Attitude Observer on SO(3) with Time-Varying Reference Directions

Kanishke Gamagedara, Taeyoung Lee and Dong Eui Chang

Abstract— This paper introduces an advanced Lyapunov
stability analysis for an attitude observer that has been de-
veloped on the special orthogonal group. In particular, when
the attitude observer is constructed based on multiple direction
measurements toward known reference points, a local expo-
nential stability has been established by linearization, under
the assumption that those reference points are fixed in the
inertial frame. Several modifications have been proposed to
deal with reference directions changing over time. Here, we
present an alternative Lyapunov analysis to show that the
attitude observer still exhibits exponential stability for time-
varying reference directions, under the assumption that the
observer gain is sufficiently large relative to the rate of change
of the reference directions. These are illustrated by a numerical
example, followed by experimental results with visual marker
detection in an indoor space.

I. INTRODUCTION

There is a myriad of approaches in the development of
attitude observers [1], especially in terms of quaternions.
However, it is well known that there is an ambiguity in
representing the attitude with quaternions, as the three-
sphere, or the space of unit vectors in R* double covers
the configuration space of the attitude defined as the special
orthogonal group. When constructing an attitude control
system or an attitude observer in terms of quaternions, an
exogenous system is required to represent the attitude in a
consistent manner, and otherwise, undesired phenomena such
as unwinding may appear [2].

To avoid these issues, attitude observers have been con-
structed directly on the special orthogonal group. In par-
ticular, reference [3] presents a set of attitude observers
comparable to nonlinear complementary filters under various
assumptions. These attitude observers can be categorized by
the following criteria: whether the attitude measurement is a
set of direction measurements or complete attitudes; for the
former, whether the reference direction is fixed in the inertial
frame or not; whether a gyro bias is considered or not.

This paper focuses on the specific case where the mea-
surement for attitude determination is given by multiple
direction measurements toward known reference directions,
which may vary over time or depending on the location
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of the vehicle. This is particularly useful for landmark
based observers or indoor applications where the magnetic
field is corrupted. While such cases can be addressed in a
stochastic fashion with Bayesian framework [4], we consider
deterministic observers in this paper.

For time-varying reference directions, stability analysis
for attitude observers is presented in [5], with sufficient
conditions for persistent-excitation that is also applicable
to single direction measurements. This work is based on
assumption that there is no gyro bias. Later in [6], the attitude
observer presented in [3] is modified with a projection
operation to deal with time-varying reference directions and
a gyro bias concurrently.

This paper presents an alternative stability analysis for
the attitude observer of [3], and we show that it can handle
time-varying reference directions without need for additional
projection operation. While this results in a reduced region
of attraction compared with the projection based approach
of [6], the presented stability analysis on the special orthog-
onal group can be utilized in the developments of hybrid at-
titude observers or non-memoryless observers [7] to achieve
global attractivity in time-varying reference directions.

Next, the presented stability analysis is verified under
indoor attitude estimation experiments, where the reference
directions are comprised of the direction of gravity measured
by an acceleration, and visual landmarks. More specifically,
two feature points are placed in the environments, and they
are observed by a low-cost camera. Then, the video images
are processed via the OpenCV library to construct the line
of sight measurements represented in the body-fixed frame.
As the object undergoes both translations and rotations,
the reference direction changes over time depending on
the relative position toward feature points. The estimated
attitudes are compared against the output of an external
motion capture system with higher accuracy for validation.

In short, the main contribution of this paper is an alter-
native, advanced stability analysis on the special orthogonal
group for an attitude observer with time-varying reference
directions and a gyro bias, and experimental implementation
in attitude estimation with visual landmarks.

II. PROBLEM FORMULATION
A. Mathematical Preliminaries

The inner product (A, B) of two matrices or vectors A and
B of the same size denotes the usual Euclidean inner product,
ie, (A,B) = tr(ATB). The norm ||A| for a matrix or
vector A denotes the Euclidean norm or the Frobenius norm,
ie., ||A]|? = (A, A) = tr(AT A). The minimum eigenvalue



of a symmetric matrix A is denoted by Anyin(A) and the
maximum eigenvalue by Apax(A).

