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A B S T R A C T   

The use of machine learning techniques to supplement traditional data analysis in mechanics and materials 
research can improve the understanding of microstructure-property relationships. Identification of key micro
structural features or correlation between deformation mechanisms and material response can be discerned that 
might otherwise have been overlooked. Motivated by the possibilities of gaining additional insight into the 
process of void nucleation in polycrystalline metals, several machine learning techniques are applied to the 
analysis of mesoscopic deformation mechanisms as determined by experimental characterization and modeling. 
Results from crystal plasticity modeling, experimental microstructural analysis, and theoretical models of slip 
transmission are combined to test a hypothesis regarding fatigue-induced void nucleation. Unsupervised spectral 
clustering was used with results from crystal plasticity simulations to characterize slip system activity for 
different crystallographic orientations. The slip system activity as determined by the clustering analysis was then 
fed into a K-nearest neighbor classifier to quantify the probability of slip transmission across different grain 
boundaries of interest and analyze grains containing fatigue-induced voids. An unique and unanticipated result 
from the unsupervised clustering analysis shows that including a group of partially-active slip systems was more 
appropriate than using the binary classification of active/non-active. Predicted slip activity behavior in a face- 
centered cubic material was shown to differ significantly from that of a body-centered cubic material due to 
non-Schmid effects. The outcome of the overall analysis was that grains containing fatigue-induced voids were 
more likely to be surrounded by grains with orientations that inhibited slip transmission according the Lee- 
Robertson-Birnbaum (LRB) criteria. Finally, it is demonstrated that smaller datasets using limited simulation 
results were equally effective at predicting a similar outcome when additional physical descriptors for the slip 
system activity are used.   

1. Introduction 

Machine Learning (ML) is a branch of artificial intelligence (AI) that 
uses a set of statistical, probabilistic, and optimization methods to 
automatically detect patterns in data [1,2]. Given its ability to uncover 
patterns, make predictions, and decisions, it has demonstrated 
outstanding capabilities in several fields such as speech and image 
recognition, spam detection, cancer prognosis, and personalized rec
ommendations on streaming websites, among others [3–6]. 

In Mechanics of Materials, the application of ML techniques to un
derstand the behavior of deformable solid materials and structures 
under internal and external actions has been the subject of much 

research and discussion in recent years. For example, the relationship 
between microstructure and twinning behavior, twin formation and 
twin propagation across grain boundaries, in Mg AZ31 was determined 
using decision trees [7]. Applying machine learning not only enabled the 
identification of the crystallographic attributes that influence twinning 
behavior, but also a ranking of the attributes based on their importance. 
In particular, twin formation was most influenced by the grain size and 
basal Schmid factor while twin propagation was most influenced by the 
grain boundary length and misorientation angle. In a similar manner, 25 
different descriptors of steel were taken from an existing National 
Institute of Material Science fatigue dataset, and analyzed using ma
chine learning to determine the most influential variables controlling 
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fatigue life [8]. The variables included steel compositions, 
manufacturing process parameters, and alloy properties. Assessment of 
all 25 parameters revealed tempering temperature, carburizing tem
perature, and through hardening temperatures as three of the most 
significant predictors of subsequent fatigue life. Fatigue crack growth 
rate of nickel-based superalloys was analyzed using 51 different input 
variables and concluded that log ΔK (where ΔK is stress intensity factor 
range) was more influential on the fatigue crack growth rate than ΔK as 
expressed in the seminal Paris law [9]. An important aspect of machine 
learning algorithms is the flexibility to accept any number of input 
variables as Singh et al. used 108 variables in their predictions of yield 
and tensile strengths in steel as a function of composition and rolling 
parameters [10]. The relative importance of individual parameters, such 
as initial plate thickness, percent reduction during rolling passes, delay 
time between rolling passes, weight percent of alloying elements, and 
carbon content can all be determined from the model. 

Massive datasets are already becoming standard in some mechanics 
and materials research making the familiarization of oneself with these 
approaches unavoidable. A single tomography scan from x-ray microCT 
or diffraction CT can be > 100 GB, requiring advanced techniques for 
not only the data processing, but also data storage and handling [11]. 
Additionally, as the materials genome initiative [12,13], makes large 
amounts of research data available, it will be necessary to use 
data-driven analysis techniques to advance materials understanding 
because a person cannot practically synthesize and analyze data at this 
scale. 

This work shows how to efficiently employ two data-driven ap
proaches, spectral clustering and K-nearest neighbor classification 
(KNN), to better understand slip activity and fatigue-induced void for
mation. Each of these approaches provided insights that might have 
otherwise gone unnoticed. We hope that others may find inspiration for 
employing machine learning in their mechanics research through the 
discussion and illustration of these techniques applied to a relevant 
application. This paper demonstrates how the machine learning tech
niques were applied to electron backscatter diffraction data supported 
by single crystal plasticity modeling of slip system activity to draw 

conclusions about fatigue-induced void nucleation. The field of machine 
learning, especially that of deep learning, is incredibly diverse and the 
authors have not attempted to provide an exhaustive list of publications 
for machine learning. Rather the reader is pointed to a review article by 
Schmidhuber [14], as a starting point for an overview and history of 
deep learning. 

2. Methodology and machine learning approaches 

The different machine learning techniques used in this work are 
briefly introduced and discussed in this section. Each technique ad
dresses a different aspect of the data analysis, specifically, grouping the 
data into different sets (clustering) and predicting what set an unknown 
query point will belong to (classification). There are numerous clus
tering and classification techniques available, and the conclusions 
reached using the methods adopted in this work can be reached using 
alternative methods as well. Python’s scikit-learn toolbox was used for 
the clustering, classification, and cross-validation algorithms [15]. 

An overall workflow of the analysis methodology is shown in Fig. 1 
and details the inputs and outputs of each analysis technique. The first 
step of the analysis was single crystal plasticity modeling of face- 
centered cubic (FCC) and body-centered cubic (BCC) single crystals to 
quantify slip details including Schmid factor, accumulated slip, and slip 
rate information. All of the information generated from the crystal 
plasticity simulations were used as feature inputs into the unsupervised 
spectral clustering algorithm in step two. The clustering analysis de
termines how each individual slip system should be grouped and creates 
a set of classification labels to be used in the subsequent analysis steps. 
Step three is a cross-validation analysis that optimizes the number of 
neighbors to use with the labels created in step two. This step uses 
different features than the crystal plasticity results analysis in order to be 
consistent with the type of data available from electron backscatter 
diffraction (EBSD) measurements that the classifier will operate on in 
the last step. The clustered dataset from step two, along with the opti
mized parameters from step three, produces the overall classified data
set of step four. This classified dataset is finally used with EBSD scan data 

Fig. 1. Step-by-step workflow of the analysis processes showing the inputs and outputs at each step.  
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to determine slip system activity for any arbitrary grain orientation. 

2.1. Spectral clustering 

Clustering analysis is an approach used to find points that belong to 
the same group based on certain similarity metrics calculated between 
the points in the dataset [16–18]. Unsupervised clustering is an effective 
tool to classify points into an optimal number of different groups when 
there is no prior knowledge about the grouping. Different approaches 
are available for cluster analysis including: centroid-based clustering (e. 
g. K-means), density based clustering (e.g. density-based spatial clus
tering of applications with noise (DBSCAN)), probabilistic models (e.g. a 
Gaussian mixture model (GMM)), agglomerative clustering using 
different linkage criteria, and similarity-based clustering (e.g. spectral 
clustering) [18]. 

