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a b s t r a c t

A recent paper (Mhaskar (2020)) introduces a straightforward and simple kernel based approximation
for manifold learning that does not require the knowledge of anything about the manifold, except
for its dimension. In this paper, we examine how the pointwise error in approximation using least
squares optimization based on similarly localized kernels depends upon the data characteristics and
deteriorates as one goes away from the training data. The theory is presented with an abstract
localized kernel, which can utilize any prior knowledge about the data being located on an unknown
sub-manifold of a known manifold.

We demonstrate the performance of our approach using a publicly available micro-Doppler data
set, and investigate the use of different preprocessing measures, kernels, and manifold dimensions.
Specifically, it is shown that the localized kernel introduced in the above mentioned paper when used
with PCA components leads to a near-competitive performance to deep neural networks, and offers
significant improvements in training speed and memory requirements. To demonstrate the fact that
our methods are agnostic to the domain knowledge, we examine the classification problem in a simple
video data set.

© 2022 Elsevier Ltd. All rights reserved.
o
s
f
d
r
l
c
t
e
r
s
f
w
g
w
m

i
s
f
o
r
f

1. Introduction

Identification of hand gestures is a subject of increasing re-
earch attention in the area of human–computer interaction,
ee for example, Ahmed, Kallu, Ahmed, and Cho (2021) and
karia, Al-Hourani, and Evans (2020) for recent reviews. Appli-
ations include convenient device control, infection prevention
n clinical settings, safer and quicker accessibility of features in
utomotive, and, in a more general sense, detection of unmanned
erial vehicles. In contrast to the commonly used hand gesture
ignal acquisition approaches such as camera, infra-red sensors,
nd ultrasonic sensors, radar sensors are observed to yield a
igher performance in adverse lighting conditions and complex
ackground. Among the common types of waveforms used by
nexpensive K-band radar sensors — pulse, continuous waveform
CW), and frequency modulated continuous waveform (FMCW) —
he FMCW radars provide an improved simultaneous estimation
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f the range and the Doppler signatures. Many machine learning
trategies are used for the classification of hand gestures, ranging
rom nearest neighbor and support vector machines (SVMs) to
eep convolutional neural networks (CNNs) obtaining an accu-
acy as high as 95%. Except for deep networks, common machine
earning approaches typically requires the extraction of hand
rafted features based on domain knowledge. On the other hand,
raining a CNN is typically highly time consuming, and the math-
matical theory of how, when, and why CNNs will produce the
ight output is still under development. In this paper, we demon-
trate the use of manifold learning to classify hand gesture signals
rom FMCW radar data, agnostic of the fact that we are dealing
ith radar signals (i.e., independently of domain knowledge). Our
eneral purpose method yields results that compare favorably
ith other methods in the literature that have been used for
icro-Doppler gesture recognition, including CNNs.
The fundamental problem of machine learning is the follow-

ng. We have (training) data of the form {(xj, f (xj)+ϵj)}, where, for
ome integer d ≥ 1, xj ∈ Rd are realizations of a random variable,
is an unknown real valued function, and the ϵj’s are realizations
f a mean zero random variable. The distributions of both the
andom variables are not known. The problem is to approximate
with a suitable model, especially for the points which are not
n the training data. In the context of classification problems, f is
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he labeling function defined as follows. If there are K classes, we
define

χi (x) =
{
1, if x belongs to class i,
0, otherwise,

and

f (x) = argmin
1≤i≤K

χi (x).

A major theoretical problem in machine learning is the so called
curse of dimensionality — the complexity of the approximating
model increases exponentially with the dimension of the input.
Another theoretical problem is that if the class boundaries are
not smooth or not well separated then the labeling function is
not smooth, resulting again in an increased model complexity.

Manifold learning tries to ameliorate this problem by as-
suming that the data lies on some unknown, low dimensional
manifold, on which the classes are well separated. With this
assumption, there are well developed techniques to learn vari-
ous quantities related to the manifold, for example, the eigen-
decomposition of the Laplace–Beltrami operator. The special
issue (Chui & Donoho, 2006) gives a good introduction to the
topic of diffusion geometry in this regard. In Chui and Mhaskar
(2018) and Schmidt-Hieber (2019), the authors describe the con-
struction of an atlas on the manifold which is then used for con-
struction of deep networks. Since these objects must be learned
from the data, these techniques are applicable in the supervised
setting, in which we have all the data points xj available in
advance.

Recently, we have discovered (Mhaskar, 2020a) a more direct
method to approximate functions on unknown manifolds without
trying to learn anything about the manifold itself, and giving
an approximation with theoretically guaranteed errors on the
entire manifold; not just the points in the original data set. Our
approximation has the form

x ↦→

∑
j

(
f (xj)+ ϵj

)
Φ̃N,q(|x− xj|2,Q ) (1.1)

where Φ̃N,q is a specially constructed kernel, Q is the dimension
of the ambient space, q is the dimension of the manifold, and
| ◦ |2,Q is the Euclidean metric on RQ (see Section 3.1 for details).
In the case when N = 1, our kernel reduces to the oft-used Gaus-
sian kernel. In this paper, we prove how a more classical approach
of empirical risk minimization or generalization error measured
in the least squares sense using the kernel introduced in Mhaskar
(2020a) leads to errors that show a gradual deterioration as one
moves away from the training data, thereby yielding a heuristic
to determine the parameter N .

In many applications, we can assume some further knowledge
of the data distribution; in particular, that the data is sampled
from an unknown sub-manifold of a known manifold. It is then
natural to conjecture that one might be able to replace the Eu-
clidean distance in (1.1) by the geodesic distance on the known
manifold. While the theory analogous to the one in Mhaskar
(2020a) seems difficult at this point, we formulate our main
theorems in a greater abstraction to allow the study of pointwise
errors using least squares approximation based on the resulting
kernels. We demonstrate experimentally the effect of such a
construction by considering each element of the FMCW radar data
as a time series, which in turn may be identified with a point on
a Grassmann manifold using the ideas in Turaga, Veeraraghavan,
Srivastava, and Chellappa (2011).

Although our main focus is on the detection of hand gestures
based on FMCW radar data, we include an additional example
about classification of simple video data in order to demonstrate
354
the fact that our method is agnostic to the domain knowledge
feature extraction.

To summarize, the main contributions of this paper are as
follows:

• We examine pointwise errors in function approximation
using empirical risk minimization and generalization error
measured with least squared loss with a generalized version
of the kernel introduced in Mhaskar (2020a).

• We demonstrate the performance of our theory in the case
of hand gesture recognition based on FMCW radar data. Our
results compare favorably with other known techniques,
when used with the right feature vectors. Additionally, this
provides new benchmark results on the recently published
Dop-Net data set (Ritchie, Capraru, & Fioranelli, 2020).

• There are many papers dealing with micro-Doppler gesture
recognition using hand-crafted features. As far as we are
aware, this is the first work in which we explore the use
of the singular vectors and values of the micro-Doppler
spectrogram as features.

• Our method is agnostic to the domain knowledge, a fact
which we demonstrate using classification in a simple video
data.

In Section 2, we summarize the connection between our work
and other related works, although not exhaustively. The technical
background that motivates our work in this paper is explained in
Section 3. In Section 4, we state our main theoretical results. The
experimental results are presented in Section 5. The proofs of the
results in Section 4 are given in Section 6.

2. Related works

Micro-Doppler radar has found success in various applications
related to classifying humans, animals and objects, such as activ-
ity monitoring, autonomous driving, and unmanned aerial vehicle
detection (Molchanov, Harmanny, de Wit, Egiazarian, & Astola,
2014; Ritchie & Jones, 2019; Tahmoush, 2015; Zhao, Luo, Wang,
Chen, & Wu, 2021; Zhou, Yang, Jiang, Wong, & Yang, 2020). The
approach taken by practitioners is to use a time–frequency trans-
form of the measured signal, which is then considered the raw
data for subsequent processing. The Short-Time Fourier Trans-
form (STFT) is the time–frequency transform commonly selected.
Using the spectrograms, features are extracted or the spectrogram
is used directly with a neural network.

Hand crafted features are usually inspired by physics and
taken to be measurements of frequency and/or time, such as the
bandwidth of the micro-Doppler signature, its time duration, en-
ergy content, and various spectrogram measurements (Björklund,
Petersson, & Hendeby, 2015; Karabacak et al., 2015; Manfredi
et al., 2021; Ritchie & Jones, 2019; Tahmoush, 2015). There have
lso been efforts to define new features through mathematical
ransforms, such as the Discrete Cosine Transform (DCT), Mel-
requencies, S-transform, etc. (Erol, Seyfioglu, Gürbüz, & Amin,
018; Li et al., 2017; Li, Zhang, Ritchie, & Griffiths, 2018) and
Ma, Zhao, Liu, Kuang, & Al-qaness, 2019). The success of these
pproaches is usually determined by the application, radar sys-
em parameters, and quantity of training data. In Gürbüz, Erol,
ağlıyan, and Tekeli (2015), the authors study the effect of various
icro-Doppler features, such as transmit frequency, range and
oppler resolution, antenna-target geometry, signal-to-noise ra-
io and dwell-time. While classifier performance on hand-crafted
eatures undoubtedly depend on these parameters, the perfor-
ance of more advanced feature extraction methods will also
ary based on the size of the training set and distributional
ariation between the train and test data. For example, statistical
ariation within a class can depend on different measurement
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nvironments and subjects, which was not addressed in Gürbüz
et al. (2015), but explored here by means of features based
on singular value decomposition (SVD) or principal component
analysis (PCA) of preprocessed spectrograms.

Recently, deep learning architectures, such as CNNs have also
been used for micro-Doppler applications (Abdulatif, Wei, Aziz,
Kleiner, & Schneider, 2018; Brooks, Schwander, Barbaresco, Schnei
er, & Cord, 2018; Huizing et al., 2019; Zhu, Chen, & Ye, 2020).
y design, CNNs are invariant to shifts in the two-dimensional
mage, obtained by using a combination of additive group con-
olutions and pooling operations. While relatively simple CNNs
onsisting of only three to five convolutional layers have been
hown to be successful, deeper and more complex network ap-
roaches have also been investigated (Seyfioglu, Erol, Gürbüz,
Amin, 2019). Furthermore, more advanced deep learning ap-

roaches have also been taken to compensate for limited training
ata, such as generating data using generative adversarial net-
orks and transfer learning (Park, Javier, Moon, & Kim, 2016;
ran, Griffin, Chetty, & Vishwakarma, 2020).
However, there are other works that indicate that the use

f CNNs may not be optimal for this application. Firstly, it is a
opic of current research to investigate in what applications CNNs
re most successful, why, and how. The state of the art use of
NNs typically involves a network topology that is chosen on
d hoc basis. In Tran et al. (2020), the authors find that after
apping the micro-Doppler spectrograms to a one dimensional
ector, a linear SVM outperformed various VGG architectures.
dditionally, unlike CNNs, features defined on a specific manifold
hrough an appropriate kernel function provide a clear advantage
n being able to more precisely obtain invariance to well defined
uisance transformations known a priori, based on knowledge of
he application and data. This is complemented by theory that
ives insight into generalization performance.
In Zeng, Amin, and Shan (2020), the authors have demon-

strated that simpler method like K-nearest neighbors
(KNN) based on PCA components of the vectorized spectrograms
yield results comparable to deep networks.

