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Abstract—Cellular networks provide an essential connectivity
foundation for a sizable number of mobile devices and appli-
cations, making it compelling to measure their performance
in regard to user experience. Although cellular infrastructure
provides low-level mechanisms for network-specific performance
measurements, there is still a distinct gap in discerning the
actual application-level or user-perceivable performance from
such methods. Put simply, there is little substitute for direct
sampling and testing to measure end-to-end performance. Un-
fortunately, most existing technologies often fall quite short.
Achievable Throughput tests use bulk TCP downloads to provide
an accurate but costly (time, bandwidth, energy) view of network
performance. Conversely, Available Bandwidth techniques offer
improved speed and low cost but are woefully inaccurate when
faced with the typical dynamics of cellular networks. In this
paper, we propose CUP, a novel approach for Cellular Ultra-
light Probe-based available bandwidth estimation that seeks to
operate at the cost point of Available Bandwidth techniques while
correcting accuracy issues by leveraging the intrinsic aggregation
properties of cellular scheduling, coupled with intelligent packet
timing trains and the application of Bayesian probabilistic
analysis. By keeping the costs low with reasonable accuracy, our
approach enables scaling both with respect to time (longitude)
and space (user device density). We construct a CUP prototype
to evaluate our approach under various demanding real-world
cellular environments (longitudinal, driving, multiple vendors) to
demonstrate the efficacy of our approach.

I. INTRODUCTION

Cellular connectivity has advanced tremendously over the
past decade. While early smartphones labored heavily under
the umbrella of early 3G connectivity, the LTE networks
today can easily offer speeds in excess of tens of megabits
per second and beyond enabling high-quality video streaming
and increasingly diverse and immersive applications. Network
designs for 5G aim to radically expand bandwidth and connec-
tivity options with special consideration for next-generation
applications and the significant implications posed by the
Internet of Things (IoT)[1].

However, while peak speeds have increased dramatically,
the converse is that network dynamics have also increased
as well. Users have the potential to experience ultra-fast
connectivity in one moment only to experience painfully slow
speeds in the next due in part to mobility, competing clients,
or ill-advised WiFi connectivity. From the perspective of both

the network og)erator and the end user, these dynamic expe-
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riences are extremely frustrating. Moreover, such challenging
scenarios tend neither to be consistent nor persistent making
troubleshooting especially problematic. Although LTE offers
numerous mechanisms for understanding lower level wireless
dynamics, the gold standard is still to directly test network per-
formance at the application layer. Unfortunately, the majority
of existing techniques are ill-suited to enable testing at the
scale (user density) and timescales (longitudinally) required
for proper network instrumentation.

In one group, techniques that fall into the category of
Achievable Throughput (AT) tests are considered accurate but
expensive. AT tests attempt to download volumes of data over
a period of time giving a precise measurement of what the
mobile device (User Equipment - UE) would have experienced
at that point in time. Notable examples include SpeedTest.net
[2], iperf3 [3], and Mobiperf [4]. The perceived accuracy
of the tests stems from moving actual data and competing
with existing flows over a period of time. However, large
bulk downloads can crowd out other useful traffic making it
difficult to conduct overlapping tests in the same area [5].
Most importantly, bulk downloads are extremely expensive
from the perspective of the UE, taking up to tens of seconds
to complete and consuming significant amounts of energy,
making it difficult to run tests longitudinally.

In contrast, Available Bandwidth (AB) techniques are cheap
and potentially quick but are considered less accurate. Avail-
able Bandwidth techniques leverage precisely constructed
packet sequences and observe the resulting packet dispersion
amongst said sequences. Thus, rather than continuously ex-
erting pressure over time as with AT tests, AB tests selec-
tively nudge against the bottleneck link capacity through a
series of fixed and/or adaptive probing sequences. Canonical
examples from the literature include PathChirp [6], IGI [7],
and others [8, 9]. Critically, AB techniques are exceptionally
vulnerable to the effects of aggregation present in cellular,
which can nullify the expected dispersion effects. Although
some work has been able to overcome aggregation effects in
WiFi networks [10, 11], the multiple levels of control and
increased complexity of UE dynamics (mobility, roaming)
make AB characterization incredibly challenging. However, it
is precisely because of those increased dynamics that makes a
better instrumentation tool at scale tremendously compelling.

