HOMOTOPY, HOMOLOGY, AND PERSISTENT HOMOLOGY USING
CLOSURE SPACES AND FILTERED CLOSURE SPACES
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ABSTRACT. We develop persistent homology in the setting of filtered (Cech) closure spaces.
Examples of filtered closure spaces include filtered topological spaces, metric spaces, weighted
graphs, and weighted directed graphs. We use various products and intervals for closure
spaces to obtain six homotopy theories, six cubical singular homology theories and three
simplicial singular homology theories. Applied to filtered closure spaces, these homology
theories produce persistence modules. We extend the definition of Gromov-Hausdorff dis-
tance to filtered closure spaces and use it to prove that these persistence modules and their
persistence diagrams are stable. We also extend the definitions of Vietoris-Rips and Cech
complexes to give functors on closure spaces and prove that their persistent homology is sta-
ble. The Vietoris-Rips functor has a left adjoint, which is defined using stars of simplices;
in contrast the Cech functor does not have a left or right adjoint.
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INTRODUCTION

A primary tool in applied algebraic topology is persistent homology [36, 60, 51|, which is
a key component of topological data analysis [43, 52]. For data encoded as a metric space,
consider the cover by balls of a fixed radius r and its nerve, called the Cech complex, or the
clique complex of the 1-skeleton of this nerve, called the Vietoris-Rips complex. Allowing r
to vary, we obtain a filtered simplicial complex. Applying homology with coefficients in a
field produces a persistence module. Under mild hypotheses, this persistence module has a
complete invariant called a barcode or persistence diagram [30, 25, 24, 26, 55].
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This approach uses simplicial homology, or, if one uses filtered topological spaces instead
of filtered simplicial complexes, singular homology. An alternative approach to applied alge-
braic topology has developed homology theories and homotopy theories for metric spaces [4],
graphs [7, 33|, and directed graphs [44, 34]. Digital images, the object of study of digital
topology, are a special case of graphs and their homology and homotopy theories have been
defined as well [14, 50]. However, there is a more general axiomatization of topological spaces,
namely Eduard Cech’s closure spaces [21] (Definition 1.1), that includes topological spaces,
graphs, and directed graphs as full subcategories, which suggests that these approaches may
be combined [54]. Closure spaces are also called pretopological spaces. Closure spaces have
been used in shape recognition [39, 41], image analysis [47, 13|, supervised learning [40, 42]
and complex systems modeling [1, 49].

Our contributions. We develop homotopy, homology, and persistent homology for closure
spaces. A closure space (X, c), consists of a set X and a closure operation ¢, which sends
subsets of X to subsets of X and satisfies certain axioms (Definition 1.1). Let Cl denote the
category of closure spaces and continuous maps (Definition 1.6).

Homotopy. We define homotopies between maps of closure spaces using cylinders, which are
given by taking a product operation (Definition 4.1) with an interval (Definition 4.8). For
examples of intervals, we have (Definition 1.21): I, the unit interval with the topological
closure; Jr, the set {0, 1} with the indiscrete closure, in which ¢({0}) = {0,1} and ¢({1}) =
{0, 1}; and the Sierpinski space J, in which ¢({0}) = {0, 1} and ¢({1}) = {1}. For examples
of product operations, we have x, the (categorical) product (Definition 1.22), and H, the
inductive product (Definition 1.24).

Definition (Definition 4.20). For each interval J and product operation ® and each pair of
closure spaces X and Y there is a equivalence relation ~; ), which we call (J, ®) homotopy,
on the set of continuous maps from X to Y.

For closure spaces X and Y we have a partial order on pairs (J, ®), where J is an interval
and ® is a product operation, given by (J,®) < (J',®") if forall f,g: X =Y, f ~ug) g
implies that f ~(y g) g. We consider numerous intervals and reduce to the following poset,
which is independent of the choices of X and Y.

Theorem (Theorems 4.36 and 4.37). There is a poset of intervals and product operations
with distinct non-trivial homotopy relations given by the following Hasse diagram.

(17, 8)
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Homology. We study cubical and simplicial singular homology theories for closure spaces.

Definition (Definitions 5.1 and 5.2). For each pair consisting of an interval J and a closure

operation ® there is a corresponding cubical singular homology theory.
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Theorem (Theorem 5.6). Fach of the these cubical homology theories is invariant with
respect to the corresponding homotopy relation.

Definition (Definitions 5.13 and 5.14). For each interval J and the (categorical) product,
X, there is a corresponding simplicial singular homology theory.

Persistent homology. We develop a new framework for applied algebraic topology using fil-
tered closure spaces. A filtered closure space consists of a family of closure spaces {(X,, ¢a) }acr
such that for a < b, X, C Xy and forall A C X, ¢,(A) C ¢(A). Let FCI denote the category
of filtered closure spaces and natural transformations (Definition 7.1).

Let Met denote the category of metric spaces and 1-Lipschitz (i.e. non-expansive) maps.
A weighted graph is a graph in which each vertex and each edge has a real number called its
weight, such that the weight of an edge is not less than the weight of its boundary vertices.
Let wGph denote the category of weighted simple graphs and non-weight-increasing graph
homomorphisms. Similarly, we have the category wDiGph of weighted simple directed
graphs.

Proposition (Proposition 7.11). We have the following full embeddings of categories
Met — wGph — wDiGph — FCI.

Let Lip denote the category of metric spaces and Lipschitz maps. Let w™Gph and
wTDiGph be the categories of weighted simple graphs and weighted simple directed graphs
in which maps are allowed to increase weights by at most some fixed constant. Similarly, let
F*Cl denote the categories of filtered closure spaces and shifted morphisms (Definition 7.16).

Proposition (Proposition 7.18). We have the following full embeddings of categories
Lip — w Gph — w"DiGph — F*CL

Filtered closure spaces are isomorphic if and only if they are O-interleaved (Definition 7.3).
More generally, we have the following.

Theorem (Theorem 7.19). Filtered closure spaces are isomorphic in FTCl via maps with
shift L if and only if they are L-interleaved. In particular, metric spaces are isomorphic in
Lip via maps with Lipschitz constant K > 1 if and only if their corresponding filtered closure
spaces are log(K)-interleaved.

Let Simp denote the category of (abstract) simplicial complexes and simplicial maps.
We generalize the Vietoris-Rips complex and Cech complex constructions to define functors
VR, C : Cl — Simp (Definitions 6.7 and 6.8). We use stars of simplices to define a functor
st : Simp — CI1 (Definitions 6.10 and 6.11). Let Gph denote the category of simple graphs
and graph homomorphisms.

Theorem (Theorems 6.5, 6.12 and 6.15). The Vietoris-Rips functor VR has left adjoint the
star functor st. This adjunction factors through Gph.

VR:Cl™ L  Gph ™ 1  Simp:st

In contrast, the Cech functor, C' does not have a left or right adjoint.
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If we apply the Vietoris-Rips or Cech functors elementwise to a filtered closure space, we
obtain a filtered simplicial complex. Applying simplicial homology we obtain a persistence
module. The stability of this persistence module and its persistence diagram will be based
on the following result.

Theorem (Theorem 6.17). The functors VR and C' send one-step (Jt, X )-homotopic maps
to contiguous simplicial maps. Conversely, the functor st sends contiguous simplicial maps
to one-step (Jt, x)-homotopic maps.

If we apply any of our cubical or simplicial singular homology theories elementwise to a
filtered closure space we obtain a persistence module (Section 7.2). For a persistence module
M with values in a category of vector spaces, denote its persistence diagram [29, 18| by
D(M).

Given a closure space (X, ¢) and a function f : X — R, we have a filtered closure space
Sub(f) given by sublevel sets of f. That is, Sub(f), = f~'(—o00,a]). Let d; denote the
interleaving distance (Definition 7.3) and let dp denote the bottleneck distance [29].

Theorem (Theorem 8.2). Let (X,c) € Cl and f,g : X — R. Let H denote one of our
singular cubical or simplicial homology theories and let 7 > 0. Then

d;(H;(Sub(f)), H;(Sub(g))) < :Sclelglf(x) —g(@)|, and
dp(D(H;(Sub(f))), D(H;(Sub(g)))) < ilel)lg\f(fﬂ) —9(z)].

For filtered closure spaces, we define a distance dgy, which we call the Gromov-Hausdorff
distance (Definition 8.13).

Theorem (Theorem 8.14). The Gromov-Hausdorff distance for filtered closure spaces is
reflexive, symmetric, and satisfies the triangle inequality.

Theorem (Theorem 8.18). There is an isometric embedding (Met, dgy) — (FCl,dgy).

The following theorems prove that the persistent homology of filtered closure spaces is
stable and that persistent homology may be used to provide lower bounds for the Gromov-
Hausdorff distance.

Theorem (Theorems 8.27 and 8.28). Let X and Y be filtered closure spaces. Let H be one
of our cubical or simplicial singular homology theories and let 7 > 0. Then

di(H;(X),H;(Y)) <2dgu(X,Y), and
dp(D(H;(X)), D(H;(Y))) < 2deu(X,Y).
Let H denote simplicial homology and let ;7 > 0.

Theorem (Theorem E}.?)O). Let X and Y be filtered closure spaces. Let S denote either of
the functors VR and C'. Then
A (H;(S(X)), Hy(S(Y))) < 2den(X,Y), and
dp(D(H,(S(X))), D(H,(S(Y))) < 2dgn(X.Y).
The stability theorems above (Theorems 8.2, 8.27, 8.28 and 8.30) follow from the next

fundamental theorem which relies on a generalization of the notion of e-correspondence from

metric spaces to filtered closure spaces (Definition 8.9).
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Theorem (Theorem 8.26). If there exists an e-correspondence between two filtered closure
spaces then they are e-interleaved up to one-step (Jt, X)-homotopy and their Vietoris-Rips
and Cech complezes are e-interleaved up to contiguity. If two filtered simplicial complexes
are e-interleaved up to contiquity then their star filtered closure spaces are e-interleaved up
to one-step (Jt, X)-homotopy.

Special cases of the stability theorems above include: stability for sublevel sets of real-
valued functions on topological spaces [29, 22]; stability for Vietoris-Rips and Cech com-
plexes for metric spaces [23, 26]; stability for Vietoris-Rips complexes for finite metric spaces
with real-valued functions [23]; stability for Vietoris-Rips and Cech complexes for weighted
graphs [26]; and stability for Vietoris-Rips and source and sink Cech complexes for finite
edge-weighted digraphs [27].

Application to graphs and directed graphs. Recall that simple graphs and simple directed
graphs are full subcategories of closure spaces. Simple (directed) graphs have the (di)graph
product (Definition 2.3) and the cartesian product (Definition 2.6).

Proposition (Propositions 2.4 and 2.7). Restricted to simple (directed) graphs, the prod-
uct and the inductive product of closure spaces are the (di)graph product and the cartesian
product, respectively.

Our homotopy theories and cubical singular homology theories are of interest in the spe-
cial cases of graphs and directed graphs and some of these have been previously studied
(Lemmas 4.42 and 5.15).

Application to metric spaces. Above we stated that we have a full embedding of the category
of metric spaces in the category of filtered closure spaces. In fact, we have three such
embeddings.

Definition (Definition 3.1). For each metric space, we may obtain a closure space by ‘thick-
ening’ using either open balls, closed balls, or Hausdorff distance.

Theorem (Theorem 7.5). In each of these three cases, we obtain a full embedding Met —»
Cl. For each metric space, applying these three functors results in three filtered closure spaces
whose interleaving distance (Definition 7.3) is zero and furthermore these interleavings are
coherent [19].

Theorem (Theorem 3.13). For each of the three embeddings of metric spaces into closure
spaces, the product of the closures equals the closure of the product.

A weaker statement holds in the case of the inductive product (Theorem 3.14).

Related work. Antonio Rieser [54] and Demaria and Bogin [31] used the unit interval and
the categorical product to define a homotopy theory for closure spaces. The latter also used
this interval and product to define a simplicial singular homology theory for closure spaces.
Our work is particularly indebted to [54].

Babson, Barcelo, de Longueville, Kramer, Laubenbacher, and Weaver used the simple
graph with one edge as an interval together with the inductive/cartesian product on graphs
to define the discrete homotopy theory of simple graphs, which they first called A-theory [7,
8, 3]. Barcelo, Capraro and White [4] used the same interval and product to define a cubical

singular homology theory. They also observed that as a special case, these homotopy and
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homology theories may be applied to metric spaces at a fixed scale. Dochtermann [33] used
the same interval and the categorical product to define a homotopy theory for simple graphs.
A special case of these homotopy theories, in which the underlying set is a finite subset of the
lattice Z", is studied in digital topology [14, 50]. Grigor’yan, Lin, Muranov, and Yau [44]
used the simple directed graph with a single directed edge as an interval together with
the inductive/cartesian product on directed graphs to define a homotopy theory of simple
directed graphs. Dochtermann and Singh [34] used the same interval with the categorical
product to define a homotopy theory for simple directed graphs.

In a companion paper [17], we use acyclic models to show that for an interval J and the
categorical product X, corresponding cubical and simplicial singular homology theories agree.
In fact, we show that their underlying chain complexes are chain homotopic. We also show
that they satisfy a Mayer-Vietoris property and the excision property. Rieser [53] and Pala-
cios [59] have previously defined Vietoris-Rips homology and Cech homology, respectively
for closure spaces.

Our results on stability with respect to Gromov-Hausdorff distance are indebted to Chazal,
de Silva, and Oudot [26]. Correspondences have also been defined and used by Segarra
for finite edge-weighted digraphs [56] and by Chowdhury and Mémoli for finite weighted
digraphs [28]. Turner has studied filtered simplicial complexes and persistence modules
obtained from weighted digraphs [58].

1. CLOSURE SPACES

In this section we provide background on Eduard Cech’s closure spaces [21]. To start, we
give three equivalent definitions of closure spaces using closures, interiors, and neighborhoods.
In each case, with an additional axiom we obtain topological spaces. For any set X, let 2%
denote the collection of subsets of X.

1.1. Closures. We begin by defining a closure operator, which assigns subsets to subsets.

Definition 1.1. Let X be a set. A function ¢ : 2¥ — 2% is called a closure or closure
operator on X if the following axioms are satisfied for all A, B C X:
(1) (grounded) ¢(@) = @,
(2) (extensive) A C ¢(A),
(3) (monotone) A C B implies that ¢(A) C ¢(B), and
(4) (subadditive) c(AU B) C ¢(A) U ¢(B).
Note that by monotonicity, for all A, B C X, ¢(A) C ¢(AUB), so together with subadditivity
we have that
c(AUB) = c¢(A)Uc(B).
In this case, the ordered pair (X, ¢) is called a (Cech) closure space. Elements of X are
called points. Subsets A C X for which ¢(A) = A are called closed. If in addition we have
the following axiom for all A C X,

(5) (idempotent) c(c(A)) = c(A),
then we call ¢ a Kuratowski closure.

Example 1.2. Let X be a set. The identity map 1,x : 2% — 2% is a closure operator on X,
called the discrete closure on X. The closure operator defined by the map A — X for A # @

and @ — @ is called the indiscrete closure on X. These are both Kuratowski closures.
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Example 1.3. Consider R™ with the euclidean metric d. Let » > 0 and let ¢, be the closure
on R™ defined by ¢,(A) = {x € R" |d(z, A) < r} for A C R”, where d(z, A) = inf,c4 d(z,y).
Then ¢y is Kuratowski and for » > 0, ¢, is not Kuratowski.

1.2. Interiors. Dual to a closure we have the following.

Definition 1.4. Let X be a set. A function i : 2%X — 2% is called an interior (operator) on
X if the following axioms are satisfied for all A, B C X:

(1) (grounded) i(@) = @,

(2) (intensive) i(A) C A,

(3) (monotone) A C B implies that i(A) C i(B), and

(4) (superadditive) i(AN B) D i(A) Ni(B).
Note that by monotonicity, for all A, B C X, i(AN B) C i(A), so together with superaddi-
tivity we have that

i(ANB)=1i(A)Ni(B).

Subsets A C X for which i(A) = A are called open. If in addition, we have the following
axiom for all A C X,
(5) (idempotent) i(i(A)) = i(A),

then we call © a Kuratowski: interior.
Proposition 1.5. For a set X, let n : 2X — 2% be the complement operator given by

n(A) =X\ A, for AC X. Then a closure ¢ has a corresponding interior i, and vice versa,
under the following relationships,

1 =ncn, and c=nin.

A subset is closed iff its complement is open and vice versa. Furthermore, ¢ is a Kuratowski
closure iff i is a Kuratowski interior.

1.3. Continuous maps. Next, we consider morphisms of closure spaces.

Definition 1.6. 21, 16.A.1] Let (X,¢) and (Y, d) be closure spaces. A continuous map
f:(X,¢) = (Y,d) is a function f : X — Y such that for every A C X, f(c(A)) C d(f(A)).
A continuous map f is called a homeomorphism if f is a bijection and has a continuous
inverse.

For closure spaces (X,c¢) and (Y,d), any function f : X — Y is continuous if ¢ is the
discrete closure or if d is the indiscrete closure.

Lemma 1.7. [21, 16.A.3] The composition of continuous maps is continuous.
Definition 1.8. Let Cl denote the category of closure spaces and continuous maps.

The initial object in CI is the empty set with its unique closure and the terminal object
in Cl is the one point set x with its unique closure. Both of these are Kuratowski closure

spaces.
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1.4. The poset of closures. The collection of closures on a set has a partial order, which
is induced by the partial order on the collection of subsets given by inclusion.

Definition 1.9. Let X be a set. Suppose ¢; and ¢y are two closures on X. We say ¢ is finer
than ¢y and ¢y is coarser than ¢ if ¢(A) C cp(A) for all A C X. Write ¢; < cp. Observe
that ¢, is finer than ¢, if and only if the identity map 1x : (X, ¢1) — (X, ¢2) is continuous.

Under the relation <, the collection of closure operators on a set X forms a poset with
initial element the discrete closure and terminal element the indiscrete closure.

1.5. Neighborhoods. Neighborhood functions assign each element a collection of subsets.

Definition 1.10. Let X be a set. Let A" : X — 22" be a function such that for all z € X,
(1) (nonempty) N(z) # 2,
(2) (contains x) for all A € N (x), x € A,
(3) (upward closed) if A € N(x) and A C B then B € N(x), and
(4) (closed under binary intersections) if A, B € N (z) then AN B € N(x).

The last two conditions say that AV(x) is a filter. Thus we have that A specifies for each
x € X a nonempty filter, each of whose sets contains x. For z € X, call A € N(z) a
neighborhood of x and call N'(x) a neighborhood filter. Call N a collection of neighborhood
filters and call (X, ') a neighborhood space. If in addition, the following axiom is satisfied,

(5) if A € N(z) then there exists a B € N(x) with B C A such that for all y € B, there
exists C' € N (y) such that C' C B.

then call (X, N) a topological space [45, p.213].

Lemma 1.11. Given a set X, we may define a unique neighborhood space by specifying for
each © € X, a base for a neighborhood filter. That is, a nonempty collection B(x) of subsets
of X such that each U € B(x) contains x and if U,V € B(x) then there exists a W € B(x)
such that W CcUNV.

Definition 1.12. Let (X,N) and (Y, M) be neighborhood spaces. A continuous map
[ (X,N) = (Y,M) is a function f : X — Y such that for all x € X and for all
A e M(f(x)), fH(A) € N(z). Equivalently, f is continuous if and only if for each z € X
and for each A € M(f(z)) there is a B € N'(z) such that f(B) C A.

If we have a base B for N and a base C for M then f is continuous iff for each x € X and
for each A € C(f(z)) there is a B € B(x) such that f(B) C A.

1.6. Correspondence of closures and neighborhoods. For topological spaces, closures
and interiors may be defined using neighborhoods and vice versa; the same is true for closure
spaces.

Definition 1.13. Let X be a set. Given a closure ¢ and corresponding interior i, define
N X =27 by
N@E)y={AcCc X |zecilA)}
={ACX |zdc(X\A}
8



Given a collection of neighborhood filters N, define 7, ¢ : 2% — 2% by

i(A) ={zr € X | U € N(x) such that U C A},
c(A)={x e X |VU e N(z),UN A + &}

Proposition 1.14. [21, 16.A.4, 16.A.5] The constructions in Definition 1.13 together with
the identity map on functions define an isomorphism of categories between closure spaces
and continuous maps and neighborhood spaces and continuous maps. Furthermore, this iso-
morphism restricts to an isomorphism of the full subcategories of Kuratowski closure spaces
and topological spaces.

We will use this isomorphism of categories implicitly. For example, we will consider topo-
logical spaces to be synonymous with Kuratowski closure spaces. Under this correspondence,
a neighborhood U of x € X is open iff ¢(U) = U iff for all y € U there is a neighborhood V'
of y such that V' C U. Therefore, if in Lemma 1.11, for each x € X, B(z) consists of open
neighborhoods, then we obtain a topology on X.