Spectral clustering is useful for grouping datasets with arbitrary 
shapes. Its name originates from spectral graph theory [19], and the use 
of spectral decomposition of the Laplacian matrix that is derived from an 
affinity (sometimes called adjacency) matrix. The affinity matrix is 
created based on links between data points and the strength of those 
links. Therefore, the distances between data points, and not the actual 
values of the data points, are used with the general goal to classify 
similar points into a group and dissimilar points into different groups. 
There are several methods used to group data points, including con
necting points with their K-nearest neighbors, within a certain neigh
borhood size of ε, or all points with a fully connected graph and then 
using a kernel function to delineate between similar and dissimilar 
points. 

In this work, a fully connected graph was used with a Gaussian kernel 
for calculating the affinity matrix, W, which describes the weights be
tween each point: 

W
(
xi, xj

)
= e

−‖xi −xj‖
2

2σ2 (1)  

where the numerator is the squared distance between the two points and 
σ is the neighborhood width. The degree matrix, D, is the diagonal 
matrix with entries equal to the sum of each row in the affinity matrix, i. 
e.: 

Dii =
∑n

j=1
Wij (2) 

The unnormalized, L, and normalized Laplacian matrices, Lsym, 
respectively, are calculated as: 

L = D − W (3)  

Lsym = D−1/2LD−1/2 (4) 

Eigenvalues, λ, and eigenvectors, u, of Lsym can then be calculated 
and are used to determine which points are clustered together. One 
drawback of spectral clustering is that L and Lsym are n × n matrices, 
where n is the total number of data points. Thus, their calculation for 
large datasets requires a lot of memory and computation time. Addi
tional discussions on the formulation of the affinity, degree, and Lap
lacian matrices, can be found in Refs. [18,20,21]. Finally, a measure of 
cluster validity, or scoring metric of the cluster performance, is needed 
to optimize the clustering parameters in the unsupervised case. Section 
3.1.2 discusses the spectral clustering optimization process employed in 
this work. 

2.2. K-nearest neighbor classification 

The k-nearest neighbors (KNN) algorithm is a non-parametric 
method for classification and regression predictions that was first 
formulated in the early 1950s [22]. Its usage has significantly expanded 
since then, in part because it does not require information about the data 
distribution. A KNN classifier is created using known data called a 

training dataset. Any arbitrary query point can then be classified by 
analyzing a set number, K, of neighboring points in the training dataset. 
Point-to-point distances between the query point and each value in the 
training dataset are calculated using a specified distance metric. The 
Euclidean distance, d, between two points is frequently used. For Car
tesian coordinates in n-dimensional space, d is given by: 

d =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n

i=1
(xi − yi)

2
√

(5)  

where the two points have coordinates xi and yi, respectively. Classifi
cation of a query point is decided on by using either a majority voting or 
weighted distance method. Majority voting classifies a query point to the 
class with the highest estimated probability among the K-nearest 
neighbors. For example, if K = 5, and there are three occurrences of 
“Group A′′ and two occurrences of “Group B′′ among the five nearest 
neighbors, then the query point will be classified as “Group A”. Issues 
may arise when there is an equal frequency of occurrence among groups. 
Such as three occurrences of both “Group A′′ and “Group B′′ if K = 6, or 
two occurrences of “Group A′′ two occurrences of “Group B′′ and one 
occurrence of “Group C′′ for K = 5 when more than two classifications 
exist. A specified weighting function can be applied to each distance to 
avoid this situation. For example, an inverse weighting function can be 
used: 

Wi =
1
di

(6)  

where di is the Euclidean distance, defined in Eq. (5), and Wi is the 
weighted distance. This function can be applied to each of the K-nearest 
neighbors and the query point will then be classified to the group with 
the largest weighted distance total. Thus, majority voting classification 
weights each neighbor equally, whereas closer neighbors have a stron
ger influence on the outcome in weighted distance classification. 

In this work, we chose the inverse k-fold cross-validation method and 
the F1 score during hyperparameter optimization. Inverse k-fold cross- 
validation was also used to assess the performance of the model when 
classifying slip activity. The reader is referred to A for more details about 
the variety of k-fold cross-validation methods and performance metrics. 

3. Results and discussion 

In this section, the clustering and classification techniques described 
above are utilized to improve the current understanding about the 
interplay between slip transmission, slip irreversibilities, slip interac
tion, and void nucleation on fatigue damage initiation. Each subsection 
discusses how the techniques were applied and the resultant insights 
gained from the analysis, from a mechanics point of view. These insights 
were critical in the determination of slip activity differences between the 
two crystalline systems and their contribution to fatigue-induced void 
nucleation. 

3.1. Slip activity grouping with spectral clustering 

Single crystal plasticity simulations were performed to quantify the 
slip activity on each slip system as a function of orientation under a fixed 
global loading direction, and the accumulated slip histories were used to 
determine active slip systems. Specific grain orientations were selected 
through a discretization of the standard stereographic triangle. An in
verse pole figure (IPF) key showing each of the 593 individual orien
tations considered is shown in Fig. 2. This is admittedly a simplified 
approach to estimate the slip system activity of grains within a poly
crystal as it is well-established that the stress state of grains within a 
polycrystalline material subjected to remote uniaxial loading is not 
necessarily uniaxial due to the influence of grain-grain interactions. 
However, the point of this work is not to perform state-of-the-art 3D 
crystal plasticity simulations of realistic statistical volume elements. 
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Rather, the primary goal of these simulations is to generate necessary 
quantitative information on slip system activity under nominal loading 
conditions, beyond what can be obtained from basic Schmid factor 
analysis, from an efficient computational model that can be used to 
supplement EBSD data in an analysis of the likelihood of slip trans
mission across particular grain boundaries. State-of-the-art full-field 3D 
crystal plasticity simulations are computationally expensive and also 
involve approximations in converting 2D EBSD images into 3D poly
crystalline ensembles. However, they unarguably offer a more accurate 
representation of the intergranular constraints that exist between 
neighboring grains. Taking an in-depth look at how slip activities ob
tained from full-field 3D polycrystalline simulations replacing the single 
crystal plasticity results used in the current analysis is a worthy 
endeavor, but it is postponed for future work. 

3.1.1. Crystal plasticity modeling 
Simulations for both FCC and BCC single crystals were performed for 

each orientation under uniaxial loading to 0.01 strain. The FCC simu
lations use the crystal plasticity constitutive model described in 
Ref. [23], which accounts for elastic anisotropy and uses 
thermally-activated slip kinetics with a dislocation density-based hard
ening law. The model parameters were taken from published literature 
values for pure aluminum [24], but with an appropriately scaled athe
rmal slip resistance to account for the increased yield strength of 
7075-T6 aluminum relative to the pure material. This is a reasonable 
modeling assumption given the quasi-static loading conditions and small 
applied strains e.g., initial yield behavior. The BCC simulations, which 
account for non-Schmid effects, were performed using the model and 
parameters given in Ref. [25]. 