Thus, the focus of this paper is to try to address this
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fundamental juxtaposition: (1) AT techniques are considered
accurate but too expensive to run longitudinally due to UE
energy cost and network bandwidth cost, while (2) AB tech-
niques allow for longitudinal and large scale observation due
to their low cost but are minimally useful due to their high
inaccuracy in cellular networks. In this paper, we propose a
novel mechanism — CUP, as a Cellular Ultra-light Probe-based
available bandwidth estimation approach that solves this very
juxtaposition. We posit that CUP provides sufficient accuracy
to gain useful insights while operating in an exceptionally
efficient manner to enable scaling across time and space (user
density). The key contributions of our paper are as follows:

e TBS - Effective Congestion Indicator: We show how
Transport Block Size (TBS) fluctuation can be a useful
indicator to determine when network capacity has been
exceeded. Through the careful construction of a packet
probing train, we demonstrate how fluctuations in TBS
and the resulting timing dispersion can be used to derive
AB quickly and efficiently.

e Bayesian Change-Point Estimation Algorithm: We focus
on utility from a trending standpoint, which allows us to
introduce a probabilistic model that translates the problem
of estimating AB into a change-point detection problem
over the observed measurements. Our Bayesian approach
carefully considers the large uncertainties involved in the
estimation process. By utilizing Gibbs sampling, we solve
the problem and further manipulate the sampled posterior
distributions to assess the estimated result.

e Real World Experimental Evaluation: We present real-
world experiments to validate the effectiveness of CUP by
creating a working prototype to conduct both laboratory
and real-world experiments. Our prototype operates with
typical HTTP, requiring zero modifications to the client it-
self, and with all measurement provided by a Linux-based
web server. We conduct several longitudinal experiments
in different cellular environments, e.g., mobile versus
static, indoor versus outdoor. Moreover, our prototype
demonstrates that CUP can be deployed across both time
and space (node density) offering an important new tool
for measurement at scale.

II. RELATED WORK AND MOTIVATION

In this section, we start with an overview of existing work
on bandwidth measurement in LTE. We then discuss the
challenges of estimating AB and present motivating real-world
experiments to demonstrate the shortcomings of existing AB
solutions in LTE.

A. Cellular Network Measurement

Broadly speaking, existing work on cellular network mea-
surement and characterization can be classified into two ap-
proaches: passive and active. Passive works focus on mon-
itoring bandwidth by observing network activities surrepti-
tiously [12-17]. While some works [15, 17-19] attempt to
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Figure 1: Illustration of the concepts of AB and AT.

capture physical layer information to infer bandwidth condi-
tions, most make traffic observation based on upper layer in-
formation (e.g., the transport layer). For example, an empirical
study on LTE [13] deployed a large-scale monitoring system to
examine instantaneous AB through packet timing information
at the transport layer. Unencrypted nature of control packets
between UE and eNodeB was leveraged to determine overload
in LTE networks [12]. Another recent work tries to improve
AB estimation accuracy by considering special packet patterns
in LTE [16].

Unlike passive approaches, active approaches require in-

jection of probe traffic [2-4, 20-24]. Bandwidth can be
measured using different metrics. The most common metric,
AT, measures the maximum throughput a user can achieve
by launching large TCP flow(s). For example, popular tools
iperf3 [3] and SpeedTest [2] fall into the category of AT
estimation. Critically, AT estimation is expensive in terms
of time, bandwidth, and client energy. Moreover, given the
limited bandwidth resources of the cellular network, the ag-
gressive traffic from an AT test can potentially degrade the
performance of other users [5]. To avoid these shortcomings,
we focus on another metric — AB [6, 20-22].
AB Estimation: The metric of AB specifically refers to the
available or residual capacity of a link. Unlike an AT test
that can suppress existing flows (as illustrated in Fig 1), AB
measures the unoccupied portion of the bandwidth. Critically,
AB estimation tries not to compete with existing traffic making
the AB test less intrusive and potentially less costly.