We will use our techniques both with SVD based features
and PCA features (designed to overcome the statistical variations
within-class), and compare the results with those obtained with
CNNs. Our methods will sometimes outperform CNNs and some-
times not, but will be consistently faster on training. The main
advantage though is that our techniques are well founded in
theory while it is a major topic of research as to when, why, for
what applications, and how CNNs will give what performance.

We will show in Section 4 that the process of empirical risk
minimization with our kernel yields an exact reproduction of the
label function for the training data. In this sense, the work is
related to several recent works which have observed that it is
possible to achieve a zero training error while keeping the test
error under control. In the case of classification problems, Belkin,
Hsu, and Mitra (Belkin, Hsu, & Mitra, 2018) analyze the ‘‘excess
rror’’ in least square fits by piecewise linear interpolants over
hat obtained by the optimal Bayes’ classifier. In Poggio et al.
2017) and Poggio et al. (2018), the question is analyzed from the
erspective of the geometry of the error surface with respect to
ifferent loss functions near the local extrema. In particular, it is
hown in Poggio et al. (2017) that substituting the rectified linear
nit (ReLU) activation function by a polynomial approximation
xhibits the same behavior as the original network. In Mhaskar
nd Poggio (2020) we have analyzed the question from the point
f view of approximation theory so as to examine the intrinsic
eatures of the data (rather than focusing on specific training al-
orithms) that allow this phenomenon. A crucial role in the proofs
f the results in that paper is played by a highly localized kernel.
n this paper, we focus on the properties of a localized kernel in
more general setting of a locally compact metric measure space
hat allow the results analogous to those in Mhaskar and Poggio
2020).
 (
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3. Technical background

In this section, we discuss some further technical details to
motivate our main results in Section 4. In Section 3.1, we de-
scribe our constructions for approximation on an unknown sub-
manifold of the Euclidean space. In Section 3.2, we provide a
mathematical model for the Doppler radar measurements, lead-
ing to the need for examining our results in Section 3.1 to the case
f a sub-manifold of a known manifold, namely, the Grassmann
anifold. In Section 3.3, we describe the ideas in Turaga et al.

2011) that lead to the Grassmann manifold again from a different
erspective of time series classification.

.1. Approximation on manifolds

In this section, we describe our construction for a direct
ethod for function approximation on a sub-manifold of a Eu-
lidean space, without resorting to a two step procedure involv-
ng the estimation of quantities related to the manifold such
s coordinate charts or eigen-decomposition of the Laplace–
eltrami operator. Our construction involves a localized kernel
ased on Hermite polynomials.
These are defined by the Rodrigues’ formula (cf. Szegö (1975,

qns. (5.5.3), (5.5.1))

k(x) =
(−1)k

π1/42k/2
√
k!

exp(x2)
dk

dxk
exp(−x2).

However for relatively small values of k and |x| <
√
2k, they are

most efficiently computed using the recurrence relations:

hk(x) :=

√
2
k
xhk−1(x)−

√
k− 1
k

hk−2(x), k = 2, 3, . . . ,

h0(x) := π−1/4, h1(x) :=
√
2π−1/4x. (3.1)

We write

ψk(x) := hk(x) exp(−x2/2), x ∈ R, k ∈ Z+. (3.2)

The functions {ψk}
∞

k=0 are an orthonormal set with respect to
the Lebesgue measure on R. In the sequel, we fix an infinitely
differentiable function H : [0,∞) → [0, 1], such that H(t) = 1 if
≤ t ≤ 1/2, and H(t) = 0 if t ≥ 1. Further, let Q ≥ q ≥ 1 be

ixed integers. We define for x ∈ R, m ∈ Z+:

m,q(x) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

π−1/4(−1)m
√
(2m)!
2mm!

ψ2m(x), if q = 1,

1
π (2q−1)/4Γ ((q− 1)/2)

m∑
ℓ=0

(−1)ℓ

×
Γ ((q− 1)/2+m− ℓ)

(m− ℓ)!

√
(2ℓ)!
2ℓℓ!

ψ2ℓ(x), if q ≥ 2,

(3.3)

and the kernel Φ̃N,q for x ∈ R, N > 0 by

Φ̃N,q(x) :=
⌊N2/2⌋∑
m=0

H

(√
2m
N

)
Pm,q(x)

=
1

π q/2Γ ((q− 1)/2)

⌊N2/2⌋∑
ℓ=0

⎧⎨⎩
⌊N2/2⌋∑
m=ℓ

H

(√
2m
N

)

×
Γ ((q− 1)/2+m− ℓ)

(m− ℓ)!

⎫⎬⎭ψ2ℓ(0)ψ2ℓ(x).

(3.4)

he kernel Φ̃N,q(x) can be computed easily and efficiently us-
ng the second equation in (3.4), and the Clenshaw algorithm
Gautschi, 2004, p. 79).
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Next, let X be a q dimensional, compact, connected, orientable,
sub-manifold of RQ , ρ be the geodesic distance on X, µ∗ be
ts volume element. We will abbreviate our notation and write
M
N (x) = Φ̃N,q(|x|2,Q ), x ∈ X.2
Let C(X) denote the class of all continuous real valued func-

ions on X equipped with the supremum norm ∥f ∥∞ := maxx∈X
f (x)|. Using the kernel ΦM

N , we define an integral operator on
(X), analogous to a convolution operator, by

M
N (f )(x) :=

∫
X
ΦM

N (x− y)f (y)dµ∗(y), N > 0. (3.5)

In the notation of Mhaskar (2020a), σM
N (f ) = σN,1(X; f ).) We are

nterested in approximation of Lipschitz continuous functions on
; i.e., functions f ∈ C(X) for which

f ∥Lip := sup
x,x′∈X
x̸=x′

|f (x)− f (x′)|
ρ(x, x′)

<∞. (3.6)

A consequence of Mhaskar (2020a, Theorem 8.1) is the fol-
lowing Theorem 3.1. Before stating this theorem, we state first
a convention regarding constants.
Constant convention

In the sequel, the notation A ≲ B (equivalently, B ≳ A) will mean
that A ≤ cB for some positive constant c depending only on fixed
objects under discussion such as X, ρ, µ∗, q, Q , the parameter S to
be introduced later, and the manifold/spaces/measures/distances to
be described later. The notation A ∼ B means A ≲ B and B ≲ A. In
particular, the constants do not depend upon the target function, the
points at which the approximation is desired or on which it is based,
and the index N of the family of kernels.

Theorem 3.1. Let f ∈ Lip(X). For N ≥ 1, we have

∥f − σM
N (f )∥∞ ≲

∥f ∥Lip
N

. (3.7)

An important ingredient in the proof of Theorem 3.1 is the
ollowing proposition proved in Mhaskar (2020a, Corollary 6.1),
and reformulated using the fact that |x− y|2,Q ∼ ρ(x, y) for
x, y ∈ X (Mhaskar, 2020a, Corollary 8.1).

Proposition 3.1. Let S > q. The kernel ΦM
N defined in (3.4) satisfies

each of the following properties.

|ΦM
N (x− y)| ≲

Nq

max(1, (Nρ(x, y))S)
, x ∈ Rq, (3.8)

|ΦM
N (0)| ∼ Nq, |ΦM

N (x)| ≲ Nq,

|ΦM
N (x)−ΦM

N (y)| ≲ Nq+1
⏐⏐|x|2,Q − |y|2,Q

⏐⏐ , x, y ∈ RQ .
(3.9)

Motivation 1: In practice, of course, one needs to use a discretization
of the integral in (3.5). Obviously, an accurate discretization would
require the knowledge of the values of f at a sufficiently large
number of points in X. In micro-Doppler radar applications, one has
only a small amount of data, so that the above theorem cannot be
used effectively in a direct manner.

3.2. Micro-Doppler radar signals

In this section we denote the radar location by x ∈ R3 and
the target location by y ∈ R3. We assume that at t = 0 the
object is initially located at y0 ∈ R3. During the collection period
t ∈ [0, T ], the target undergoes motion defined by a displacement

2 We note that when N = 1, ΦM
N (x) reduces to just a constant multiple of

exp(−|x|2/2).
 r

356
with velocity v ∈ R3 and a rotation given by the matrix R(t). Thus,
at time t the location of the object is

y(t) = R(t)y0 + vt. (3.10)

Assuming the radar transmits in free space, and that there are
only a finite number K of isotropic scattering locations,3 we may
model the received signal as (cf. (3.12))

s(t) =
K∑

k=1

p(t − ∥x− Rk(t)y0,k − vkt∥2)ρk + n(t), (3.11)

where for k = 1, . . . , K , each y0,k represents the initial scattering
locations of the object that contribute to the signal measured at
the receiver, Rk(t) and vk are the corresponding rotations and
velocities, ρk ∈ R+ is the amplitude of the scatterer, and n(t)
epresents noise, clutter, and small amplitude interfering signals
hen the isotropic point scattering assumption does not hold
recisely. Typically, p(t) is a frequency modulation continuous
FMCW), defined as

(t) = ei(ωc t+ 1
2 αt

2), (3.12)

where ωc is the carrier frequency and α is the chirp rate. The
data set introduced in Ritchie et al. (2020) and used in our
experiments, were collected with a FMCW waveform.

For gesture recognition K will be small since there are only
a small number of dominant scattering locations. Thus, the re-
ceived signal s(t) will lie in a low-dimensional subspace given
by the span of the individual received signals for each scatterer,
of maximum dimension K . This is due to the fact that the scat-
tered signals are approximately orthogonal for large ωc used
for micro-Doppler radars, and motivates our following choice of
features.