Consider the attitude dynamics of a rigid body. We define
the body-fixed frame and the inertial reference frame. The
attitude dynamics evolve on

SO(3) = {R € R**3 | RTR = I3,3, det[R] = 1},
where the rotation matrix R € SO(3) corresponds to
the linear transformation of the representation of a vector
from the body-fixed frame to the inertial frame. For any
R, R, Ry € 80(3),

(RR1, RRy) = (R, R2) = (R1R, RoR) (1)
and

|RR1 — RRs|| = ||R1 — Raf| = [|[RaR — R2R|.  (2)
For any R € SO(3), there exist 6 € [0, 27] and a unit vector
veS?={qeR3||q| =1} so that

R = exp(09) = I3x3 +sin 09 + (1 — cos 0)0?,

where the hat map A : R® — s0(3) is defined such that
iy =2 xy and 27 = —3 for any x,y € R3. The inverse of
the hat map is denoted by the vee map V : 50(3) — R3.

The following property is utilized in the subsequent de-
velopment of the attitude observer.

Lemma 1 For any Q € SO(3) and G = GT € R3*3,

(G(I3x3—Q), (Isx3—Q)) = 2(tr[G]—(vg, Gvg))(1—cos0)

3)
where cosf = (tr[Q] — 1)/2 and vg € S? such that Q =
exp(0vg).

Proof: Due to page limit, the proof is relegated to [8].

B. Attitude Observer Design Problem
The attitude kinematics equation is given by
R = RQ, 4)

where 0 € R? is the angular velocity of the rigid body
resolved in the body-fixed frame.

There is an angular velocity sensor that measures the
angular velocity of the rigid body up to a fixed bias. In other
words, the measured angular velocity 2, € R? is given by

Q. =0+, (&)

with a fixed bias v € R3.
It is assumed that the angular velocity is bounded.

Assumption 1 There is a positive constant Bq satisfying
12(8)]| < Ba, (6)
for any t > 0.

For the determination of attitude, suppose that there are n
distinctive objects, and the direction toward each of those
objects is prescribed with respect to the inertial frame.

Specifically, the direction to the i-th object in the inertial
frame is given by the unit-vector s;(t) € S?, and it is
assumed that s;(¢) is available as a function of time t.
For some positive weighting parameters w;’s, define a time-
varying, symmetric matrix G(t) € R3*3 as

G(t) = Z wys; (t)s; ()7 (7)

By definition, the matrix G(t) is always positive-
semidefinite, and consequently, all of the eigenvalues of G(t)
are non-negative. Here we assume that the second largest
eigenvalue of G(t) is strictly positive as follows.

Assumption 2 Let \y(G(t)) € R be the second largest
eigenvalue of G(t). There is a positive constant ¢ such that

A2 (G(t) > ¢ (3
for all t > 0.

This implies that rank(G(¢)) > 2 for all ¢ > 0. This is
to ensure that there are at least two non-parallel reference
directions available, so that the attitude can be completely
determined by direction measurements. We further assume
that the rate of change of reference directions is bounded.

Assumption 3 There is a positive constant d > 0 such that
IG®) < d, ©)
forall t > 0.

There are sensors attached to the rigid body that can
measure each direction of s;. The sensor measurement to
s; is given by b; € S, and it is represented with respect to
the body-fixed frame. Therefore,

bi = R's;, (10)

fori e {1,...n}.

We wish to design an attitude observer to determine the
attitude and the gyro bias. It is required that the observer
is expressed in terms of the measurements of the directions
and the angular velocity, without need for constructing the
attitude directly from the direction measurements at every
time instance.

III. ATTITUDE OBSERVER ON SO(3)

A. Error Variables

Let R € SO(3) and ¥ € R? be the estimated values of
R and +, respectively. Define the estimation error variables
Er € R**3 and e, € R® as

Er=R—R,
ey =7 —7-

Y
12)

Since the estimgtion error for the i—}h reference direction
is given by ||b; — R”s;||? = |RTs; — RT s> = ||E}7;$¢||2 =



(ELsi, Ets;) = (sis] Er, ER), it is natural to introduce the
attitude estimation error function as

n

1
Y(R,t) = Z iwi<siserRv Eg) =

i=1

1
§<GER7ER>~ (13)

Several properties of the error variables are listed as
follows.