1.7. Topological spaces. Topological spaces are special cases of closure spaces and for each
closure space there is a canonical topological space.

Definition 1.15. Let Top denote the full subcategory of Cl whose objects are Kuratowski
closure spaces. That is, Top is the category of topological spaces and continuous maps.

Lemma 1.16. /21, 16.A.10] Let (X,c) € Cl and (Y,d) € Top. A function f: X — Y is
a continuous map if and only if the inverse image of every open set is open.

Lemma 1.17. [21, 16.B.1-16.B.3] Let (X, ¢) be a closure space. For A C X, define 7(c)(A)
to be the intersection of all closed sets containing A. Then T(c) is is the finest Kuratowski
closure coarser than c, and is called the topological modification of c.

Proposition 1.18. [21, 16.B.4] Let (X,c) be a closure space and let (Y, T) be a Kuratowski
closure space. Consider a function f: X — Y. Then f: (X, c) — (Y, ) is continuous if and
only if f:(X,7(c)) = (Y,7) is continuous. That is, there exists a natural bijection between
the sets of morphisms

CI((X,¢), (Y, 7)) = Top((X, 7(c)), (Y, 7)).
Equivalently, T is the left adjoint to the inclusion functor ¢ : Top — CI.

1.8. Subspaces, covers, and pasting. Similarly to topological spaces, we define subspaces
and covers to obtain a pasting lemma.

Definition 1.19. Let (X, ¢) be a closure space and let A C X. For B C A, define ca(B) =
c¢(B)N A. Then (A, ca) is a closure space called a subspace of (X, c).

A cover of a closure space (X, ¢) is a family of subsets of X whose union is X. A cover is
called locally finite if each x € X has a neighborhood intersecting only finitely many elements
of the cover.

Theorem 1.20. /21, 17.A.16] Let (X, c) and (Y,d) be closure spaces and let {U, | € A} be
a locally finite cover of (X,c). Let f : X =Y be a map of sets. If f|w.) : (c(Ua); cewn)) —
(Y, d) is continuous for each a € A, then f: (X, c) = (Y,d) is continuous.
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1.9. Elementary examples. We will use some of these examples in Sections 4 and 5. Let
m > 0.

Definition 1.21. (1) Let I, denote the unit interval [0, 1] with the Kuratowski closure
given the closure ¢y from Example 1.3. This closure corresponds to the standard
topology on the unit interval.

(2) Let J,, 1 denote the set {0,...,m} with the discrete closure. As a special case, set
J=Ji.

(3) Let J,,, 1 denote the set {0,...,m} with the indiscrete closure. As a special case, set
Jr = JiT.

(4) Let J,, denote the set {0, ..., m} with the closure operator c¢(i) = {j € {0,...,m}||i—
j| < 1}. Note that J; = Jr.

(5) Let J. denote the set {0,1} with the closure operator ¢, (0) = {0,1}, ¢, (1) = {1}.
Let J_ denote the set {0,1} with the closure operator c_(0) = {0}, c_(1) = {0, 1}.
These are homeomorphic Kuratowski closure spaces. In fact, J_ is the Sierpinski
space, which has open sets &, {1}, and {0, 1}.

(6) For each 0 < k < 2™ — 1 we define a closure operator ¢; on the set {0,...,m} as
follows. Consider the binary representation of k. For 1 < ¢ < m, ¢ — 1 is contained
in cg(é) iff the ith lowest order bit is 0 and ¢ is contained in c¢g(i — 1) iff the ith
lowest order bit is 1. We denote this closure space by J,, ;. Note that J;; = J; and
Jio=J_.

(7) Let J,, < denote the set {0,1,...,m} with the Kuratowski closure operator c(i) =
{j | ¢ <j}. The open sets are the down-sets. Note that J;, < = J,.

~
—_
A
N}
~
w
~
=~
~
(S

0—— 1 0+——1 0

FIGURE 1. Representations of the closure spaces J; (left), J_ (middle), and
J5.29 (right). The head of the arrow is contained in the closure of the tail of
the arrow. Note that 29 in binary is 11101.

1.10. Products and inductive products. Closure spaces have two canonical products,
the product and the inductive product, which we describe below.

Definition 1.22. [21, 17.C.1 and 17.C.3] Let {(X4, ¢a) }aca be a collection of closure spaces.
For a € A, let N, denote the corresponding collection of neighborhood filters, or more
generally, a collection of neighborhood filter bases. Let X denote the set [] ., X, and for
a € A, let m, : X = X, denote the projection map. For x € X, define N(x) to be given
by finite intersections of sets of the form 7 *(V,), where V,, € N,(z,), and z, € X,. Then
N is a collection of neighborhood filter bases for X. We call the corresponding closure ¢ the
product closure for X and call the pair (X, ¢) the product closure space.

When we have two closure spaces (X, c¢) and (Y, d) we will denote the product closure
space by (X x Y, c x d). In this case, if X and Y have collections of neighborhood filters or
neighborhood filter bases N" and M then for (z,y) € X x Y, N(z,y) = N(x) x M(y). Tt
follows that for A C X x Y, (e x d)(A) = {(z,y) € X xY | VU € N(z),V € M(y), (U x
VINA# o}

10



Theorem 1.23. [21, 17.C.6] The product closure is the coarsest closure for which the
projection maps are continuous.

Definition 1.24. [21, 17.D.1] Let (X,¢) and (Y,d) be closure spaces with corresponding
collections of neighborhood filters or neighborhood filter bases, N and M, respectively. For
(x,y) € X x Y, let P(x,y) be the collection of all sets of the form

(1.1) ({z} x V)U U x {y})

where V € M(y) and U € N(x). Then P is a collection of neighborhood filter bases for
X xY. We call the corresponding closure ¢ H d the inductive product closure, and call
(X x Y,cH d) the inductive product closure space. The sets in (1.1) may be written as
{(2,y)eUxV]d =xory =y}

The terminology ‘inductive product’ is due to the following result, which may be used
to define the inductive product as an ‘inductively generated closure’ on the product of the
underlying sets [21, 33.D.1], whereas the product may be called the ‘projective product’ and
may be defined as a ‘projectively generated closure’ on the same set [21, 32.A.3(f)].

Theorem 1.25. [21, 17.D.3] Let (X,c) and (Y, d) be closure spaces. The inductive product
closure is the finest closure for X x'Y for which all of the maps

o X = X XY given by x — (z,y0), where yo € Y, and
oY = X XY gwen by y+— (xo,y), where g € X,

are continuous.

Proposition 1.26. /21, 17.D.2] The inductive product closure is finer than the product
closure.

Lemma 1.27. Let X be a closure space and let Y be a discrete space. Then X xY = XHY.

Proof. Let N' be the corresponding collection of neighborhood filters for X. Since Y is
discrete it has a corresponding collection of neighborhood filter bases given by M(y) = {y},
foryeY. Let (x,y) € X xY. Then {U x {y} | U € N(z)} is a neighborhood filter base of
(x,y) for both closures. O

Proposition 1.28. /21, 17.C.11] Suppose we are given for each a € A closure spaces
(X4, cx,) and (Y, cy,) and a map of sets f, : Xy — Y, If for all a € A, f, is continuous,
then the mapping f : (Il,ca Xa>[loca €xa) = (Iuea Yo [loca cva) defined by {xq}aca —
{fe(xa) }aca is continuous. Conversely, if f is continuous and [],., Xa # &, then for all
a € A, f,is continuous.

Proposition 1.29. /21, 17.D.5] Let (X,c),(Y,d) and (Z,e) be closure spaces. A function
f: X XY — Z is a continuous map f: (X,c)B(Y,d) — (Z,e) if and only if all of the maps

o X — Z given by x — f(x,y0), where yo €Y, and
o Y — Z given by y — f(xo,y), where xy € X,

a€A

are continuous.

Corollary 1.30. Let f : (X,¢) — (Y,d) and g : (X', ) — (Y',d') be continuous maps
of closure spaces. Then the map f x g : (X,c) B (X',d) — (Y,d) B (Y',d") defined by

(f xg)(z,2") = (f(x),g(x")) is continuous. .



1.11. Coproducts and pushouts. Closure spaces have (small) colimits and, in particular,
have pushouts.

Definition 1.31. [21, 17.B.1] Let {(X;,¢)}ier be a collection of closure spaces. The co-
product of {(X;, ¢;)}ier is the disjoint union of sets X = [[, X; with the closure operator ¢
defined by (][, 4i) = [, ¢i(A;) for any subset [, A; of X.

!
Definition 1.32. Given continuous maps (X, ¢) ?ﬁ (Y,d) the coequalizer of f and g

consists of the closure space (@, e) and the map p : Y — @ defined as follows. Let @) be
the quotient set Y/~ for the equivalence relation given by f(x) ~ g(z) for all z € X. Let
p:Y — Q be the quotient map. For A C @, define e(A) = p(d(p~*(A))).

Theorem 1.33. /21, 33.A./ and 33.A.5] The coproduct and coequalizer defined above are
the categorical coproduct and coequalizer in the category Cl and hence Cl is cocomplete.

As an application, we have pushouts of closure spaces.

Definition 1.34. The pushout in Cl is defined as follows. Given the solid arrow diagram
(Av C/) L) (Xa C)

define P = (X 1Y)/~ where f(a) ~ g(a) for all a € A, let 4, be the induced maps, and
for B C P, define d'(B) = i(c(i~'(B))) U j(d(j~'(B)))-

Lemma 1.35. J,, 1, J,, and J,, 1 are obtained by m-fold pushouts of J,, Jv, and J_, J,
respectively, under *.

Proof. For m = 2 consider the following pushouts.

1 1 1
« —L 5 w—L g o ox—s g o« —L g o x—s ] x—1J,

L A A O A

JL e J27L JT E— J2 J — JQ’[) J — J271 J+ E— JQ’Q J_|_ E— J273
For the general case proceed by induction. O

Lemma 1.36. The identity maps Jy, L Jm are continuous for all m > 0 and 0 < k <
2™ — 1. The ‘round up’ map fy : I; — J. defined by f(z) =0 if v < 5 and f(z) =1 if
x> L and the ‘round down’ map f_ : I. — J_ defined by f(z) =0 if x < 3 and f(z) =1 if
T > % are continuous. For anym > 1 and 0 < k < 2™ — 1, these may be combined to obtain
continuous maps f : [0, m] = Jp, x, where [0,m] has the Kuratowski closure corresponding to
the standard topology. Precomposing with the map t — mt, we obtain a continuous surjective
map f I = Ty

Proof. For each m > 0 and 0 < k < 2™ — 1 the closure operators for J,, are finer than
the one for J,,. For the ‘round up’ map, note that J, is a topological space with non-

empty open sets {0} and {0,1}. By Lemma 1.16, it is sufficient to show that f:'(0) and
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f:1({0,1}) are open in I, which they are by the definition of f. The ‘round down’ map
is similar. For the third statement consider the cover of [0, m] consisting of the closed sets
0,1],[1,2],...,[m —1,m|. By Lemma 1.35, for each i € {1,...,m}, we have either a ‘round
up’ or a ‘round down’ map from [ — 1,4] to J,, x whose image is {i — 1,7} and which sends
t—1toi—1and i to¢. The third statement follows from Theorem 1.20. The last statement
follows from Lemma 1.7. U

1.12. Pullbacks. Closure spaces have (small) limits and, in particular, have pullbacks.

f
Definition 1.37. Given continuous maps (X, c¢) ?ﬁ (Y,d) the equalizer of f and g

consists of the closure space (F,e) and the map i : E — X defined as follows. Let E be the
subset {z € X | f(x) = g(z)} with ¢ the inclusion map. For A C E, define e(A) = ¢(A)N E.

Theorem 1.38. [21, 32.A.4 and 32.A.10] The product (Definition 1.22) and equalizer
defined above are the categorical product and equalizer in the category Cl and hence Cl is
complete.

Proposition 1.39. Every limit of topological spaces in Cl is a topological space. On the
other hand, colimits of topological spaces in Cl are not necessarily topological spaces.

Proof. The inclusion functor ¢ : Top — Cl is a right-adjoint by Proposition 1.18 and thus
preserves limits. For the second statement, consider the second pushout diagram in the proof
of Lemma 1.35. Note that the one point space and Jt are both topological spaces (with
the indiscrete topology), however the pushout Js, is not a topological space. See also [54,
Example 2.52] which is a more modern take on [21, Introduction to Section 33.B]. O

1.13. Monomorphisms and epimorphisms. The monomorphisms and epimorphisms in
Cl are easy to describe.

Lemma 1.40. Consider f : (X,c) = (Y,d) € Cl. Then
(1) f is a monomorphism if an only if the underlying map of sets is injective, and
(2) f is an epimorphism if and only if the underlying map of sets is surjective.

Proof. Let U : Cl — Set denote the underlying set functor.

(1) («=) This implication holds in any concrete category: fh = fgimplies that U(f)U(h) =
U(fh) =U(fg) =U(f)U(g), which implies that Uh = Ug, which implies that h = g.

(=) Let x,2’ € X. Consider the maps z,z’ : * — X with image x and 2/. Then
f(x) = f(2) implies that z = 2’

(2) (<) This implication holds in any concrete category: if gf = hf then U(g)U(h) =
U(gh) =U(hf) = U(h)U(f) which implies that U(g) = U(h) and thus g = h.

(=) Consider the maps g,h: Y — ({0,1},c7) given by g(y) = 1 if y is in the image of f
and 0 otherwise, and h(y) =1 for all y € Y. Then hf = gf implies that h = ¢g and thus U f
is surjective. 0

1.14. Symmetric closures and Alexandroff closures. In Section 1.15, we will relate
simple directed graphs and simple graphs to Alexandroff closures spaces and symmetric
Alexandroff spaces, respectively.

Definition 1.41. A closure space (X, c) is symmetric if y € c(z) implies = € ¢(y) for all

z,y € X.
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A closure space is symmetric if and only if it is semi-uniformizable [21, Definition 23.A.3
and Theorem 23.B.3].

Definition 1.42. [21, Example 14.A.5(f)] [32, Section 3.6] Let (X, ¢) be a closure space. Say
that the closure ¢ is Alezandroff if for every collection {4;};c; of subsets of X, c(|,c; 4Ai) =
U,es c(As). Equivalently, c is Alexandroff if for every A C X, ¢(A) = J,c4 c(a).

Note that every finite closure space is Alexandroff. For a closure space (X ¢), if the closure
is Alexandroff and Kuratowski then the corresponding topological space is an Alexandroff
space [2].

Definition 1.43. We denote by Clg, Cla and Clga the full subcategories of Cl consisting
of symmetric, Alexandroff, and symmetric Alexandroff closure spaces, respectively.

Proposition 1.44. Suppose (X, c) is an Alexandroff closure space. Let (Y,d) be a closure
space. Then f: (X, c) = (Y,d) is continuous if and only if Vo € X, f(c(x)) C d(f(x)).

Proof. The forward direction follows from the definition of continuity. For the reverse direc-

tion, let A C X. Then f(c(A)) = f(Uea c(2)) = Usea(f(c(2))) € Usen d(f(x)) C d(f(A)).

Thus f is continuous. [

Definition 1.45. Let X be a set and let p : X — 2% such that x € p(x). Define ¢ : 2% — 2%
by ¢(A) = Uzeap(x) for A C X. It is easy to verify that ¢ is an Alexandroff closure operator,
which we call the induced Alexandroff closure operator.

Definition 1.46. Let (X, c¢) be a closure space. Let A(c) denote the induced Alexandroff
closure operator on the restriction of ¢ to one-point sets. Then A(c) is finer than ¢ and is
called the Alezandroff modification of ¢ ([21, Definition 26.A.1]). The mappings (X, ¢) —
(X,A(c)) and (f : (X,¢) = (Y,d)) — (f : (X,A(c)) = (Y, A(d))) define a functor A : Cl —
Cla.

Proposition 1.47. Let (X,c) € Cla and (Y,d) € Cl. Given a set map f : X — Y,
f:(X,¢) = (Y,A(d)) is continuous iff f : (X,c) — (Y,d) is continuous. Thus, we have a
natural bijection

CI((X, ), (Y.d)) = Cla((X, ¢), (Y, A(d))).
That is, A is right adjoint to the inclusion functor Cly < CI.

Proof. (=) Let A C X. Then f(c(A)) C A(d)(f(A)) C d(f(A)).
(<) Let € X. Then f(c(x)) C d(f(x)) = A(d)(f(x)). The result follows from Proposi-
tion 1.44. U

Definition 1.48. Let (X, c) € Cly. Let the reverse closure, ¢, be the induced Alexandroff
closure operator of p(z) = {y € X | v € c(y)}. That is, for A C X, cI'(4) = {y €
X | e(y)MA # o}

Lemma 1.49. We have a reverse functor (—)1 : Cly — Cla mapping (X, ¢) to (X, c) and
sending functions to themselves.

Proof. Let (X,c),(Y,d) € Cla and f : X — Y such that for all x € X, f(c(x)) C d(f(z)).
Let * € X. It remains to check that f(c'(x)) C d¥(f(z)). Let a € ¢I'(x). Then x € c(a)

and thus f(z) € f(c(a)) C d(f(a)). Thereforif(a) e d(f(x)). O



Definition 1.50. Let (X, c¢) € Cla. Let s(c) be the Alexandroff closure induced by p(z) =
{y e c(z) | v € c(y)}. If y € p(z) then y € c(z) and = € ¢(y). So x € p(y). That is,
s(c) is symmetric. Thus s(c) is a symmetric Alexandroff closure finer than ¢, called the
symmetrization of c. Let f: (X, c) = (Y,d). Forz € X, f(s(c)(x)) = fly € c(z) | x € c(y)}
and s(d)(f(z)) = {z € d(f(x)) | f(x) € d(2)}. Now y € c(x) implies that f(y) C d(f(z))
and x € c(y) implies that f(z) € d(f(y)). Therefore f(s(c)(x)) C s(d)(f(x)). That is,
f:(X,s(c)) = (Y,s(d)). Let s : Clp — Clga denote the functor defined by these mappings.

Proposition 1.51. Let (X,c) € Clga and (Y,d) € Cla. Given a set map f : X = Y,
f:(X,e) = (Y,s(d)) is continuous iff f: (X,c) — (Y,d) is continuous. Thus, we have a

natural isomorphism
Cla((X, ), (Y,d)) = Cla((X, ), (Y, s(d))).
That is, s is right adjoint to the inclusion functor Clga < Clj.

Proof. (=) Let x € X. Then f(c(x)) C s(d)(f(z)) C d(f(x)).
(<) Let x € X. Then f(c(x)) C d(f(x)). Let y € c¢(x). Then f(y) € d(f(x)). Also, x €

c(y). Thus f(z) € d(f(y)). Hence f(y) € s(d)(f(x)) and therefore f(c(z)) C s(d)(f(z)). O

By definition, the following functors are equal.

Proposition 1.52. so (—)T =s.

1.15. Simple graphs and simple directed graphs as closure spaces. The categories
of simple directed graphs and simple graphs are isomorphic to the categories of Alexandroff
closure spaces and symmetric Alexandroff spaces, respectively [21, Chapter 26] [32, Section
3.6]. We allow the sets of vertices and edges of graphs to have arbitrary cardinality. Given
aset X, let A ={(z,z) |z € X}.

Definition 1.53. A simple graph is a pair (X, E) where X is a set and E is a collection of
pairs of elements of X. That is, F/ is a symmetric relation on X such that ENA = @. More
generally, a simple directed graph or simple digraph is a pair (X, E/) where X is a set and F
is a relation on X such that ENA = &. Let a spatial digraph be a pair (X, E') where X is
a set and F is a reflexive relation on X. For each simple digraph there is a corresponding
spatial digraph (X, F), where E = EUA. Note that E = E\A. A map ofsets f : X — Y is
(di)graph homomorphism between (X, E) and (Y, F) if whenever zExz’, we have f(z)Ff(z').

Let DiGph denote the category of simple digraphs and digraph homomorphisms, and let
Gph denote the full subcategory of simple graphs and graph homomorphisms. Recall the
categories, Cla and Clga, of Alexandroff closure spaces and symmetric Alexandroff closure
spaces, respectively (Definition 1.43).

Definition 1.54. Let ¥ : DiGph — Cl4 be the functor that assigns to each simple digraph
(X, E) the closure space (X, cg), where cg is the induced Alexandroff closure (Definition 1.45)
determined by the map pg : X — 2% given by

(1.2) pe(r) ={y € X |2Ey}.
Given a digraph homomorphism f : (X, E) — (Y, F), the map ¥(f) : (X,cg) — (Y, cr)
is given by the map of sets f. By Proposition 1.44, the continuity of W(f) is equivalent to

the map f being a digraph homomorphism.
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Definition 1.55. Let ® : Cl, — DiGph be the functor that assigns to each Alexandroff
closure space (X, ¢) the simple digraph (X, E.) defined by

tE.y <y € c(z).
Given a continuous map f : (X, c) — (Y,d), let ¥(f) : (X, E.) — (Y, Eq) be the map of
sets f. By Proposition 1.44, the continuity of W(f) is equivalent to the f being a digraph
homomorphism.