To estimate AB, existing solutions adopt the idea of packet
pairs or sequence trains. The general approach is to send a
series of probe packets from a server to a receiver with par-
ticular variations on packet timing and sizes. AB solutions can
be largely divided into two categories: the Packet Gap Model
(PGM) and the Packet Rate Model (PRM). PGM approaches
(e.g., IGI [7], Spruce [25] and Abing [26]) send packet
pairs with specific gaps and analyze the packet dispersion to
infer AB. In contrast, PRM approaches (e.g., PathLoad [27],
PathChirp [6], and TOPP [9]) send packet sequences with
different rates and estimate AB by discerning when the probe
traffic induces network congestion. Fundamentally, AB esti-
mation relies on an expected correlation between network
conditions and probe traffic observations.

Estimating AB in Wireless Networks: The relationship be-
tween network condition and probe traffic observations can
vary under different types of networks, e.g., Ethernet, WiFi,
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and LTE. As many known tools are designed for wired
networks, they often fail in modern wireless networks due
to different transmission schemes (such as frame aggregation
in WiFi and Transport Block batching in LTE). In the past
few years, many attempts [10, 11, 20, 21] have been made
to improve AB estimation on wireless networks. In WiFi,
WBest+ [11] improves on a previous work, WBest [8] (a
PRM approach on WiFi), to mitigate the detrimental impact
of frame aggregation on estimation accuracy. Another effort,
AIWC [10], leverages the embodied information in aggregated
frames to improve AB estimation accuracy in modern WiFi
networks.

In cellular networks, several recent works [20, 21, 28] try

to revamp PathChirp [6] for LTE. The improvements mostly
emphasized two aspects: 1) re-designing the probe packet
pattern to cope with the high dynamics of LTE [20, 21],
and 2) adopting curve fitting approaches to handle the packet
batching effects [20, 28, 29]. Although the estimation accuracy
was improved, those methods inevitably involve increasing
the duration of the test to alleviate the impact of packet
aggregation. To better understand exactly how aggregation
impacts existing AB solutions, we conduct further exploration
in Section II-B.
Beyond AB: To improve TCP performance in cellular net-
works, several works (e.g., Sprout [30], Verus [31]) exploit
ongoing TCP packet delays for bandwidth inference to fa-
cilitate better congestion control. These approaches require
lengthy packet exchanges and kernel space modifications at
both clients and servers while CUP offers a light-weight
solution with server-only modifications. As a PGM-based user-
space tool, QProbe [32] attempts to detect if the bottleneck is
on the cellular radio link or not (a binary decision), but does
not measure the bandwidth. CUP, on the other hand, provides
a numeric AB estimation.

B. Challenges of Estimating AB in LTE

LTE Downlink Scheduling: LTE is designed to be highly
flexible in radio resource allocation among multiple devices.
The LTE downlink uses OFDMA (Orthogonal Frequency Divi-
sion Multiple Access) to enable fine-grained channel resource
allocation in the time and frequency domains. As shown in
Figure 2, the channel resource is divided into a grid structure.
The frequency domain (vertical) is divided into 180-kHz
sub-channels. The time domain (horizontal) is divided into
continuous 0.5 ms time slots. Thus, a minimal resource unit
(i.e., one cell in the grid) is called Physical Resource Block
(PRB). For every Transmission Time Interval (TTI) of 1 ms,
the base station (eNodeB) will make a scheduling decision to
assign PRBs to different UEs. As Figure 2 shows, different
UEs can obtain different shares of the channel over time.