Lemma 2 (i) The derivative of the error function U(R,t)
with respect to R along SR = Ri for 1 € R? is
DzU(R,t)-6R=1)-ep, (14)

where the attitude error vector er € R3 is defined as

= (R"GR— R"GR)” szR si X b, (15)

=1

(ii) The error function W(R,t) is bounded by

1 _ 1
101||ERH2 <U(Rt) < 102||ER||27 (16)
for some positive constants 0 < ¢ < ca.
(iii) The attitude error vector er satisfies
1 1 1
56?(1 - §H1571:z||2)HERII2 < lerl® < 5&lIER|?
(17)

with the constants ¢y, ca introduced in (16).
(iv) Let Q@ = RRT € SO(3). For any z,y € R3,

o ({Ql s — Q) < 207 (1~ F| Bl

(18)
y" (2[Q)sxs — Q) < 4l [lyll, (19)
Q- Q)Y x < V2| Bgll|«]. (20)

Proof: Due to page limit, the proof is relegated to [8].
|

B. Attitude and Bias Observer

Consider the following observer presented in [3]. For
positive constants kg, k., the attitude and bias observer is
formulated as

m \

2L

R[Q 77 kRBR] B
kye 22)

2
Il

By linearizing the observer dynamics, it has been shown that
this observer guarantees local exponential stability when the
reference directions are fixed, i.e., $;(¢) = 0 [3]. Later in [6],
the restriction of fixed reference directions is eliminated by
introducing a projection operator in the bias observer.

In this paper, we show that in fact the above observer
can handle time-varying reference directions without need
for additional modifications. More specifically, we present
an alternative Lyapunov stability analysis without relying on
linearization, to show local exponential stability of (21) and
(22) when the reference direction is time-varying.

Theorem 1 Suppose kr > 2d/c3. Then, (R,%) =
locally exponentially stable.

More specifically, for a € (0, 2) choose a constant |
satisfying

(R,7) is

ci (1—a)kr—d
4]43,}/7 2C2k—y ’
%(1 —2a){(1 —a)3k
(cokp + B2)2 + CQkR(l — 2a)
Define the matrices My, Mo, Mz € R?*? gs

1o, _V2 1., 2
Mlzl% PR R VA

2 g
M, — [;{(1 ~a)e

1t < min {

} (23)

o

kg — d} — peaky  —p/2(cokp + B2)

—uV2(c2kp + B2) 2p(1 — 2a)
Let the constants 3 and o be
)\max(MQ) )\min(M?))
=y ——t, 0= ———. (24)
ﬂ Amin(Ml) Amax(M2)

Then, for any trajectory starting from an initial condition
satisfying

B(R(0),0) + 2]1%”@7(0)”2 <2, (25
the estimation error exponentially converges as
1)1 < Bll=(0)[le™ 5, (26)
where z = (| Er|,|le4|) € R%
Proof: See Appendix. [ ]

Now, we characterize the region of attraction for
(R(0),7(0)) € SO(3) x R? estimated by (25). It is clear
that the region of attraction projected to R? enlarges to R?
in the semi-global sense as k, — co. Next, for the region of
attraction for the initial attitude estimate, (25) is not useful
as v, and therefore 67(0) are not available. To remedy this,
suppose that the bound of the bias is available as follows.

Assumption 4 There is a positive constant B., satisfying
V[l < By @7

In this case, it is reasonable to assume the initial estimate

of the bias is selected to satisfy (27), i.e., |¥(0)|| < B, so

that |le,(0)|| < 2B,. Assuming that k., is chosen sufficiently
large to satisfy

2

ky > —1,
acy

(28)

the equation (25) can be rewritten as an inequality for the
initial attitude estimate as
2

_ B
V(R(0),0) <2 <a01 - kw> .

v

(29)

Applying (16), a more conservative estimate for the initial
attitude estimate guaranteeing exponential convergence is

8 B2
E 2= - 2.
IEr(0)]" < o <a01 ky)



For a € (0,3), 0 < ¢1 < ¢, and 0 < k,, the supremum of
the right hand side is 4. This corresponds to 90° of error in
the initial attitude estimate.