We therefore have the following.

Proposition 1.56. The functors ¥ and ® are inverses and thus define an isomorphism of
categories Cly = DiGph. Furthermore, they restrict to an isomorphism Clga = Gph. [

Definition 1.57. Let (X, E) be a digraph. The reverse digraph (X, ET), is given by yETx
ifft tFy for x,y € X. That is, it is the digraph obtained by reversing the directed edges. We
have a reverse functor, (—)T : DiGph — DiGph sending a digraph (X, E) to its reverse
digraph (X, ET) and sending a digraph homomorphism (X, E) — (Y, F) given by f : X - Y
to the digraph homomorphism (X, ET) — (Y, FT) given by f.

Observe that the reverse functors on digraphs and Alexandroff closures are compatible.
That is, ® o (=) = (=) 0 ® and thus ()T o ¥ = W o ()T,

2. GRAPH PRODUCTS FROM CLOSURE SPACE PRODUCTS

We observe that via the identification of graphs and directed graphs as closure spaces in
Section 1.15, one may obtain the canonical product operations of graphs from the canonical
product operations of closure spaces.

2.1. A neighborhood filter base for a digraph. We identify a base for the neighbor-
hood filter corresponding to the Alexandroff closure for a digraph, which we will be used in
Section 2.2.

Definition 2.1. Let (X, F) be a digraph. The complement digraph (X, E°) is given by = Ey
iff x # y and not xEy. That is, a directed edge is in E° iff it is not in F.

Lemma 2.2. Given a digraph (X, E), we have the corresponding Alexandroff closure cg
(Definition 1.54), the reverse digraph ET (Definition 1.57), and the function pgr : X — 2%
given by (1.2). Let x € X. Then, the singleton {pgr(x)} is a base for a neighborhood filter
at x (Definition 1.10) in the closure space (X, cg).

Proof. Let x € X. Let ig denote the interior corresponding to the closure cg. By definition
and because the closure operator cg is Alexandroff, we have

ip(per(z)) = X\ cp(X \ ppr(z)) = X \ (X \ ({y € X |yEx})
= X\ep({ye X[yE=}) =X\ |J pe).

yEX,yECx

For all y € X, if yE x then = ¢ pg(y). Therefore z € ig(ppr(x)). Thus, ppr(z) is a
neighborhood of {z}. Now let U be a neighborhood of x. Then x € ig(U) = X \ cg(X \ U).
Suppose y € X\U. Then cg(y) C cg(X\U). Thus z & cg(y) and hence y & cpr(x) = ppr(z).
That is, y € X \ pgr(x). Therefore ppr(x) C U. Hence X \U C X \ pgr(x) and thus pgr(z)

is a base for a neighborhood filter at x. O
16



2.2. Graph products as special cases of closure space products. We will now prove
that the product of digraphs and the cartesian product of digraphs are special cases of the
product of closure spaces and the inductive product of closure spaces, respectively.

Definition 2.3. Let (X, E) and (Y, F) be two digraphs. Define the digraph product X xY
to be the digraph (X x Y, E x F'), where (z,y)E x F(2',y) iff tEx2’ and yEyy'.

Proposition 2.4. Let (X, E) and (Y, F) be digraphs. Then (X XY, cgxr) = (X XY, cp XcFp)
(Definition 1.22).

Proof. We will show that both closures share a base for a neighborhood filter (Definition 1.10)
at each point. It follows by Lemma 1.11 that they are equal.

Let z € X and y € Y. By Lemma 2.2, cg has a base for a neighborhood filter {pgr(z)}
at =, cp has a base for a neighborhood filter {ppr(y)} at y, and cgxr has a base for a
neighborhood filter {pgxpr(z,y)} at (2,y). By Definition 1.22, cg x cp has a base for
a neighborhood filter {pgr(z) X ppr(y)} at (z,y). By Equation (1.2) and Definition 2.3,
per(x) = {2’ € X|2'Exa}, prr(y) = {y' € Y |y'Evy}, and pxryr(z,y) = {(2',y) €
X x Y |2'Exz and y'Eyy}. Therefore P(ExF)T = PET X PpT. O

Combining Proposition 1.56 and Proposition 2.4 we have the following.

Corollary 2.5. Let (X, c) and (Y, d) be two Alexandroff closure spaces. Then (X XY, cx d)
1s also Alexandroff.

Definition 2.6. [44, Definition 2.3] Let (X, E) and (Y, F') be two digraphs. Define the
cartesian product X B'Y to be the digraph (X x Y, E H F), where for z,2/ € X and
v,y €Y, (z,y)(EB F)(2,y) if and only if either + = 2’ and yFvy/, or zFz’ and y = /.
Equivalently, (z,y)E®E F(z',y) iff tEx2’ and yEyy' and either x = 2’ or y = ¢/

Proposition 2.7. Let (X, E) and (Y, F) be digraphs. Then (X XY, cpmr) = (X XY, cgHcr)
(Definition 1.24).

Proof. We will show that both closures share a base for a neighborhood filter (Definition 1.10)
at each point. It follows by Lemma 1.11 that they are equal.

Let z € X and y € Y. By Lemma 2.2, cg has a base for a neighborhood filter {pgr(z)}
at x, cp has a base for a neighborhood filter {ppr(y)} at y, and cgpmr has a base for a
neighborhood filter {pgmpyr(7,y)} at (v,y). By Definition 1.24, cg B cp has a base for
a neighborhood filter {(2/,y') € ppr(z) X ppr(y) |2’ = xz ory = y} at (x,y). By Equa-
tion (1.2) and Definition 2.6, ppr(x) = {2’ € X |2'Exa}, ppr(y) = {y € Y |y'Eyy}, and
peryr(z,y) ={(2,y) € XxY |2’Exx and y'Eyy and either 2/ = x or y' = y}. Therefore
P(EBF)T = PET B ppr. U

Combining Proposition 1.56 and Proposition 2.7 we have the following.

Corollary 2.8. Let (X, c) and (Y, d) be two Alexandroff closure spaces. Then (X xY,cHd)
is also Alexandroff.

Corollary 2.9. Given two symmetric Alezandroff closure spaces, their product and their

indirect product are also symmetric and Alexandroff.
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3. CLOSURES INDUCED BY METRICS

In this section, we consider closure operators induced by a metric. Our closure operators
will be indexed by the set [0,00) x {—1,0,1}, which we order by the lexicographic order.
That is, (g,a) < (¢/,d') if e < & or e =€’ and a < d’. For € > 0 we denote (e, —1), (g,0),
and (e,1) by €7, ¢, and €™, respectively.

3.1. Closures from thickenings. We introduce various ‘thickening’ closures on a metric
space (X,d) and examine some properties of these closure operators. In particular, we
investigate how they interact with Lipschitz maps between metric spaces, and we determine
a base of the neighborhood filter at each point.

Definition 3.1. Let (X, d) be a metric space and let A C X. For € > 0 define
Ce*,d(A) = U Ba(z) Ce,d(A) = U Ee(x)a Ca*,d(A) = {ZL’ eX | d(l’,A) < E},

z€A €A
where B.(r) = {y € X |d(x,y) < €} for ¢ > 0, By(x) = {z}, B.(v) = {y € X |d(z,y) < ¢},
and d(z, A) = infycs d(z,y). Foralle > 0 and a € {—1,0,1}, ¢( )4 is a closure operator on
X. If the metric d is clear from the context then we will denote the closure spaces (X, ¢ 4).4)
by (X, ¢(ca)). We will sometimes refer to these as metric closures.

Let (X,d) be a metric space. Then (X, co+) is the Kuratowski closure space whose cor-
responding topology is the one induced by the metric d. Also (X, cy-) = (X, o) and this
closure is the discrete closure. If the metric d takes only integer values, then for all n,

Cin+1)—,d = Cn,d = Cp+ d-

Example 3.2. Consider ([0,1],d), the unit interval with d(z,y) = |x —y|. For (¢,a) €
[0,1] x {—1,0,1}, we will denote the closure space ([0, 1], ¢(c,a)) by /(c,a)- Note that I~ = Iy
is the unit interval with the discrete closure, I, and I+ is the unit interval with the closure
corresponding to the standard topology, I.. At the other extreme, note that I; = I;+ is the
unit interval with the indiscrete closure, I+.

Let (X, d) be a metric space. Observe that for e > 0 the closure space (X, c.+) is symmetric
and the closure spaces (X, c.-) and (X, ¢.) are Alexandroff and symmetric (Definition 1.42).
Furthermore, recall the functor A : Cl — Cla from Proposition 1.47. It follows from the
definitions of c¢.+ and c¢. that given a metric space (X,d), A(X,c.+q4) = (X, c.q). From
Definition 3.1, it is easy to see the following.

Lemma 3.3. Let (X, d) be a metric space and let (¢,a) < (¢',a") € [0,00) x {—1,0,1}. Then
C(e,a) S Ce,a!) -

Lemma 3.4. Let (X,d) be a metric space and let A C X. If r > 0 then c,+(A) =
Nyor Cs—(A) = Ny e (A) = Nyar Cst(A). Ifr > 0 then e, (A) = U, ¢~ (A) = U,-, cs(A) =
US<T, Cs+ (A)

Proof. By Lemma 3.3, we have that for all r > 0, ¢,+(A4) C (o, ¢s-(A) C Nyar cs(A) C
) C

Nyor st (A), and for all r >0, Uy - (A) C Usspcs(A) C Uss, ot (A c—(A). Tt
remains to prove that for r > 0, (., cs+(A) C ¢+ (A) and for r > 0, ¢, (A) C U,., cs-(A4)
If v €, cs+(A) then d(z, A) < s for all s > r. Thus d(x, A) < r and hence z € cr+(A)

FlnaIIY7 Us<r ( ) Us<r UxeA B ( ) = Ugng Us<7” B ( ) UxeA B (I‘) = Cp— (A) O



Using the triangle inequality one obtains the following.

Lemma 3.5. Let (X, d) be a metric space and let €,6 > 0. Then c.—(c5-) < Cets)-, C(¢s5) <
Ceyts and Ce+ (05+) < Cle+d)+-

Let (X,d) and (Y, e) be metric spaces and let » > 0. A map f : X — Y is said to be
r-Lipschitz if for z,2" € X, e(fz, fo') < rd(x,2’). Maps that are 1-Lipschitz are also said
to be nonexpansive or short. Let Met denote the category of metric spaces and 1-Lipschitz
maps. It is easy to check the following.

Lemma 3.6. Let e € [0,00) x {—1,0,1} and f : (X,d) — (Y, e) be a 1-Lipschitz map. Then
[ (X, ceq) = (Y,cee) is a continuous map. Thus, for each each € € [0,00) x {—1,0,1} we
have a functor Met — Cl.

3.2. Neighborhood filter bases for metric closures. It will be useful to have a neigh-
borhood filter base for our metric closures.

Lemma 3.7. Let (X,d) be a metric space, x € X, and ¢ > 0.
(1) The singleton {B.(z)} is a base for a meighborhood filter at x in (X, c.-). (Recall
that Bo(z) = {x}.)
(2) The singleton {B.(x)} is a base for a neighborhood filter at x in (X, c.).
(3) The collection {B.ys(x)}ss0 is a base for a neighborhood filter at x in (X, c.+).

Proof of Lemma 3.7. We will prove the third case. The other cases are similar. Let i+
denote the interior corresponding to the closure c.+. Let § > 0. First we verify that B. s(z)
is a neighborhood of z in (X, c.+). We have

it (Bers(r)) = X \ e (X \ Beys(2)) = X\ {y € X [d(y, X \ Bess(2)) < e}
={y € X|d(y, X \ Beys(x)) > e}
Now observe that d(z, X \ B.ys(z)) = inf  d(z,y). However, note that for all y €
yEX—BE+5(x)

X\ B.ys(x), d(x,y) > e+ . Since § > 0, it follows that inf  d(z,y) > €. Therefore
B yeX\B.5(x)
X E dgt (Ba+6(z))'
Now suppose A C X is a neighborhood of x in (X, c.+). By definition we have that

x€i+(A)=X\er(X\A) ={ye X|dy, X\ A) >e}. Thus
dlz, X \ A) = yeigl(f\A d(z,y) > €.

Therefore there exists an ¢ > 0 such that Vy € X \ A, d(z,y) > ¢ +24. Hence if y € X is
such that d(z,y) < e+, the previous inequality implies that y € A. Thus B.ys(x) C A. O

3.3. Lipschitz maps and metric closures. For Lipschitz maps we obtain continuous maps
between appropriate metric closure spaces. In some cases we also have the converse.
First we have a slight generalization of Lemma 3.6.

Lemma 3.8. Let (X,d),(Y,e) € Met and let r > 0. Let ¢ € [0,00) and a € {—1,0,1}. If
[+ X =Y isr-Lipschitz then we have a continuous map f: (X, cea),a) = (Y, Crea)e)-

A continuous map f : (X, c14) = (Y, ¢,.) need not be r-Lipschitz as the following example

shows.
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Example 3.9. Let X = {21, 22} be a two point metric space with distance d(z,xs) = 2.
Let Y = {y1,y2} be a two point metric space with distance e(y;,y2) = 5. Let f: X — Y be
a map of sets defined by f(x;) = y; for i = 1,2. Then observe that f : (X,c14) = (Y, cor )
is continuous. However, f is not a 2-Lipschitz map. Indeed, 5 = e(y1, y2) > 2d(x1, x2) = 4.

For a converse to Lemma 3.8, we need a stronger hypothesis.

Lemma 3.10. Let (X,d),(Y,e) € Met. Assume that d takes only integer values and that
foralln, ¢} g = cpa. Then f: (X, c14) = (Y,¢pe) is continuous if and only if f: X =Y is
r-Lipschitz.

Proof. Assume that im(d) C Zxo and that for all n, ¢} ; = ¢, 4. Consider a continuous map
f:(X,c14) = (Y,ee). Let 2,y € X and let m = d(x,y). Then y € ¢, 4(x) and thus f(y) €
F(emal)) = FE(0)) = Fleralls (1)) C enelF( (). By induction, £(y) € e (f(x)),
which by the triangle inequality is contained in ¢, .(f(x)). Hence e(f(z), f(y)) < mr and
therefore f : X — Y is r-Lipschitz. U

The hypotheses of Lemma 3.10 hold for the following examples.

Example 3.11. Let n,m € N.

e The set of n elements with pairwise distance 1.
e {0,1,...,n}, Z>o, or Z with the absolute value metric.
e {0,1,...,n}™ ZZ, or Z™ with the metric induced by the 1-norm or the co-norm.

3.4. Products of metric closures. The products and inductive products of metric closures
are related to the closures associated to two canonical product metrics.

Definition 3.12. Let (X, d) and (Y, e) be metric spaces. Define the metrics d+e and d Ve
on X XY by

(d+e)((z,y), («,y) = d(z, ") + e(y, )
(dVe)((x,y), («,y)) = max(d(z, 2), e(y,y))

Theorem 3.13. Let (X,d) and (Y,e) be metric spaces. Let ¢ > 0, a € {—1,0,1} Then
(X X Y> C(s,a),d X C(e,a),e) = (X X }/7 C(e,a),d\/e)-

Proof. We prove the case for a = 1. The other cases are similar. First we show that
Cot g X Ce+ o 18 coarser than c.+ 4. We proceed by showing the projection mx : (X x
Y, et ave) = (X, ce+ g) is continuous. Let A C X x Y. Let 2 € mx(co+ ave(A)). Thus, there
is a y € Y such that (z,y) € cc+ ave(A). Thus, by definition we have:

ddVe((Iv y)v A) = inf ddVe((Iv y)a (ZE’I,y/)) S €

(2! )€A
It follows that inf,cr (ayd(z,2") <e. Thus x € c.+ 4(mx(A)). Therefore mx is continuous.
Similarly, 7y : (X X Y, ¢+ ave) = (Y, et ) is continuous. By Theorem 1.23, the product
closure is the coarsest closure so that each projection map is continuous. Thus, c.+ g4 X co+
is coarser than c.+ gye.

Now we show that c.+ gy is coarser than c.+ 4 X co+.. Let A C X xY. Now let
(,y) € Cet g X Ce+ o(A). Let 6 > 0. Then by Definition 1.22, Lemma 1.11, and Lemma 3.7
7x (Bessa(z)) N1yt (Beyse(y)) N A # @. Observe that w1y (Beisa(®)) N 7y (Beyse(y)) =
Beisave(z,y). Thus, dave((z,y), A) < e. Therefore, (z,y) € c.rave(A) and thus c.+ 4 x
CE+76(A) C CEthe(A). [
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Theorem 3.14. Let (X,d) and (Y, e) be metric spaces and let € > 0, a = {—1,0,1}. Then
for X XY, ¢ca)are 15 coarser than cq).a B ceaye (Definition 1.24). If e takes only integer
values then (X X Y, c1aye) = (X X Y,c1aB c1e).

Proof. We prove the first statement for the case a = 1. The other cases are similar. To show
that c.+ 44, is coarser than c.+ 4Hc.+ . by Theorem 1.25 it is sufficient to show that for each
x € X and each y € Y the functions f, : (X, cc+ ) = (X X Y, ot aye) and fo 0 (Y, v ) —
(X XY, cct ate) defined by f,(2') = (2',y) and f,(y') = (z,y’) are continuous. Let y € ¥ and
consider the mapping f,,. Let A C X. Let (z,y) € f,(cc+.4(A)). Then x € c.+ 4(A), therefore
dg(z,A) < e. Thus, by definition we have that (d + e)((x,y), A x {y}) < e. Therefore,
(,y) € cerare(fy(A)). Thus fy(cra(A)) C cot are(fy(A)) and hence f, is continuous.
Similarly, given x € X, f, is continuous. Therefore c.+ 44, is coarser than c.+ 4 H co+ .

Now assume that ime C Zs(. It remains to show that c¢; 4 H ¢ is coarser than c; 4.
Let A C X xY and let (z,y) € c1ate(A). Thus, there exists a (2/,y’) € A such that
d(z,y) +e(y,y’) < 1. By Definition 1.24 and Lemma 3.7, (X x Y, ¢ 48 ¢ ) has a base for
a neighborhood filter at (z,y) consisting of the element W = {2} x B; .(y) U By 4(x) x {y}.
If y # ¢ then, since ime C Zs it follows that e(y,y’) = 1 and thus =z = 2/. If y = ¢/
then e(y,y’) = 0 and thus d(z,2’) < 1. In either case we have that (2/,y") € W. Therefore
WNA# @ and thus (z,y) € (c14H8ei.)(A). Hence, it follows that ¢; 4H ¢y . is coarser than
Cl,d+e- Il

The next example shows that we cannot remove the integer-value hypothesis.

Example 3.15. Let (X,d) = (Y,e) = (R, d) where d is the absolute value metric on R.
Let (0,0) € R? and consider ¢; 414((0,0)). Note that (3,1) € ¢1414((0,0)). However,
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(3,3) & (cLaBera)((0,0)).
The final example of this section shows that I B I is not the same as I, x I..

Example 3.16. Consider the unit interval [0, 1] with the absolute value metric, d. The
metric d generates a topology on [0, 1] whose closure is cg+ 4. Now consider [0, 1] x [0, 1].
By Theorem 3.13 we have co+ 4 X co+ g = Co+ gva- Since the metrics d + d and d V d are
equivalent they induce the same topology. Hence, co+ gva = co+ a+a- Let A= (0,1) % (0,1) C
0,1] x [0,1]. Thus co+ 414(A) = [0,1] x [0,1]. On the other hand, no neighborhood of
the form B.(0) x {0} U {0} x Bs(0) for any £,d > 0 has a non-empty intersection with A.
Thus, by Lemma 3.7 and Definition 1.24 and Lemma 1.11, (0,0) ¢ co+ B co+ (A). Therefore
Co+,d+d 7 Cot,da B Cot g

4. HOMOTOPY IN CLOSURE SPACES

In this section we define various homotopy theories for closure spaces using different in-
tervals together with either the product or the inductive product. We will study the re-
lationships between these theories. We will observe that these homotopy theories restrict
to the full subcategories of closure spaces, Top, Cla, Clga where some of them have been
previously studied under different names.

4.1. Product operations. We formalize the properties of the product and the inductive
product that we will need. Recall that the category of sets, Set, together with the cartesian

product and the one point set * forms a symmetric monoidal category. In addition, there is
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a functor U : Cl — Set that forgets the closure. Also, the terminal object in Cl is the one
point set * with its unique closure.