When assigning PRBs, eNodeB will also decide the proper
Modulation and Coding Scheme (MCS) for transmitting the
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Figure 2: Channel resource allocation on LTE downlink.
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Figure 3: AB estimation (PathChirp) on Ethernet v.s. LTE
under similar network setting.

data!. Combining PRBs and MCS, the total data that is
scheduled to transmit to a UE during a TTI is called a
Transport Block (TB), and its size is referred to as Transport
Block Size (TBS). From the perspective of upper layers (e.g.,
transport layer), since a TBS (up to 9 KB) is usually larger than
the packet (e.g., < 1500 B), the packets are often transmitted
in batches. This makes TBS-based transmission in LTE bursty.
Experimental Study of AB Estimation on LTE: Through
real-world experiments, we will show how the batched trans-
mission can harm traditional AB estimation methods. In this
experiment, we run PathChirp on a smartphone (Huawei
Nexus 6P) over LTE. PathChirp sends packets with exponen-
tially decreasing packet gap, and estimates AB by searching
for a turning point where the packet queuing delay (i.e.,
packet sending gap minus the receiving gap) starts to rise.
For comparison, we set up a local wired network with a wired
link capacity of 70 Mb/s (similar to the typical capacity of a
10-MHz carrier with 2x2 MIMO under ideal RF conditions).
To emulate traffic load, we first measured the throughput on
LTE via iperf3 (i.e., 40 Mb/s). Next, we created similar
throughput conditions (A7 = 40 Mb/s) on the wired network
by generating 30 Mb/s of cross traffic (using iperf3) from
another wired client. In this case, we know the ground truth
of AB should be less than or close to AT, according to their
definitions.

In Fig 3, we plot the packet queuing delay in a packet
sequence as output from PathChirp. The test probes vary from
10 Mb/s to 200 Mb/s. The rectangles indicate the packets that

'The scheduling policy of how to assign PRBs and MCS is vendor-specific
and can adopt different principles [33].
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arrived at the same time. We start by looking at the Ethernet
network. As Fig 3a shows, the queuing delays gradually
increase when the probe rate reaches the AB. The estimated AB
is around 30 Mb/s which is close to AT (40 Mb/s). In contrast,
in Fig 3b, the queuing delay pattern on LTE is dramatically
distorted and shows bursty patterns. As a result, the estimated
results are erroneously high (75 Mb/s) which is considerably
above AT.

Implication: Unsurprisingly, the batching in LTE breaks the
expected correlation between network conditions and probe
observations (e.g., consistently increasing delay once capacity
is exceeded). It is the need for revisiting this relationship and
designing a new AB estimation solution for LTE that motivates
this paper.

III. SYSTEM DESIGN

In this section, we introduce the design of our proposed AB
estimation solution for LTE networks. The designed solution
adopts the traditional methodology of probe packet-based
measurement. However, in contrast to existing methods, we
devise a new physical layer metric — TBS Fluctuation — to
capture network congestion conditions when induced through
probe packet observations. The designed metric serves as an
effective network congestion indicator (Section III-A). Based
on this metric, we design new probe packet train pattern to
cope with the aggregation effect of LTE (Section III-B). The
proposed design is implemented on an HTTP-based packet
probing system [34] which requires no modification on the
client side (Section III-C). In particular, we discuss how we
can leverage the packet observations to infer the designed
network metric. Along the discussions in this section, we
conduct real-world experiments to validate the various design
principles.

A. TBS Fluctuation as the Network Congestion Indicator

Conceptually, the goal of estimating AB is to measure the
portion of bandwidth that a UE can obtain without inducing
congestion to existing traffic. Thus the key problem of mea-
suring (AB) can be reduced to the following: Can an end host
detect if it is experiencing congestion? If the problem can
be solved, the task of AB estimation can then be reduced to
searching for the maximum traffic rate to the UE that does not
cause congestion. To discern congestion, we design a network
congestion indicator — TBS Fluctuation. As we know that
the TBS is adaptively determined for UEs according to their
channel quality and traffic competition and that channel quality
for a UE is likely to be relatively consistent within a small time
window (e.g., 1 second?), variations in TBS should be highly
correlated with traffic competition and congestion.