Several model output variables were selected as input features for the 
dataset used for clustering: accumulated slip history, γ̂α

=
∫

|γ̇α|dt; 
normalized accumulated slip value, γ̂α

/εp; maximum slip rate, final slip 
rate, Schmid factor, and normalized Schmid factor. The normalized 
accumulated slip metric is computed by dividing the accumulated slip 
history on each system by the effective plastic strain history. The 
effective plastic strain is determined by: 

εp =

∫ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2
3

ε̇p
: ε̇p

√

dt (7)  

where the plastic strain rate is defined as: 

ε̇p
=

1
2

∑

α
γ̇α(sα ⊗ nα + nα ⊗ sα) (8) 

Lastly, the “total Schmid factor”, which includes non-Schmid con
tributions for the BCC material is important to account for since slip 
behavior in BCC crystals is often influenced by non-glide stresses. 
Table 1 shows the features that are provided as inputs to the unsuper
vised clustering algorithm for both the FCC and BCC datasets. The 
Schmid (SF) and total Schmid (TSF) factor are calculated according to 

SFα = Pα
s : (l ⊗ l) (9)  

TSFα =
(
Pα

s + Pα
ns

)
: (l ⊗ l) (10)  

where l is a unit vector parallel to the loading direction, and the Schmid 
and non-Schmid tensors are defined as 

Pα
s = sα ⊗ nα (11)  

Pα
ns = a1sα ⊗ nα

ns + a2(nα × sα) ⊗ nα + a3
(
nα

ns × sα)
⊗ nα

ns (12) 

For a detailed description of the non-Schmid formulation, the reader 
is referred to the original work [25]. 

In the following, a brief rationale is given for choosing these simu
lation outputs. Slip systems with higher amounts of accumulated slip 
and those that contain a higher percentage of a grain’s overall effective 
plastic strain are expected to have a higher probability of being grouped 
as active. The slip rates account for the intensity of slip activity during 
deformation and at the end of loading when the material has undergone 
a non-trivial amount of plastic deformation and will indicate whether or 
not the system is still actively accomodating slip. Finally, the Schmid 
factor, normalized Schmid factor, and total Schmid factor for the BCC 
crystal, capture the amount of driving force on the slip system. Slip 
systems were classified into different groups based on their overall slip 
activity employing these normalized features with the unsupervised 
clustering analysis, which is described in the next section. 

3.1.2. Unsupervised clustering 
An unsupervised clustering approach was implemented in order to 

divide the crystal plasticity simulation data into groups of slip systems 
that experience similar amounts of slip activity. A clustering technique 
was used since the maximum Schmid factor may not be the dominant 
predictor of sip system activity in all situations. For example, when 
considering slip transmission across a grain boundary in the study of 
fatigue-induced voids, the slip system with the maximum Schmid factor 
might not be the most likely to transmit dislocations because of other 
geometric factors involved with slip transmission. Therefore, a non- 
arbitrary method to distinguish between active and non-active slip 
systems was required. Unsupervised clustering algorithms are well 
suited to address this question. 

Initially, feature scaling was applied to all input parameters. This 
preliminary step is critical as it addresses, for example, that the Schmid 
factor is independent of loading magnitude whereas slip and slip rate 
depend on the magnitude of loading. Then, both spectral clustering and 
density-based clustering methods were assessed. The comparison of 

Fig. 2. Each dot on the IPF map represents a grain orientation whose response 
was simulated to determine accumulated slip histories for each slip system. In 
total 593 orientations were modeled. 

Table 1 
Input features into the unsupervised clustering algorithm for both FCC and BCC 
crystals.  

Input features FCC BCC 

Accumulated slip ✓ ✓ 
Normalized slip ✓ ✓ 
Maximum slip rate ✓ ✓ 
Final slip rate ✓ ✓ 
Schmid factor ✓ ✓ 
Normalized Schmid factor ✓ ✓ 
Total Schmid factor  ✓  
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these two approaches for characterizing slip system activity revealed 
several advantages of using spectral clustering in this work. First, 
spectral clustering was able to group data points that have any arbitrary 
shape making it a useful algorithm for unsupervised clustering when the 
distribution of the dataset is unknown. Thus, no prior information about 
the input variables are needed, such as the pattern or correlation be
tween Schmid factor and accumulated slip. This section details the 
processes used to optimize input parameters for the spectral clustering, 
namely the number of clusters and the kernel coefficient. Furthermore, 
there was a large number of points that end up being classified as out
liers in a density-based approach. Over 10% of the dataset were 
considered outlying points. While these points can be excluded from the 
dataset in other applications, doing so with this dataset would have 
inaccurately skewed the clustering results due to eliminating a sub
stantial amount of the data. Therefore, using a density-based approach 
would have required making an assumption about a grouping assign
ment for the outliers. 

The input parameter optimization began by finding the optimal 
number of clusters. Following the algorithm outlined by Ng et al. [26], a 
set of eigenvectors from Lsym in Eq. (4), can be grouped together in the 
matrix X, where each column in X corresponds to an eigenvector. The 
matrix Y is then calculated by normalizing each row of X to a unit length: 

Yij =
Xij

(∑
jX

2
ij

)1/2 (13) 

The matrix Y can then be analyzed with a K-means clustering algo
rithm to determine the optimal number of clusters. This process creates a 
reduced dimension space of the largest eigenvectors. The squared dis
tance between each point and its designated cluster centroid are sum
med to determine the number of clusters. 

Applying these steps to the datasets generated by the crystal plas
ticity simulations for both the FCC and BCC crystals, the optimum 
number of clusters was determined. Fig. 3a and b show the K-means 
cluster results of the first five eigenvectors of Lsym for the FCC and BCC 
dataset, respectively. In both datasets an inflection point, or “elbow”, 
where the data value decreases linearly afterwards was seen at three 
clusters. This analysis is important because it shows that simply dividing 
the slip activity between active and non-active is not the most appro
priate division of data. Therefore, the addition of a third cluster, to 
physically represent a partially-active slip system, was used. Another 
inflection point at six clusters was also observed in the BCC dataset. Still, 
we chose to keep three clusters for both FCC and BCC datasets. This 
decision is rooted in our goal of understanding slip activity through a 
physics informed approach of spectral clustering that leverages the in
formation learned from the data with the fundamental laws describing 

the plastic behavior of FCC and BCC metals. 
The next step in the spectral cluster optimization process was the 

determination of the neighborhood width, σ, in Eq. (1). Both the average 
silhouette score [27] and Davies-Bouldin (DB) index [28] were used to 
assess the cluster validity. 

A dataset’s silhouette score is based on the compactness of each 
cluster and the separation between clusters, and will range between −1 
to 1. Compactness is defined as the mean distance between one data 
point to all other data points in the same cluster. Separation is defined as 
the mean distance between a data point and all other data points in the 
next closest cluster. Therefore, a silhouette score will be closer to one if 
every data point in each cluster is tightly grouped, and each cluster is 
well separated and far apart from all other clusters. A data point with a 
negative silhouette score indicates that it was incorrectly clustered and 
is closer (on average) to all the other data points of a different cluster 
than its own cluster. For its part, the DB index is the ratio of the intra- 
cluster dispersion to the inter-cluster distances. Therefore, a lower DB 
index implies small intra-cluster dispersion (i.e. a tightly compact 
cluster) and large inter-cluster distances (i.e. well separated clusters) 
and indicates better clustering of the data. Both metrics, the silhouette 
score and the DB index, operate on the concept that minimizing the 
intra-cluster distances while maximizing inter-cluster distances in
dicates better clustering. Metrics quantifying cluster quality are required 
for unsupervised clustering since no classification labels exist a priori to 
assess the performance of the clustering algorithm. These two metrics 
were calculated for a range of σ values and the results are shown in 
Fig. 4a and b for the FCC and BCC dataset, respectively. The σ value that 
optimized the quality of clustering was selected, along with three clus
ters, for use in the final spectral clustering algorithm. 