Definition 4.1. A product operation is a functor @ : Cl x Cl — CI for which CI has
a symmetric monoidal category structure that commutes with the forgetful functor U and
the cartesian symmetric monoidal category structure on Set. That is, for all (X, ¢), (Y,d),
(X,c)® (Y,d) = (X xY,c®d) for some closure operator ¢ @ d on X x Y, the unit object is
the one point space * with its unique closure, and the associator, unitors, and braiding are
given by those on Set.

Example 4.2. The product closure and inductive product closures are examples of product
operations. Indeed, by their definition, B and x commute with the forgetful functor. The
unit object for both H and x is the one point space .

The braiding isomorphisms vxy : X XY — Y x X and 7xy : XHY — Y H X are
both given by vxy(z,y) = (y,z). We will show that yxy : X X Y — Y x X is continuous.
The proof that vxy : X HY — Y H X is continuous is similar. Let A C X x Y and let
(z,y) € (¢ x d)(A). Let U, and V, be neighborhoods of x and y, respectively. Then by
definition, (U, x V,,) N A # @. It follows that (V,, x U;) Nyxy(A) # @. Thus, by definition,
(y,z) € (d x ¢)(yxy(A)). Hence vxy((c x d)(A)) C (d x ¢)(yxy(A)). Therefore yxy is
continuous.

The continuity of the associator axyz : (X XY)xZ — X x (Y x Z) follows from observing
that (X xY) x Z and X x (Y x Z) share a base for a neighborhood filter at each (z,y, z)
consisting of sets of the form (U, x U, x U,) where U,,U,, U, are neighborhoods of X, Y
and Z respectively. The continuity of the associator axyz : (XBY)BZ - XH (Y B Z)
follows from observing that (X BY)H Z and X B (Y B Z) share a base for a neighborhood
filter at each (x,y, z) consisting of sets of the form U, x {y, 2z} U{z} x U, x {z} U{z,y} x U,
where U,,U,, U, are neighborhoods of z, y and z respectively.

Let A C X. Since (¢, X ¢)(x X A) = *x ¢(A), the left unitor Ax : * x X — X is continuous.
Similarly, the left unitor Ay : *EHX — X is continuous and both right unitors are continuous.
The triangle and pentagon identities are satisfied for both x and H since they are satisfied
for the underlying sets and all the maps in question are continuous.

Definition 4.3. Define a partial order on product operations by setting ®; < ®, if there
exists natural transformation o from ®; to ® such that for all closure spaces X and Y,
axy): X @Y = X ® Y is the identity map.

Lemma 4.4. Let ® be a product operation and let (X, c) and (Y, d) be closure spaces. Then
the projection maps x : (X X Y,e®d) — (X,¢) and 1y : (X xY,ce®d) — (Y,d) are
continuous.

Proof. We verify the first case; the second is similar. Let 1x : X — X be the identity and
a Y — x be the constant map. Then, by functoriality, we have that 1y ® a : X ® Y —
X ® % is continuous. The result follows from composing with the right unitor isomorphism,

X ®* = X. O

Lemma 4.5. Let ® be a product operation, let (X, c), (Y, d) be closure spaces and let xy € X
and yo € Y. Then the maps Y — X QY given by y — (x0,y) and X — X ® Y given by

x> (x,y0) are continuous.
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Proof. Consider the continuous maps xg : * — X given by xy(x) = g and 1y : Y — Y the
identity map. By functoriality, 2o ® 1y : * ® Y — X ® Y is continuous. By precomposing
with the right unitor isomorphism Y Sx® Y, we get that the map ¥ — X ® Y given by
y — (o, y) is continuous. The other case is similar. O

From Theorems 1.23 and 1.25 and Lemmas 4.4 and 4.5 we get the following.
Proposition 4.6. Let ® be a product operation. Then H < ® < X.

Lemma 4.7. Let (X, ), (Y,d) be closure spaces and assume that d is the discrete closure.
Then for any product operation @, (X X Y,c®d) = (X xY,cx d).

Proof. Let ® be a product operation. By Proposition 4.6, we have the following partial
ordering on closures on X X Y, cHd < c®d < ¢ xd. By Lemma 1.27, cBHd = ¢ x d.
Therefore c ® d = ¢ x d. O

4.2. Intervals. We formalize the structure of an interval which we will use to develop a
homotopy theory and give examples. Our definitions and terminology are closely related to
those of Berger and Moerdijk [11]. Recall that the terminal object in Cl is the one point
closure space * with its unique closure. Also recall that maps from a discrete closure space
are always continuous.

Definition 4.8. Let ® be a product operation. An interval for ® is a closure space J

together with two continuous maps * % 74 xanda symmetric, associative continuous
map V : J ® J — J which has 0 as its neutral element and 1 as its absorbing element.
That is, if we write s V ¢ for V(s,t) then 0V ¢ =t and 1Vt = 1. A morphism of intervals
is a continuous map of intervals f : J — K that preserves the distinguished points and
commutes with the symmetric, associative continuous maps. That is, f0; = O, f1; = 1k,
and f(sV t) = f(s) Vi f(t). Let Int(®) denote the category whose objects are intervals for
® and whose morphisms are morphisms of intervals. Let Into.q1(®) be the full subcategory
of Int(®) whose objects are intervals with 0 # 1.

Example 4.9. Consider the discrete closure space * II %, which we also write as J, =
({0,1},c1). We have continuous maps 0,1 : * — {0,1} with the specified image. By
Lemma 4.7, J; ® J;, = ({0,1)} x {0,1},¢1). Let vV : {0,1}> — {0, 1} be the continuous map
given by sVt = max(s,t). With this structure, % ITx is an interval for ®. Furthermore, using
the universal property of the coproduct, for any interval J for ® there is a unique morphism
of intervals * IT + — J. That is, * IT * is the initial object in Int(®) and Intg.q(®).

The one point space * has unique continuous maps 0 : x* — % and 1 : * — *. It follows
from the definition that * ® * = % and thus we have a unique continuous map V : * — .
With this structure # is an interval for ® and furthermore it is the terminal object in Int(®).

Example 4.10. In each of the following, we show that the maximum map gives us an
interval with 0 # 1 for x. By Proposition 4.6 and Lemma 4.14 it will follow that these are
also intervals with 0 # 1 for any product operation ®.

(1) I, with the inclusions of 0 and 1 (Definition 1.21) is an interval for x. It is elementary
to show that the map I, x I, — I, given by the maximum function is a continuous

map of topological spaces.
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(2) For m > 1 and 0 < k < 2™ — 1, each of Jy 1, Jm1s Iy JIm<, and Jy,p with
the inclusions of the points 0 and m (Definition 1.21) and the maximum map is an
interval for x. We will show that the maximum map is continuous in each case.

(a) Since Jp, 1 X Ji, 1 is a discrete space, the maximum map is continuous.

(b) Similarly, since .J,,, v is an indiscrete space, the maximum map is continuous.

(¢) Jm. Suppose (s',t') € (¢ X ¢)(s,t). Then |s — §'| <1 and |t — ¢/| < 1. Therefore
| max(s,t) — max(s’,t')| <1 and thus max(s’,t') € c¢(max(s,t)).

(d) Jm.<. Suppose that (s',t') € (¢ x ¢)(s,t). Then s < s" and t < t'. It follows that
max(s,t) < max(s’,t') and thus max(s',t') € ¢(max(s,t)).

(€) Jmr. Suppose that (s',t) € (¢ x ¢)(s,t). Then s € ¢(s) and t' € c(t). If

max(s,t) = s and max(s',t') = s or max(s,t) = ¢t and max(s',t') = t' then
max(s’,t') € c(max(s,t)). If not, then &' = ¢ and ¢ = s and we also have that
max(s’,t') € c¢(max(s,t)).

As special cases, we have the intervals J, , Jt, J,, and J_.

(3) Let ¢ € [0,1). Then I.-, I, and I.+ with the inclusions of the points 0 and 1
(Example 3.2) and the maximum map is an interval for x. We give the proof the
case I.+. The other cases are similar. Let A C [0, 1] x [0, 1] and suppose that (z,y) €
(ce+ x ce+)(A). Then by Lemma 3.7, for all 63,85 > 0, (Beis, (2) X Beys,(y))NA # O.
Thus for all n > 1, there exists (z,,y,) € A such that |z — z,| < ¢+ % and
ly — yn| < e+ =. It follows that |max(z,y) — max(z,,y,)| < €+ +. Therefore
d(max(z,y), max(A)) < e. Hence max(z,y) € c.+(max(A)).

Lemma 4.11. Let J and K be intervals for ®. Then so are the following:

(1) the product J ® K,
(2) the coproduct JII K, and
(3) the wedge product, given by the pushout (Definition 1.34)

which we will also call the concatenation of J and K. We will denote the m-fold
concatenation of J with itself by JV™.

Furthermore, if J and K are intervals with 0 # 1 then so are J @ K, JII K, and JV K.

Proof. By assumption there are symmetric, associative continuous maps V; : J®J — J and
Vi : K ® K — K which have 0;, O and 1, 15 as their neutral elements and absorbing
elements, respectively.

(1) Let Oyox = (04,0k) and 1;0x = (14,1k). Let Vjgx be the continuous map (J ®

ViQ®VEK

KoWJoK) S JoJo KoK 2% J K. One may check that it is symmetric and

associative and has 0,5k as its neutral element and 1 ;45 as its absorbing element.
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(2) Let OJHKIOJ and 1]]_[](:1](. Define VJHK(JHK)®(JHK)—>JHKby

sVyt, s, telJ
sVgt, s, teK
t, seJte K
s, se K, teJ

By Lemma 4.4 and Theorem 1.20, Vjux is continuous. One may also check that it is
symmetric and associative and has 0 as its neutral element and 15 as its absorbing element.

(3) Let Ojyx = to 0y and 1;yx = ko lg. There is a universal continuous map J IT
K — JV K. One may check that the map (4.1) induces a well-defined continuous map
Vivg : (JVEK)® (JV K) — JV K. It is symmetric and associative and has 0y as its
neutral element and 1;,x as its absorbing element.

In each of these constructions, if 0; # 1; and O # 1k, then the induced neutral and
absorbing elements will be distinct as well. U

(41) SVJHKt:

Proposition 4.12. Let J, K be intervals for the product operation ®. There are canonical
morphisms of intervals JI K - JVK - JQ K — J K.

Proof. The first map is given by the universal continuous map. The second is obtained
from Lemma 4.5 and the universal property of the pushout. The third is obtained from
Lemma 4.4. One may check that each of these maps respects the inclusion of 0 and 1 and
the symmetric associative map. U

By the universal property of the pushout, we have the following.

Proposition 4.13. The category Int(®) together with tensor product given by concatenation
and unit element given by the terminal interval x is a monoidal category.

4.3. Relations between product operations and intervals. We study relations between
product operations and between intervals which will later give us relations between their
corresponding homotopy theories.

Lemma 4.14. Suppose @1 < ®y. If J is an interval for ®q then J is also an interval for
X1.

Proof. Let V : J®yJ — J be the associative morphism for J an interval for ®,. Precomposing
V with the set-theoretic identity map J®,J — J®,J, which is continuous by the assumption
that ®; < ®9, we get an associative morphism V : J ®; J — J. ]

Definition 4.15. Define a preorder on intervals for ® by setting J < K if there exists a
morphism of intervals f: J — K.

From Proposition 4.12; we have the following.
Corollary 4.16. Let J, K be intervals for @. Then JUK < JVK <J®R K < J K.
Lemma 4.17. For any K in Intox(®), K < Jr.

Proof. Let K be an interval with 0 # 1 for ®. Define a map f : K — Jr by f(t) = 1 if
t # 0x and f(0x) = 0. One may check that this is a morphism of intervals. O

We will also give examples of this preorder relation among many of the intervals in Ex-

ample 4.10. First we prove the following.
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Lemma 4.18. Given m > 0, J,, is a retract of ([0, m], c1).

Proof. The inclusion i : .J,,, < [0,m] is continuous since the closure on .J,, is the restriction
of ¢; to the subset J,,. In the other direction, let r : [0,m] — J,, be given by rounding
up. That is, for i = 0,1,...,m, let r(z) = i if 2 € [i — 3,4+ 3). Let A C [0,m]. We
want to show that r(A4) C ¢(r(A)). By definition, i € r(A) iff there exists € A such that
z€li—3,i+1). Also, i € c(r(A) iff there exists z € A such that z € [i —2,i+ 2). Therefore

r(A) C c(r(A)). O

Example 4.19. (1) Lete m > 1 and 0 < k < 2™ — 1. Recall (Lemma 1.36) that we

have continuous maps I, i) I ke L Jm. These maps respect the inclusion of the
two distinguished points and also commute with taking maximums. Thus they are
morphisms of intervals and we write I, < J,, ; < J,,. In particular, I, < J; < J7.

(2) Let (e,a) < (¢/,d’). By Lemma 3.3, the identity map gives a morphisms of intervals
Iico) = Lo 0. Therefore Ico) < Loy

(3) Let 1 < m < n. There is a morphism of intervals .J, — J,,, given by i — min(i, m).
Therefore J,, < J,,. The same map gives morphisms of intervals J,, | — J 1, Jn,T —
Im,7, and J,, < = Jp, <. Therefore J, | < Jp1, Jo7 < Jp1, and J, < < Jp <. In
particular, Jm < JT, Jm’J_ < JJ_, Jm;r < JT and Jm,g < ']LS = J+.

(4) Let 1 <m <mn. Let 0 <k <2"—1and 0 < ¢ < 2" — 1, where the binary
representation of k is the first m lowest order bits of the binary representation of /.
Then the map ¢ +— min(i,m) gives a morphism on intervals J, y — Jy, 5. Therefore
Ine < I In particular, for any m > 1 and 0 < k& < 2" — 1, if k is odd then
Im e < Jy and if k is even then J,,;, < J_.

(5) Let m > 1. There is a morphism of intervals J; < — J,, < given by 0 — 0 and 1 +— m.
The same map gives morphisms of intervals J, — J,, ;. and Jt — Jy. Therefore
Ji=Ji<<Jn<, JiL < Iy, and Jr < Jp 7.

(6) Let m > 1. We have morphisms of intervals i : J,,, — ([0, m], ¢;) and 7 : ([0, m], ¢1) —
Jpm (see Lemma 4.18). Furthermore, by rescaling we have ([0, m],¢;) = ([0,1],¢1)
and this homeomorphism is given by inverse morphisms of intervals. Thus we have
morphisms of intervals J,, = I+ and I+ — J,,,. Therefore J,, < I1 and 1 < J,,.

m m m m

(7) Let f: I, — J, be the map of sets given by rounding up. This map is continuous
because [ is discrete and it respects the structure of the intervals. Therefore it is a
morphism of intervals and I, < J,.

4.4. Homotopy. An interval and a product operation give rise to a homotopy. For a product
operation ® and a closure space X, by Lemma 4.7, there is a canonical isomorphism X ® % =
X.

Definition 4.20. Let f,g : X — Y € Cl. Let ® be a product operation and let J be an

interval for ®. An elementary (J, ®) homotopy from f to ¢ is a morphism H making the
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following diagram commute.

X ® %
WNIEN
(4.2) X®J L
lx®1JT /
X ® *

Say that the ordered pair (f, g) is one-step (J, ®)-homotopic. Note that the existence of an
elementary homotopy from f to g does not imply the existence of an elementary homotopy
from g to f. However, for any f : X — Y € Cl, we have an elementary (J, ®) homotopy
from f to f given by frx, where my is the canonical continuous projection 7y : X ®@J — X.
Let ~(;z) be the equivalence relation on the set CI1(X,Y") generated by elementary (J, ®)
homotoples It is given by zigzags of elementary (J, ®) homotopies. If f ~ ;g g, say f and
g are (J,®)-homotopic. Call the equivalence relation, ~(;g), (J,®) homotopy

Lemma 4.21. Let ® be a product operation and let J be an interval for ®. Then V is an
elementary (J,®) homotopy from the identity map on J to the composite map J — L.

Proof. By definition, for all s € J, sV 0 = s and sV 1 = 1. The result follows. O

Example 4.22. Let ® be a product operation. Recall that J, and % are the initial and
terminal objects, respectively, in Int(®). Since J; & « 1%, X ® J, = X IT X and we may
define H = f 11 g. Therefore, any f,g: X — Y € Cl are one-step (J,,®)-homotopic. Since
X ®x*= X, wehave H = f and H = g. It follows that f ~(, ) g if and only if f = g.

Lemma 4.23. Let ® be a product operation and J be an interval for ®. By Lemma 4.11,
J®J is also an interval for ®. If (f,g) are one-step (J, ®)-homotopic and (h, k) are one-step
(J, ®)-homotopic then (f ® h,g ® k) are one-step (J @ J, ®)-homotopic.

Proof. Let H and F' be elementary (J, ®) homotopies between f and g and h and k, respec-
tively. Then the following diagram commutes.

X®IRQ * f®h
1X®Z®0J®]l
X®Z®J®J—>X®J®Z®J—>Y®W

HQF

1X®Z®1J®JT /
XRZRQ* gk
U

Corollary 4.24. Let ® be a product operation and J be an interval for @. If f ~;s) g and
h ~ue) k then f @ h ~ygie) g @ k.

Proof. By assumption, we have a zigzag of elementary homotopies from f to g and a zigzag
of elementary homotopies from h to k. By adding identity maps as needed, we may assume
that these zigzags have the same length and have matching elementary homotopies in the
same direction. The result then follows from applying Lemma 4.23 to each of the paired

elementary homotopies. O
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Lemma 4.25. Let X be a closure space. Then the diagonal map A : X — X x X s
continuous.

Proof. Let A C X. Let x € ¢(A). Then, for each neighborhood U of x, UN A # @. It
follows that (U x U) N A(A) # @. Therefore (z,z) € (¢ x ¢)(A(A)). O

Lemma 4.26. Let J be an interval for x. Then A : J — J x J is a morphism of intervals.
In particular, J < J X J.

Proof. By Lemma 4.25, A is continuous. Furthermore A(0) = (0,0), A(1) = (1,1) and
A(s Vi) =A(s) VA(L). O

Example 4.27. Let X be a closure space. The diagonal map A : X — X H X need not be
continuous. Consider the following. Let X be Jt or J. Then 1 € ¢(0) but (1,1) ¢ ¢(0,0).
Let X = I. Consider A =[0,1). Then 1 € ¢(A) but (1,1) ¢ c¢(A(A)).

We end this section with a characterization of one-step (J, X)-homotopy.

Proposition 4.28. Let f,g : (X,¢) — (Y,d) € Cl.  Then f,g are one-step (Jr, X)-
homotopic iff for all A C X, f(c(A))Ug(c(A)) C d(f(A))Nd(g(A)).

Proof. Let e denote the indiscrete closure on Jt.

(=) Let H : X x Jr — Y be an elementary (Jt, X) homotopy from f to g. For all x € X,
H(z,0) = f(z) and H(x,1) = g(x). Let A C X. Then f(c(A))Ug(c(A)) = H(c(A) x J1) =
H{(c x €)(A % 0)) C d(H(A x 0)) = d(f(A)). Similarly f(c(4)) U g(c(A)) < d(g(A)).

(<) Define H : X x Jr = Y by H(z,0) = f(z) and H(x,1) = g(z). Let A C X x Jt.
Let Ag = {(x,0) € A} and A; = {(x,1) € A}. Then H((c xe)(A)) = H((cxe)(AgUAy)) =

)(A

)
H((c x €)(Ao) U (c x e)(A1)) = H((c x e)(Ag)) U H((c x €)(A1)) = f(c(Ag) U g(c(Ag) U
f(e(A1)) U g(c(Ar)) C d(f(Ao)) Nd(g(Ao)) Ud(f(A1)) Nd(g(Ar)) C d(f(Ao)) Ud(g(Ar)) =
d(H(Ag)) Ud(H(A)) = d(H(Ao) UH(A)) = d(H(Ay U Ay)) = d(H(A)). Therefore H is

continuous. O

As a special case, consider (X, E), (Y, F') € DiGph. Recall that f: X — Y is a digraph
homomorphism iff whenever xE2’ we have that fxFfa'. Note that Jt is the complete
digraph on {0, 1} and (z,9)E x Jr(/,j) iff xEx’.

Lemma 4.29. Let f,g : (X,E) — (Y,F) € DiGph. Then f,g are one-step (Jr,x)-
homotopic iff whenever xEx', we have that fxFgx' and gxF fx'.

Proof. A map H : X x Jr — Y with H(z,0) = f(x) and H(z,1) = g(x) is a digraph
homomorphism iff whenever xEx’ we have that for all 4,5 € Jy, H(x,i)FH(2', j). O

4.5. Relations between homotopy equivalences. We study relations between our ho-
motopy theories.

Lemma 4.30. Let ® be a product operation. Let f,g: X — Y € CL

(1) f,qg are (I, ®)-homotopic iff f,g are one-step (I.,®)-homotopic.