Generally, micro-Doppler signal classification is accomplished
using the spectrogram of (3.11), defined as

D(ω, τ ) =
∫
R
s(t + τ )w(t)e−iω(t+τ )dt, (3.13)

where w is a smooth window function. In practice, (3.11) will be
sampled to form a discrete time-series, and one uses the discrete
version of (3.13):

D = FWS, (3.14)

where F is a partial Fourier matrix, W = diag(w) is a diagonal
atrix consisting of the elements of w, and S = [s1, s2, . . . , sN ].
he columns of D correspond to the discrete Doppler frequencies
−M/2, . . . , ωM/2, and the rows correspond to the discrete time
oints τ0, . . . , τN .
Let the singular value decomposition of D be given by

= UΣVH , (3.15)

here U, V are unitary matrices, and Σ is a diagonal matrix
onsisting of the singular values. From (3.15) we can define a
umber of distance functions based on using left singular vectors
nd singular values, each of which defines a sub-manifold of the
ata.

.3. Representation of a general time series

The autoregressive-moving-average (ARMA) is a well-known
ynamic model for time series data that parametrizes a signal f (t)
y the equations

(t) = Cz(t)+ w(t), w(t) ∼ N (0, R) (3.16)

3 Isotropic scattering means the signal is reflected in all directions, a
easonable assumption for small scattering locations on the human hand.
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(t + 1) = Az(t)+ v(t), v(t) ∼ N (0,Q ) (3.17)

here z ∈ Rd is the hidden state vector, f : R → Rp, d ≤ p
s the hidden state dimension, and N(0, σ ) denotes a normal
istribution with mean zero and standard deviation σ (Turaga
t al., 2011). There are widely-used closed form solutions for
stimating the parameters A and C in terms of the singular value
ecomposition [f (1), . . . , f (τ )] = UΣV T , namely,

= U, A = ΣV TD1V (V TD2V )−1Σ−1, (3.18)

here

1 =

(
0 0

Iτ−1 0

)
, D2 =

(
Iτ−1 0
0 0

)
.

t can be shown (Turaga et al., 2011) that the expected observa-
ion sequence is given by

∞ = E

⎡⎢⎢⎣
⎛⎜⎜⎝
f (0)
f (1)
f (2)
...

⎞⎟⎟⎠
⎤⎥⎥⎦ =

⎡⎢⎢⎣
C
CA
CA2

...

⎤⎥⎥⎦ z(0) (3.19)

hus, by truncating the matrix O∞ up to mth block for some m,
ne can represent the time series f as point on the Grassmann
anifold G(d,mp).
We consider time–frequency images, in this case spectrograms

enerated from the radar data as multivariate timeseries, and
imilarly for the frames of the video data. In the former case,
ne way to view the spectrogram is as a multivariate time se-
ies, where the columns are multi-dimensional vectors formed
y the taking the Discrete Fourier Transform of the time seg-
ent, the collection of these vectors implies the spectrogram is
multivariate time series. As a consequence we can represent

hese spectrograms using an orthonormal basis corresponding to
point on the Grassmann manifold. Independently, as explained

n Section 3.2, the physics of radar imaging leads to treating the
eft singular vectors of the spectrograms as feature vectors, which
n turn, are points on a Grassmann manifold. These features
apture the frequency content of the micro-Doppler signature
hile imposing invariance with respect to the underlying time-
eries, which can better represent the discriminant attributes
ommon to the entire data set. For example, we expect multiple
amples corresponding to the same gesture can be represented
y a collection of orthonormal basis matrices that are close under
particular metric. Furthermore, the subspace corresponding to
data sample can be viewed as subspace of a larger subspace

panned by all the samples of the class.
otivation 2: Clearly, the set of time series of interest, such as

he low rank representations of the micro-Doppler radar signals, is
nly an unknown subset of the Grassmann manifold, rather than the
ntire manifold. Assuming that this subset is a sub-manifold, it is
nteresting to examine the span of {Φ̃N,q(ρ(◦, yj))}Mj=1, where ρ is
he geodesic distance on the Grassmann manifold.

. Theoretical results

Our goal in this section is to formulate results for approxima-
ion based on a small amount of data. We will examine two tools
or this purpose: empirical risk minimization, and theoretical
east square loss. In each case, we will obtain pointwise error
stimates which indicate how the error deteriorates as the input
ariable moves away from the training data. Our estimates will
ive a deeper insight into which features of the data give rise
o what accuracy intrinsically, as opposed to many results in
he literature that depend upon the method used to solve the
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ptimization problems involved. In view of the motivation given
n Section 3.3, we will state our results in greater abstraction than
n the context of the motivation given in Section 3.1.

Let X be a locally compact metric measure space, with metric
, and a distinguished measure µ∗. As before, C(X) denotes the
pace of bounded and uniformly continuous real valued functions
n X, equipped with the supremum norm: ∥f ∥∞ = supx∈X |f (x)|.
he class Lip(X) of Lipschitz functions comprises f ∈ C(X) for
hich

f ∥Lip := sup
x,x′∈X
x̸=x′

|f (x)− f (x′)|
ρ(x, x′)

<∞. (4.1)

We recall the constant convention from Section 3.1.

efinition 4.1. Let S > q ≥ 1 be integers. A family of kernels
{ΦN : X × X → R} is called (q, S)-localized if each ΦN is
symmetric, and

|ΦN (x, y)| ≲
Nq

max(1, (Nρ(x, y))S)
, (4.2)

here the constant involved in ≲ may depend upon q and S but
not on N , x, or y. With an abuse of terminology we will say that
ΦN is (q, S)-localized.

Remark 4.1. Kernels satisfying (4.2) are known in many contexts.
The kernel denoted by ΦM

N in Section 3.1 is one example. Many
other constructions in different contexts are discussed in Mhaskar
(2020b) and references therein. ■

Let M ≥ 1 be an integer, C = {y1, . . . , yM} ⊂ X. We are
interested in studying approximation of Lipschitz functions on X
from the space

V(C) = span{ΦN (◦, yj)}Mj=1. (4.3)

emark 4.2. If ΦN (x, y) admits a Mercer expansion of the form
λkφk(x)φk(y), and the set C is sufficiently dense in X, then in a

umber of cases as in Mhaskar (2020b), the space V(C) is the same
s span{φk : λk ≲ N}. However, our interest in this paper is when
has a large minimal separation rather than being dense. ■

We will study the behavior of approximations defined by
he solutions of two minimization problems: The empirical risk
inimizer is defined to be

E(V(C); f ) := argmin
P∈V(C)

M∑
k=1

⏐⏐f (yj)− P(yj)
⏐⏐2 . (4.4)

f τ is a probability measure on X, theoretical least square loss
inimizer is defined by

T (τ ,V(C); f ) := argmin
P∈V(C)

∫
X
|f (y)− P(y)|2 dτ (y). (4.5)

We need to assume some further conditions on the kernels
ΦN}.

efinition 4.2. Let S > q ≥ 1 be integers. A family of kernels
ΦN} is called admissible if it is (q, S)-localized and satisfies each
f the following properties.

ΦN (y, y)| ∼ Nq, y ∈ X. (4.6)

ΦN (x, y)−ΦN (x′, y)| ≲ Nq+1ρ(x, x′), x, x′, y ∈ X,

ΦN (x, y)−ΦN (x, y′)| ≲ Nq+1ρ(y, y′), x, y, y′ ∈ X.
(4.7)

ith an abuse of terminology as before, we refer to any member
of an admissible family as an admissible kernel.
N
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emark 4.3. The kernel denoted by ΦM
N in Section 3.1 is one

xample of admissible kernels (cf. Proposition 3.1). Several other
xamples are available in the literature, for example, based on
igenfunctions of the Laplace–Beltrami operator on manifolds
Filbir & Mhaskar, 2010, 2011). ■

emark 4.4. In the sequel, q and S will be treated as fixed
arameters. All constants may depend upon these. Moreover, we
ill omit their mention from the notation; e.g., say that ΦN is

ocalized rather than (q, S)-localized. ■

In the study of approximation properties of both the empirical
isk minimizer and theoretical least squares loss minimizer, a
rucial role is played by the minimal separation among the points
n C, defined by the minimal separation among the points defined
y

(C) = min
1≤j̸=k≤M

ρ(yj, yk), (4.8)

In order to state our main theorems, we need to make some
urther assumptions.

For x ∈ X, r > 0, we write

(x, r) = {y ∈ X : ρ(x, y) ≤ r}, ∆(x, r) = X \ B(x, r). (4.9)

We assume that there exists q ≥ 0 such that

∗(B(x, r)) = µ∗ ({y ∈ X : ρ(x, y) < r}) ≲ rq, x ∈ X, r > 0,
(4.10)

and

µ∗(B(x, r)) ≳ rq, x ∈ X, 0 < r ≤ 1. (4.11)

It is shown in Mhaskar (2020b) that in the case when X is a
manifold as described earlier, the condition (4.11) is satisfied in
act for all r ≤ diam(X). The condition (4.10) is satisfied in many
ases when X is a smooth compact connected q-dimensional
anifold, ρ is the Riemannian metric, and µ∗ denotes the volume
easure.
Our first theorem derives pointwise error estimates for the

mpirical risk minimizer.

heorem 4.1. Let {ΦN} be a family of admissible kernels, and (4.10)
nd (4.11) be satisfied. Let x ∈ X, δ(x) = min1≤j≤M ρ(x, yj), and
˜ = min(1, η(C)). Let F ∈ Lip(X). There exists a constant C > 0
ndependent of F , N, and C such that if N ≥ Cη(C)−1, then there
xists a unique empirical risk minimizer PE(V(C); F ) that satisfies

E(V(C); F )(yj) = F (yj), j = 1, . . . ,M. (4.12)

e have the following error estimates. If δ(x) > η̃/3 then

|PE(V(C); F )(x)| ≲
∥F∥∞
(N η̃)S

. (4.13)

If δ(x) ≤ η̃/3 then

|PE(V(C); F )(x)− F (x)| ≲ (N +∥f ∥Lip)δ(x)+∥F∥∞(N η̃)q−S . (4.14)

Here, the constants involved are independent of F and x.