3.1.3. Slip system distribution per grain 
One aspect that can be explored after clustering is how each grain’s 

slip systems are classified. Slip system breakdown of each grain shows 
how the slip activity is taking place inside the grains. A chart of the FCC 
dataset is shown in Fig. 5 and reveals that in 581 of the modeled cases a 
grain will have only one active slip system or two partially active slip 
systems. It was rare for a grain to accommodate both a partially-active 
and fully-active slip system, or no active slip system at all. There was 
still slip accumulation in those grains that were classified with zero 
active slip systems, however, the slip characteristics relative to all the 
other slip systems in other grain orientations was not enough to be 
considered active. Therefore, slip activity within an FCC grain can be 
generalized with two categories: (1) grains that have a single primary 
active slip system, or (2) grains that more evenly distribute the slip 
behavior between two partially-active slip systems. 

Fig. 3. Sum of the squared distance between each point and its cluster centroid for the (a) FCC and (b) BCC dataset. A neighborhood width value of 1 was used in 
both subfigures. An inflection point in each dataset at three clusters was observed. The three clusters will then represent non-active, partially-active, and active 
slip systems. 
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On the other hand, the BCC dataset had a much greater variety in the 
different combinations of active slip systems. In total there were 22 
different combinations and the top five most frequent classifications, 
accounting for 60% of the grains, are shown in Fig. 6. It was found that 
every grain orientation contained at least two partially-active or fully- 
active slip systems. The number of active systems in each grain is in 
contrast to the FCC grains where a majority of them contained a single 
active slip system. Distribution of active slip system combinations in 
Fig. 6 for the {110}< 111 > family of slip systems is expected to remain 
the same even if both the {112}< 111 > and {123}< 111 > family of slip 
systems were also accounted for in the modeling. The activation of 
particular {110}< 111 > slip systems did not change when modeling 
included the other slip system families [29]. The same {110}< 111 >
slip systems are activated despite the fact that the {112}< 111 > and 
{123}< 111 > slip families have been shown to accommodate 
non-trivial amounts of shear strain during deformation of BCC metals 
[30]. In other words, modeling only the {110}< 111 > slip systems did 
not change which specific systems were activated during loading, it only 
changed the magnitude of accumulated slip because there were fewer 
slip systems available to accommodate the same magnitude of imposed 
strain. 

3.1.4. Feature importance 
Feature importance indicates how much influence a particular 

feature has in the fitting of a decision tree. A gain score can be calculated 

[31] at each split in the tree and attributed to the feature causing the 
split. Higher gain scores imply the associated feature is more important 
when making a prediction and deciding how to classify a data point. 
Gain scores for each feature are averaged over all branches of the tree 
and then normalized so their sum equals one. This importance metric 
can be calculated after the classification labels are created from the 
spectral clustering and shows which features are most important in 
determining the slip activity. Implementation of the Extreme Gradient 
Boosting (XGBoost) system [32] in Python was used to create the trees 
and calculate the average gain for each feature. The reader is referred to 
B for more details about the gain score calculation. The overall classi
fication model was optimized by running a range of certain input pa
rameters through a grid search to find the best resulting F1weighted score. 
Only 80% of the data was used in each iteration to avoid overfitting of 
the model. 

Feature importance and a scatter plot of the two most important 
features for the FCC and BCC datasets are shown in Figs. 7 and 8, 
respectively. The Schmid Factor and total accumulated slip on a slip 
system had the largest amount of gain meaning they were the two most 
influential features when determining slip activity classification for both 
crystalline systems. It is shown in the scatter plot for the FCC crystals 
that these two variables do a good job separating out each slip activity 
group. Slip rates were also found to contribute substantially to the end 

Fig. 4. Silhouette score and Davies-Bouldin index as a function of the kernel neighborhood width, σ, for fully connected spectral clustering of the (a) FCC and (b) BCC 
dataset. A high silhouette score and low DB index is an indication of better quality clustering. The selected value of σ which optimizes the clustering is circled. 

Fig. 5. Chart showing the breakdown of slip system classification for each FCC 
grain. It was found that 98% of the grains can be divided into only two types; 
grains that have one fully-active slip system and grains that have two partially- 
active slip systems. Values in the brackets represent the number of slip systems 
for each slip activity classification within a single grain, whereas values in the 
parentheses represent the total number and percentage of grains with that 
specific slip system classification distribution. 

Fig. 6. Chart showing the breakdown of slip system classification for each BCC 
grain. It was found that multiple slip systems were activated in all of the grain 
orientations. This type of slip activity was considerably different compared to 
the FCC material. The remaining 17 slip activity combinations are omitted for 
clarity. Values in the brackets represent the number of slip systems for each slip 
activity classification within a single grain, whereas values in the parentheses 
represent the total number and percentage of grains with that specific slip 
system classification distribution. 
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classification of each FCC slip system. 
However, the twinning/anti-twinning non-Schmid effects in the BCC 

crystals (accounted for in the total Schmid factor feature) were found to 
be important in the classification and accounted for almost 20% of the 
gain. The influence of the twinning/anti-twinning non-Schmid effects is 
evident in the BCC scatter plot of the two most important features, 
accumulated slip and the Schmid factor. There are many slip systems 
that have relatively large amounts of accumulated slip with very low 
Schmid factors, in addition to many slip systems that have high Schmid 
factors and no accumulated slip. The fact that these seemingly incom
patible extremes occur with regularity highlights the role non-Schmid 
effects play in the slip activity of BCC crystals, an observation that 
agrees with previous works in the field [33,34]. 

3.2. Slip transmission analysis with KNN 

Data from the crystal plasticity simulations and clustering analysis 
was subsequently used in the calculation of parameters to estimate the 
likelihood of dislocation slip transmission between two grains. The K- 
nearest neighbors algorithm (described in Section 2.2) was used with the 
Schmid factor data to determine how the slip systems in any arbitrarily 
oriented grain as determined through EBSD should be classified: non- 
active, partially-active, and active. Input features for the KNN anal
ysis, including the cross-validation and subsequent classification, only 
include the Schmid factor and normalized Schmid factor. A reduced set 
of input features, relative to what was used for spectral clustering, were 
used with KNN to be consistent with the information available from an 
EBSD scan. Information obtained from an EBSD scan includes the Euler 

angles, which determine grain orientation, and the Schmid factors of 
each slip system. Accumulated slip data cannot be readily obtained from 
an EBSD scan making those input features unavailable for classification. 
Our rationale for this criterion was twofold: (1) it was desirable to 
cluster and create classification labels with the additional information 
from the crystal plasticity modeling to obtain better clustering metrics 
and more accurate labels, and (2) it was desirable to train and cross- 
validate the KNN model with only information obtained from an EBSD 
scan to optimize the classification performance for that case. 