(2) f,g are (Jr,®)-homotopic iff there exists m > 1 such that f,g are one-step (J,, ®)-
homotopic.

(8) f,g are (Jy, ®)-homotopic iff there exists m > 1 and 0 < k < 2™ — 1 such that f, g

are one-step (Jp 1, ®)-homotopic.
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Proof. Suppose that f, g are (J,,®)-homotopic. A (J,,®) homotopy is obtained by the
symmetric transitive closure of the elementary (J;,®) homotopy. Thus for some m > 1,
there is a finite sequence f = fo, f1,..., fin = g of maps where consecutive maps f;, fii1
or fiy1, fi are one-step (J, ®)-homotopic. We may concatenate the homotopies to obtain
a homotopy H : X ® J,,,, — Y between f and g. The other cases are easier since the
elementary homotopies are symmetric. Note that 1" is homeomorphic to 1. O

Proposition 4.31. Let ®1, ®y be product operations with ®, < ®9 and let J, K be intervals
for ®s such that J < K. If f,g: X =Y are one-step (K, ®y)-homotopic then they are also
one-step (J, ®1)-homotopic. (By Lemma 4.14, J, K are intervals for ®;.)

Proof. Let h: J — K be a morphism of intervals. Consider the following diagram.

o~

X ®1 k — X ®2 * f
1x®20K

X®1JT>X®2JWX®2K-H--->Y

X
1X®11JT 1X®21JT /
o~ 1x®21k
X ® %« —— X ®9 % g

The left squares commute by the natural transformation ®; = ®,. The middle triangles
commute because h is a morphism on intervals. If f and g are one-step (K, ®2)-homotopic
then there exists a map H such that right triangles commute. It follows that f and g are
one-step (J, ®;)-homotopic. O

Z

Corollary 4.32. Let J, K be intervals for @9 with J < K and let ®1, X9 be product opera-
tions with @1 < ®. Let f,g: X =Y € CL. If f ~(k e, g then f ~g,) g

Corollary 4.33. Let J € {1, J7,Ji}. If f ~ue) g and h ~(5g) k then f @ h ~(;g) g ® k.

Proof. By Corollary 4.24, f ® h ~(jg5%) 9 ® k. By Corollary 4.16 and Proposition 4.31, this
implies that f®h ~(jvie) g®k. Thus, there is a zigzag of elementary (JV J, ®) homotopies
from f ® h to g ® k. Let m denote the number of elementary homotopies in the zigzag. If
J = I, then these m elementary homotopies combine to give an elementary ([0,2m]. , ,®)
homotopy. Since I is homeomorphic to [0, 2m] , , this is an elementary (I, ®) homotopy.
If J = Jr then these m elementary homotopies combine to give an elementary (Ja,,®)
homotopy. If J = J, then these m elementary homotopies combine to give an elementary
(J2m.k, ®) homotopy for some 0 < k < 2™ — 1. In each case, the result then follows by
Lemma 4.30. 0

Theorem 4.34. Let m > 1, 07 < (g,a) < 1 and let ® be a product operation. Let f, g :
X =Y be a continuous map of closure spaces. The following are equivalent.

(1) f,q are (Jt,®)-homotopic.

(2) f,q are (J,,, ®)-homotopic.

(3) f,g are (Jm 1, ®)-homotopic.
(£

(4) f,g are ®)-homotopic.
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Proof. By Example 4.19(3), J,,, < J+. By Corollary 4.32, (1) implies (2). By Lemma 4.30(2),
if f,g are one-step (J,,, ®)-homotopic then f, g are (Jt,®)-homotopic. If f, g are (J,, ®)-
homotopic then they are connected by a finite sequence of elementary (.J,,, ®) homotopies.
So they are (Jt,®)-homotopic. Thus (2) implies (1).

By Example 4.19(3), J,, v < Jt. By Corollary 4.32, (1) implies (3). Similarly, by Exam-
ple 4.19(5), Jt < J,, 7 and thus (3) implies (1).

Choose integers n, N, with 1 < n < N such that % < (g,a) < % By Example 4.19(2)
and Example 4.19(6), Jy < 11 < Iq) < 11 < J,. Thus (4) implies that f,g are (Jy, ®)-
homotopic, which we have shown implies that they are (Jr, ®)-homotopic. In addition, we
have shown that (1) implies that f, g are (J,, ®)-homotopic and since I(. 4y < J,, this implies
(4). O

Theorem 4.35. Let m > 1 and 0 < k < 2™ — 1 and let ® be a product operation. Let
f,g9: X =Y be continuous maps of closure spaces. The following are equivalent.

(1) f,g are (J4+, ®)-homotopic.
(2) f.g are (J,, <, ®)-homotopic.
(3) f,g are (Jmx, ®)-homotopic.

Proof. By Example 4.19(3), J,, < < Jy. By Corollary 4.32, (1) implies (2). Similarly, by
Example 4.19(5), J4 < J,, < and thus (2) implies (1). By Lemma 4.30(3), if f, g are one-step
(k> ®)-homotopic then they are (J4, ®)-homotopic. If f, g are (Jp, %, ®)-homotopic then
they are connected by a sequence of elementary (Jy,, ®) homotopies. So they are (J,, ®)-
homotopic. That is, (3) implies (1). Finally, note that the equivalence relation generated
by elementary (J,,®) homotopy equals the equivalence relation generated by elementary
(J-,®) homotopy. Since by Example 4.19(4) either J,,x < Jy or Jy,x < J_, it follows that
(1) implies (3). O

Theorem 4.36. Let X and Y be closure spaces. Let f,g : X — Y be continuous maps.
Then we have the following implications

f o~ 9 == [ ~uix) 9 == [ ~1,x) 9

! ! !

fouem g = [~ g — [ ~0® 9

Furthermore, among homotopy relations obtained from an interval with 0 # 1 and a product
operation, the relation ~ (s, x) tmplies any other such homotopy relation.

Proof. Combining Proposition 4.6 and Corollary 4.32 gives the vertical implications. The
horizontal implications follow from Example 4.19(1) and Corollary 4.32. The second state-
ment follows from Corollary 4.32, Lemma 4.17, and Proposition 4.6. U

For closure spaces X and Y define a partial order on pairs (J, ®), where J is an interval
and ® is a product operation, given by (J,®) < (J',®') if forall f,g: X =Y, f ~ug) g
implies that f ~(yg) g. That is (J,®) < (J',®') if (J',®") gives a coarser partition of
the set of continuous maps from X to Y. By Theorem 4.36 and Example 4.22, we have the
following poset, which is independent of X and Y.
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Theorem 4.37. With the above partial order on intervals and product operations, we have
the following Hasse diagram,

(JJ_v X)

(%, )

where f ~(.x) g if and only if f = g and thus (x, x) is the minimum and f ~(;, «y g for all
f,9: X =Y and thus (J., X) is the mazimum.

Proposition 4.38. For each of the equivalence relations in Theorem 4.36 there exist f, g :
X — Y such that f is not homotopy equivalent to g.

Proof. By Theorem 4.36, it suffices to verify the statement for the case (I,,H). Let X be the
two point discrete space. Then the identity map 1 is not (I, H) homotopic to a constant
map. Indeed, if it was then we would have a homotopy H : X H I, — X between the two
maps. However, since X is discrete, by Lemma 1.27, this would be equivalent to asking for
a homotopy H : X x I, — X between the two maps, which we know does not exist since
the two point discrete space X is not (I, x)-contractible. O

Definition 4.39. Let J be an interval and let ® be a product operation. We say that X
and Y are (J,®)-homotopy equivalent if there exist morphisms f: X - Y and g: Y — X
such that gf ~e) 1x and fg ~e) 1ly. We say that X is (J, ®)-contractible if it is
(J, ®)-homotopy equivalent to the one-point space.

Example 4.40. Let ® be a product operation and J be an interval for ®. By Lemma 4.21,
J is (J,®)-contractible. Furthermore, for n > 0 and J € {I,, Jr,J.}, J®" is (J,®)-
contractible, which follows by induction using Corollary 4.33.

Example 4.41. Consider (Z, d) where d(z,y) = |r—y|. Then (Z, ¢;) is (I, x)-contractible [54,
Lemma 4.49]. In contrast, we will show that the space (Z, ¢;) is not (J, H) contractible. In-
deed, suppose that fo, ..., f, is a zigzag of one-step (J, H)-homotopic maps where fy = 1y
is the identity map and f,,, = 0 is the constant map to 0. A map f : Z — Z gives a continuous
map f: (Z,c1) = (Z,c) iff for all n, |f(n) — f(n—1)| < 1. Let f and g be two such maps.
By Definitions 1.24 and 4.20, the ordered pair (f, g) is one-step (J4,H)-homotopic iff for all
n, |f(n) —g(n)| < 1. Since fy(m+1) =m+1, f,(m +1) > 1, we have a contradiction.

4.6. Restrictions to full subcategories. We end this section by remarking that a number
of our homotopy theories have been previously studied in various full subcategories of closure

spaces.
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The interval I lies in the full subcategory Top. The intervals J,, 5, form > 1,0 < k < gm—l1
lie in the full subcategory Cla = DiGph. The intervals J,, for m > 1 and I (. 4, fora = —1,0
and 0 < e <1 lie in the full subcategory Clsa = Gph.

The product closure restricts to Top, Gph and DiGph by Propositions 1.39 and 2.4. The
inductive product closure restricts to Gph and DiGph by Proposition 2.7 and Corollary 2.8,
where it is known as the cartesian product of graphs and digraphs.

Lemma 4.42. (1) (I, x)-homotopy restricts to Top where it is called homotopy.
(2) (I.-, x)-homotopy restricts to Gph where it is called homotopy ([57]).
(3) (Jr,B8)-homotopy restricts to Gph where it is called A-homotopy or discrete homo-
topy ([46, 7, 8, 3]).
(4) (Jt, x)-homotopy restricts to Gph where it is called X-homotopy ([33]).
(5) (J4,H)-homotopy restricts to DiGph where it is called homotopy ([44]).
(6) (Jt, x)-homotopy restricts to DiGph where it is called bihomotopy (/34]).

5. HOMOLOGY IN CLOSURE SPACES

In this section we define several homology theories for closure spaces. We start by using
some of our previously defined intervals and product operations to define various simplices
and cubes. We then use the standard constructions to produce corresponding simplicial and
cubical homology theories. For a closure space X, let X™ = X*" and X®" denote the n-fold
product and n-fold inductive product, respectively, of X with itself.

5.1. Cubical homology. We use intervals and either the product or the inductive product
to define cubical singular homology theories. Let J be one of the intervals I, Jv, Jy and let
® denote either x or H.

Definition 5.1. For n > 1, define the (J, ®) n-cube to be |0"|»®) = J®" By Definition 4.1,
if J = (J,c) then |O7|®) = (J* ¢®"). Define |[°|(/®) to be the one point space. Denote
|07 ) by |77, Note that |7|’T is the set {0,1}" with the indiscrete topology.

Definition 5.2. Let X be a closure space. Given a (J, ®) singular n-cube, o : |0"|/®) — X
for 1 < i <n define

(51) A?(U)(Gl,...,an_l) (al,...,ai_l,O,ai,...,an_l)

=0
(5.2) Bl'(o)(ai,...,an-1) =0c(ay,...,ai—1,1,a; ..., Gp_1).

Say o is degenerate if Ao = B]'oc for some 7. Let C’,({]’®)(X) be the quotient of the free
abelian group on the (J, ®) singular n-cubes in X, which we will denote by Q&LJ@)(X ), by
the free abelian group on the degenerate singular n-cubes. Elements of C’,({]’@(X ) are called
(J,®) singular cubical n-chains in X. The boundary map 0, : C’,({]’@(X) — Cfiéf) (X) is the
linear map defined by

Ono =Y (=1)'(Alo — B}o).
i=1
One can check that 0,10, = 0 and thus (C’.(J’®)(X ), D) is a chain complex of abelian groups.
The cubical singular homology groups are the homology groups of this chain complex, which

we denote by H.(J’®)(X).
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Definition 5.3. We may augment the singular chain complex with the augmentation map
€. C(SJ@) (X) — Z given by > . n;0; = y . n;. The homology of the augmented singular chain
complex is called reduced homology and denoted fI.(J@)(X ).

Example 5.4. Let * denote the one point space. There is a single nondegenerate (J,®)
0-cube given by the identity map and for & > 1 the (J, ®) singular k-cubes are all degenerate.

Therefore ]:Ing’®)(*) =0 for all k£ > 0.

Definition 5.5. Let f : X — Y be a continuous map of closure spaces. Let o : |7/ — X
be a (J,®) singular n-cube. Then f oo : [0®) — Y is a (J,®) singular n-cube in
Y. Furthermore f induces a group homomorphism fy : %‘]’@(X ) — Q%‘]’@(Y), which
sends degenerate cubes to degenerate cubes. Thus it also induces a group homomorphism
fau C’,({]’@(X ) — C’,({]’@(Y). It can be checked that for all n > 0 these maps respect the
boundary operators and thus they induce maps on homology f, : H}L‘]’@)(X ) — H,(@J’@(Y).
In particular, for each n > 0, we have a functor H}L‘]@)(—) : Cl — Ab.

Theorem 5.6. Let f,g : (X,c) = (Y,d). If f ~ug) g, then f. = g, : HT(LJ’@(X, c) —
HY®\(v,d).

Proof. 1t is sufficient to assume that f and g are one-step (J, ®)-homotopic. That is, there
exists H : X ® J — Y such that H(—,0) = f(—) and H(—,1) = g(—). By definition,
|Dn|(J,®) ® J is |D”+1|(‘]’®).

Let o : |O07|“®) — (X,¢) be a singular n-cube. Consider the composition H o (¢ x 1) :
0"V®) @ J - X ®.J =Y. Define a map P : C’,({]’®)(X, c) — Cfl‘i?)(}/, d) as follows. For a
(J,®) singular n-cube o : |[0"|"®) — (X, ¢) let

P(o) =0,
where & is the (J,®) singular (n + 1)-cube such that A?™(5) = H(c,0) and B (5) =
H(o,1). We now show that OP = g4 — fu — P0. We have

OP(0) = 86 = Z( 1)/ (An+1~ Bn+1 ) = (- ) (An+1 Bn+1 +Z An+1~ Bn+1 )
—(H(0,0) - +Z DU H (A} 0, =) = H(B} 0, -),

where — in H (Ao, —) and H(B}o,—) denotes either 0 or 1. The first sum in the equation
above is H(o,1) — H(0,0) = g4(0) — f#(o). The second sum is precisely —Pdo as can be
seen by unwrapping the definitions of 0 and P. Thus 0P(0) = gx(o) — fu(o) — PO(0).
Extending linearly we get that 0P = gx — fx — P0. Furthermore, if o is degenerate, P (o)

is also degenerate. Thus, P is induces a homomorphism P : o) (X,c) — C’({f (Y, d).

n

Therefore, P is a chain homotopy between f. and g and hence f, = g.. O
By Theorem 5.6 and Example 5.4 we get the following corollary.

Corollary 5.7. Let X be a (J,®)-contractible closure space. Then fL(LJ’@)(X) =0 for all
n > 0.
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The following examples will help demonstrate that our six cubical singular homology
groups are distinct.

Example 5.8. The only continuous maps from J+ to J, are the constant maps, which are
degenerate (J, x) and (J7,H) singular 1-cubes, and thus HéJT’BH)(JJr) = HSJT’X)(JJF) =72

Example 5.9. Consider the space (R, co+ ). The only continuous maps from |77, |75,

IO+ and |O'|V+®) into (R, co+) are the constant maps. Therefore

HE™IR, eq) = HE DR, e01) = HE (R, cg0) = HY DR, e01) = @D 2.

zeR

Example 5.10. Consider |[[0?|+®) = J%2 We will show that HI(J+’X)(|D2|(J+’EE)) = 7. Let
a,b,c,d, denote the vertices (0,0), (0,1), (1,0) and (1,1) of |J?|+#. Denote the singular k
cubes by the images of the vertices of |[(0¥|/+, when those vertices are listed in lexicographic
order. Then, C{"(|02|¢+®) = Z(a,b,c,d) and CV+)(|02|V+B)) = Z{ab, ac, bd, cd).
Furthermore, C3"+)(|02|+#)) = (aaab, abbb, aaac, acce, bbbd, bddd, cced, cddd). Note that,
for example, abab is degenerate, and the map corresponding to abed is not continuous. One
can check that 0y = 0. Since, ker 0; = Z(7), where 7 = ab+ bd — ac — cd, the result follows.

Example 5.11. Consider |[3?|T#) = JH2  We will show that HY(|m?| 078y >~ 7,
Let a,b,c,d, denote the vertices (0,0), (0,1), (1,0) and (1,1) of |3?|T#). Denote the
singular k£ cubes by the images of the vertices of |[(0¥|/T, when those vertices are listed
in lexicographic order. Then, C’éJT’X)(|Dz|(JT’EE)) = Z{a,b,c,d) and C}JT’X)(|D2|(JT’EE)) =
Z{ab, ba, ac, ca, bd, db, cd dc).

Furthermore, C5 (. (|D2|(‘] 7)) is the free abelian group with generators of the form wuuv,
uuvu, vvuw, vuuu, and vovu where (u, v) € {(a,b), (b,a), (a,c), (¢,a), (b,d), (d,b), (¢,d), (d,c)}.
Note that, for example, Os(abaa) = ab + ba — 2aa = ab + ba since aa is degenerate. No map
whose image contains 3 distinct vertices of J+H Jt is continuous, and the map corresponding
to abed is not continuous. The result follows from checking that ker & = Z{ab + ba, ac +
ca, bd+db, cd+de, ), where T = ab+bd—ac—cd and im 0y = Z{ab+ba, ac+ca, bd+db, cd+dc).

Proposition 5.12. With the possible exception ofH.(IT’X) and H"™®) our siz cubical singular
homology theories are distinct.

Proof. Since (R, co+) is (I, x)-contractible it is also (I,,H)-contractible by Theorem 4.36.
Thus HéIT’X)(]R, Cot+ ) = HSIT’EE) (R, co+) = Z by Theorem 5.6. Therefore by Example 5.9 each
of H.(JT’X)(—), H.(‘]TE)(—), H£J+’X)(—), H.(J+’Ba)(—) is distinct from each of H.(IT’X)(—), H.(IT’EE)(—).
By Example 4.40 and Theorem 5.6 we have that HéJ+’X)(J+) = Héh’aa)(JJr) >~ 7 . Com-
bined with Example 5.8 we have that H.(JTE)(—), H.(‘]T’X)(—) are each distinct from each of
H(J+ X)( ),H(J+ EE)( ).

By Example 4.40 and Theorem 5.6 we have that JF? is (J,H)-contractible and thus
HP(JE2) = 0. By Example 5.10 we then have that HY (7:8) )(=) is distinet from H (=),

Similarly, H7® (JE2) = 0, which together with Example 5.11 shows that H{'™® (=) is

distinct from H{') (—). O
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5.2. Simplicial homology. In the case of the product, we define corresponding simplicial
singular homology theories. Let J be one of I, Jt, or J,. Denote (J, x) simply by J.

Definition 5.13. For n > 0 define ¢,, : {0,...,n} — {0,1}" by «(k) = (1,...,1,0,...,0).
k “k

Let |A"|!~ denote the convex hull of im(:) in |{J"|!~ with the subspace closure. Let |A™|/+
and |A"|”T denote im(¢) in |07+ and |O"|’7, respectively, with the subspace closure. Call
|A™|7 the J n-simplez. For 0 < i < n, the i-face of |A™|” is the convex hull of the image of
_____ %7---771} if J = J+ or J = JT.

Note that |A"|f" is homeomorphic to the standard n-simplex, |A"|/T is homeomorphic to
Jo T, the set {0,1,...,n} with the indiscrete topology, and |A"|’+ is homeomorphic to J,, <,
the set {0,1,...,n} with the closure operator ¢(i) = {j | i < j}.

Definition 5.14. Let X be a closure space. Let C7(X) be the free abelian group on the
J singular n-simplices, o : |A"|7 — X. For n > 1, let 9, : C(X) — C/_,(X) be the map
defined by

Ono = Z(—l)idia,

i=0

where d;o is the restriction of o to the i-th face of |A"|’. Since 8,,_10, = 0 we have a chain
complex of free abelian groups, (C{(X),d,) whose homology groups we denote by H(X)
and are called the simplicial singular homology groups.

Let f: X — Y be a continuous map of closure spaces. Let o : |A"|/ — X be a J singular
n-simplex. Then f oo : |A"|7 — Y is a singular J singular n-simplex in Y. Furthermore
f induces a group homomorphism fu : CJ(X) — C/(Y). It can be checked that for all
n > 0 these maps respect the boundary operators and thus they induce maps on homology
fo: H/(X) — HJ(Y). In particular, for each n > 0 we have a functor H/(—) : C1 — Ab.