To describe the analogue of Theorem 4.1 for the minimizer of
the theoretical least square loss, we need some further notation
relevant to the normal equations for the minimization problem.
We define

ΨN (x, y) =
∫
X
ΦN (x, z)ΦN (y, z)dτ (z), N > 0, x, y ∈ X, (4.15)

and for f ∈ C(X),

σN (f )(x) =
∫

f (y)Φn(x, y)dµ∗(z). (4.16)

X
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We note that if τ is absolutely continuous with respect to µ∗ with
the Radon–Nikodym derivative f0, then the normal equations for
the theoretical least squares loss minimization are
M∑
ℓ=1

aℓΨN (yℓ, yj) = σN (f0f )(yj), j = 1, . . . ,M. (4.17)

Theorem 4.2. We assume the set up as in Theorem 4.1. Let τ
be absolutely continuous with respect to µ∗ with dτ = f0dµ∗ for
some f0 ∈ C(X), f0(z) ≥ m(f0) > 0 for all z ∈ X. There exists a
constant C > 0 independent of F , N, and C such that if N ≥ Cη(C)−1,
hen there exists a unique theoretical least square loss risk minimizer
T (τ ,V(C); F ) that satisfies the following error estimates.
If δ(x) > η̃/3 then

|PE(V(C); F )(x)| ≲
∥f0F∥∞
(N η̃)S

. (4.18)

f δ(x) = ρ(x, yℓ) ≤ η̃/3 then

PT (τ ,V(C); F )(x)−
ΦN (x, x)
ΨN (yℓ, yℓ)

f0(x)F (x)
⏐⏐⏐⏐

≲ (Nη)q−S
∥f0F∥∞ + ∥f0F − σN (f0F )∥∞

+ (N + ∥f0F∥Lip)δ(x).

(4.19)

Here, the constants involved are independent of F and x.

Remark 4.5. In the case of the kernels ΦM
N , the quantity ∥f0F −

N (f0F )∥∞ is estimated by Theorem 3.1. Similar estimates exist
lso in the other examples described in Mhaskar (2020b) with
ther conditions on f0 and F . ■

emark 4.6. We note that (4.13) and (4.18) show that one does
ot expect a good approximation to F as N → ∞ in the region
way from the points C. On the other hand, (4.14) and (4.19)

show that the approximation actually deteriorates if N → ∞.
The balance of the various terms on the right hand side of these
estimates gives us some insight into the choice of N as well as
ow the approximation error deteriorates as x is further and fur-
her away from C. This phenomenon is caused by the localization
f the kernels, resulting in overfitting the data if N is very large.
or example, in our experiments in Section 5.1.4, we will need to
se N = 1; the higher values of N led to overfitting. ■

. Experimental results

In this section, we describe the use of the localized kernels
iscussed in Sections 3 and 4 in the context of gesture recognition
ith micro-Doppler radar readings (Section 5.1), and to demon-
trate the fact that the theory is applicable agnostically to the
omain knowledge, also in the context of a small video data set
Section 5.2). As remarked before, we use the kernel Φ̃N,q(ρ(x, y))
ith different distances ρ(x, y), corresponding to different types
f manifolds, which depend on the feature representation.

.1. Gesture recognition

In the case of micro-Doppler gesture recognition experiments,
e use two kinds of features of the measured spectrogram:

eatures based on the singular value decomposition of the spec-
rogram viewed as a matrix, and features based on the PCA
omponents of a vectorized version of the spectrogram. For com-
arison, we include the results based on two CNNs, which worked
ith the same preprocessed data as the other methods. We do
ot consider hand-crafted features here, because both the SVD
nd PCA features yield substantially better results.
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Table 1
The definition of various kernels used in our experiments.
Kernel type Expression Parameters

Grassmann kernel exp(−γ (r − ∥UT
1 U2∥

2
F )) γ = 0.2

Laplace kernel exp(−α∥U1 − U2∥F − β∥Σ1 −Σ2∥F ) α = 0.2, β = 0.0042
Gaussian kernel exp(−α∥U1 − U2∥

2
F − β∥Σ1 −Σ2∥

2
F ) α = 0.2, β = 0.12

Localized kernel (3.4) 8̃N,q(γ x) γ = 0.8, q = 2 (n = 16) or q = 18 (n = 64)
In view of the results described in more detail in Usevich,
Emiya, Brie, and Chaux (2018), the first set of features we con-
sidered are the first r columns of U to be a feature vector Ur for
the signal D in (3.13) (cf. (3.15)). We note that this feature vector
is a point on the Grassmann manifold G(r,N), with geodesic ap-
proximations that can be calculated efficiently. As a variant of this
set of features, we relax the assumption that subspaces of gesture
spectrograms are suitable for discrimination, and consider incor-
porating the singular values by defining distances using both U
and Σ , which we refer to as the SVD manifold.

Lastly, we relax any assumptions about the discriminative
capability of the SVD components between individual samples,
and instead use Principle Component Analysis (PCA) to calculate
a common low-dimensional subspace to project the data on. Our
methods are guided by the paper (Zeng et al., 2020) by Zeng,
Amin, and Shan. Precise definitions of the metrics and kernels
used in these approaches are listed in Table 1.

We describe the data set in Section 5.1.1. The data involves
4 gestures made by 6 persons. We focus first on recognition of
gestures independently of the person making the gesture. The
preprocessing step is described in Section 5.1.2. Section 5.1.3 de-
scribes the various kernels which will be used in our experiments.
The methodology of the experiments as well as the results are de-
scribed in Section 5.1.4 for the case of SVD features, Section 5.1.5
for the case of PCA features, and Section 5.1.6 for the case of CNNs.
The effect of choosing the dimension of the manifold is discussed
in Section 5.1.7. The effect of choosing various percentage of the
training data is described in Section 5.1.8. In Section 5.1.9, we
examine the results of training on all the gestures made by 5
of the subjects, and predicting the results for the corresponding
gesture by the 6th subject.

5.1.1. Data set
We use the publicly available micro-Doppler data set Dop-NET

distributed by University College London Radar group (Ritchie
et al., 2020). The data set consists of complex spectrograms
formed using motion compensated, measured micro-Doppler sig-
natures of five people performing four different hand gestures:
snap, wave, pinch, click. The data is obtained using a linear FMCW
at 24 GHz center and 750 MHz bandwidth. While a training and
test set are provided, no ground truth values are provided for
test set. Thus, we split the provided training set into a training
and test set using a 80/20% split. This train/test split is used
for all our experiments, except those in Section 5.1.8 where we
investigate the effect of the size of the training set. In each of
our experiments we report the mean and variance of 5 trials of
independent sampling of the train/test set.

In Fig. 1, an example spectrogram is shown for each class.
Since the time duration of each gesture varies, so does the num-
ber of columns in each spectrogram, which can vary by up to an
order of magnitude in terms of number of samples. Furthermore,
we note that there are visible similarities between the classes;
for example, the pinch, swipe and click gesture are both visually
similar in terms of frequency and time support, while the wave
gesture lasts for longer time duration and demonstrates oscilla-
tory behavior. Clearly, these similarities make this classification
problem particularly difficult, and motivate the use of features
that are robust to the within class variation of time and Doppler

frequencies.
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5.1.2. Data preprocessing
Prior to classification, we perform data preprocessing to re-

duce noise and clutter; then normalize to account for variation
in the dynamic range. To suppress the effects of noise and clutter
we investigated the use of various binary thresholding algorithms
to segment the signal from background, including the envelope
detection approach (Zeng et al., 2020). It was determined that
Yen’s threshold method worked best, and was used for all of
our experiments (Yen, Chang, & Chang, 1995). We can explicitly
summarize this process as

X̃k = T
{
20log10 (|Xk|)

}
(5.1)

where Xk is a sample from the data set, T is thresholding function
described in Yen et al. (1995).

Following thresholding, we normalize the data to account for
the variation in the dynamic range. We consider two approaches
to this normalization which are both used in the experiments. The
first approach is to normalize the data point X̃k such that each
element is in the range [0, 1]. Our second approach is to convert
the threshold spectrogram to a binary representation where each
element is in the set {0, 1}.

The SVD features are based on r left singular vectors and cor-
responding singular values in the decomposition X̃k = UkΣkV T

k ,
k = 1, 2, . . ., for various values of r .

To obtain the PCA features, the spectrograms are zero padded
to the same size, then vectorized. Zero padding was also used for
the inputs to the CNN. The PCA is made on the entire training
data, and the projection of any datum on the first r PCA vectors
was taken as the representation of that datum in this feature
space.

5.1.3. Kernels
The set of kernels used in our experiments together with the

values of the parameters are summarized in Table 1. The notation
U , Σ refers to the left singular vectors and singular values of
the data corresponding to the r largest singular values obtained
from the spectrograms as described in Section 5.1.2, and ∥ · ∥F
denotes the Frobenius norm. The three kernels considered are
the Grassmann kernel, which uses the projection distance, an
approximation of the geodesic on the Grassmann manifold (Ye &
Lim, 2016). The Laplace kernel and Gaussian kernel use a distance
function that incorporates both the singular vectors and singular
values of the spectrograms. We note that the Gaussian kernel
corresponds to the case where N = 1 and q = 1 in (3.4). The
general kernel as defined in (3.4) is referred to as the localized
kernel.

5.1.4. Performance accuracy for SVD features
We evaluate the performance of the proposed algorithms

in terms of classification accuracy and measured computational
time, as these are major considerations in transitioning technol-
ogy. The results are organized by the type of preprocessing and
feature type, where preprocessing refers to whether the data is
normalized or binary, and feature type refers to methods that
use components of the SVD decomposition as features or PCA
projections. In this section, we focus on the SVD features. We use
values of r given in Table 2, which were found to perform best
for each SVD-based method in testing.
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Fig. 1. A data sample selected from each of the four gestures, provided in the Dop-Net data set. Note that while the figures are scaled to be the same size, the time
axis varies between different gestures. (a) Click. (b) Wave. (c) Pinch. (d) Swipe.
H

Table 2
The values of r (number of selected singular vectors and values) used for each
of the SVD SVM methods.
Method r

Gaussian SVD SVM (binary) 4
Grassmann SVD SVM (binary) 5
Laplace SVD SVM (binary) 11
Gaussian SVD SVM (normalized) 3
Grassmann SVD SVM (normalized) 7
Laplace SVD SVM (normalized) 19

To perform classification using the kernels we trained a sup-
ort vector machine classifier, which was implemented in Python
sing SciKit-Learn (Pedregosa et al., 2011). In the discussion of
hese methods and the corresponding results we use the notation
* SVD SVM to denote the SVM based on SVD features and using
he kernel **. For example, Grassmann SVD SVM refers to the SVM
ased on SVD features and the Grassmann kernel.
The results of these experiments are displayed in Table 3.