3.2.1. Number of required crystal plasticity simulations 
It is worthwhile to estimate how many simulations are required to 

obtain a consistently high success rate when using the nearest neighbor 
classification to predict slip system’s activity. Crystal plasticity and 
molecular dynamic simulations provide valuable information that might 
be impossible to obtain experimentally. These results supplement 
experimental research leading to new insights and deeper understanding 
of materials behavior. However, the simulations can be computationally 
expensive to perform and require a lot of time to obtain results. There
fore, it is impractical to always require a large number of simulations 
covering all possible scenarios. Machine learning offers the ability to 
dramatically reduce the number of required simulations, yet still have 
meaningful results to inform analysis decisions. An important goal of 
this study is to validate the hypothesis that large datasets are not always 
needed to utilize and take advantage of machine learning algorithms. 
This section outlines an analysis showing that a limited number of 
simulations informing the KNN algorithm was still capable of producing 
accurate predictions. It might not be appreciated that even small 

Fig. 7. (left) Gain score (i.e. feature importance) in deciding slip activity classification of the FCC dataset. (right) A scatter plot using the two most important 
features–the Schmid Factor and the overall accumulated slip on the slip system. These two features appear to separate each group effectively leading to their high 
importance. The markers denote each group’s centroid and the lines show the distances from one partial slip point to the other group’s centroids. 

Fig. 8. (left) Gain score (i.e. feature importance) in deciding slip activity classification of the BCC dataset. (right) A scatter plot using the two most important 
features–the Schmid Factor and the overall accumulated slip on the slip system. There are many slip systems that have intuitively contradictory results; those with 
high accumulated slip but low Schmid factors, and those with low accumulated slip values but high Schmid factors. These sets of points illustrate the influence of the 
non-Schmid effects, accounted for in the third most important feature, the total Schmid factor. The markers denote each group’s centroid and the lines show the 
distances from one partial slip point to the other group’s centroids. 
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datasets–with only a few observations–can still be effective in creating a 
predictive machine learning model. 

Section 2.2 described the process of repeated k-fold and inverse 
cross-validation in testing the efficacy of a model’s performance. Using 
the inverse k-fold cross-validation data allocation allowed an assessment 
of how well the model could classify slip activity as a function of the 
number of crystal plasticity simulations used to create the training 
dataset. As specified in Fig. A18, the k-fold range was set from 2 to 50 
meaning the classifier models were created using only 50%–2% of the 
data which was equivalent to running 297 to 12 crystal plasticity sim
ulations, respectively. 

The overall weighted F1 scores, receiver operator characteristics 
(ROC), and area under the curve (AUC) as a function of the percentage of 
training data and number of neighbors are shown in Figs. 9 and 10 for 
the FCC and BCC dataset, respectively. Both ROC and AUC metrics are 
used to check the performance of a machine learning model’s ability to 
correctly classify unknown data points. An AUC value of 1 indicates the 
model is perfect at predicting data points between the different groups, 
whereas an AUC value of 0.5 indicates the model has no ability to 
discern between the different groups. First, it was found that the FCC 
dataset, shown in Fig. 9, had consistently high F1 scores even when data 
from only 25 simulations was used to train the classifier. The plane 
drawn at a weighted F1 score of 0.95 in the top row of Fig. 9 shows that 
only classifiers trained with less than 5% of the simulation data had F1 
scores below that value. In addition, there was only a 2% decrease in the 
weighted F1 score when training the classifier with only 5% of the 
simulation data instead of 50%. However, the ROC and AUC values 
(bottom row) Fig. 9 show that the classifier does not perform as well at 
correctly determining partially-active slip systems. Furthermore, its 
ability to predict these types of slip systems degrades, as would be 

expected, with less amounts of training data. These observations 
demonstrate that only using a single scoring metric to judge the quality 
of a machine learning model can sometimes be misleading and result in 
over-confidence in that model. 

Notably, it was found that the overall ability of the classifier in 
predicting the type of slip activity in the BCC dataset, Fig. 10, was worse 
than the FCC classifier. The data was downsampled and some non-active 
and partially-active data points were removed since there was approx
imately four times fewer fully-active data points. Nevertheless, the AUC 
score of 0.59 in predicting active slip systems is barely above that of a 
random classifier whose AUC equals 0.50, even with balanced classes. 
The weighted F1 score decreases by 7% when training the classifier with 
5% of the total simulation data instead of 50%. However, because the 
AUC remained somewhat consistent, the classifier’s ability did not 
become significantly worse with the lower amount of training data. 

Overall, the classifier performed well with less training data for the 
FCC dataset, but worse for the BCC dataset. The results are what would 
be expected–namely that creating a model on too little data returns a 
lower quality classifier. Although, it was observed that decreasing the 
amount of training data from 50% to 5% did not significantly degrade 
the classifier to the point of uselessness. Therefore, similar performance 
can be obtained using a limited number of crystal plasticity simulations 
saving computation time, which highlights the ability of machine 
learning models to still work well with modest-sized datasets. Ulti
mately, a value of K = 11 was chosen for the FCC model and K = 19 for 
the BCC model based on standard cross-validation results. 

3.2.2. Partially-active slip system weighting 
A method to account for partially-active slip systems in the calcula

tion of slip transmission parameters was also needed. The contribution 

Fig. 9. Inverse cross-validation results for the FCC dataset. (top row) Weighted F1 scores using different percentages of the total simulation data to train the classifier. 
As expected, overall performance of the classifier decreases when less data is used to train it. A plane is drawn at a weighted F1 score of 0.95. (bottom row) Receiver 
operating characteristic curve for (left) 99 and (right) 296 simulations. Using lower amounts of training resulted in a decreased ability to predict partially-active slip 
systems, however the weighted F1 score decreases by only 2%. 
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to potential slip transmission should not be as great as active slip sys
tems, but it also should not be negligible. Therefore, a contribution score 
between 0 and 1 was calculated using the Euclidean distance of each 
partially-active slip system to the centroids of the other two groups. 
Examples of the distance between a single partially-active slip system 
and the slip and no-slip centroids, are shown in the right hand side of 
Figs. 7 and 8. Each distance was weighted by the feature importance to 
give more weight to those features that have a greater influence in the 
slip activity classification. First, the data for each feature was normal
ized by the maximum value so each feature had the same range between 
0 and 1. The weighted distance, d, was calculated by: 

d =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n

i=1
(pi − ci)

2
∗ Gi

√

(14)  

where pi is the point coordinate, ci is the centroid coordinate, Gi is the 
importance, or gain, of each feature and n is the total number of features. 
The contribution of each partially-active slip system is then calculated 
as: 

dnon−active

dnon−active + dactive
(15)  

where dnon−active is the distance to the centroid of all the non-active points 
and dactive is the distance to the centroid of all the active points. 

3.2.3. Determination of slip transmission parameters 
Recently we reported that fatigue-induced voids introduced during 

cyclic loading below the macroscopic yield stress contributed to subse
quent strength degradation in both pure α-iron and 7075-T6 aluminum 
alloy [35,36]. Additionally, we found that crack initiation in a 

polycrystalline titanium-aluminum alloy did not occur in regions with 
the largest localized strain, but instead at locations with significant 
barriers to slip transfer through a boundary [37]. Therefore, EBSD scans 
were collected around voids found in the fatigued material to investigate 
dislocation slip transmission across those grain boundaries. The details 
about EBSD scan set up and parameters are reported in Ref. [36]. The 
potential for slip transmission across a grain boundary can be evaluated 
using three parameters outlined by Lee, Robertson, and Birnbaum (LRB) 
[38,39]: the Schmid factor, the residual Burgers vector, and the angle, θ, 
formed as the angle of intersection between the incoming and outgoing 
slip planes in the grain boundary plane. These three parameters account 
for the driving force on each slip system in addition to the alignment of 
the two slip systems across a grain boundary. Following this definition 
dislocation slip transmission across a grain boundary is more likely to 
occur when the Schmid factor is maximized, the residual Burgers vector 
is minimized, and the angle θ is minimized. 

