graphs". *Algebr. Comb.* 2.3 (2019), pp. 417–437.

- [6] Hélène Barcelo, Curtis Greene, Abdul Salam Jarrah, and Volkmar Welker. "Homology groups of cubical sets with connections". Appl. Categ. Structures 29.3 (2021), pp. 415– 429.
- [7] Helene Barcelo, Xenia Kramer, Reinhard Laubenbacher, and Christopher Weaver. "Foundations of a connectivity theory for simplicial complexes". *Advances in Applied Mathematics* 26.2 (2001), pp. 97–128.
- [8] Hélène Barcelo and Reinhard Laubenbacher. "Perspectives on A-homotopy theory and its applications". *Discrete mathematics* 298.1-3 (2005), pp. 39–61.
- [9] Jonathan Ariel Barmak and Elias Gabriel Minian. "Strong homotopy types, nerves and collapses". *Discrete Comput. Geom.* 47.2 (2012), pp. 301–328.
- [10] Ulrich Bauer and Michael Lesnick. "Induced matchings and the algebraic stability of persistence barcodes". J. Comput. Geom. 6.2 (2015), pp. 162–191.
- [11] Clemens Berger and Ieke Moerdijk. "The Boardman-Vogt resolution of operads in monoidal model categories". *Topology* 45.5 (2006), pp. 807–849.
- [12] Andrew J Blumberg and Michael Lesnick. "Universality of the homotopy interleaving distance". arXiv preprint arXiv:1705.01690 (2017).
- [13] Stéphane Bonnevay. "Pretopological operators for gray-level image analysis." *Stud. Inform. Univ.* 7.1 (2009), pp. 173–195.
- [14] Laurence Boxer. "A classical construction for the digital fundamental group". J. Math. Imaging Vision 10.1 (1999), pp. 51–62.
- [15] Peter Bubenik, Vin De Silva, and Jonathan Scott. "Metrics for generalized persistence modules". Foundations of Computational Mathematics 15.6 (2015), pp. 1501–1531.
- [16] Peter Bubenik, Vin De Silva, and Jonathan Scott. "Interleaving and Gromov-Hausdorff distance". arXiv preprint arXiv:1707.06288 (2017).
- [17] Peter Bubenik and Nikola Milićević. "Eilenberg-Steenrod homology and cohomology theories for Čech's closure spaces". arXiv preprint arXiv:2112.13421 (2021).
- [18] Peter Bubenik and Jonathan A. Scott. "Categorification of persistent homology". *Discrete Comput. Geom.* 51.3 (2014), pp. 600–627.
- [19] Peter Bubenik, Vin de Silva, and Vidit Nanda. "Higher Interpolation and Extension for Persistence Modules". SIAM Journal on Applied Algebra and Geometry 1.1 (2017), pp. 272–284.
- [20] Dmitri Burago, Yuri Burago, and Sergei Ivanov. A course in metric geometry. Vol. 33. Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2001.
- [21] Eduard Čech, Zdeněk Frolík, and Miroslav Katětov. *Topological spaces*. Academia, Publishing House of the Czechoslovak Academy of Sciences (Prague), 1966.
- [22] Frédéric Chazal, David Cohen-Steiner, Marc Glisse, Leonidas J. Guibas, and Steve Y. Oudot. "Proximity of persistence modules and their diagrams". *Proceedings of the 25th annual symposium on Computational geometry*. SCG '09. New York, NY, USA: ACM, 2009, pp. 237–246.
- [23] Frédéric Chazal, David Cohen-Steiner, Leonidas J Guibas, Facundo Mémoli, and Steve Y Oudot. "Gromov-Hausdorff stable signatures for shapes using persistence". *Computer Graphics Forum.* Vol. 28. 5. Wiley Online Library. 2009, pp. 1393–1403.
- [24] Frédéric Chazal, William Crawley-Boevey, and Vin de Silva. "The observable structure of persistence modules". *Homology Homotopy Appl.* 18.2 (2016), pp. 247–265.