In summary, this paper presents the following stability
properties of the attitude observer defined by (21) and (22):
(1) local exponential stability is guaranteed even for time-
varying reference directions if the gain kp is sufficiently
large relative to the rate of change of the reference directions;
(ii) to address the case of time-varying reference directions,
there is no need to introduce a projection operator in (22) as
presented in [6]; (iii) the initial error in the bias estimation
can be arbitrarily large provided that k. is sufficiently large;
(iv) with regards to the initial attitude estimation error, the
inequality (29) guarantees exponential convergence, and it
covers at most 90° of errors. All of these are obtained by
rigorous Lyapunov stability analysis, and these are unique
contributions.

IV. NUMERICAL EXAMPLE

We consider a vehicle equipped with an accelerometer to
measure the direction of gravity and a visual sensor to detect
feature points. The position of the vehicle is available as a
function of time as z(t) = (£,0,0) € R in the inertial frame.
The direction of gravity is es = (0,0,1), and there are two
feature points located at 7 = (5,0,1) and x2 = (7, -2,0).
Therefore, the three time-varying reference directions are
given by

x1 — x(t) x9 — x(t)
lzs — =& [z = =(B)||

The weights are chosen as wy = we = 1 and wg = 2, and it
can be numerically shown that ¢y = 1, co =4, and d = 1.14
for ¢ € [0,10].

The true attitude trajectory is chosen as R(t) =
exp(téy) exp(tés) exp(téy) and Q(t) = (1 + cost,sint —
sint cost, cost +sin®t) with R(0) = I3,3. The actual gyro
bias is v = (1,0.5, —1).

The initial estimate are R(0) = exp(0.57¢;) and 7(0) =
(0,0,0). The observer parameters are selected as

Sl(t) = S2(t) = Sg(t) = €3.

€e=0.9, a=0.5¢, B,=1.65|v],
2d B2

kr =5 =253, k,=—_ =1.065.
cl€ acie

The corresponding simulation results are presented in Figure
1, where the estimation errors converge to zero for time-
varying reference directions considered in this example.

V. EXPERIMENTAL RESULTS

The proposed observer is also validated with an indoor
attitude estimation experiment. As it is performed within
a building in a crowded urban area, the magnetic field
is not consistent. As such, the direction measurements are
constructed by gravity measured by an acceleration, and
visual landmarks captured by a camera.

More specifically, the hardware configuration for the pre-
sented experiment is as follows. Two distinctive markers with
the pattern of ArUco markers [9] are placed in the lab, and
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Fig. 1. Simulation results

they are fixed in an inertial frame as shown in Figure 2a.
A wide angle camera (Logitech C930e 1080P) is used to
identify the markers. It is connected to a computing module
(NVidia Jetson TX2) which utilizes the ArUco library and
OpenCV [10] to detect the markers and compute the line of
sight represented in the body-fixed frame (refer Figure 2b for
the image captured by the camera and the detected markers
visualized).

Further, a 9-axis inertial measurement unit (VectorNav
VN100 IMU) is firmly attached on the camera to measure
the direction of the gravitational acceleration and to measure
the body angular velocity. It is connected to Jetson TX2 over
a serial port. The normalized vector to the each marker from
the camera and the normalized direction of the gravitational
acceleration are used as by (t), b2(t), and bs(t), respectively.

The corresponding directions in the inertial frame are
measured accurately by a motion capture system composed
of five VICON infrared cameras. Reflective markers are
attached to the camera and each ArUco marker, and their
actual orientation and the position is measured by the VICON
system at 100 Hz. The actual position of the camera and each
marker is communicated to Jetson TX2 from the VICON
server through a wi-fi connection. This data is used to
calculate s1(t) and so(t), while s3(t) is chosen to be e3.

Finally, the presented observer is implemented at Jet-
son TX2 via multi-threaded programming in C++, which
execute the multiple tasks of data acquisition, image pro-
cessing, observer computation, and data logging simulta-
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Fig. 2. Experimental setup

neously. The observer runs at 30 Hz corresponding to the
frame rate of the camera. Further, an artificial bias of
~v=(0.1,0.3,—0.2) rad/sec is added to the angular velocity
measurement to understand the effects of a gyro bias over a
short period of time. The tests are performed while rotating
and translating the camera arbitrarily.