Herein we calculated Schmid factors for each slip system from grain 
orientations obtained from EBSD. Equation (16) was used to calculate 
the residual Burgers vector, where b1 and b2 are the slip directions in 
grains one and two, respectively. 

|br| = |b1 − b2| (16)  

Lastly, θ is calculated using Eq. (17) where v1 and v2 represent the 
vectors for the lines of intersection. 

cos θ =
v1⋅v2

|v1|⋅|v2|
(17) 

It was assumed that the grain boundary plane was normal to the two- 
dimensional EBSD scan. Thus, the vectors v1 and v2 were calculated 
using Eq. (18) where ni and ngb are the normal vectors to the slip plane 

Fig. 10. Inverse cross-validation results for the BCC dataset. (top row) Weighted F1 scores using different percentages of the total simulation data to train the 
classifier. As expected, overall performance of the classifier decreases when less data is used to train it. A plane is drawn at a weighted F1 score of 0.60. (bottom row) 
Receiver operating characteristic curve for (left) 99 and (right) 296 simulations. There is not a significant change in the AUC using less data, even though the 
weighted F1 score decreases 7%. 
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and grain boundary plane, respectively. 

vi = ni × ngb (18) 

To highlight the slip transmission parameters Fig. 11 presents an 
illustration of two grains, one containing a void, from an EBSD scan. The 
direction and plane of the slip system with the maximum Schmid factor 
and its intersection with the grain boundary plane is drawn for each 
grain. It can be seen that both br and θ go to zero as the slip systems 
become perfectly aligned, indicating a greater likelihood of dislocation 
slip transmission along those two slip systems across the grain boundary. 

3.2.4. Fatigue-induced void analysis: a-iron 
Orientations of grains with voids and their neighboring grains were 

obtained through EBSD. Schmid factors for each of the grain’s slip sys
tems were calculated from the orientation and global loading direction 
information. Slip systems selected for the slip transmission analysis were 
determined by whether or not the specific system was deemed active or 
partially-active based on the crystal plasticity modeling, spectral clus
tering, and KNN classification. Classification predictions with KNN were 
done using the Schmid factor and normalized Schmid factor inputs 
because these were the only two variables that could be calculated from 
the EBSD grain orientations. 

An example EBSD scan of the α-iron at approximately 80% of the 
fatigue life is shown in Fig. 12a. It was observed that at this, and later, 
portions of the fatigue life additional voids were nucleated as a result of 
the fatigue loading [35]. The residual Burgers vector and θ parameter for 
slip transmission were calculated for combinations of partially and 
fully-active slip systems between each neighboring grain pair. The ten 
grains that were most likely to prohibit dislocation slip transfer based on 
having the highest combination of residual Burgers vector, θ, and 
contribution (as defined in Eq. (15)) were highlighted on the EBSD 
scans. Data at 80% and 95% of the fatigue life are shown in Fig. 13. It 
was found that in all six EBSD scans (three at 80% and three at 95% of 
the fatigue life) at least one grain adjacent to where the void formed had 
one of the highest combinations of slip transmission parameters. This 
finding implies that the restriction of dislocation slip across a grain 
boundary contributed to the void formation during fatigue loading. Void 
formation as a result of the lack of slip transmission could arises from (1) 
stress concentrations at the grain boundaries and the absence of other 
deformation mechanisms for the energy to relax, or (2) during reverse 
loading dislocation motion will occur in the opposite direction, but the 
glide plane is not necessarily perfectly reversed [40]. Thus, these dis
locations cause an effective back stress on the dislocations that moved 
during the first half loading cycle and not all of these dislocations move 

back to their original location remaining pinned at the obstacle. While 
the inhibition of slip transfer appears to be related to void nucleation, it 
is not the only factor as evidenced by the multitude of grains with high 
slip transmission parameters and no adjacent void. 

3.2.5. Fatigue-induced void analysis: 7075-T6 aluminum alloy 
Slip transmission parameters between one grain, which contained a 

void, and its neighbors were compared between fatigued states in the 
7075-T6 aluminum alloy material. Voids in as-received material and 
material fatigued with zero mean stress to 75% of the fatigue life were 
both considered process-induced voids based on SEM image processing 
that showed similar percentages of overall voids in the material [36]. 
Voids from material fatigued with a tensile mean stress of 194 MPa to 
75% of its fatigue life were considered fatigue-induced. An example 
EBSD scan is presented in Fig. 12b. Distribution of the slip transmission 
parameters is shown in Fig. 14 and reveals an approximately 40◦ shift in 
the peak of the θ parameter between the two void types. An increased 
value of θ implies that slip transmission was less likely to occur in those 
grain combinations suggesting that voids were nucleated during the 
fatigue due to accumulation of strain energy when dislocations were 
piling up at a grain boundary. These fatigue-induced voids were 
responsible for a subsequent 7% degradation of strength [36]. The 
overall distribution of slip transmission parameters differs from those 
originally reported by Indeck et al. [36] due to the implementation of 
spectral clustering as a non-subjective criterion to define slip activation. 

4. Summary 

Several different machine learning techniques were reviewed, with a 
goal of combining experiments, microscopy, and modeling to gain 
insight into specific problems concerning both mechanics and materials 
science. Spectral clustering was used to analyze and classify slip activity 
data predicted by crystal plasticity simulations as a function of orien
tation, which resulted in the classification groups of active, partially- 
active, and inactive. These groups were then used in conjunction with 
K-nearest neighbor classification to predict slip system activity within 
grains of interest in EBSD datasets. The likelihood of slip transmission 
was then calculated for grains containing fatigue-induced voids to see if 
low slip transmissivity correlated with void nucleation. 

Two areas of the work are summarized in order to highlight the main 
observations and findings. First, are general considerations and thoughts 
on the machine learning techniques: 

● Machine learning algorithms, especially shallow learning algo
rithms, can be readily implemented during data analysis to provide 
novel insights into mechanical behavior of materials. The machine 
learning techniques offered a more objective analysis approach in 
certain situations even though human input and knowledge about 
the data was still required.  

● Unsupervised spectral clustering was used to determine how many 
groups the dataset should be divided into and what group a data 
point belongs to. Input parameters to the algorithm can be 
methodically chosen based on domain expertise to optimize the 
clustering output. Upon optimization, it was observed that including 
an additional partially-active slip system classification was more 
representative of the data groupings. The effect of a partially-active 
slip system was accounted for with the use of an appropriate 
weighting function.  

● A nearest neighbor approach was a computationally cheap and 
effective way to classify unknown query points given an initial 
dataset. Satisfactory classifications were made even with a limited 
number of initial observations. Demonstration that even a small 
number of outputs from high-fidelity simulations, in conjunction 
with machine learning, can augment experimental results to provide 
additional physical insights is an important aspect of this work. 