Namely, the TBS received at the UE is supposed to be
relatively consistent when the bandwidth resource is ample
and requires no or light competition. Otherwise, if a UE is

2 As observed in our real-world experiment, the MCS (which is proportional
to CQI-Channel Quality Index) is largely consistent over 1-2 seconds.
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Figure 4: The PHY layer observation under different network
competition conditions.

experiencing serious bandwidth competition with other UEs
(e.g., network congestion), the TBS assigned will likely vary.
This is because the eNodeB trying to maintain a proportional
fair schedule® among UEs will inevitably prioritize the needs
of different UEs over multiple TTIs. As a consequence, a UE
will receive varying TBS assignment over time. Technically,
by observing the variation of TBS for a UE over time (i.e.,
TTIs), we are able to detect whether or not a UE is experi-
encing congestion. Therefore, we define TBS Fluctuation (T'F")
to describe the degree of TBS variation. For a series of TBS
assigned to a UE, T'BS;,i =1,..., N, we have:

TF; = |TBS;y1 — TBSi|,i=1,..,N —1 (1)

Experimental Validation: To demonstrate how TBS Fluctu-
ation can discern congestion (traffic competition), we employ
two LTE phones (Huawei Nexus 6P and Google Pixel, both
running Android 7.1.1) on a production LTE cellular network
in the U.S. with both phones connected to the same radio
cell. We use one phone as a test UE to generate CBR traffic
on the downlink. The second phone generates cross traffic via
iperf3. We first send 200 packets at a CBR of 5 Mb/s to the
test UE without competing traffic. Then, we launch iperf3
traffic to the competing UE and repeat the same CBR traffic
to the test UE. The PHY layer trace was collected from the
test UE using Mobilelnsight [35].

In Fig 4, we plot the PHY trace collected both without
(Fig 4a) and with (Fig 4b) competing traffic, in a cell with
the 15 MHz carrier on the 1900 MHz band equipped with
the outdoor Distributed Antenna System (DAS). Similar char-
acteristics were observed during the test in the conventional
macro cell using the same carrier and bandwidth. Since the

3 According to the survey [33], a practical scheduler should guarantee fair
throughput distribution among users.
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iperf3 traffic w.r.t. different send rates.

two runs were conducted within several seconds of each other,
the overall bandwidth and channel conditions are expected
to be consistent over this period of time [36]. The observed
difference should be largely attributable to the generated
competing traffic. As shown, the MCS under both cases is
similar as the channel quality was relatively consistent. When
there is no competing traffic (left-hand plots), the patterns of
assigned PRBs and TBS show as smooth horizontal lines with
few spikes. However, in the presence of competition (right-
hand plots), the PRB and TBS patterns fluctuate with a large
number of spikes. The different observations of TBS clearly
show promise for revealing traffic competition.

Analytic Evaluation: To further evaluate TBS Fluctuation,
we extend the previous experiment to vary the send rate of
the CBR traffic to the test UE from 1 Mb/s to 30 Mb/s. Fol-
lowing the same pattern for each send rate, we send ten 200-
packet sequences in the absence and presence of the iperf3
competing traffic. From the captured PHY layer traces, we
calculate the TBS Fluctuation over all TBS values and take
the aggregated result of each 200-packet sequence. In Fig 5,
we plot the comparison of the measured TBS Fluctuation in
the absence and presence of competing traffic. The points
represent the mean and the bars indicate the standard deviation.
We see that the TBS Fluctuation gradually increases with
the sending rate. As expected, the iperf3 competing traffic
causes higher TBS Fluctuation compared to the case without
iperf3. It is noteworthy that the TBS Fluctuation remains
quite small in the low send rate range (i.e., 1 to 5 Mb/s) and
then quickly increases past 7 Mb/s. This potentially reveals
that the AB under that experimental environment was roughly
7 Mb/s. We arrive at this conclusion as the traffic experienced
marginal competition when the send rate was less than 7 Mb/s
while the competition indicated by TBS Fluctuation became
more severe above 7 Mb/s. This observation informs our self-
induced congestion probe packet approach, which will be
discussed in the following subsection.