The experimental results are illustrated in Figure 3. In
these plots, the attitude measured by the VICON system is
considered as the true attitude, against which the estimation
errors are computed. For the experimental results presented
in this paper, the initial guesses for the observer were set such
that ||Er|| = 2.828 and ||E,|| = 1.690. The corresponding
initial attitude estimation error is close to 180°, and therefore,
it is beyond the presented region of attraction that is possibly
conservative. However, it shows desirable convergence for
both of the attitude estimation error and the gyro bias error.

APPENDIX
A. Proof of Theorem 1
Proof: Let a Lyapunov function be

_ _ 1
Vo(R,7,1) = W(R,t) + o les | (30)
Y

From (16), this is positive-definite and decrescent about z =
0. For a € (0, ), define an open domain about z = 0 as

D = {(R,7) € SO(3) x R* | Vo(R,7,t) < 2ac;}. (31)
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Fig. 3. Experimental results



Using (14), and (21), the time-derivative of V}, is given by

. 1
Vo(R,7,t) =er - (—Q+Q, — 7 — kregr) + k—ev-év
Y

1 .
+ §<GER,ER>.

Substituting (5) and (22) with é, = —~, and from (9),

. 1
Vo(R,7,0) < —knllenl + SdlErl.  (32)

Using (16),

4
|Er(t)]? < oY) < 8a, (33)

where the second inequality is obtained by (31). Thus, from
an,

1
56(1 = )| Brl|® < |ler” < dac3 < 4c3.

34
5 (34)
Substituting this into (32)

= 1

Vo(R,7,t) < =5 {ci(1 - a)kr — d}| ER[*.  (35)

Therefore, if kr > %gl > ﬁ, VO is negative-
. . . 1 1 . .
semidefinite, which follows that z = ( is stable in the

sense of Lyapunov. Also, the given domain D is positively

invariant. i.e., if (R(0),7(0)) € D then (R(¢),%(t)) € D for
all ¢t > 0.
For p > 0, let the augmented Lyapunov function be

V(R,%,t) = Vo(R,7,t) + p(Rey) - (Q — QT)".

Using (16) and (20), it satisfies

(36)

2TMyz < V(R 7,t) < 27 Myz,

where the matrices M; and M, are positive-definite due

to (23), and therefore, V(R,#¥,t) is positive-definite and
decrescent.

Next, we derive the time-derivative of V (R, 7, t). Utilizing
(35), we just need to find the time-derivative of the last, cross
term in (36). First, using (4) and (21),

Q = RQRT — R(QZ -5 — kReR)/\RT
= R(—€7 + kReR)ART
= {R(—ey + krer)}"RR" £ 0qQ,

with wg = R(—e, + krer) € R3. Thus,

L (Res) - (@~ QT)} = R(Qer — kyer) - (@ — Q7)Y

dt
+ (Rey) - (0oQ + Q%)Y (37)

From (20), (6) and (17), the first term of the right hand side
of (37) satisfies

R(Qe, — kyer) - (Q — QT)Y

k
< V2(Bolles |l + <52l Er) Rl

NG (38)

Using the hat map identity, (2A+AT2)Y = (tr[A][3x3—A)z
for any z € R? and A € R3*3, the last term of (37) is
expanded as

(Rey) - (0Q + QT0q)" = (Re)” (tr[Q)5x3 — Q)wg
= (Rey)" (tr[Q]I3x3 — Q)(R(—ey + krer)).
In view of (18) and (19),
(Rey) - (0QQ + QT wq)"
<-2(1- i\IERIIQ)II%II2 +4kr|leyllller]-
Further from (17) and (33),

(Re,) - (0oQ + QT dg)Y
< —2(1 - 2a)|le4||* + 2v2kgcalle ||| Erll.  (39)

With (38) and (39), we obtain an upper bound of (37), which
is combined with (35) to obtain

V(R,7,t) < —2TMzz < —oV (R, 7,1), (40)

where the matrix M3z € R2?*2 is positive-definite from
(23). Therefore, z = 0 is exponentially stable, and it is
straightforward to show

V(R(t),7(t),t) < V(R(0),7(0),0) exp(—at),
which implies (26). |
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