he kernel methods based on the binary features performed in
he range of 83.16% to 89.94%, with the Grassmann SVD SVM
erforming worst, and the Gaussian SVD SVM the best.
When the normalized samples are used, the Gaussian and

aplace SVD SVMs see a performance decrease over binary sam-
les by 1.36% and 0.89%, respectively. The opposite is true for
he Grassmann SVD SVM which increases by 3.49%. We believe
he reduction in performance when using SVD derived features
ay be a result of an undesired invariance to magnitude and

ime variation, a consequence of using the singular vectors as
feature, and suggests that the singular values provide more
seful information in the case of binary data. It is possible that
he left singular vectors fail to represent certain non-stationary
tatistical behavior, as the time ordering is lost when calculating
360
Table 3
The performance accuracy, training time, and testing time with variance (written
as accuracy±variance) for the kernel methods using SVD features are presented
for the different preprocessing approaches. (a) Results for binary preprocessing.
(b) Results for normalized preprocessing.
(a)

Approach
(Binary)

Average
accuracy (%)

Test
time (s)

Train
time (s)

Gaussian SVD SVM 89.94 ± 0.0 17.8 ± 0.0 48.15 ± 0.27
Grassmann SVD SVM 83.16 ± 0.02 19.58 ± 0.14 54.15 ± 0.92
Laplace SVD SVM 87.02 ± 0.01 21.47 ± 0.01 61.8 ± 0.04

(b)

Approach
(Normalized)

Average
accuracy (%)

Test
time (s)

Train
time (s)

Gaussian SVD SVM 88.58 ± 0.0 17.9 ± 0.0 48.1 ± 0.01
Grassmann SVD SVM 86.65 ± 0.01 20.92 ± 0.01 58.85 ± 0.67
Laplace SVD SVM 85.13 ± 0.02 25.12 ± 0.02 76.41 ± 1.29

the singular vectors. We leave a detailed analysis of these feature
types for future work.

5.1.5. Performance accuracy for PCA features
In this section, we focus on the results based on the PCA

features described in Section 5.1.2.
We used a 5-nearest neighbor algorithm (KNN) as well as SVM

trained with the localized kernel Φ̃N,q defined in (3.4), which
we denote as PCA LocSVM*, where * denotes the degree of the
polynomial in (3.4); i.e., 2⌊N2/2⌋. We note that an expression
of the form

∑
j ajΦ̃N,q(|x− yj|Q ) resembles an average of aj at

x, weighted depending upon the distance of x from the point yj.
ere Q is the number of singular values used in our computation;

i.e., Q = 30. The optimal value of q is shown empirically to
be 2 for degree n = 16 and 18 for degree n = 64. This



E.S. Mason, H.N. Mhaskar and A. Guo Neural Networks 152 (2022) 353–369

s
o
p
a
x
s
t
t
m
p
n
i
i
t

r

P
s
L
v
T
a
b
a
t
r
d
c
n
t
a

f
o
L
t
n
k
s
H
d
i

5

n
d
t
&
t
s
u
a
p
c
b
d
o
f
t
4
P

w

uggests that in the 30-dimensional feature space, the data ‘‘lives’’
n an 18-dimensional sub-manifold. In view of the localization
roperty (3.8), many terms in this expression will be close to 0,
nd there are only a few terms involved in this average for any
depending upon its distance from various points. So in some

ense, this is also a nearest neighbor estimate. However, rather
han prescribing how many nearest neighbors to use, we allow
he parameter N to control this number effectively. Thus, how
any neighbors are counted effectively depend upon how many
oints yj are there in a neighborhood of x, the radius of this
eighborhood controlled by N . We note that the weights involved
n this averaging are not all positive. This may look unusual, but
s an essential requirement to get to good theoretical results on
he accuracy of approximation.

The binary results are shown in Table 4a, and the normalized
esults in Table 4b.

In the binary case, the PCA KNN performed identically with
CA LocSVM64 obtaining an accuracy score of 95.81% with very
mall variance. The smaller degree polynomial kernel PCA
ocSVM16 performed slightly worse by 0.98%. There is 2.48%
ariation when using the normalized data, shown in Table 4b.
he best performing method is PCA LocSVM64 achieving 96.81%
ccuracy. The PCA KNN achieved 95.36% which is 0.45% below the
inary normalized. Based on these results, we conclude the over-
ll performance between binary and normalized preprocessing
echniques are nearly equivalent, with the binary preprocessing
educing variance between methods. The fact that the high or-
er localized kernel based SVM method was able to accurately
lassify the PCA transformed data to a level comparable to a 5
earest-neighbor classifier suggests that in the reduced space
he data is dense, with the classes well separated. This property
llows the kernel to be highly localized, but generalize well.
In terms of computational time, PCA KNN and LocSVM16 per-

ormed similarly in both train and testing, performing inference
n the entire test set in less than a second, where as the PCA
ocSVM64 was an order of magnitude slower taking 5.69 s on
he test set, and three times slower taking 62.27 s to train. We
ote however that our localized kernel is a very newly introduced
ernel, and our computation is a brute force evaluation. It is a
ubject of future research to develop fast algorithms involving
ermite polynomial expansions based at the so-called scattered
ata,4 and in particular, the fast evaluation of the kernels taking
nto account their localization.

.1.6. Performance accuracy for CNNs
Another popular approach to micro-Doppler gesture recog-

ition are CNNs. We compare the proposed methods with two
ifferent mid-size CNN architectures used for gesture recogni-
ion (Kim & Toomajian, 2016; Kulhandjian, Sharma, Kulhandjian,
D’Amours, 2019), which we refer to as CNN1 and CNN2, respec-

ively. The input to both of these networks is the preprocessed
pectrograms (5.1) as described in Section 5.1.2, which were also
sed to extract the SVD and PCA features. This ensures that every
pproach uses the same preprocessed data, which is further zero
added in the case of the CNNs and PCA features. Both networks
onsist of 4 convolutional layers with ReLU activation followed
y 2 : 1 max pooling, and the prediction is made using a single
ense layer. For CNN1, the first layer consisted of 20 channels
f 8 × 8 filters, the second layer is 10 channels of 16 × 16
ilters, and the final layer is 5 channels of 32 × 32 filters. The
hree layers of CNN2 each consist of 5 channels with 5 × 5,
× 4, 2× 2 sized filters. Both networks were implemented using
yTorch (Paszke et al., 2019) and trained using cross-entropy loss

4 This term refers to data points whose location is not prescribed in a specific
ay, for example, zeros of Hermite polynomials.
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Table 4
The performance accuracy, training time, and testing time with variance (written
as accuracy±variance) for the kernel methods using the different PCA feature
based methods considered and different preprocessing schemes. Results are pre-
sented also for the two CNNs (Section 5.1.6). (a) Results for binary preprocessing.
(b) Results for normalized preprocessing.
(a)

Approach
(Binary)

Average
accuracy (%)

Test
time (s)

Train
time (s)

PCA KNN 95.81 ± 0.0 0.42 ± 0.0 22.49 ± 0.23
PCA LocSVM16 94.83 ± 0.0 0.72 ± 0.0 24.89 ± 0.05
PCA LocSVM64 95.81 ± 0.0 5.69 ± 0.0 62.27 ± 0.14
CNN1 90.06 ± 0.01 12.69 ± 0.01 14770.88 ± 749.08
CNN2 88.38 ± 0.01 4.79 ± 0.01 2162.59 ± 952.77

(b)

Approach
(Normalized)

Average
accuracy (%)

Test
time (s)

Train
time (s)

PCA KNN 95.36 ± 0.0 0.53 ± 0.02 23.51 ± 0.57
PCA LocSVM16 93.72 ± 0.01 0.73 ± 0.0 25.61 ± 0.1
PCA LocSVM64 96.18 ± 0.0 5.97 ± 0.15 64.53 ± 1.5
CNN1 92.85 ± 0.01 12.7 ± 0.01 14746.82 ± 342.77
CNN2 91.38 ± 0.01 4.75 ± 0.0 2133.72 ± 307.46

function with the adaptive moment estimation (Adam) optimizer
for 100 epochs, at which point the models had converged. A
mini-batch size of 16 and learning rate 0.001 was used. We also
experimented using networks with increased feature dimension,
but this led to over-fitting due to the small size of the data
set. Therefore, pursuing deeper networks was unlikely to yield
improved results. Though it is worth noting that due to the
small training set, CNN1 and CNN2 are still significantly over
parameterized.

The results are given together with those for the PCA features
in Table 4. With both the binary and normalized spectrograms,
the PCA KNN as well as the methods PCA LocSVM16 and PCA
LocSVM64 based on our localized kernels clearly outperform both
the CNNs both in terms of accuracy and in terms of training
time. The testing time for CNNs is comparable with that of PCA
LocSVM64.

In comparison with methods based on SVD features, we ob-
serve that the Gaussian SVM surpasses CNN2 by 1.56% in the
case of binary preprocessing. When normalized features are used,
CNN1 and CNN2 see accuracy improvements of 1.79% and 3.00%,
respectively. The improvement in CNN performance is clearly a
result of the increased information representation in the dynamic
range of the spectrograms, where as only the support is available
in the binary case.

In terms of time complexity in comparison with SVD based
features, CNN2 performs inference on the entire data set in 4.7–
4.8 seconds, but at the cost of 35 minutes to train. CNN1 is a
larger network and saw inference time increase to 12.7 s and
more than 4 h to train. In contrast, the kernel methods inference
time on the test ranged from 12.69 to 25.12 s and training times
in the range 48.15 to 76.41 s.

While the CNNs maintain a slight classification accuracy and
inference time increase over the SVD kernel methods, it takes
significantly larger amount of time to train. While the CNNs
appear to be faster than the kernel methods, the variation in
inference time is most likely a result of the fact that Pytorch is
a C++ library wrapped in Python, whereas Sci-Kit Learn is pure
python, which is much slower.

Overall, we found that using PCA transformed data was a
better feature selection than those based on the singular vectors
and values of the individual data points. In fact, it outperformed
both CNNs best performance by an average of 3% accuracy. Based
on performance, we conclude that the LocSVM64 kernel method
performs very closely to PCA KNN and best overall.
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Fig. 2. Plot of the first 100 average singular values for each gesture. (a) Binary preprocessing. (b) Normalized preprocessing.
Fig. 3. Classification accuracy averaged vs. the dimension r of the feature manifold for each method considered on both binary and normalized preprocessing schemes.
a) SVD-based methods. (b) PCA-based methods. In this plot the y-axis is 40% to 100%.
.1.7. Sensitivity to feature dimension
In this section, we investigate how well the proposed ker-

els perform when the total number of left singular vectors r
hanges. We carry out this experiment by using only the top r
ingular values and corresponding singular vectors of the data.
his can be viewed as function of information captured by the
eatures used to construct the kernels defined in Table 1. Ideally,
should be chosen large enough to retain a sufficient amount
f information required for optimal classifier performance. Since
he received signal spans a low-dimensional subspace, mentioned
n Section 3.2, we expect that the different methods will plateau
fter a certain dimension due to the maximal amount of informa-
ion being captured.