In a companion paper [17] we show that the corresponding simplicial singular homology
groups and cubical singular homology groups agree.

5.3. Restrictions to full subcategories. We end this section by remarking that a number
of our homology theories have been previously studied in various full subcategories of closure
spaces.

Recall that Clga = Gph. Under this isomorphism, |A"|’T corresponds to K,.i, the
complete graph on n + 1 vertices, and |(0*|/7®) corresponds to the hypercube graph Q..
Also recall that Cly, = DiGph. Under this isomorphism, |A"|’+ corresponds to Kn/;l, the
digraph of the poset ({0,...,n},<) and |O0"F|/+%) corresponds to the hypercube digraph
Q" , where the vertices are the elements of {0,1}" and the directed edges given by (a,a+¢;)
where ¢; is a standard basis vector.

Lemma 5.15. (1) H.(IT’X)(X) restricts to Top where it is called singular homology.
(2) H.(JT’X)(X) restricts to Gph where it is the homology of the clique complex of a graph.
(3) H ™) (X) restricts to Gph where it is called discrete (cubical) homology ([4, 5, 6]).

(4) H.(J+’X)(X) restricts to DiGph where it is the homology of the directed clique complex.
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5.4. Homology with coefficients. Let C' be one of the chain complexes of Section 5.1 or
Section 5.2. Let A be an abelian group, which we consider to be a chain complex concentrated
in degree zero. Then the tensor product C'® A is a chain complex whose homology He(C'® A)
is called the homology of C' with coefficients in A. As a special case, for a field k, the homology
groups H;(C' ® k) are k-vector spaces.

6. SIMPLICIAL COMPLEXES FROM CLOSURE SPACES

In this section we give functorial constructions of simplicial complexes and hypergraphs
from closure spaces and vice-versa. As special cases, we obtain generalizations of the Vietoris-
Rips complex and Cech complex constructions.

6.1. Hypergraphs and simplicial complexes. We define hypergraphs and simplicial
complexes and related categories and functors. We obtain a sequence of adjunctions con-
necting closure spaces and hypergraphs via graphs and simplicial complexes.

Definition 6.1. A simple hypergraph H is a pair H = (X, E') where X is a set and FE is a
collection of non-empty subsets of X. We will call a simple hypergraph a hypergraph. Ele-
ments of X are called vertices of the hypergraph H and elements of E are called hyperedges
of the hypergraph H. A hypergraph homomorphism f : (X, E) — (Y, F') between two hyper-
graphs is a map f : X — Y such that for each e € E, f(e) € F. Let HypGph denote the
category of hypergraphs and hypergraph homomorphisms. Say that a hypergraph has finite
type if its hyperedges are finite sets. Say that a hypergraph is downward closed if T € E and
@ # o C 7 implies that 0 € E and € X implies that {x} € E. A simplicial complez is
a downward-closed finite-type hypergraph. Let HypGphg, HypGphgc, and Simp denote
the full subcategories of HypGph consisting of finite type hypergraphs, downward closed hy-
pergraphs, and simplicial complexes. In Simp, hyperedges and hypergraph homomorphisms
are called simplices and simplicial maps, respectively.

Let (X, F) € HypGph. Define the downward closure of E, dc(E), to be the collection of
nonempty subsets o of X such there exists 7 € E with ¢ C 7 or 0 = {z} for some z € X.
Assume f: (X, E) — (Y, F) € HypGph. Given @ 40 C 1€ E, @ # f(o) C f(7) € F. So
f(o) € de(F). Also f({z}) ={f(z)} € Y. So f({z}) € de(F). Therefore f : (X,dc(F)) —
(Y,de(F)) € HypGph. Thus the mappings (X, E) to (X,dc(E) and f : (X, E) — (Y, E)
to f:(X,dc(E)) — (Y,dc(F)) define a functor dc : HypGph — HypGphgc.

Proposition 6.2. Let (X, F) € HypGph and (Y, E) € HypGphg.. Given a set map
f:X=Y, f:(X,E)—= (Y, F) is a hypergraph homomorphism iff f : (X,dc(E)) — (Y, F)
1s a hypergraph homomorphism. Thus, we have a natural isomorphism

That is, dc s left adjoint to the inclusion functor HypGphg. — HypGph.

Proof. (=) If 7 € E and @ # o C 7 then @ # f(0) C f(r) € F and thus f(0) € F. If
z € X then f({z}) ={f(z)} € F. (<) E C dc(E). O

Let (X, F) € HypGphgc. Define tro(E) = {0 € E | |o] < o0}. Let try, : HypGphge —
Simp denote the functor defined by mapping (X, E) to (X, tro(F)) and mapping f :
(X, E) = (Y, F) to f : (X, tra(E)) = (¥, troe (F).

36



Let (X, E) € Simp. Define cosk(E) be the collection of nonempty subsets 7 of X such
that for all finite nonempty subsets ¢ C 7, ¢ € E. Note that 0 € cosko(F) and |o| < oo
implies that ¢ € E. Let cosky : Simp — HypGphg. denote the functor defined by
mapping (X, F) to (X, cosko(£)) and mapping f : (X, E) — (Y, F) to f : (X, coskoo(E)) —
(Y, coskeo (F)).

Proposition 6.3. Let (X, E) € HypGphg, and (Y, E) € Simp. Given a set map f :
X =Y, f: (X, treo(E)) — (Y, F) is a simplicial map iff f: (X, E) — (Y, cosky(F)) is a

hypergraph homomorphism. Thus, we have a natural isomorphism
Simp((X, tro(E)), (Y, F)) = HypGphac((X, E), (Y, coske (F))).
That is, tre is left adjoint to cosk.,

Proof. (=) Let 7 € E. Note that for all nonempty finite subsets of f(7) equal f(o) for some
nonempty finite 0 C 7. Since 7 € E, for all nonempty, finite subsets ¢ C 7, 0 € tro(FE)
and hence f(o) € F. Thus for all nonempty finite subsets ¢/ C f(7), o/ € F. Therefore
f(7) € coskoo(F).

(<) If 0 € troo(E) then f(0) € cosky(F') and |f(0)| < co. Therefore f(o) € F. O

Let (X, E) € Simp. Define tr;(E) = {oc € E | |o| = 2}. Let tr; : Simp — Gph denote
the functor defined by mapping (X, E) to (X, tr;(E)) and mapping f : (X, E) — (Y, F) to
[ (X tr(E)) = (Y, try (F)).

Let (X, E) € Simp. Define cosk; (F) be the collection of nonempty finite subsets 7 of X
such that for all distinct x,y € 7, {z,y} € E. Note that this includes all subsets of X of
cardinality one. Let cosk; : Gph — Simp denote the functor defined by mapping (X, E)
to (X, cosk;(E)) and mapping f : (X, E) — (Y, F) to f : (X, coski(F)) — (Y, cosk;(F)).
Given a graph (X, F), the simplicial complex (X, cosk;(FE)) is called the clique complex of
the graph. A simplicial complex in the image of cosk; : Gph — Simp is called a flag
complex or, equivalently, is said to satisfy Gromov’s mo-A condition. Observe that for a
graph (X, E), (X, tri(cosk; (F))) = (X, E).

Proposition 6.4. Let (X, E) € Simp and (Y, E) € Gph. Given a set map f : X =Y,
f (Xt (E) — (Y, F) is a graph homomorphism iff f : (X, E) — (Y, coski(F)) is a
simplicial map. Thus, we have a natural isomorphism

Gph((X7 tl‘l(E)), (Y, F)) = Slmp((X7 E>7 (Y7 COSkI(F)))'
That is, try s left adjoint to cosk;.

Proof. (=) Let ¢ € E. For all z # y € o, {z,y} € tri(F). Thus f(z) = f(y) or

{f(x), f(y)} € F. Therefore f(o) € cosky(F).
(<) Let z,y € X such that {z,y} € F and « # y. Then f({z,y}) € cosky(F'), which
implies that either f(z) = f(y) or {f(z), f(y)} € F. Therefore f is a graph homomorphism.
U

Combining Propositions 1.47, 1.51 and 1.56 with Propositions 6.2 to 6.4, we have the
following sequence of adjunctions. Recall that adjunctions compose to give adjoint functors.

Theorem 6.5. We have the following composite adjunction between Cl and HypGph.

g try troo
— T
X Cla 1 Cla g Gph - Simp — HypGphg. - L . HypGph
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We end this section by defining one more functor that will be used the Section 6.2.

Definition 6.6. Let (X, c) € Cla. Define I'(¢) to be the downward closure of the collection
of subsets of X, {c(z)}sex. Let I' : Cla — HypGphg, be the functor defined by mapping
(X,c) = (X,T'(¢)) and mapping f: (X,c) — (Y,d) to f: (X,[(c)) = (Y,T(d)).

6.2. Vietoris-Rips and Cech complexes. We give functorial constructions of Vietoris-
Rips complexes and Cech complexes for closure spaces which send one-step (J7, X )-homotopic
maps to contiguous simplicial maps. We give an adjoint functor to the Vietoris-Rips con-
struction which sends contiguous simplicial maps to one-step (J, x)-homotopic maps.

Let (X,c¢) be a closure space. Let VR(c) be the collection of nonempty finite subsets
o C X, such that for all z € o, 0 C ¢(x). Note that for all z € X, z € ¢(z), so {z} € VR(¢).
Also, if 7 € VR(c¢) and @ # ¢ C 7 then 0 € VR(c¢). Thus, (X, VR(c)) is a simplicial
complex. Assume f: (X, c¢) = (Y,d) € CL. Let 0 € VR(X). Then f(0) is a finite nonempty
subset of Y. Furthermore, all elements of f(o) are of the form f(z) for some x € 0. As
o C c(x), it follows that f(o) C f(e(x)) C d(f(x)). Therefore f(o) € VR(d), which implies
that f: (X, VR(c)) — (Y, VR(d)) is a simplicial map.

Definition 6.7. Define the functor VR : Cl — Simp by mapping (X, ¢) to (X, VR(c)) and
f:(Xe) = (Yid) to f: (X, VR(c)) = (Y, VR(d)).

Let (X, d) be ametric space and € > 0. Then (X, VR(c. 4)) consists of simplices {zo, ..., 2, }
where d(x;, z;) < ¢ for all 7, j. That is, it is the usual Vietoris-Rips complex on (X, d)). We
also have the variant, (X, VR(c.- 4)) consisting of simplices {zo, ..., x,} where d(z;, x;) < ¢
for all 4, j, which is sometime used.

Let (X, ) be a closure space. Define C(c) to be the collection of nonempty finite subsets
o C X such that there exists x € X with o C ¢(x). Note that for all x € X, x € ¢(z), so
{z} € C(c). Furthermore, if 7 € C(c) and @ # o C 7 then ¢ € C(c). That is, (X,C(c))
is a simplicial set. Assume f : (X,c) — (Y,d) € Cl. Let 0 € C(c). Then f(o) is a
nonempty finite subset of Y. There exists x € X such that ¢ C c¢(x), which implies that
f(o) C fle(x)) € d(f(x)). Therefore f(o) € C(d) and thus f : (X,C(c)) = (V,C(d)) is a
simplicial map.

Definition 6.8. Define the functor C' : Cl1 — Simp by mapping (X, ¢) to (X, C(c)) and
fi(X,0) = (Yid) to f:(X,C(c) = (Y, C(d)).

Let (X, d) be a metric space and € > 0. Then (X, C(c. 4)) consists of simplices {zq, ..., z,}
such that there is a x € X with d(z;,z) < ¢ for all . That is, it is the usual (intrinsic)
Cech complex on (X,d)). We also have the variant, (X,C(c.- 4)) consisting of simplices
{zo,...,x,} such that there is a x € X with d(z;,z) < ¢ for all 7.

It is straightforward from the definitions to check that VR = VR:A and C = CiA,
where ¢+ : Cly — Cl is the inclusivon functor. vThat is, for an closure space (X, ¢), we have
(X, VR(¢)) = (X, VR(A(c))), (X, C(¢)) = (X, C(A(c))).

Example 6.9. Let X = {x,y, 2z} be a 3-point set with the closure operator ¢, defined by

C(SL’) = {ZL’, y}7 C(y> = {ZL’, y}, C(Z) = {xu Y, Z}
Note that ¢ does not arise from a metric since it is not symmetric. From the definitions,

;}’R(g} = {gﬂf}’{y}’{z},{w,y}} and C(c) = {{z}, {v}, {=}, {z, v}, {=, 2}, {w, 2}, {w, . 2} }.
ee Figure 2.
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FIGURE 2. For the Alexandroff closure space in Example 6.9, we have its
corresponding directed graph (left), its Vietoris-Rips complex (middle), and
its Cech complex (right).

Definition 6.10. Let (X, E) € Simp. For x € X, let the star of x denoted st(z) be the
union of the simplices in £ containing x. Since {z} € E, z € st(x). By Definition 1.45, let
the star closure, st(£), be the induced Alexandroff closure, given by st(E)(A) = J,c4st(a),
which equals the union of the simplices in E that intersect A.

Assume f: (X, E) — (Y, F) € Simp. For A C X, f(st(F)(A)) is the union of f(o), where
o is a simplex in F that intersects A, which implies that f(o) intersects f(A). Therefore
F(st(E)(A)) Cst(F)(f(A)). Hence f: (X,st(E)) — (Y,st(F)) is a continuous map.

Definition 6.11. Define st : Simp — CI1 to be the functor given by mapping (X, E) to
(X,st(E)) and mapping f: (X, E) = (Y, F) to f: (X,st(E)) — (Y,st(F)).
Theorem 6.12. Let (X, E) € Simp and (Y,c) € Cl. Given a set map f : X — Y,
(X, st(E)) — (Y,c) is a continuous map iff f: (X, E) — (Y, VR(c)) is a simplicial map.
Thus, we have a natural isomorphism

CI((X,st(E)), (Y, ¢)) = Simp((X, E), (Y, VR(c))).
That is, VR s right adjoint to st.

Proof. (=) Let ¢ € E. Let x € 0. Then o C st(E)(x), which implies that f(o) C
f(st(E)(x)) C e(f(x)). Therefore f(o) € VR(c).

(<) Let A C X. Then f(st(E£)(A)) = f(Useponarze ?) = Useponaze f(0). Ifo € E
then f(o) € VR(c), which implies that for all z € o, f(0) C ¢(f(2)). So, U,cponavs f(0) C

c(f(A4)). 0
The following two examples show that the functor C' does not preserve limits or colimits.

Example 6.13. The functor C' does not preserve pushouts. Let P be the closure space on
the left of Figure 2. Let A be the set {x,y} with the discrete closure. Let X be the set {z,y}
with the indiscrete closure. Let Y be the closure space corresponding the directed graph on
the left of Figure 2 with the bottom (undirected) edge removed. Then P is the pushout of
the continuous maps A — X and A — Y given by # — z and y — y. The Cech complex
of P is the simplicial complex on the right of Figure 2. However, if we apply the functor C
first and then take the pushout then we obtain the boundary of this simplicial complex.

FIGURE 3. The closure space J, x J. (left) and its Cech complex (right).
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Example 6.14. The functor C' does not preserve equalizers. Consider the closure space
J1 x Jy on the left of Figure 3, its subset A = {(1,0), (0,1)}, and the the maps from J, x J
to Jt given by the constant function 1 and the indicator function on A. The equalizer
of these maps is the subspace A and its Cech complex is the simplicial complex with two
vertices and no edges. In contrast, if we apply C to the equalizer diagram we obtain two
maps from the 3-simplex to the 1-simplex whose equalizer is the 1-simplex.

Since right adjoints preserve limits and left adjoints preserve colimits, from Examples 6.13
and 6.14 we have the following.

Theorem 6.15. The functor C' : C1 — Simp does not have a have a right or a left adjoint.

We observe that the functors VR, C, and st may be written as composition of the more
elementary functors in Theorem 6.5 and Definition 6.6.

Proposition 6.16. VR = cosk; o®Poso A, st = Wotry, and C = tro, ol o A. It follows that
restricted to Clga, sto VR = 1¢y, -

It follows from Proposition 1.52 that the Vietoris-Rips functor is symmetric in the sense
that VR = cosk; o® 0 s 0 A = cosk; oP o so (—)T o A. On the other hand, there is a reverse
Cech functor given by CT = try ol o (=)T o A. Following [28], we may also call C the
source Cech functor and CT the sink Cech functor. Note that CT = tr,ol'o (—)T 0 A =
troo ol 0 Ao (=)T o A= Co (=) o A. Figure 4 shows that C' # C”. As was the case for C,
CT does not preserve pushouts or equalizers and hence does not have a left or right adjoint.

FIGURE 4. A closure space given by a digraph (left), its source Cech complex
(middle), and its sink Cech complex (right).

6.3. Contiguous maps. We relate elementary (Jt, x) homotopies and contiguous simpli-
cial maps via the functors VR, C, and st. Simplicial maps f, g : (X, E) — (Y, F) are said to
be contiguous if for all o € E, f(o) U g(o) € F. The contiguous relation is a reflexive and
symmetric relation on the set of simplicial maps Simp((X, F), (Y, F)). Taking the transitive
closure of this relation yields an equivalence relation whose equivalence classes are known
as contiguity classes. Two simplicial complexes (X, F) and (Y, F') are said to be strongly
equivalent if there are simplicial maps f : (X, F) — (Y, F), g : (Y, F) — (X, E) such that
fg is in the same contiguity class as 1y and gf is in the same contiguity class as 1x [9].
Two simplicial complexes are strongly equivalent if and only if they have the same strong
homotopy type [9], a notion that has been used to study discrete Morse functions [35].

Theorem 6.17. Let f,g: (X,c) = (Y,d) € Cl be one-step (Jt, x)-homotopic maps. Then

f,9: (X, VR(c)) — (Y, VR(d)) are contiguous simplicial maps and so are f,g: (X,C(c)) —

(Y,C(d)) and f,g: (X,CT(c)) = (Y,CT(d)). Conversely, let f,g: (X, E) — (Y,F) be con-

tiguous simplicial maps. Then f, g : (X,st(E)) — (Y,st(F)) are one-step (Jt, X)-homotopic.
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Proof. Let 0 € VR(c¢). For z € 0, 0 C ¢(x). Then f(o) C f(c(x)) and g(o) C g(c(z)), a
by Proposition 4.28, f(c(x))Ug(c(x)) C d(f(z))Nd(g(z)). Therefore f(o)Ug(o) C d(f ( ))
d(g(z)). Thus, for all y € f(o) Ug(o), f(o) Ug(o) C d(y). Hence f(o) U g(c) € VR(d).
Therefore f and g are contiguous.
Let ¢ € C(c). Then there exists + € X such that ¢ C ¢(z). Then by Proposition 4.28,
) C d(

flo) C fle(x)) C d(f(x))Nd(g(x)). Similarly, (o) C g(c(x)) C d(f(x))Nd(g(x)). Therefore
flo)Ug(o) Cd(f(xz))Nd(g(z)) C d(f(x)). Hence f(o)Ug(o) € C(d), and thus f and g are

contiguous.

Recall that CT = C o (—)T 0 A. We will show if f, g : (X,¢) — (Y,d) are one-step (J7, X)-
homotopic then so are f,g: (X, A(c)) — (Y, A(d)) and f,g : (X, (A(c))T) — (Y, (A(d)T),
from which it follows that f, g : (X,C7(d)) — (Y, C7(d)) are contiguous. First, assume that
H is a one-step (Jt, x)-homotopy from f : (X, c) — (Y,d) to g : (X,c) — (Y,d). Apply the
functor A to the commutative diagram (4.2). One may check that (X x {0,1}, A(c x ¢1)) =
(X x{0,1}, A(c) x c1). Indeed, the latter closure is Alexandroff and both closures agree for
points in X x {0, 1}. Thus, we have the desired one-step (Jt, x)-homotopy. Second, apply
Lemma 4.29.

Assume that f,g : (X, E) — (Y, F) are contiguous simplicial maps. Let A C X. Then
st(E)(A) is the union of all simplices in £ that intersect A. Hence

FEUE)A)UgEtE)A) = | flo)ugl)c  |J  m=stE)(f(A).

o€EE,0NA#D TeEF,TNf(A)#

Similarly f(st(E£)(A)) Ug(st(E)(A)) C st(F)(g(A)). Therefore

f(st(E)(A)) U g(st(E)(A)) C st(F)(f(A)) Nst(F)(g(A)).
So by Proposition 4.28, f, g : (X,st(E)) — (Y,st(F)) are one-step (Jt, x)-homotopic. =~ O

Applying Theorem 6.17 inductively to a sequence of one-step (Jt, X)-homotopy maps or
a sequence of contiguous maps yields the following corollary.