Fig. 11. Schematic showing the parameters used to assess likelihood of slip 
transmission across a grain boundary. The residual Burgers vector, br, and the 
angle θ are used to determine the possibility of slip transmission across a grain 
boundary for a set of slip systems. Each grain’s mean crystal orientation is 
denoted by the inverse pole figure (IPF) map. 
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Second, are the material specific observations gleaned from the 
application of the machine learning techniques:  

● Slip activity classification showed the extensive differences in slip 
behavior between FCC and BCC metals, due to complexities associ
ated with non-Schmid effects in the latter. The FCC material was 
relatively simple in the sense that an increase in Schmid factor 
correlated to an increase in accumulated slip that ultimately deter
mined its level of activity. Furthermore, each FCC grain had either 
one dominant fully-active slip system or two partially-active slip 
systems to accommodate the deformation. In contrast, the BCC ma
terial had a multitude of slip systems that had high accumulated slip 

values with low Schmid factors and vice versa. In addition, each 
grain had multiple combinations of partially and fully-active slip 
systems.  

● In both pure α-iron and 7075-T6 aluminum alloy, fatigue-induced 
voids developed around grains with higher residual Burgers vec
tors and θ values that are less likely to promote slip transmission. The 
increase in voids/porosity was responsible for a decrease in quasi- 
static strength in both materials. While an increase in the slip 
transmission parameters by itself is not a sufficient condition to 
determine void nucleation, it does contribute to the understanding of 
microstructural mechanisms responsible for fatigue damage. 

Fig. 12. Grain orientation from EBSD scans 
to calculate the residual Burgers vector and θ 
to investigate the relative likelihood of slip 
transmission. (a) α-iron material with a 
fatigue-induced void. The ten grains with the 
least likelihood of slip transmission are out
lined in red. (b) 7075-T6 aluminum alloy 
material. An inset of region A is shown on 
the right with the grain boundary high
lighted. Some of the larger black areas 
visible in the EBSD scan are inclusion parti
cles and not voids. (For interpretation of the 
references to color in this figure legend, the 
reader is referred to the Web version of this 
article.)   

Fig. 13. Electron backscatter diffraction 
scan and slip transmission scatter plot for 
α-iron at (a) 80% and (b) 95% of the fatigue 
life. The ten grains with the greatest proba
bility to prohibit dislocation slip across its 
grain boundary are outlined in red. Outlined 
grains adjacent to fatigue-induced voids are 
pointed out with arrows for clarity. The 
scatter plots show the slip transmission pa
rameters for each grain. Again, the top 
grains are outlined in red and the size of the 
marker correlates to its contribution. (For 
interpretation of the references to color in 
this figure legend, the reader is referred to 
the Web version of this article.)   
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While the machine learning techniques covered in this work are only 
a small fraction of available methods, they can be applied to a wide 
range of datasets. Furthermore, terms such as dimensionality reduction, 
clustering, classification, and regression are enough to lead other engi
neers and scientists to learn more about these, and other, techniques for 
their specific applications. 
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Appendix A. Details on k-fold cross-validation methods 

Cross-validation is a technique that uses only the training dataset to optimize input parameters into a model (such as K in KNN). It works by 
removing a subset of data from the training dataset, then creating the classifier, and finally testing the predictive capability on the subset that was 
removed. For example, if a training dataset has n number of total data points and p data points were removed, the classifier would be created using the 
n − p dataset, and finally tested on the removed p points. Scoring metrics for the classifier’s performance are calculated by comparing the predicted 
classification of the p points to the actual classification as a function of K. The K value that results in the best performance score is chosen as the input 
parameter when classifying new data points. Two common performance metrics include the accuracy and F1 score. Accuracy is defined as the number 
of correct classifications divided by the total number of classifications. However, accuracy scoring for a dataset that has a large imbalance between two 
classes can be misleading [41]. A more appropriate metric in these situations is the F1 score. In a classification problem there are four outcomes: true 
positive (TP), true negative (TN), false positive (FP), and false negative (FN). Defined in Eq. (A.1), the F1 score is the harmonic mean of the two terms, 
precision and recall. 

F1 =
2(Precision⋅Recall)
Precision + Recall

(A.1)  

where 

Precision =
TP

TP + FP  

Recall =
TP

TP + FN 

There are three different types of F1 scores that can be calculated for a multi-classification problem, i.e. when instances must be classified in more 
than two groups. The first is the micro-F1 score, which is calculated from the total precision and recall values not accounting for different classification 
groups. The second type is the macro-F1 score, which is the average of each group’s individual F1 score. For instance, with three groups: A, B, and C: 

F1macro =
F1A + F1B + F1C

3 

Fig. 14. Distribution density of the slip 
transmission parameters br and θ for (a) 
process-induced voids and (b) fatigue- 
induced voids. Process-induced voids were 
analyzed from both as-received material and 
material fatigued 75% of the fatigue life 
under with no mean stress (i.e. fully- 
reversible cyclic loading). Fatigue induced 
voids were those analyzed from material 
fatigued to 75% of the fatigue life under a 
194 MPa tensile mean stress. An increase in 
the angle θ where the peak occurs can be 
seen between the two conditions.   
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The macro-F1 score weights each group the same and does not account for any class imbalance. The last type of F1 score is the weighted-F1 score 
which accounts for the number of observations in each group. For instance, if n is the total number of observations then F1weighted is calculated by: 

F1weighted =
(F1A⋅nA) + (F1B⋅nB) + (F1C⋅nC)

n 

An extension of cross-validation is a method called k-fold cross-validation that breaks the original training dataset into k sets of approximately 
equal size. Each set then takes a turn being the tested dataset. Fig. A15 depicts the k-fold cross-validation process where an initial training dataset is 
divided into five different parts. Five different models are trained using the four parts colored in blue and tested using the one part colored in orange. A 
performance score is calculated for each of the five models and then averaged to end up with an overall score for the model. A value of k = 5 or k = 10 
is commonly selected for k-fold cross-validation [42–44].

Fig. A.15. Depiction of data division in k-fold cross-validation for k = 5. The blue colored folds represent the new training dataset used to create the model and the 
orange colored folds represent the withheld test points. A performance metric can be calculated for each model and averaged to produce a total model score. 

A further extension is repeated k-fold cross-validation (sometimes called Monte Carlo cross-validation) where the random assignment of data into 
each fold is repeated over multiple iterations. The k-fold cross-validation process depicted in Fig. A15 is repeated over a specified number of iterations, 
where each iteration performs a different random data assignment into each fold as shown in Fig. A16. An average of the model’s performance metric 
(in this case the F1 score) can be calculated as previously described with respect to k-fold cross-validation. Increasing the number of iterations will 
decrease uncertainty in the estimated performance, but can substantially increase the computational requirement. The application of k-fold cross- 
validation and subsequent KNN classification to predict the likelihood of slip transmission across a grain boundary is demonstrated in Section 3.2.

Fig. A.16. Portrayal of repeated k-fold cross-validation. Data from the original dataset is randomly assigned to the folds over multiple iterations.  

A variation of the k-fold cross-validation process, referred to herein as inverse k-fold cross-validation, was used to test the model’s performance 
when only a small portion of data was used during model creation. Fig. A17 shows how data is divided between the training and test datasets for 
inverse k-fold cross-validation. A single fold is used to create the model for inverse k-fold cross-validation and then k − 1 folds are tested to compute 
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the F1 scores. Contrast this to k-fold cross-validation where k − 1 folds are used to create the model and only one fold is tested.