In Fig. 2, we show the singular values averaged over all realiza-
ions of each gesture. Clearly, for each gesture and preprocessing
echnique there is a sharp drop before r = 20 and the rest of the
ingular values are near zero. This suggests that the dimension of
he subspace features need not be large, this is expected based
n the micro-Doppler structure described in Section 3.2.
In Fig. 3(a) we plot the average classification error of the

methods based on SVD features for r = 1, . . . , 20 and the
different preprocessing techniques. For r = 1 all the SVD kernels
out-perform the Grassmann kernels by approximately 18%. This
discrepancy in performance reduces as r increases to 3–4, at
which point the performance of the Gaussian kernel begins to
drop, while the Grassmann and Laplace kernels perform relatively
constant with a few percent variance. At this time, we are not able
362
to explain the drop in performance of the Gaussian kernels, which
we find interesting.

The proposed approaches using PCA features, are shown in
Fig. 3(b). Here, the number r of PCA components is the dimension
of the ambient space, denoted by Q in (3.4). For the LocSVM
tests, we adjust the manifold dimension q to ensure that it is
no greater than the feature space dimension r . Specifically, for
values of r at or above 18, q is set to 18 for LocSVM64. For values
of r less than 18, q is set to r . Since LocSVM16 was found to
perform best for q = 2, it did not need adjusting to remain
below r , except in the case when r = q = 1. The performance
of all methods and preprocessing techniques perform similarly,
achieving accuracy in the mid 90% for sufficiently large r . Choice
of preprocessing seemingly has little effect on performance, ob-
served in the prior experiments as well. There is a also a large
drop off in performance as the dimension reduces from r = 10.
The KNN PCA and LocSVM64 degrade similarly, with classification
performance collectively falling by 30%. The LocSVM16 performs
worse, with accuracy dropping over 70% as r reduces from 10 to
1. This drop is expected since for very small r only a small amount
of discriminative information of the data is preserved.

5.1.8. Robustness to limited training data
In many radio-frequency machine learning applications, train-

ing data is difficult to collect and will likely be the limiting
factor of the model’s performance. In the case of gesture recog-
nition, not only is cost and effort high, but the data collection
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Fig. 4. Test error vs. training size for each PCA-based method and preprocessing approach considered. (a) Binary preprocessing. (b) Normalized preprocessing. In this
lot the y-axis is 70% to 100%.
Fig. 5. Test error vs. training size for each and preprocessing approach based on SVD. (a) Binary preprocessing is used. (b) Normalized preprocessing is used. In this
plot the y-axis is 70% to 100%.
involves human subjects (Gürbüz & Mason, 2020). Thus, it is
important to develop an approach that is robust to limited data.
As a result of the complexity of data collection, what is consid-
ered a large data set in micro-Doppler recognition problems will
pale in comparison to those used as benchmarks in the Deep
Learning community, such as ImageNet used in object recogni-
tion (Deng et al., 2009). For example, the Dop-net data set consists
of 2433 training samples and probably less testing samples,5
while ImageNet has 14 million.

We evaluate each approach on {20, 40, 60, 80}% of the training
data for five trials and average the results. Figs. 4 and 5 show
he classification accuracy for the methods based on SVD and
CA features for different training set sizes, respectively. The total
mount of data used for training varied between 487 and 1947
amples.
Fig. 4(a) shows the results for the PCA based features with

inary preprocessing. As expected, the classification accuracy in-
reases with the size of the data set, this is also the case for
ormalized data, shown in Fig. 4(b). For both the binary and
ormalized data preprocessing the PCA-KNN and PCA LocSVM64
emonstrate equivalent performance over the range of training
ata. In the binary case, all the methods and training sizes clas-
ification accuracy are in the range 85.82% to 96.30%, and 88.39%

5 Since the test set is not publicly released, we are assuming the test set is
mall compared to the training set, which is typical ML practice.
363
to 95.65% for normalized preprocessing. It is notable that in the
case of normalized preprocessing, PCA LocSVM64 does marginally
outperform PCA KNN by 0.14%–1.28%, while the PCA LocSVM16
under performs in every case, and by a larger margin when binary
preprocessing is used.

Ignoring the under performance of PCA LocSVM16, the perfor-
mance range reduces to 91.78% to 96.30% for binary preprocess-
ing and up to 91.32% and 95.69% for normalized preprocessing.
Considering the tight performance range and inconsistency of any
of the methods to consistently outperform, we conclude that the
methods are robust to limiting the amount of training data. While
this does not necessarily guarantee robustness when the data
set size gets significantly larger, in the case of PCA LocSVM64
and PCA KNN we expect this observed robustness will hold. The
reason is that when using PCA features the data manifold in
this case allows a greater separation among the classes than
that based on SVD features. Therefore, the PCA LocSVM64 can
better approximate the data with fewer samples. In theory, of
course, the main problem is to find the right feature space; the
straightforward approximation procedure developed in Mhaskar
(2020a) obviates the need to do any training at all.

The SVD features result in more variation of classification
accuracy and are shown in Fig. 5. With the exception of CNN2,
which has an accuracy drop at 40% train/test ratio, all the meth-
ods demonstrate a clear monotonic increase in accuracy with
increasing training data. The SVD features in the binary prepro-

cessing are shown in Fig. 5(a), where the range of classification
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ccuracy is 78.02% to 90.14%. The normalized preprocessed SVD
eature performance are shown in Fig. 5(b), with classification
ccuracy in the range of 78.02% to 91.79%. Overall, there is a clear
eduction in performance when using SVD features opposed to
CA. The PCA LocSVM64 outperformed the SVD features by 6.16%
nd 3.86% for the binary and normalized preprocessing methods.
In the binary case, CNN1 and CNN2 outperformed the methods

sing SVD features, except for CNN2 when the train/test ratio was
0%. Following the CNNs in classification performance was the
aussian SVD SVM, Laplace SVD SVM and the Grassmann SVD
VM, listed in order of descending performance. With normalized
reprocessing the Gaussian SVM outperforms all other methods,
xcept for CNN1 with 80% train/test ratio, in which case CNN1
nly outperforms by 0.41%.
Clearly, the proposed manifold learning approach appears ro-

ust to using just a few hundred samples. We attribute this
roperty to a number of factors, first of which is micro-Doppler
adar data can be very sensitive to multiple scattering and envi-
onmental effects. The choice of preprocessing clearly plays a role
n suppressing these nuisance variables, which is then improved
y the fact that using only r singular vectors as features further

reduces uninformative information.
Furthermore, the r dimensional subspace representation is

able to capture the time-varying properties of the data, which
correspond to important discriminative features in the original
time-series and improves generalization. This is further moti-
vated, by noting that the relationship between the subspace and
received radar signals, which span a low-dimensional subspace.
To understand this, we observe that in (3.14) the rank of the
pectrogram is determined only by the rank of the matrix S.
herefore, since the micro-Doppler signature consists of a linear
ombination of delayed and Doppler shifted signals from the
ominant scattering points, the rank of the resulting matrix S
s small, thus, it is well captured with only a small number of
ingular vectors. Furthermore, the proposed kernel provides good
ocalization at data points on the manifold, which we suspect
elps to isolate nuisance variables in the data.
It is very surprising that the CNN continues to perform well

ith limited training samples. While this may seem impressive,
t is difficult to generalize this claim to all micro-Doppler data sets
s the literature shows varying performance when similar models
re used on different data sets. We think this may be a result of
he fact that the training set is already so small to begin with,
o training either the full data set or only 20% does not make a
ignificant difference in performance due to the very large over-
arameterization of the neural networks. This is in contrast to our
ernel approach where the model does not over-parameterize the
ata. Furthermore, this peculiar performance may also be a result
f robustness added by the preprocessing used prior to input into
he CNN.

.1.9. Cross-subject generalization
Generalization is an important aspect in any machine learning

ask and seeks to ensure that the algorithm will perform well on
ut-of-sample data. In micro-Doppler radar, there are a number
f factors that can cause variation of the in- and out-sample
istributions, like environmental variations leading to changes in
he electromagnetic (EM) wave propagation medium, changes in
aterial from which the EM waves scatter off, and non-stationary
lutter and multiple scattering effects. For example, in synthetic
perture radar target classification, it has been observed that
eep learning classifiers will fail to generalize from synthetic
ata to measured data. This is attributed to the fact that neural
etworks tend to learn background surface statistics instead of
rue features of the object of interest (Jo & Bengio, 2017). In this
ase, the problem is that simulating the scattering off foliage is
364
omputationally intractable. These types of challenges have also
een observed in classification of communication signals, where
lgorithms will fail to generalize to data collected on different
ays.
Since the data set consists of collections from six different

ndividuals, it is an interesting question as to whether the man-
fold learning approach is robust to testing on individuals it was
ot trained on. To investigate this, we train on five of the six
ndividuals and test on the remaining one. We present these
esults in Fig. 6. From these results, it is interesting to see that
here is a 40% to 50% variation in performance between different
ombinations of methods and the person held out of training. This
uggests that there must be characteristics between each person
ot necessarily captured by the others as possible environmental
ffects are mitigated by the fact that the data is collected in a lab
xperiment.
For example, in the case of PCA features, all the methods per-

orm most poorly on Person B. In the binary case, PCA LocSVM16
erforms worse with accuracy score 6.17% and PCA KNN performs
est, scoring 24.20% accuracy. The performance increased by 20%
o 40% in the case of Person A and increased by 40% to 60%, in the
ase of either preprocessing choice. There is no consistent pattern
f out performance by any particular approach, but they do follow
he same trend of when they do and do not generalize well.

In the case of SVD features, the overall performance is lower,
anging from 18.77% for the Grassmann SVD SVM when tested on
erson B, up to 81.21% for CNN2 with normalized preprocessing
hen tested on person D. Similarly for PCA features, there is
o approach that consistently outperforms all other methods for
ach person. An interesting behavior is how the Grassmann SVD
VM performs worse than the Gaussian SVD SVM and Laplace
VD SVM on Person A and B, but then outperforms on person C ,
nd comparably for Persons D, E and F .
Based on these results it is clear that the choice of prepro-

essing does not have a meaningful impact in generalization
cross different persons, though there is a slight out performance
f normalization preprocessing. Clearly, for some persons the
ethods are able to generalize well, whereas in some cases they
o not. We suspect this may have to do with variation in how
ifferent persons make specific gestures and/or body size, which
an effect the distance and orientation of the scattering centers
o the radar. This could effect both the amplitude and support of
he spectrogram and no longer have the same distribution as the
raining data.