- [25] Frédéric Chazal, Vin de Silva, Marc Glisse, and Steve Oudot. *The structure and stability of persistence modules*. SpringerBriefs in Mathematics. Springer, [Cham], 2016.
- [26] Frédéric Chazal, Vin de Silva, and Steve Oudot. "Persistence stability for geometric complexes". Geom. Dedicata 173 (2014), pp. 193–214.
- [27] S. Chowdhury and F. Memoli. "Persistent homology of directed networks". 2016 50th Asilomar Conference on Signals, Systems and Computers. 2016, pp. 77–81.
- [28] Samir Chowdhury and Facundo Mémoli. "A functorial Dowker theorem and persistent homology of asymmetric networks". *Journal of Applied and Computational Topology* 2.1 (2018), pp. 115–175.
- [29] David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. "Stability of persistence diagrams". *Discrete Comput. Geom.* 37.1 (2007), pp. 103–120.
- [30] William Crawley-Boevey. "Decomposition of pointwise finite-dimensional persistence modules". J. Algebra Appl. 14.5 (2015), pp. 1550066, 8.
- [31] Davide Carlo Demaria and Garbaccio Rosanna Bogin. "Homotopy and homology in pretopological spaces". *Proceedings of the 11th Winter School on Abstract Analysis* (1984), pp. 119–126.
- [32] Dikran Dikranjan and Walter Tholen. Categorical structure of closure operators: with applications to topology, algebra and discrete mathematics. Vol. 346. Springer Science & Business Media, 2013.
- [33] Anton Dochtermann. "Hom complexes and homotopy theory in the category of graphs". European Journal of Combinatorics 30.2 (2009), pp. 490–509.
- [34] Anton Dochtermann and Anurag Singh. "Homomorphism complexes, reconfiguration, and homotopy for directed graphs". arXiv preprint arXiv:2108.10948 (2021).
- [35] Connor Donovan, Maxwell Lin, and Nicholas A Scoville. "On the homotopy and strong homotopy type of complexes of discrete Morse functions". arXiv preprint arXiv:1909.11440 (2019).
- [36] Herbert Edelsbrunner, David Letscher, and Afra Zomorodian. "Topological persistence and simplification". *Discrete Comput. Geom.* 28.4 (2002), pp. 511–533.
- [37] Herbert Edelsbrunner, Žiga Virk, and Hubert Wagner. "Topological data analysis in information space". J. Comput. Geom. 11.2 (2020), pp. 162–182.
- [38] Herbert Edelsbrunner and Hubert Wagner. "Topological data analysis with Bregman divergences". 33rd International Symposium on Computational Geometry. Vol. 77. LIPIcs. Leibniz Int. Proc. Inform. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2017, Art. No. 39, 16.
- [39] Hubert Emptoz. "Modèle prétopologique pour la reconnaissance des formes: applications en neurophysiologie". PhD thesis. INSA Lyon, 1983.
- [40] L Frank and E Hubert. "Pretopological approach for supervised learning". *Proceedings* of 13th International Conference on Pattern Recognition. Vol. 4. IEEE. 1996, pp. 256–260.
- [41] Carl Frélicot and Hubert Emptoz. "A pretopological approach for pattern classification with reject options". Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR). Springer. 1998, pp. 707–715.

- [42] Carl Frelicot and Frank Lebourgeois. "A pretopology-based supervised pattern classifier". Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No. 98EX170). Vol. 1. IEEE. 1998, pp. 106–109.
- [43] Robert Ghrist. "Homological algebra and data". *The mathematics of data*. Vol. 25. IAS/Park City Math. Ser. Amer. Math. Soc., Providence, RI, 2018, pp. 273–325.
- [44] Alexander Grigor'yan, Yong Lin, Yuri Muranov, and Shing-Tung Yau. "Homotopy theory for digraphs". *Pure Appl. Math. Q.* 10.4 (2014), pp. 619–674.
- [45] Felix Hausdorff. Grundzüge der Mengenlehre. Verlag von Veit & Comp., Leipzig, Germany, 1914.
- [46] X Kramer and R Laubenbacher. "Combinatorial homotopy of simplicial complexes and complex information systems". *Proc. Symp. in Appl. Math.* Vol. 53. 1998, pp. 91–118.
- [47] Michel Lamure. "Espaces abstraits et reconnaissance des formes: application au traitement des images digitales". PhD thesis. Lyon 1, 1987.
- [48] Edoardo Lanari and Luis Scoccola. "Rectification of interleavings and a persistent Whitehead theorem". arXiv preprint arXiv:2010.05378 (2020).
- [49] Christine Largeron and Stéphane Bonnevay. "A pretopological approach for structural analysis". *Information Sciences* 144.1-4 (2002), pp. 169–185.
- [50] Gregory Lupton, John Oprea, and Nicholas A. Scoville. "Homotopy theory in digital topology". *Discrete Comput. Geom.* 67.1 (2022), pp. 112–165.
- [51] Steve Y. Oudot. Persistence theory: from quiver representations to data analysis. Vol. 209. Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2015.
- [52] Raul Rabadan and Andrew J. Blumberg. Topological Data Analysis for Genomics and Evolution: Topology in Biology. Cambridge University Press, 2019.
- [53] Antonio Rieser. "Vietoris-Rips Homology Theory for Semi-Uniform Spaces". arXiv preprint arXiv:2008.05739 (2020).
- [54] Antonio Rieser. "Čech closure spaces: A unified framework for discrete and continuous homotopy". *Topology and its Applications* 296 (2021), p. 107613.
- [55] Maximilian Schmahl. "Structure of semi-continuous q-tame persistence modules". Homology, Homotopy and Applications 24.1 (2022), pp. 117–128.
- [56] Santiago Segarra. "Metric representations of networks". PhD thesis. University of Pennsylvania, 2016.
- [57] Alexei B Sossinsky. "Tolerance space theory and some applications". *Acta Applicandae Mathematica* 5.2 (1986), pp. 137–167.
- [58] Katharine Turner. "Rips filtrations for quasimetric spaces and asymmetric functions with stability results". Algebraic & Geometric Topology 19.3 (2019), pp. 1135–1170.
- [59] Luis Jorge Palacios Vela. "Homology and cohomology for closure spaces". Bachelor's Thesis. Universidad de Guanajuato, 2019.
- [60] Afra Zomorodian and Gunnar Carlsson. "Computing persistent homology". *Discrete Comput. Geom.* 33.2 (2005), pp. 249–274.