B. Probe Train Design

Following the intuition of leveraging the TBS Fluctuation as
a congestion indicator, we adopt the concept of self-induced
congestion to form the probe packet sequence (a.k.a train). The

general idea is to send a train with monotonically increasing
probe rate to search for a “tipping point” where the network
condition changes from uncongested to congested. Thus the
AB can be approximated with the probe rate at the “tipping
point”. To minimize the probe traffic cost, we design the probe
train as a “one-shot” test that requires only injecting one packet
train to complete the test, rather than doing iterative packet
streams such as PathChirp and IGI do.

To generate different probe rates, we vary the packet gaps
and fix packet sizes at the Maximum Transmission Unit
(MTU) size as different packet sizes may experience signif-
icantly different delays over LTE [37]. For our baseline, we
employ a linear pattern to our probe rate. However, given the
batched transmission in LTE, when the probe rate is high,
a large number of packets may be aggregated together, thus
generating only a few timing measurements at the receiver. To
cope with this aggregation effect, we want the probe rate to
grow more slowly at higher probe rates. This means that we
should assign more packets to the higher rates to increase the
number of measurements. Following this intuition, the probe
rate can be designed as a two-stage model that 1) starts with
linear increase, and 2) from a certain point, changes to grow
in a logarithmic manner.

Technically, the probe train can be designed to search for
AB from zero* to a pre-defined maximum rate R,,q5;. This
maximum rate is an adjustable parameter that we can use to
set a “target range”. Namely, the proposed AB test only gives a
numerical bandwidth estimation below R,,... We denote the
probe rate at the i-th packet in the train as R;, (i = 1,2, ..., L,
where L is total length of the probe packet train). Then the
packet gap between the i-th and (i 4+ 1)-th packet can be
computed as G; = 7%, where P is the packet size which
is set to MTU. Assuming the probe rate increasing step is
A; =Riy1 — R;, we have

A, =0- min(%, 1) 2)
We define a cut-off gap G, as the point where the probe rate
increase switches from linear to logarithmic. When the probe
rate is small such that the packet gap is greater than this value
(% > 1), the probe rate grows linearly with the slope 6. When
the probe rate reaches a certain value that makes the packet
gap less than the cut-off gap (g—c < 1), the increasing step A
proportionally decreases along with the packet gap 9 - ‘gj—z By
doing this, we ensure that the increasing step becomes small
when the probe rate increases. In addition, this design forces
the probe rate to increase by § for each time duration of G..
Overall, once G., £ and R, are set, the 6 can be computed
using a search algorithm (e.g., binary search).
Relief Gaps: In LTE, the short-term channel fading (e.g., fast
fading due to movement) may result in transient congestion
effects. This short-term congestion can confound the actual

4Since it is impractical to generate a zero probe rate, we define the lowest
probe rate as a small value (i.e., 250 Kb/s).
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Table I: Packet Train Format Parameters

Ge The cut-off packet gap for switching the probe rate increase from linear to logarithmic.
System | N The packet frequency to insert one relief gap.

Gr The width of a relief gap.
Custom L The total number of packets in a probe train.

Rmaz  The maximum probe rate for searching the AB.

congestion that results from exceeding the actual AB. While
the congestion caused by transient channel fading is often
resolved fairly quickly, congestion effects due to exceeding
the AB should persist as long as the bandwidth is saturated.
In order to mitigate the impact of short-term congestion, we
intentionally insert fixed large gaps (pauses) into our probe
packet train at fixed packet intervals that we call relief gaps.
These relief gaps alleviate short-term congestion and prevent
early transient issues from distorting later higher rates in the
probe train.

Although there is a valid concern that adding relief gaps
can potentially slow down the overall probing sequence, this
is alleviated by TBS Fluctuation, which captures the variation
of TBS, not the average of TBS. As long as the probe traffic
creates enough queuing pressure on eNodeB before inserting a
gap, the TBS Fluctuation will not fundamentally change while
the mean of TBS may drop by adding the gaps. The setting
of relief gap can be defined by A and G,.. Namely, we insert
a gap of G, for every N packets.