While these results do not provide a clear pattern, it motivates
he requirement for a more in depth and controlled study as
o what physical effects of the micro-Doppler data are impor-
ant for achieving good generalization. Thus, we conclude that
here is relationship between understanding the data from a
hysics perspective and what are appropriate approaches. Overall
his suggests that optimal performance is as much a function
f the ML algorithm, as it is the data collection approach and
reprocessing.

.2. Performance on Video-Data

The purpose of this section is to demonstrate that our kernel
an be used agnostically to the domain knowledge about the
ata. Toward this goal, we examine a small and simple video
ata set (without the audio component) where the objective is to
dentify which digit was spoken in the video. In Section 5.2.1, we
escribe the data set. Our methodology and results are described
n Section 5.2.2.
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Fig. 7. Two example frames from lip video data set.
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.2.1. Data set
We use the data described in Lieu and Saito (2011). The data

onsists of video clips of the same person pronouncing digits
rom 1–5 in English. Each of the five digits is recorded ten times,
ielding 50 total videos. Each video is cropped to a 70 × 55 area
round the mouth, with the position of the nose held constant,
nd then converted to grayscale. The problem is to read what digit
etween one and five the subject is pronouncing in each video
lip, effectively a signal classification problem among 5 classes
see Fig. 7).
365
.2.2. Methodology and results
For this data set, we test the two kernels: the Grassmann

ernel as used above as well as a standard radial-basis function
RBF) kernel, also referred to as the Gaussian kernel on Euclidean
pace, to establish a performance baseline using a support vector
achine to perform classification. Both the kernels and the cor-

esponding hyperparameters are defined in Table 5. Each frame
of the video clips is flattened into a 3850 × 1 row vector, yielding
a 3850 × τ signal for each clip, where τ denotes the number
of frames in the clip. For the RBF kernel, we further flatten the
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Table 5
The definition of various kernels used for lip video data set.
Kernel type Expression Parameters

Grassmann kernel exp(−γ (r − ∥UT
1 U2∥

2
F )) γ = 0.2

Euclidean kernel exp(−γ ∥x− x′∥2) γ = 2.1 · 10−7

Fig. 9. Classification accuracy vs. training/test data set split ratio on lip video
ata set. In this plot the y-axis is 40%–100%.

ignal into a (3850 × τ ) × 1 row vector. In accordance to the
xperiments in Lieu and Saito (2011), the training set consists of
0% data and the test data is the remaining 50%. Specifically, we
andomly choose 5 videos from each of the five digit classes to
se as training data, totaling 25 videos. We run each test 25 times
ith randomly-chosen splits each time and average the results
elow. We compare the performance of our methods to the PCA-
MD algorithm used by Lieu and Saito (2011), where the data

is transformed into a lower-dimensional representation using
principal component analysis, then the earth-mover’s distance
is calculated and used for nearest-neighbor classification (see
Fig. 8).

The Grassmann kernel performs the best at 95.84% accuracy,
outperforming the two methods (PCA-EMD and PCA-HD) origi-
nally used on the data set, as well as the basic Euclidean kernel.

As above, we perform the experiment using differently-sized
subsets of training data for the classifiers to evaluate the ro-
bustness of each approach to small training sets. Each approach
is evaluated on {10, 20, 40, 60, 80}% of the training data for
25 trials each, and each train/test split retains an equal ratio of
each class. The results are shown in Fig. 9. Similar to the DopNet
data set, performance does not vary significantly within 40%–80%
training size using the Grassmann SVM method, suggesting that
the Grassmann kernel has strong predictive power with just 20
samples in the training set.

6. Proofs

The proofs of both Theorems 4.1 and 4.2 involve the solution
f an interpolation problem. Accordingly, our first objective is
366
to study this problem when ΦN is an admissible kernel (cf.
efinition 4.2). We assume the set up as in Section 4.
For integer M ≥ 2, distinct points y1, . . . , yM ∈ X, and real

umbers f1, . . . , fM , we consider the interpolation problem
M∑

k=1

akΦN (yj, yk) = fj. (6.1)

ur first goal is to investigate when the collocation/normal matrix
ΦN (yj, yk)]Mj,k=1 is invertible and to estimate the norm of this
atrix.

heorem 6.1. Let M ≥ 2 be an integer, C = {y1, . . . , yM} ⊂ X,
= η(C) be defined as in (4.8), η̃ = min(1, η/3). We assume that
N is a (q, S)-localized kernel that satisfies (4.6), and further that
4.10) and (4.11) are satisfied. There exists a positive constant C such
hat if N ≥ C η̃−1, then the system of equations (6.1) has a solution
a∗k} satisfying

max
1≤k≤M

|a∗k | ≲ N−q max
1≤j≤M

|fj|, (6.2)

nd

max
1≤k≤M

⏐⏐a∗kΦN (yk, yk)− fk
⏐⏐ ≲ (Nη)q−S max

1≤j≤M
|fj|. (6.3)

It is convenient to formulate certain technical details of the
roof in terms of the notion of a regular measure. If ν is a (positive
r signed) measure on X, we denote by |ν| its total variation
easure. If d ≥ 0, we say that ν is d-regular if

||ν|||d = sup
x∈X
r>0

|ν|(B(x, r))
(r + d)q

<∞. (6.4)

For example, µ∗ itself is a 0-regular measure, with |||µ∗
|||0 being

the constant involved in (4.10). Another important example is
given in the following lemma.

Lemma 6.1. Let C = {y1, . . . , yM} be distinct points in X, η = η(C)
be as in (4.8), η̃ = min(1, η/3), and ν be the counting measure;
i.e., the measure that associates the mass 1 with each yj. Then

|||ν|||η̃ ≲
1
η̃q
. (6.5)

Proof. Let x ∈ X, r > 0, and J be the number of points in
C ∩ B(x, r). By re-arranging the indices, we may assume without
loss of generality that C ∩ B(x, r) = {y1, . . . , yJ}. Then the balls
B(yj, η̃) are pairwise disjoint and the union of these balls is a
subset of B(x, r + η̃). Therefore, using the conditions (4.10) and
(4.11) on measures of balls, we deduce that

J η̃q ≲

J∑
j=1

µ∗
(
B(yj, η̃)

)
≤ µ∗

(
∪

J
j=1B(yj, η̃)

)
≤ µ∗(B(x, r + η̃)) ≲ (r + η̃)q.

This implies (6.5). ■

Lemma 6.2. Let d ≥ 0 and ν be a d-regular measure. Let ΦN be a
(q, S)-localized kernel. If N ≥ 1 and r ≥ 1/N, then

sup
∫

|ΦN (x, y)|d|ν|(y) ≲ |||ν|||d(Nr)q−S(1+ d/r)q. (6.6)

x∈X ∆(x,r)
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ence,

sup
x∈X

∫
X
|ΦN (x, y)|d|ν|(y) ≲ |||ν|||d(1+ Nd)q, (6.7)

nd

sup
x∈X

∫
X
|ΦN (x, y)|2d|ν|(y) ≲ |||ν|||dNq(1+ Nd)q (6.8)

n particular, taking dν = gdµ∗, where g ∈ C(X), we have d = 0,
||ν|||0 ≲ ∥g∥∞, and obtain for N > 0

sup
x∈X

∫
X
|ΦN (x, y)||g(y)|dµ∗(y) ≲ ∥g∥∞. (6.9)

roof. Without loss of generality, we may replace |ν|/|||ν|||d by ν,
nd thereby, assume that ν is a positive measure with |||ν|||d = 1.

In this proof only, let x ∈ X, Ak = {y ∈ X : 2kr ≤ ρ(x, y) < 2k+1r}.
learly, (6.6) implies that ν(Ak) ≲ 2kqrq(1+d/r)q. Therefore, using
4.2), we deduce that

∆(x,r)
|ΦN (x, y)|d|ν|(y) =

∞∑
k=0

∫
Ak

|ΦN (x, y)|d|ν|(y)

≲ Nq
∞∑
k=0

∫
Ak

dν(y)
(Nρ(x, y))S

≲ Nq−Sr−S
∞∑
k=0

2−kS
∫
Ak

dν(y)

≲ (Nr)q−S(1+ d/r)q
∞∑
k=0

2−k(S−q).

This proves (6.6). To prove (6.7), we observe that∫
B(x,1/N)

|ΦN (x, y)|dν(y) ≲ Nqν(B(x, 1/N)) ≲ Nq(1/N + d)q

= (1+ Nd)q.

The same estimate is obtained for the integral over ∆(x, 1/N) by
sing (6.6) with r = 1/N . We arrive at (6.7) by adding these
stimates. Since (4.2) shows that |ΦN (x, y)| ≲ Nq for all x, y ∈ X,

we get from (6.7) that for any x ∈ X,∫
X
|ΦN (x, y)|2d|ν|(y) ≲ Nq

∫
X
|ΦN (x, y)|d|ν|(y) ≲ Nq(1+Nd)q. ■

Proof of Theorem 6.1. In this proof, we simplify our notation,
and write η in place of η̃. We consider first the measure ν as in
emma 6.1, so that with d = η, |||ν|||d ≲ η−q. If Nη ≥ 1, then we
may use (6.6) with r = η to obtain

max
1≤k≤M

∑
j̸=k

|ΦN (yj, yk)| ≤
∫
∆(yj,η)

|ΦN (yj, y)|dν(y)

≲ Nq(Nη)−S(1+ Nη)q ≲ Nq(Nη)q−S . (6.10)

In view of our assumption (4.6),ΦN (yj, yj) ≳ Nq. Further, we recall
that S > q. So, if Nη ≳ 1, the matrix L = [ΦN (yk, yk)]Mj,k=1 satisfies

max
1≤k≤M

∑
j̸k

|ΦN (yj, yk)| ≤ (1/2)ΦN (yk, yk), k = 1, . . . ,M.