Corollary 6.18. Let f,g : (X,c) — (Y,d) € Cl and suppose that f ~. x) g . Then
f.g: (X, VR(c)) = (Y, VR(d)) are in the same contiguity class and so are f,g: (X,C(c)) —
(Y,C(d)) and f,g : (X,CT(c)) — (Y,C7T(d)). Conversely, let f,g : (X,E) — (Y, F) be
simplicial maps in the same contiguity class. Then f, g : (X,st(F)) — (Y,st(F)) are (Jt, X)-
homotopic.

We also have the following.

Theorem 6.19. Let f,g : (X,c) = (Y,d) € Clsa. Then f,g : (X,c) = (Y,d) € Clsa
are one-step (Jt, x)-homotopic iff f,g : (X, VR(c)) — (Y, VR(d)) € Simp are contiguous.
Furthermore, f,g : (X,c) = (Y,d) € Clga are (Jt, x)-homotopic iff f,g : (X, VR(c)) —
(Y, VR(d)) € Simp are in the same contiguity class.

Proof. The forward direction of the two statements is contained in Theorem 6.17 and Corol-
lary 6.18, respectively. For the reverse direction, we also use Theorem 6.17 and Corol-
lary 6.18, respectively, together with Proposition 6.16, which gives us that st(VR(c)) = ¢
and st(VR(d)) = d. O

Finally, as a consequence of these results we have the following.
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Theorem 6.20. Suppose that (X, c) and (Y, d) are closure spaces that are (Jt, x) homotopy
equivalent. Then (X, VR(c)) and (Y,VR(d)) are strongly equivalent, and so are (X, C/(c))
and (Y,C(d)), as well as (X,CT(c)) and (Y,CT(d)). Conversely, if (X,E) and (Y,F) are
simplicial complezes that are strongly equivalent, then (X,st(E)) and (Y,st(F)) are (Jt, X)
homotopy equivalent. Furthermore, if (X, c), (Y, d) € Clsa then (X, c) and (Y,d) are (Jt, X)-
homotopy equivalent iff (X, VR(c)) and (Y, VR(d)) are strongly equivalent.

7. FILTERED CLOSURE SPACES AND PERSISTENT HOMOLOGY

Given a metric space, we use the three closure operators of Section 3 to give functorial
constructions of filtered closure spaces. Combined with our cubical and simplicial homology
functors, we obtain functors from metric spaces to persistence modules. Furthermore, we
extend these results to get functors from metric spaces and Lipschitz maps to persistence
modules and graded maps.

7.1. Filtered closure spaces. We start by defining closure spaces filtered by a partially
ordered set. Let P be a partially ordered set. An example of interest to topological data
analysis is P = (R", <), where < is the product partial order on R". We will mainly use the
totally ordered set (R, <), which we will denote by R, and its subset [0, c0).

Definition 7.1. Let P be a partially ordered set. We define a P-filtered closure space to be
a P-indexed set of closure spaces {(X,,¢,)}pep such that for all p < ¢ € P, X, C X, and
the inclusion map (X, ¢,) = (X, ¢,) is continuous. That is, for all A C X, ¢,(A) C ¢,(4).

A morphism of P-filtered closure spaces, f : (X,,ce) — (Ys,ds) consists of continuous
maps fp : (Xp, ) = (Yp,dp) for all p € P such that for all p < ¢, f, = fy|x,. Equivalently,
a morphism f : (X.,co) = (Y,ds) is a set map f : X — YV, where X = {J p X, and
Y = U,cpYp, such that for all p € P, f(X,) C Y, and fl|x, : (X,,¢) — (Yp,dp) is
continuous. Let FpCl denote the category of P-filtered closure spaces and their morphisms.

Example 7.2. Consider the following three examples. First, let X be a set together with
closure operators {c,},cp such that for all p < ¢, ¢, < ¢,. Then (X, c,) € FpCl. Second,
consider a closure space (X, c) together with a set map f : X — P. For p € P, let
X, = f"(D,), where D, = {q € P|q < p}, and let ¢, be the subspace closure. That is, for
A C X, define ¢,(A) = ¢(A) N X,,. Then (X,,c,) € FpCl. Third, consider a set X together
with both a set map f : X — P and with closures {c,},ep compatible with the partial order
on P. Let X, = f~1(D,) as above and let d, be the subspace closure on X, inherited from
(X, ¢cp). Then (X,,d,) € FpCL

Note that a P-filtered closure space is a functor from P to CI for which inequalities are
mapped to monomorphisms and that a morphism of P-filtered closure spaces is a natural
transformation of such functors.

7.2. Persistence modules and interleaving. We recall the definitions of persistence mod-
ules, persistence diagrams, interleavings and matchings, and their corresponding distances.

A functor from P to a category C is called a persistence module indexed by P and with
values in C [15].

Definition 7.3. Let C be a category, let P be either of the totally ordered sets [0, 00) or
R=(R,<)andlet ¢ > 0. Let M, N : P — C. We say M and N are e-interleaved if there

are collections of maps {¢, : M, = Nypi.}pep and {¢, : N, = M, },ep such that:
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(1) For all p,q € P with p < ¢, ¢, 0 Mp<q = Npte<gie © p-
(2) For all p,q € P with p < ¢, ¥y 0 Np<qg = Mpie<qic 0 Yyp.
(3) Forall p € P, tp1- 00y = Mpiac.
(4) For all p € P, ¢pic 01, = Npio..

The interleaving distance between M and N is then defined to be
d;j(M,N) =inf{e|M and N are e-interleaved }

For P = [0,00) or R as above, and ¢ > 0, let I.+ denote the poset P x {0,1} where
(a,i) < (b,j) iff a+e < bora < bandi = j. Then d/(M,N) = ¢ iff the functors
M, N : P — C extend to a functor I.+ — C [16].

Assume that we have persistence modules indexed by R = (R, <) and with values in Vect,
where Vect is the category of k-vector spaces and k-linear maps for some field k. Such a
persistence module M is called ¢-tame if for each s < t, the linear map M ., : M, — M, has
finite rank. Persistence modules that are g-tame have well-defined persistence diagrams [10,
25]. For a persistence module M that is ¢-tame, we denote its persistence diagram by
D(M). Let € > 0. An e-matching between persistence diagrams is a partial bijection such
that matched pairs are within ¢ of each other and unmatched elements are within € of the
diagonal. The bottleneck distance between two persistence diagrams is the infimum of all
€ > 0 such that there exists an e-matching between them [29].

7.3. Filtered closure spaces from metric spaces. Here we consider filtered closure
spaces obtained from the three 1-parameter families of closure operators obtained from a
metric space in Definition 3.1. Recall that CI has full subcategories Clp and Clga (Defini-
tion 1.43).

Let FpClg, FpCla, and FpClga denote the corresponding full subcategories of FpCl. In
particular, using the isomorphism Cla = DiGph (Proposition 1.56), we have the category
FpDiGph, whose objects are P-filtered digraphs (X, E.), where for all p € P, (X,, E,) is
a digraph, and for all p < ¢, X, C X, and E, C E,, and whose morphisms f : (X, E,) —
(Ys, F,) are given by functions f, : X, — Y, such that for all p € P, f(E,) C F, and for
P =4, fp=Jolx,

Recall the poset [0, 00) x {—1,0, 1} with the lexicographic order from Section 3 and the cor-
responding closure operators (Definition 3.1). Given a metric space (X, d), there is a [0, 00) X
{—1,0, 1}-filtered symmetric closure space (X, {¢e }ce[0,00)x{—1,0,1})- This filtered closure space
restricts to the [0, c0)-filtered symmetric Alexandroff closure space (X, {c.-}ccp,00)); the
[0, oo)-filtered symmetric Alexandroff closure space (X, {¢:}ecjo,00)), the [0, 00)-filtered sym-
metric closure space (X, {¢.+ }ec(0,00))-

The latter three are persistence modules indexed by [0, 00) with values in Cls. For each
of the three distinct pairs in the set {—1,0,1}, (X, {cc}ecjo,00)x{—1,01}) Testricts to a persis-
tence module indexed by Io+, which shows that each of the three [0, co)-indexed persistence
modules have pairwise interleaving distance zero. Furthermore, (X, {c:}-co,00)x{-1,0,1}) gives
a coherent interleaving of these three persistence modules [19]. Combining this construction
with Lemma 3.6, and using the next definition we obtain the subsequent result.

Definition 7.4. Say that F,G : C — DF are objectwise interleaved if for all C € C, F(C)

and G(C) are interleaved.
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Theorem 7.5. Let Met — Fjg o)x{-1,011Cls be the functor defined by mapping (X,d) to
(X, ce.q) and mapping f : (X,d) — (Y,e) to f: (X, ced) = (Y, Cec). Restricting to —1 and
0, this functor specializes to two functors Met — Fo )Clsa. Restricting to 1 this functor
specializes to a functor Met — Fo o)Cls. The objectwise interleaving distance between the
resulting three functors Met — Fo o)Cls is zero and these interleavings are coherent.

Let H, be one of the singular cubical homology functors, H.(IT’X), H.(JT’X), H.(J+’X), H.(IT’EE),

H.(JTE), or H.(J+’Ba), from Section 5.1 or one of the singular simplicial homology functors, H!,
HIT, H;]+, from Section 5.2, each with coefficients in the field k£ (Section 5.4). By composing

the functors in Theorem 7.5 with one of these homology functors we obtain the following [15,
16).

Corollary 7.6. For each of our singular cubical and simplicial homology functors and for
each j > 0, there is a functor Met — Vect0)>{=101} “yhich maps (X,d) to Hj(X, ceq)
and f: (X,d) = (Y,e) to f. : Hj(X,ceq) = Hj(Y,Cae). Choosing one of {—1,0,1}, this
functor specializes to three functors Met — Vect!®®) | the objectwise interleaving distance
between these functors is zero, and these interleavings are coherent.

For the remainder of this section, we restrict to the case 0 € {—1,0,1}. That is, we
consider the closures (X, ¢, 4) for r > 0, where for A C X, ¢, 4(4) = {z € X | d(a,x) <
r for some a € A}.

7.4. Full subcategories of filtered closure spaces. We consider a sequence of gener-
alizations from metric spaces to filtered closure spaces and their corresponding persistence
modules.

Definition 7.7. Let Lawv denote the category of small Lawvere metric spaces, i.e., extended
quasi-pseudo-metric spaces and 1-Lipschitz maps.

Definition 7.8. Let P be a poset. Recall that we may identify a simple digraph (X, E) with
its corresponding spatial digraph (X, E), where E = EUA. A P-weighted digraph consists
of a (simple) digraph (X, E) and a function w : E — P, called the weight, such that for xEx/,
w(z,x),w(x 2") <w(x,z'). For tEx’ we call w(z,x’) the weight of the directed edge (x, z’)
and for x € X we call w(z,z) the weight of the vertex z, which we also denote by w(x).
A morphism of weighted digraphs f : (X, F,w) — (Y, F,v) is a digraph homomorphisms
f:(X,E) = (Y, F) such that for all zE2’, v(f(z), f(2')) < w(z,2’). Let wpDiGph be the
category of P-weighted digraphs (X, £, w) and their morphisms.

If P has a minimum element pg then we have the special case of P-edge-weighted digraphs
for which each vertex has weight py.

Consider the category Wi .)DiGph of [0, co)-weighted digraphs. Note that we can also
view Wio,.)DiGph as the category of [0, oo]-weighted complete digraphs. Indeed, given a
[0, 00)-weighted digraph (X, E,w) we can associate to it the complete digraph (X, X x X \
A, w), where we extend w by assigning elements of X x X \ A\ E the value co. Conversely,
given an edge in a complete simple digraph with weight oo, delete it.

For each Lawvere metric space (X, d), there is a corresponding [0, col-edge-weighted di-
graph (X, X x X \ A,d). Under this mapping, 1-Lipschitz maps become morphisms of
0, oo]-weighted digraphs. Another example of a [0, 00)-edge-weighted digraph is given be a
set X together with a Bregman divergence [38, 37].

44



For each [0, 00)-weighted digraph, (X, E,w), there is a corresponding [0, oo)-filtered di-
graph (X, E,), where for a € [0,00), X, = {z € X | w(z) < a} and E, = {(z,2') €
E | w(z,2') < a}. Under this mapping, morphisms of weighted digraphs become morphisms
of filtered digraphs. This [0, co)-filtered weighted graph is right continuous. That is, for all
r >0, X, =Ns0X,1 and E, = N.soFE,-1c. Denote the full subcategory of right continuous
0, oo) filtered digraphs by Fjg DiGph.

Similarly, say that a [0, co)-filtered closure space (X, ¢4) is right continuous if for all r > 0,
X, = Ne>0Xiqe and for all A C X, ¢.(A) = NesoCrac(A). Let Frc ClA denote the full
subcategory of F[g »)Cl of right continuous [0, co)-filtered Alexandroff closure spaces. Then
Fi5 ) DiGph = Frc \Cla.

[0,00)
Combining these observatlons we have the following.

Proposition 7.9. We have the following full embeddings of categories
Met — Lawv — wg . DiGph — Dleh = Frc ClA — Flg,00)Cl
whose composition sends the metric space (X, d) to (X, Cea)-
Composing these functors with homology we have the following.

Corollary 7.10. For each of our singular cubical and simplicial homology functors and for
each of the categories Met, Lawv, Wig »)DiGph, Fo »)Cl, we have a functor to Vect!0>)

Let R denote the ordered set (R, <). We may extend [0, co)-filtered closure spaces to
R-filtered closure spaces by setting X, to be the empty set for a < 0. In particular, [0, co)-
filtered digraphs become R-filtered digraphs by setting X, to be empty for a < 0.

Proposition 7.11. We have the following full embeddings of categories
Met — Lawv — wrDiGph — FiDiGph = FifCly — FrCl,

whose composition sends the metric space (X, d) to the R-filtered closure space (X, Cea),
where X, = @ ifa <0 and X, = X ifa > 0.

Note that the image of the composition Met — Lawv — wrDiGph — FrDiGph lies
in FrRGph. In particular, a metric space (X, d) is mapped to the R-filtered graph (X,, E,),
where for v € X, x € X, iff t > 0 and for 2,2’ € X, aE.2’ iff d(x,2") < t.

Again, composing the functors in Proposition 7.11 with homology we have the following.

Corollary 7.12. For each of our singular cubical and simplicial homology functors and for
each of the categories Met, Lawv, wgDiGph, FrCl, we have a functor to Vect®.

7.5. Lipschitz maps. We now extend our results to the case of Lipschitz maps.

Definition 7.13. Let Lip denote the category of metric spaces and Lipschitz maps. Let
LipLawv denote the category of small Lawvere metric spaces and Lipschitz maps.

Definition 7.14. Let W[EOO)DiGph denote the category [0, co)-weighted digraphs and maps
f:(X,E,w) — (Y, F,v) given by digraph homomorphisms f : (X, E) — (Y, F) such that
there exists a K > 1 such that for all zEz’, v(f(x), f(2')) < Kw(z,2).
Let F[XO’OO)CI denote the category of [0, co)-filtered closure spaces together with morphisms
[ (Xe,co) = (Ys,ds) given by functions f : X — Y, where X = J X, and Y =
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Usreo.00) Yo such that there exists a K > 1 such that for all ¥ > 0 f(X,) C Yk, and
flx, : (Xy,¢) = (Yir, diy) is continuous. That is, for all A C X, f(c.(4)) C dg(f(A)).
Similarly, define F[f)voo)DiGph.

Following Proposition 7.9, we have the following.
Proposition 7.15. We have the following full embeddings of categories
Lip — LipLawv — wy  DiGph — F 5" x ,DiGph =N Fiolk * \Cla = F Cl
whose composition sends the metric space (X,d) to (X, ceq).

Definition 7.16. Let w [oo )Dleh denote the category of [—o0, 00)-weighted digraphs
and maps f : (X, F,w) — (Y, F,v) given by digraph homomorphisms f : (X, E) — (Y, F)
such that there exists an L > 0 such that for all 2Ex’, v(f(z), f(2")) < w(z,2') + L.

Let F{{’JFDiGph denote the category of right-continuous R-filtered digraphs together with
morphisms f : (X,, F,) — (Ys, F,) consisting of functions f : X — Y, where X = (J,.p Xt
and Y = (J,.p Vs, such that there exists an L > 0 for which for all ¢, f(X;) C Y,y and
whenever 2 E2’ we have that f(z)F;, f(2').

Similarly, let Ff;Cl denote the category of R-filtered closure spaces together with mor-
phisms f : (X,,c.) = (Ys,ds) consisting of functions f : X — Y, where X = (J,.5 X and
Y = ;e Ys, such that there exists an L > 0 for which for all ¢, f(X;) C Y1 and for all
AC Xy, f(a(A)) Cdiyn(f(A)). Say that f has shift L. For such a map f, call the infimum
of such shifts its distortion, denoted dist(f).

o

There is an isomorphism of categories w[0 Dleh — W oo,OO)DiGrph given by mapping
(X, E,w) to (X, FE,logw) where we set log(O) —00.

Lemma 7.17. There is an isomorphism of categories Fff; oo)PiGPh = Fr "DiGph.

Proof. For aright-continuous [—oo, 0o)-filtered digraph (X,, F,), we obtain a right-continuous
R-filtered digraph by forgetting (X, Fs). For a morphism f : (X,, E,) — (Y, F,), send
the function f: X — Y, where X = J, X; and Y = |, V3, to itself.

In the other direction, given a right-continuous R-filtered digraph (X,, E,), define X ., =
N, X: and E_, = (), E;. For a morphism f : (X,, E,) — (Ys,F,), send the function
f: X — Y toitself. It remains to check that f|x__ is a digraph homomorphism. If E_..’
then for all ¢ € R, zF,2’, which implies that f(z)F;f(2’), and hence f(x)F_..f(z').

These constructions define the desired functors. U

Proposition 7.18. We have the following full embeddings of categories
Lip — LipLawv < w _ _ DiGph — Fg’ TDiGph = Fio'Cl, — Ff,Cl

whose composition sends the metric space (X,d) to (X, Cexp(e),a) and sends a map [ with
Lipschitz constant K > 1 to a map with shift log K.

Proof. 1t remains to verify the last part of the statement. Let (X,d) € Lip. Its image in
W[+_ DiGph is (X, X x X \ A,logd). This weighted digraph gives the filtered digraph

00,00)
(X, E,), where E; = {(x,2') | logd(z,2’) <t} = {(x,2') | d(z,2") < expt}. Hence this
filtered digraph corresponds to the filtered closure space (X, Cexp(e),a)-
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Suppose f : (X, d) — (Y, d) has Lipschitz constant K > 1. Let L =log K. Let x € X and
let @' € Cexp(r),a(x). That is, d(z,2") < expt. Thus, e(fz, fa') < Kexpt =exp(t + L). That
is, fa' € dexp(t+1),e(fr). Therefore, f: (X, Coxp(e),d) = (Y, Cexp(e),e) has shift log K. d

It follows directly from the definitions that (X,, c.), (Ys, ds) € FrCI are isomorphic if and
only if they are O-interleaved (Definition 7.3). More generally, we have the following.

Theorem 7.19. Let L > 0. Then (X, cs), (Yo, ds) € FLCI are isomorphic via maps with
shift L if and only if they are L-interleaved. In particular, (X,d), (Y, e) € Lip are isomorphic
via maps with Lipschitz constant K > 1 if and only if (X, Cexp(e),d) and (Y, Cexp(e),e) are
log(K)-interleaved.

Proof. Let (X, cs), (Ye,ds) € FRCL Let X =J, X; and Y =, V3.

(=) There exist functions f : X — Y and g : Y — X such that for all ¢, f|x, : (X}, &) —
(Yier,dirp) and gly, = (Yy,dy) = (Xiar, i), 9f = 1x, and fg = 1y. These maps provide
the desired L-interleaving.

(«=) For all t we have maps f; : (Xi,¢;) = (Yipr,dirr) and g @ (Vs di) — (Xeqr, cerr)
satisfying the four conditions in Definition 7.3. By Definition 7.3(1), the maps { f;} define a
function f : X — Y with f|x, = f;. By Definition 7.3(2), the maps {¢;} define a function
g Y — X with g|y, = g;- By Definition 7.3(3), gf = 1x. By Definition 7.3(4), fg = 1y.
Therefore we have the desired isometry. O

Let f:(Xe,co) = (Ya,ds) € FrR°’+Cl. Then there exists an L > 0 such that for all ¢ € R
and for all A C X, f(c(A)) C diyrn(f(A)). Since (Ys,ds) is right continuous, for all ¢ € R
and all A C Xy, f(ci(A)) C divaist f(f(A)). That is, for all t € R, f: (X, ) = (Y, Cepaist f)

1S continuous.

Definition 7.20. Let Vect®R denote the category whose objects are R-indexed persistence
modules with values in Vect and whose morphisms are given by pairs (f, L) where L > 0
and f: Mq — Neyp.