Packet Train Parameters: Overall, a packet train can be
described with the following parameters: G., £, Raz,» N
and G,.. We divide the parameters into two groups: system and
custom parameters, as shown in Table I. The system parameters
are set to yield optimal system-wide performance regardless
of bandwidth conditions, including G., N and G,.. The custom
parameters are adjustable based on the needs, and include
L (i.e., data cost) and R,,... In the next subsection, when
describing implementation, we also discuss the settings of the
system parameters that work the best. The custom parameters
settings will be described in the later section of experimental
evaluation (Section V).

C. A Client-Free Probing System

To implement such a probe train design, it would normally
be expected to require dedicated applications at both the
server (sender) and client (receiver) to coordinate the packet
sequences. This kind of implementation can significantly
impede the ability to deploy a solution. To that end, we
leverage an HTTP-based packet transmission system derived
from the shared source code for [34] to achieve a simplified
client implementation with sufficient measurement samples.
Furthermore, we leverage a TCP Timestamp-based solution
that in turn allows us to infer TBS statistics of the client which
we describe shortly.

System Overview: The CUP system poses as a regular web
server that handles regular HTTP transactions (HTTP GET)
to enable simple traversal of the network. However, the server

implements a customized TCP-like stack based on libpcap
which enables network and transport layer control. The result
is traffic that appears to be TCP-like but allows for the short
bursts of data in the packet probes to be sent in any desired
sequence and timing.

The workflow for CUP begins by the client initiating a test
by sending an HTTP GET request to the server (i.e., visiting
a URL) following a normal TCP 3-way handshake. The client
can also send the probe train parameters in the HTTP GET
request or tie the parameters to a particular URL (object).
Upon receiving the request, the server incorporates the timing
sequence in the returned HTTP response. With full control
over the network and transport layers, the data packets are
sent in the form of the desired probe train.

Notably, TCP ACKs, as provided by the client, are used to

infer packet reception statistics at the client side. Critically,
we increase the number of available ACK samples by utiliz-
ing reordering from TCP Sting [38] and expanded upon in
RIPPS [34]. The simple but clever idea from TCP Sting was
to swap the first and the last packet in a certain window (e.g.,
every 5 packets). The reordering will disable delayed ACKs by
the client (typically a 2:1 data to ACK ratio), thus causing the
client to send a single ACK for every received probe packet
(1:1 ratio).
Inferring TBS using TCP Timestamps: With increased ac-
knowledgements traversing the generally uncongested cellular
uplink, we utilize the TSval carried in the TCP timestamp
option to infer packet arrival timing at the client. As the times-
tamp option is enabled by default for almost all mobile phones
(Android and iOS devices), timestamp-based measurement
works have become quite popular [39, 40]. The modern mobile
devices can provide at least a 3.3 ms/tick resolution® which
reveals the packet arrival timing information at a reasonable
granularity. As TBS describes the overall data size delivered
in a TTI (1 ms), the packets in a TB usually appear to arrive
at the same time (recall the rectangles indicated in Fig 3).
Intuitively, we can infer the TBS using the total size of the
packets whose returned TCP ACKs have the same 7Sval. Since
the time span of a T'Sval is not necessarily equal to a TTI, the
calculated result needs to be further divided by the timestamp
resolution (e.g., 3.3 ms/tick for Android phones) to compute
the average transmitted data size per TTL

To estimate the timestamp resolution of a client, we exploit
the first pair of packets in the probe train to measure the value.

5 Android (after Android 6.0.0) and iOS devices have 3.3 ms/tick and 1
ms/tick resolution, respectively.
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By assigning a constant large time gap® (i.e., 40 ms) between
the first sent two packets, the receiving gap is largely equal to
the sending gap due to the low data rate. Thus the resolution
can be computed from the difference of the TSval values of
the first two TCP ACKs.

We conducted real-world experiments to evaluate the TBS
inference accuracy from the timestamps. Overall, the inferred
value tends to overestimate especially when the actual TBS
is high as the coarse resolution of the timestamp can amplify
the impact of aggregation. To overcome this issue, we apply
a moving minimum filter (of window size 2) over the inferred
series. The filtered result significantly improves the inference
accuracy which helps control the estimation error within 2 Kb
for all tested TBS values (ranging from 1 Kb to 30 Kb).