The facts that L is invertible, and (6.2) holds, now follow from
well known facts in linear algebra, e.g., Mhaskar (2010, Proposi-
tion 6.1). The estimate (6.3) is clear from (6.2) and (6.10). ■

roof of Theorem 4.1. The conditions of Theorem 4.1 ensure
hose in Theorem 6.1 are satisfied with the kernel ΦN . Hence, a
olution of the equation in (4.12) exists and therefore, is automat-
cally the minimizer of the empirical risk. It remains to obtain the
 Ψ
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ther bounds in the theorem as indicated. Once more, we denote
˜ by η. We consider first the case when δ(x) ≥ η/3. Then using
emma 6.2 with ν being the measure as in Lemma 6.1, and then
sing (6.2) we obtain⏐⏐⏐⏐⏐
M∑

k=1

a∗kΦN (x, yk)

⏐⏐⏐⏐⏐ ≲ ∥F∥∞N−q
M∑

k=1

|ΦN (x, yk)|

≲ ∥F∥∞N−q
∫
∆(x,η/3)

|ΦN (x, y)|dν(y)

≲ ∥F∥∞(Nη)−S . (6.11)

ext, we consider the case when δ(x) ≤ η/3. In this case, there is
unique yℓ with ρ(x, yℓ) = δ(x), and yk ∈ ∆(x, η/3) for all k ̸= ℓ.
rguing as before, we see that⏐⏐⏐⏐⏐a∗ℓΦn(x, yℓ)−

M∑
k=1

a∗kΦn(x, yk)

⏐⏐⏐⏐⏐ ≲ ∥F∥∞(Nη)−S . (6.12)

herefore, using the Lipschitz conditions (4.7), (6.2), (6.3), we
onclude that
M∑

k=1

a∗kΦn(x, yk) − F (x)| ≲ |a∗ℓΦn(x, yℓ)− F (x)| + ∥F∥∞(Nη)−S

≤ |a∗ℓΦn(x, yℓ)− a∗ℓΦn(yℓ, yℓ)|
+ |a∗ℓΦn(yℓ, yℓ)− F (yℓ)| + |F (yℓ)− F (x)|

+ ∥F∥∞(Nη)−S

≲ (N + ∥F∥Lip)δ(x)+ ∥F∥∞(Nη)q−S . ■

In order to prove Theorem 4.2, we prove first the following
emmas, which will enable us to apply Theorem 4.1 with σN (f0F )
cf. (4.16)) in place of F and ΨN defined in (4.15) in place of ΦN .

emma 6.3. Let {ΦN} be a (q, S)-localized family of kernels, and
N is defined by (4.15). If dτ = f0dµ∗ for some f0 ∈ C(X), then {ΨN}

s a (q, S)-localized family of kernels.

roof. In this proof, let y ̸= x ∈ X, and δ = ρ(x, y)/3. Then
(x, δ) ⊆ ∆(y, δ) and

ΨN (x, y)| =
⏐⏐⏐⏐∫

X
ΦN (x, z)ΦN (y, z)dτ (z)

⏐⏐⏐⏐
≤

∫
∆(x,δ)

|ΦN (x, z)ΦN (y, z)|dτ (z)

+

∫
B(x,δ)

|ΦN (x, z)ΦN (y, z)|dτ (z)

≤

∫
∆(x,δ)

|ΦN (x, z)ΦN (y, z)|dτ (z)

+

∫
∆(y,δ)

|ΦN (x, z)ΦN (y, z)|dτ (z).

(6.13)

In view of (4.2),

|ΦN (x, z)| ≲
Nq

max(1, (Nρ(x, z))S)
≲

Nq

max(1, (Nδ)S)
,

z ∈ ∆(x, δ). (6.14)

The estimates (6.9), (6.14) and (6.13) lead to the fact that Ψn is
q, S)-localized.

Next, using (4.2) with x = y, we obtain

N (x, x) =
∫
X
|ΦN (x, z)|2dτ (z) ≲ Nq

∫
X
|ΦN (x, z)||f0(z)|dµ∗(z).

sing (6.9), we deduce that the last integral is ≲ ∥f0∥∞. Therefore,
(x, x) ≲ Nq

∥f ∥ . ■
N 0 ∞
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emma 6.4. Let {ΦN} be an admissible family of kernels, and
N is defined by (4.15). If dτ = f0dµ∗ for some f0 ∈ C(X), and

0(x) ≥ m(f0) > 0 for x ∈ X then {ΨN} is an admissible family of
ernels.

roof. We have already proved in Lemma 6.3 that {ΨN} is (q, S)-
ocalized. In order to prove that (4.6) holds with ΨN replacing ΦN ,
we need only to prove that

ΨN (x, x) ≳ Nq, x ∈ X. (6.15)

SinceΦN is admissible, we deduce from (4.7) that that there exists
c > 0 such that if ρ(x, z) ≤ c/N then

|ΦN (x, x)−ΦN (x, z)| ≲ Nq+1ρ(x, z) ≤ (1/2)|ΦN (x, x)|;
i.e., |ΦN (x, z)| ≥ (1/2)|ΦN (x, x)| ≳ Nq.

Using (4.6), we obtain

ΨN (x, x) =
∫
X
|ΦN (x, z)|2f0(z)dµ∗(z)

≥ m(f0)
∫
B(x,c/N)

|ΦN (x, z)|2dµ∗(z)

≳ N2qm(f0)µ∗ (B(x, c/N)) .

In view of (4.11), this leads to (6.15).
Next, if x, x′, y ∈ X, then using (4.7) and (6.9), we obtain⏐⏐ΨN (x, y)− Ψn(x′, y)

⏐⏐ ≤ ∫
X

⏐⏐ΦN (x, z)−ΦN (x′, z)
⏐⏐ |ΦN (z, y)|

× |f0(z)|dµ∗(z) ≲ ∥f0∥∞Nq+1ρ(x, x′).

This proves (4.7) with ΨN in place of ΦN . ■

Proof of Theorem 4.2. Since ΨN is an admissible kernel, we may
apply Theorem 6.1 with ΨN replacing ΦN and σN (f0F )(yj) in place
of fj (cf. (4.16)) to obtain {a∗k} such that

M∑
k=1

a∗kΨN (yk, yj) = σN (f0F )(yj) =
∫
X
ΦN (yj, y)F (y)f0(y)dµ∗(y),

j = 1, . . . ,M, (6.16)

and moreover, (cf. (6.2) and (6.3))

max
1≤k≤M

|a∗k | ≲ N−q max
1≤j≤M

|σN (f0F )(yj)|, (6.17)

and

max
1≤k≤M

⏐⏐a∗kΨN (yk, yk)− σN (f0F )(yk)
⏐⏐ ≲ (Nη)q−S max

1≤j≤M
|σN (f0F )(yj)|.

(6.18)

We note that the minimizer PT (τ ;V(C); F ) of the theoretical least
square loss is given by

PT (τ ;V(C); F )(x) =
M∑

k=1

a∗kΦN (x, yk). (6.19)

Further, in view of (6.9),

∥σN (f0F )∥∞ ≲ ∥f0F∥∞. (6.20)

Let x ∈ X and δ(x) > η/3. Then using the measure ν as in
Lemma 6.1, we obtain from (6.17), (6.6), and (6.20) that

|PT (τ ;V(C); F )(x)| ≤
∑

k:yk∈∆(x,η/3)

|a∗k ||ΦN (x, yk)|

≲ N−q
∥σN (f0F )∥∞

∫
y∈∆(x,η/3)

|ΦN (x, y)|dν(y)

−q −q q−S −S

(6.21)
≲ N ∥σN (f0F )∥∞η (Nη) ≲ ∥f0F∥∞(Nη) .
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This proves (4.18).
Next, let δ(x) ≤ η/3. Then there exists a unique ℓ such that

δ(x) = ρ(x, yℓ). So, using the fact that ΨN (yℓ, yℓ) ∼ ΦN (yℓ, yℓ) ∼
Nq, (6.18), and (6.20), we obtain⏐⏐⏐⏐a∗ℓΦn(yℓ, yℓ)−

Φn(yℓ, yℓ)
Ψn(yℓ, yℓ)

σN (f0F )(yℓ)
⏐⏐⏐⏐

≲ (Nη)q−S
∥σN (f0F )∥∞ ≲ (Nη)q−S

∥f0F∥∞,

and hence,⏐⏐⏐⏐a∗ℓΦn(yℓ, yℓ)−
Φn(yℓ, yℓ)
Ψn(yℓ, yℓ)

F (yℓ)f0(yℓ)
⏐⏐⏐⏐

≲ ∥f0F − σN (f0F )∥∞ + (Nη)q−S
∥f0F∥∞. (6.22)

Since

|F (yℓ)f0(yℓ)− F (x)f0(x)| ≤ ∥f0F∥Lipδ(x),

we deduce from (6.22), (4.7), (6.17), and (6.20) that⏐⏐⏐⏐a∗ℓΦn(x, yℓ)−
Φn(yℓ, yℓ)
Ψn(yℓ, yℓ)

F (x)f0(x)
⏐⏐⏐⏐

≲ (N + ∥f0F∥Lip)δ(x)+ ∥f0F − σN (f0F )∥∞ + (Nη)q−S
∥f0F∥∞.

(6.23)

Arguing as in (6.21), we get∑
k̸=ℓ

|a∗kΦn(x, yk)| ≲ ∥f0F∥∞(Nη)−S .

Hence, (6.23) leads to (4.19). ■

7. Conclusions

In Mhaskar (2020a), HNM had developed a very simple
method to approximate functions on unknown manifolds without
making any effort to learn the manifold itself (e.g., by estimating
an atlas or eigen-decomposition of the Laplace–Beltrami opera-
tor). This method involves a simple matrix vector multiplication
using a specially constructed localized kernel. However, the ap-
proach requires that the training data be dense on the manifold.
In this paper, we examine the accuracy of the approximation if
the training data is sparse instead, and we use either empirical
risk minimization or the theoretical square loss minimization. We
study this question in a very general setting of a locally compact
metric measure space, thereby initializing a theme for further
research where the unknown manifold is known to be a sub-
manifold of a known manifold rather than just a high dimensional
Euclidean space. In practice, the problem arises, for example, in
analysis of time series, for which the domain knowledge indicates
that the ambient space is a Grassmann manifold. We present a
detailed experimental study where we use different variations of
the localized kernel (3.4) to the classification of hand gestures
using micro-doppler radar data — a problem of interest in its
own right. Our results show that the SVMs trained with our
proposed localized kernel and PCA components of zero-padded
vectorized spectrograms outperform existing methods for micro-
Doppler gesture recognition, including some CNNs by a 3%–6%
margin of accuracy, but with a much shorter training time. To
demonstrate the fact that our theory is general purpose, we use
similar techniques for the classification of spoken digits from
a video data set, and demonstrate how an embedding of the
data set onto an unknown submanifold of a Grassmann manifold
yields superior results.
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