Fig. A.17. Depiction of data allocation for inverse k-fold cross-validation. Like Fig. A15, blue colored folds represent the new training dataset used to create the 
model and orange colored folds represent the withheld test points. Only a small portion of the original dataset is used to train the classifier model with inverse k-fold 
cross-validation. 

A flowchart of the repeated inverse cross-validation process implemented in this work is sketched in Fig. A18. First, the overall training dataset is 
randomly divided into the specified number of k-folds. Next, a different classifier model is created with each single fold being used as the training 
dataset (see Fig. A17). Then, the F1 metrics are calculated using K-neighbors with the remaining data folds being used as query points. These steps, 
beginning with the random data assignment, are repeated for a number of iterations. Finally, the F1 scores were averaged resulting in a performance 
score for a number of k-folds as a function of K-neighbors. In this analysis, ten iterations were run for K = 1 to 30 nearest neighbors, using k = 2–50 
folds.

Fig. A.18. Flowchart of the inverse k-fold cross-validation process. The output is an F1 score for each number of k-folds, as a function of K-neighbors, averaged over a 
number of iterations. 
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Appendix B. Details on the calculation of gain scores 

Gain quantifies how much a decision tree classifier improves when splitting the data into branches. Some incorrectly classified elements along a 
branch will subsequently be correctly classified with each new split. The amount of improvement “gained” at each decision node can be attributed to 
the feature used for the split. That amount of gain for each feature, at all decision nodes is summed and ordered to generate the feature importance. 

The purpose of a supervised machine learning model is to make a prediction, ̂y, given a set of inputs, xij. One model example is a linear fit where the 
prediction is the sum of weighted input features: 

ŷi = Σjθjxij  

where xij is the input data containing multiple features, and θj are the parameters (or coefficients) calculated by fitting the model to the input data. An 
objective function quantifies how well the model actually fits the input data. Objective functions consist of two parts, the training loss and regula
rization term: 

obj(θ) = L(θ) + Ω(θ)

where L is the training loss and Ω is the regularization term. Training loss is a measure of how well the predictions are with respect to the input data. A 
common training loss function is the mean squared error and is given as: 

L(θ) =
∑

i
(yi − ŷi)

2 

The regularization term regulates the complexity of the model by penalizing more complex models to prevent overfitting. Some techniques include 
L1 regularization or LASSO (Least Absolute Shrinkage and Selection Operator) and L2 regularization or Ridge regression. More details about these, and 
other, techniques can be found in Refs. [44–46]. 

Extreme Gradient Boosting (XGBoost) [31] is a decision tree ensemble model that sums the prediction of multiple decision trees together to 
improve the overall predictive capability of the model. The objective function for this type of model can be written as: 

obj(θ) =
∑n

i
l(yi, ŷi) +

∑K

k=1
Ω(fk)

where n is the number of data points, K is the number of total trees, and fk is a function in the space of all possible trees. The prediction, ̂yi, being a sum 
of multiple decision trees can be written as: 

ŷi =
∑K

k=1
fk(xi), fk ∈ ℱ

where ℱ is the set of all possible trees. Optimizing an objective function that consists of the structure and leaf scores of multiple decision trees is 
unmanageable to do all at once, instead leading to an additive training technique. Consider the same objective function as the decision tree ensemble 
model: 

obj =
∑n

i
l
(

yi, ŷ(t)
i

)
+

∑t

i=1
Ω(fi)

where at each step t a new tree is added to the prediction value ŷ(t)
i . Therefore, the continually updated prediction can be expanded as: 

ŷ(0)

i = 0

ŷ(1)

i = f1(xi) = ŷ(0)

i + f1(xi)

ŷ(2)

i = f1(xi) + f2(xi) = ŷ(1)

i + f2(xi)

⋮

ŷ(t)
i =

∑t
k=1 fk(xi) = ŷ(t−1)

i + ft(xi)

If the mean squared error is used for the loss function, then at each step, t, the objective function becomes: 

obj(t) =
∑n

i=1 l
(

yi, ŷ(t−1)

i + ft(xi)
)

+ Ω(ft) + C

=
∑n

i=1

[
yi −

(
ŷ(t−1)

i + ft(xi)
) ]2

+ Ω(ft) + C

=
∑n

i=1

[
2
(

ŷ(t−1)

i − yi

)
ft(xi) + ft(xi)

2
]

+ Ω(ft) + C  

where C is a constant. A more generalized form of the objective function uses a Taylor series, up to the second order term, to express the loss function: 

obj(t) =
∑n

i=1

[

l
(

yi, ŷ(t−1)

i

)
+ gift(xi) +

1
2
hif 2

t (xi)

]

+ Ω(ft) + C  

where: 

J. Indeck et al.                                                                                                                                                                                                                                   



Materials Science & Engineering A 838 (2022) 142738

16

gi = ∂̂
y

(t−1)

i
l
(

yi, ŷ(t−1)

i

)

hi = ∂2

ŷ
(t−1)

i
l
(

yi, ŷ(t−1)

i

)

Eliminating the constants means the objective function can be written as: 

obj(t) =
∑n

i=1

[

gift(xi) +
1
2

hif 2
t (xi)

]

+ Ω(ft)

The second part of the objective function, the regularization term, is defined as: 

Ω(f ) = γT +
1
2

λ
∑T

j=1
w2

j  

where T is the total number of leaves and w is the vector of scores from the decision tree leaves. An approximation of the objective function then 
becomes: 

obj(t) ≈
∑n

i=1

[

giwq(xi) +
1
2

hiw2
q(xi)

]

+ γT +
1
2

λ
∑T

j=1
w2

j  

where q is a function that assigns data points to their corresponding leaf. This expression of the objective function can be compressed into: 

obj(t) =
∑T

j=1

[

Gjwj +
1
2

(
Hj + λ

)
w2

j

]

+ γT  

by defining: 

Gj = Σi∈Ij gi
Hj = Σi∈Ij hi  

where: 

Ij = {i|q(xi) = j}

and is the set of data point indices assigned to the jth leaf. The best obtainable objective function which quantifies how well a decision tree works is: 

obj = −
1
2

∑T

j=1

G2
j

Hj + λ
+ γT 

Consider a decision tree with only a single split and two leaves to illustrate the concept and calculation of gain. When a tree node (or leaf) is split in 
two branches the improvement it gains is defined as: 

Gain =
1
2

[
G2

L

HL + λ
+

G2
R

HR + λ
−

(GL + GR)
2

HL + HR + λ

]

− γ (B.1)  

where the first term describes the score on the new left leaf, the second term the score on the new right leaf, the third term the score on the original leaf, 
and the fourth term the regularization (or penalty) of the split. The parameters λ and γ are inputs into the model and control the model’s complexity to 
prevent overfitting. 

The regularization constant, λ, determines the amount of penalty imposed by the regularization term in the objective function where λ ≥ 0. If λ =
0 no penalty is imposed. 

The term γ is the minimum loss required to create a new split in the decision tree. If the gain score of the new split (the first three terms in Eq. (B.1)) 
is not greater than γ, then there is nothing gained from adding the split and including it makes the model worse. Removing branches and leaves of a 
decision tree that do not meet a certain criterion, in this case a minimum gain, is one pruning technique. 
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