Theorem 7.21. Let H, be one of our singular cubical homology functors or singular sim-
plicial homology functors and let 7 > 0. Then we have a functor FrR°’+Cl — Vect® given
by mapping (X, c.) to Hj(X,ce) and mapping f : (X,ce) = (Y,ds) to fo : Hi(X,co) —
Hj (Ya d0+dist f)-

Composing our functors we have the following.

Theorem 7.22. For each of our singular cubical or simplicial homology functors H, and
7 >0, we have
Lip — LipLawv > w" ___ DiGph <> Fy*DiGph = Fi"Cl, = Fir " Cl =% VectR,

whose composition maps (X,d) to Hj(X, Cexpe),a) and maps f : (X,d) — (Y,e) to f, :
Hj(X, Cexp(e),d) = Hj(Y, Cexp(etiog|fl),e), where || f|| denotes the best Lipschitz constant of f
that is greater than or equal to 1.

8. STABILITY

We prove a number of stability theorems for filtered closure spaces and the persistence

modules arising from them. We show that the homology of sublevel set filtrations is stable.
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For a pair of filtered closure spaces we define their Gromov-Hausdorff distance and we show
that our singular cubical and simplicial homology persistence modules are stable with respect
to this distance. We also show that the Vietoris-Rips and Cech constructions are stable with
respect to Gromov-Hausdorft distance.

8.1. Sublevel sets. We start by defining sublevel set filtrations and showing that they are
stable. The following is a special case of Example 7.2.

Definition 8.1. Let (X,¢) € Cl and let f : X — R be a set map. Define Sub(f) € FrCl
to be given by Sub(f); = f~!(—o0, ] together with the subspace closure.

For a closure space (X, c¢) and f,g: X — R, let doo(f, g9) = sup,cx|f(x) — g(x)|. Then for
€ =dw(f,9), Sub(f),Sub(g) € FrCl are e-interleaved. It follows that for any of our singular
cubical and simplicial homology theories, H;(Sub(f)) and H;(Sub(g)) are e-interleaved [15,
16]. Furthermore, if coefficients are in a field and H;(Sub(f)) and H;(Sub(g)) are g-tame,
then there is an e-matching between D(H;(Sub(f))) and D(H,;(Sub(g))) [10, 25].

Theorem 8.2 (Sublevel set Stability Theorem). Let (X,c) € Cl and f,g: X — R. Let H
denote one of our singular cubical or simplicial homology theories and let 7 > 0. Then

d;(H;(Sub(f)), H;(Sub(g))) < dw(f,9)-
If coefficients are in a field and H;(Sub(f)) and H;(Sub(g)) are g-tame then

dp(D(H,;(Sub(f))), D(H;(Sub(9)))) < deo(f; 9)-

8.2. Correspondences and Gromov-Hausdorff distance. Next, we use multivalued
maps and correspondences to define a Gromov-Hausdorff distance for filtered closure spaces.

Definition 8.3. A multivalued map C' : X == Y from a set X to a set Y is a subset of
X x Y, also denoted C, that projects surjectively onto X through the canonical projection
7x : X xY — X. The image C(A) of a subset A of X is the canonical projection of 73" (A)
onto Y. That is, C(A) ={y €Y | Ja € A,aCy}.

Definition 8.4. A (single-valued) map f from X to Y is subordinate to C if we have

(z, f(x)) € C for every z € X. In that case we write f: X % Y. The composition of two
multivalued maps C' : X = Y and D : Y == Z is the multivalued map Do C : X = Z
defined by:

r(DoC)z <= JyeY, zCy,yDz

Lemma 8.5. Let X = Y be a multivalued map. Then there exists a single-valued map
f: X =Y subordinate to C.

Proof. For each x € X, choose (z, f()) € 75" (2). O

Note that if f is subordinate to C' and g is subordinate to D then g o f is subordinate to
Do C. In addition, if A C X, then (Do C)(A) = D(C(A)).

Definition 8.6. If C': X = Y is a multivalued map, the transpose of C, denoted C7, is
the image of C' through the symmetry map (z,y) — (y, 2). Although C7 is well-defined as a
subset of Y x X, it is not always a multivalued map because it may not project surjectively

onto Y.
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Definition 8.7. A multivalued map C' : X == Y is a correspondence if the canonical pro-
jection 7y : C' — Y is surjective, or equivalently, if C7 is also a multivalued map.

Note that if C' : X == Y is a correspondence then the identity maps 1x and 1y are
subordinate to the compositions CT o C' and C o C7T, respectively.

Definition 8.8. Let (X,d),(Y,e) € Met and let ¢ > 0. Say that C' : X =2 Y is a metric
e-multivalued map if whenever xCy and 2'Cy’ then e(y,y’) < d(z,2") + . Say that a cor-
respondence C' : X =2 Y is a metric e-correspondence if C and C7 are metric e-multivalued
maps. The metric distortion of a correspondence C' : X =2 Y is given by mdist(C') = inf{e >
0| C is a metric e-correspondence}, with mdist(C') = oo if there is no such €. The Gromov-
Hausdorff distance between (X, d) and (Y, e) is given by den ((X, d), (Y, e)) = 1 inf mdist(C),
where the infimum is taken over all correspondences C' : X =2 Y [20, Section 7.3].

Recall that R denotes the totally ordered set (R, <) and for (X,, c.) € FrCl, X = J, X;.

Definition 8.9. Let (X,,c,), (Ys,ds) € FrRCL. A multivalued map from (X, c,) to (Y, d,)
is a multivalued map C': X =Y. Write C : (X, ¢o) = (Ys, d,). Similarly, a correspondence
from (X,, ce) to (Ys,ds) is a correspondence C': X = Y. Let € > 0. Say that a multivalued
map C : (X, ce) = (Y, d,) is an e-multivalued map if for all ¢,

(1) whenever z € X; and zC'y we have that y € Y;,., and
(2) whenever A C X; and f: X %, Y we have that Cc(A)) C dise(f(A)).

Say that a correspondence C : (X, o) = (Ys,ds) is an e-correspondence if C : (X, o) =
(Y,,d,) is an e-multivalued map and if C7 : (Y,,d,) = (X., ¢,) is an e-multivalued map.

Lemma 8.10. A multivalued map C : (X, co) = (Ys,ds) is an e-multivalued map iff for
all t,

(1) whenever x € X; and xCy we have that y € Y1, and
(2) for all S C 7 (Xy), Cle(nxS)) C dire(my S).

Proof. (<) Let AC X, and f: X 5 Y. Let S = {(a, f(a) | a € A}. Then 7x(S) = A,
7y (S) = f(A). Thus S C 7% (X;) and hence C(c;(A)) C dro(f(A)).

(=) Let S C 7' X;. Let A = mx(S). Then A C X;. Choose f : X % Y. Then
f(A) C my(S). Therefore C(ci(mxS)) C dive(f(A)) C diye(myS). O

Lemma 8.11. If C : (X, ¢s) = (Ys, ds) is an e-multivalued map and D : (Y, des) = (Z,, €a)
is an 0-multivalued map, then D o C : (X, Ce) =3 (Ze, €4) is an (e + d)-multivalued map.

Proof. We will use Lemma 8.11.

(1) For all t and = € X, if xDCz then there is a y € Y such that zCy, yDz. Since
x € Xy, y €Yy and thus z € Zyy 5.
(2) Let S C (789)71X;. We want to show that DC(c;(7RC(S))) C errers(7ZC(9)).
Let T = (7$)"Y7R°(S)). Then 7#(T) = «R¢(S) and T C (75)"*(X;). Thus
TP (T) C Yipe and (DC)(c(7R9(S))) = D(Clee(n$T))) C D(dpse(ny'T)). Let U =
(+2) (= (T)). Then 7P () = 7(T) and U € (r2) 7 (Vivv). Thus D(dy.-(x(T))) =
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D(dyy (72 (U))) C eryers(mZ(U)). It remains to show that 72 (U) = 72¢(S).

m79(S)={2¢€ Z|Ir € X,y €Y, 2Cy,yDz, x € ()}
={z€Z|3(x,y) € T,yDz}
={z¢€Z|3yenaiT yDz}

=7 ((my) 7 (77 (1))

= 72(U). O

Definition 8.12. Let (X,,¢,),(Ys,ds) € FrRCL. For a correspondence C' : (X, ce) =
(Ys, do) define the distortion of C by dist(C') = inf{e > 0 | C' is an e-correspondence}, where
dist(C') = oo if there is no such e.

Definition 8.13. Let (X,,c,),(Ye,ds) € FrCl. Define the Gromov-Hausdorff distance
between (X, co) and (Ys, da) to be given by dgu((Xa, ca), (Yo, do)) = § inf dist(C), where the
infimum is taken over all correspondences C' : (X,,ce) = (Ys, d,).

It follows from Lemma 8.11 that dgy satisfies the triangle inequality. Also note that
since the definition of e-correspondence is symmetric, dgy is symmetric. Furthermore if
(Xu C.) = (Y;, d-) then dGH((X'v C')v (}/07 d')) =0.

Theorem 8.14. The Gromov-Hausdorff distance is an extended pseudometric on isomor-
phism classes of R-filtered closure spaces.

Proposition 8.15. Let (X,c) € Cl and let f,g : X — R. Then dgg(Sub(f),Sub(g)) <
3o (£, 9)-
o Woo\J >

Proof. Let ¢ = dy(f,g). Consider the correspondence of Sub(f) and Sub(g) given by the
diagonal A = {(z,z) | x € X} C X x X. By assumption, for all £, Sub(f); C Sub(g);+. and
Sub(g); C Sub(f)¢ye. Furthermore, the only function f : X — X subordinate to A is the
identity function. It follows that A is an e-correspondence. U

The following example shows that the inequality in the previous proposition may be strict.

Example 8.16. Let (X,c) = ({0,1},cy). Let f,g : X — R be given by f(i) = i and
g(i) = 1 — i, respectively. Then d(f,g) = 1. Let C = {(0,1),(1,0)} C X x X. We will
use Definition 8.9 to show that C' is a 0-correspondence. Note that Sub(f), = @ if t < 0,
Sub(f); = {0} if 0 <t < 1 and Sub(f); = X if t > 1. Similarly, Sub(g); = @ if t < 0,
Sub(g); = {1} if 0 < ¢t < 1 and Sub(g); = X if t > 1. Thus, if zCy then = € Sub(g);
iff y € Sub(f);. The only function h : X — X subordinate to C' is given by h(0) = 1
and h(1) = 0. Therefore for all A C X, C(A) = h(A) and CT(A) = h(A). Thus C is a
0-correspondence. Hence 2dgy (Sub(f),Sub(g)) =0 < dx(f,g) = 1.

Recall (Proposition 7.11) that Met is a full subcategory of FrCl given by mapping a
metric space (X,d) to (X, ceq), where for t < 0, X; = @ and for t > 0, X; = X and for
ACX, ¢ 4(A) ={r € X | d(a,z) <t for some a € A}.

Lemma 8.17. Let (X,d),(Y,e) € Met. Then (X,ceq),(Y,cee) € FRCL Let C: X =Y

and let € > 0. Then C' is a metric e-multivalued map iff C is an e-multivalued map.
50



Proof. (=) Since X; # & implies that ¢ > 0 and hence Y;,. = Y, the first condition of

Definition 8.9 is trivial. For the second condition, let A € X and f : X S Y. Let
y € C(cra(A)). Then, Ja € A,3x € X,d(a,z) < t,xCy. Since aCf(a), it follows that
e(f(a),y) < d(a,z)+e <t+eandthusy € cryc(f(A)). Therefore C(ctq(A)) C crree(f(A)).

(<) Assume xCy, 2'Cy’. Let t = d(z,2’) and let S = {(z,y)} C C. Since 2’ € ¢;4(7x(S5)),
we have that ¢y’ € C'(ctq(mxS)), which by Lemma 8.10 is contained in ¢ o (myS) = Crice(y).
Therefore e(y,y') <t+e. O

It follows that restricted to metric spaces our definition of Gromov-Hausdorff distance
for R-filtered closure spaces Definition 8.13 agrees with the usual definition of the Gromov-
Hausdorff distance of metric spaces Definition 8.8.

Theorem 8.18. The full embedding (Met, dgy) — (FrCL, dgy) is an isometric embedding.

Proposition 8.19. Let ¢ > 0. If (X, ), (Ye,de) € FRCIL and C : (X,, o) = (Ys,ds) is an
e-multivalued map then C : (Xq, A(ce)) = (Yo, A(ds)) is an e-multivalued map. Furthermore,
if (Xo,Ca),(Ye,ds) € FRCla and C : (Xo, o) = (Ye,do) is an e-multivalued map then
C: (X.,s(ce)) = (Yo, s(ds)) is an e-multivalued map.

Proof. The first statement follows from specializing the second condition in Definition 8.9
to x € X;. By Lemma 8.10, we may write this specialized second condition as x € Xj,
xCy, ' € ¢(x), 2’Cy’ implies that ' € di;.(y). From this it follows that x € X;, zCly,
' € s(e(x)), 2’Cy’ implies that ¢ € s(di-(y)). By Lemma 8.10, we obtain the desired
result. U

Corollary 8.20. Let (X,,¢e), (Ye,ds) € FRCL. Then
dan((Xe, Alca)), (Ye, Alds))) < dau((Xe, ), (Ys, ds)), and
dar((Xe, s(A(cs))), (Y, 5(A(de)))) < dar((Xe, Alcs)), (Yo, A(ds))).
8.3. Correspondences, homotopy, contiguity, and interleaving. We connect elemen-
tary (Jt, x) homotopies, e-correspondences, and contiguous simplicial maps.
Lemma 8.21. Let (X, c.), (Ye,do) € FRCL. Let C : (X,,co) = (Y, ds) be an e-multivalued
map. Let f: X Y. Then for all t, flx, : (Xi, &) = (Yise, dise) is continuous.

Proof. Let z € X;. Since xC f(x), by Definition 8.9 we have that f(x) € Y .. Let A C X,.
Then, by Definition 8.9, f(c(A)) C C(c(A)) C diye(f(A)). O

Proposition 8.22. Let (X,,¢,),(Ye,ds) € FRCL Let C : (Xo,co) = (Ys,ds) be an e-
multivalued map. For all f, g subordinate to C, and for allt € R, flx,,9]x, : (X, ) —
(Yite, diye) are one-step (Jr, xX)-homotopic.

Proof. By Lemma 8.21, f|x,,9lx, : (X¢,¢) = (Yias,dire) € CL Let A C X,. By the
continuity of f|x, and g|x,, we have f(c:(A)) C dire(f(A)) and g(ci(A)) C dire(g(A)).
Since C' is an e-multivalued map, we also have g(c;(A)) C C(c(A)) C dire(f(A)) and
similarly f(c:(A)) C diie(g(A)). By Proposition 4.28, f|x, and g|x, are one-step (Jr, X)-
homotopic. 0

Combining this result with Theorem 6.17, we have the following.
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Corollary 8.23. Let (X,,ca), (Ye,do) € FRCL Let C @ (Xe,c0) = (Ya,da) be an e-
multivalued map and let S € {VR,C,CT}. For all f, g subordinate to C, and for all t,
flxe 9lx, 0 (Xt 8(ct)) = (Yige, S(diye)) are contiguous.

Definition 8.24. Let (X, c,), (Ys,ds) € FrRCL Say that (X,,c,) and (Y, d,) are & one-
step (Jt, x) homotopy interleaved if there exist f : (X, o) — (Yo, desc) and g : (Y, do) —
(X, Cote) such that for all ¢, gly,,. o f|x, is one-step (Jt, x) homotopic with X; — X o,
and f|x,,. o gly, is one-step (J7, x) homotopic with Y; < ¥, ..

Definition 8.25. Let (X, E,), (Ys, Fo) € FrSimp. Say that (X,, F,) and (Y,, F,) are ¢
contiguity interleaved if there exist f : (Xo, Eo) = (Yo, Fore) and g : (Ya, Fo) — (Xe, Eere)
such that for all ¢, gly,,. o f|x, is contiguous with X; < X,4o. and f|x,,. ogly, is contiguous
with YV; = Yiio..

Theorem 8.26. Let (X,,¢,), (Ye,do) € FrCl and let S € {VR,C,CT}. If there ex-
ists an e-correspondence C' : (X,,¢e) =3 (Ya,ds) then (Xe,ce) and (Ys,d,) are € one-step
(Jt, x) homotopy interleaved, and (X, S(cs)) and (Ys, S(ds)) are € contiguity interleaved.
Let (X, Es), (Ys, Fo) € FrSimp. If (X,, E,) and (Ys, Fy) are € contiguity interleaved, then
(X, st(F,)) and (Ys,st(F,)) are € one-step (Jt, X) homotopy interleaved.

Proof. Let C': (X,,cs) = (Ys,ds) be and e-correspondence. By Lemma 8.21 there exist f :

xSy and g :Y i) X such that f: (X, Ce) = (Yeie,dere) and g : (Yo, do) = (Xese, Cote)-
Since the composition g o f : (Xe, Ce) = (Xetoc, Cora:) given by (go f); = gire © f; and the
inclusion map (X, ce) = (Xejo, Cop2e) are both subordinate to CT o C' and similarly the
composition f o g : (Ye,de) = (Yeioe, dero:) given by (f o g)y = fi1e © g; and the inclusion
map (Ye,ds) = (Yei2e, deyo:) are both subordinate to C o C*, by Proposition 8.22 we have
that (X,, ce) and (Ys,d,) are € one-step (J, x) homotopy interleaved.

Applying a functor S € {VR, C, CT}, we have morphisms f : (X,, S(ce)) = (Yeie, S(dare)),
and g : (Ys,S(ds)) = (Xese, S(Cere)). By Corollary 8.23, (X,, S(c,)) and (Y,, S(ds)) are €
contiguity interleaved.

Now suppose that f : (X, Fe) — (Yo, F,) and g : (Ys, Fy) — (X, E,) provide an ¢
contiguity interleaving. By Theorem 6.17, it follows that f : (X.,st(F.)) — (Ys,st(F,)) and
g: (Ys,st(F,)) — (X, st(E,)) provide an ¢ one-step (J7, X) homotopy interleaving. O

Theorem 8.27. Let (X,,¢,),(Ye,ds) € FrRCL. Assume there exists an e-correspondence
C : (Xe, o) = (Ye,ds). Let H denote one of our singular cubical or simplicial homology
theories and let j > 0. Then the persistence modules H;(X,,c,) and H;(Y,, ds) are e-
interleaved. If coefficients are in a field and H;(X,, ce) and H;(Y,, ds) are g-tame then there
exists an e-matching between D(H;(X,, ce)) and D(H;(Y,,d.)), where D(—) denotes the
persistence diagram.

Proof. Given an e-correspondence C' : (X,,ce) = (Ys,ds), by Theorem 8.26, (X,,c,) and
(Ys,ds) are € (J7, x) homotopy interleaved. The first statement follows from Theorems 4.36
and 5.6. The second statement follows from the Algebraic Stability Theorem [10, 25]. O

8.4. Stability theorems. We now use our results on e-correspondences to obtain our de-
sired stability theorems. As a direct consequence of Theorem 8.26 we have the following.
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Theorem 8.28 (Stability Theorem). Let (X, ¢s),(Ys,ds) € FrRCL. Let H denote one of
our singular cubical or simplicial homology theories and let 57 > 0. Then

dl(Hj (X'> C')a Hj(Y;> d')) S QdGH((XOa C')> (Y;v d.)),
where d; denotes the interleaving distance.

By Proposition 8.15, as a special case, this strengthens Theorem 8.2. As a direct conse-
quence of Theorem 8.27 we have the following.

Corollary 8.29 (Bottleneck Stability Theorem). Let (X,,c,), (Ys,ds) € FRCL. Let H de-
note one of our singular cubical or simplicial homology theories, where coefficients are in a
field, and let j > 0. If H;(X.,c.) and H;(Ys,ds) are g-tame then

dp(D(H;(X,, c)), D(H;(Y,, do))) < 2dau((Xe, ), (Ye, da)),
where D(—) denotes the persistence diagram and dp denotes the bottleneck distance.

From Theorem 8.26 we also obtain the following stability theorem, where dy¢ denotes the
homotopy commutative interleaving distance [12, 48].

Theorem 8.30 (Rips and Cech Stability Theorem). Let (X,,c,), (Ya,ds) € FrCl.  Let
d = deu((Xe, s(A(c))s), (Y, s(A(d))s)), which by Corollary 8.20 is upper bounded by
der((Xe,¢), (Yo, ds)). Let S denote one of VR, C, or CT. Then

drc((Xe, 5(ca)), (Y, S(d))) < 2d.
Let H denote simplicial homology and let 7 > 0. Then
dr(H;(Xe,5(ca)), H;(Ys, S(ds))) < 2d.
If coefficients are in a field and the persistence modules are q-tame then
dp(D(Hj(Xs, S(ca))), D(H;(Ys, S(da)))) < 2d.
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