Probe Packet Train System-Defined Parameter Setting:
We set G. to 3.33 ms as the maximum timestamp resolution
for most smartphones. The setting guarantees that we can
obtain at least one unique 7SVal value for every time probe
rate increases by J. For the relief gap setting, we set the
gap width G, to 20 ms (which yields merely 500 Kb/s data
rate). Under modern LTE networks with typical downlink
rates greater than 10 Mb/s [37], this interval is sufficient
to empty the UE’s buffer at the eNodeB. For A/, we have
to ensure that the amount of probe traffic is sufficient to
generate at least one TBS inference value. Thus, the size
of the probe traffic before each relief gap should be at least
maz(TBS) x max(Timestamp Resolution). If we assume that
the packet size is equal to the MTU, we set N' = 20 (=~
max(TBS) x max(Timestamp Resolution) /MTU).

IV. A BAYESIAN CHANGE POINT-BASED ESTIMATION
ALGORITHM

In this section, we introduce the estimation algorithm to
calculate the AB. Recalling the intuition behind the probe train
design, as the sending rate increases along the train, we lever-
age TBS observations to capture the network state changing
from uncongested to congested when we observe the increase
in TBS fluctuation. The AB can then be estimated as the probe
sending rate corresponding to that change point. However,
due to the high variation in LTE channel characteristics and
signal conditions, the TBS observations can be so noisy that a
naive threshold-based approach is inadequate to pick the right
change point. To cope with the diversity and noise involved in
the observations, we design a probabilistic Bayesian change-
point detection algorithm (Wu et al. [41]).

Pre-processing: As discussed earlier, TBS fluctuations can
indicate whether or not packets experienced network conges-
tion. Therefore, given a sequence of TBS fluctuations T'F,
we can mark each T'F as uncongested (0) or congested (1)
by comparing it with a threshold value T'Hy. We define this
binary expression as BT'F. If the i-th TBS fluctuation T'F}
is less than the threshold (T'F; < T Fy) we set BTFE; = 0.

5The large gap forces the TSval to increase by more than one.

Otherwise, BT F; = 1, indicating that congestion is observed.
In order to set the proper T Fp, we inspect the empirical dis-
tributions of T'F' under uncongested vs. congested conditions.
We find that TF is usually below 3 Kb when uncongested
and above 3 Kb when congestion is experienced. Thus, we
set the cutoff T'Hy as 3 Kb.

Model Design: With the self-induced congestion design
of probes trains, it is expected to see that the probe traffic
would experience little congestion at the beginning of the
train at the low sending rate. After a point where the sending
rate exceeds AB, the probe traffic would have to compete
against existing traffic thus leading to congestion. Given the
congestion indicators BT F, we can search for the change
point 7 where TF' starts to change from uncongested to
congested. Technically, we divide the sequence of {BTF;}
(t € [1,N]) into two segments: the first segment includes
primarily zeros and the second segment contains mostly ones.
To formulate this problem, we assume BTF follows the
Bernoulli distribution with parameter p. Particularly, p takes
different values in the two segments: pg in the first segment,
and p; in the second segment. The change point is then located
at 7 (1 < 7 < N). Overall, the BT'F' can be expressed as:

. _Jpo :0<i<T
BTF Bernoullz(p),wherep{ b T<i<N

3)

By adopting the Bayesian approach, the distribution of pg
and p; can be generated by the conjugated prior distribution
Beta with ag, by and aq, b; as hyper-parameters.

po ~ Beta(ao, by), p1 ~ Beta(ai,br) 4

By assigning the proper hyper-parameters, we can apply the
prior knowledge of py < p; to imply that the first segment
usually has the smaller mean than the second segment because
it contains more zeros. For example, we can set ag = 9, bg = 1
and a; = 1, by = 9 to convey the presumption that only 1 (bg)
out of 10 (ag + by) TBs can experience size fluctuation with
no network congestion, while 9 (b;) out of 10 (a; + b;) TBs
will do so under network congestion.

The goal of the model is to find a proper 7 to maximize the
joint probability, which is maximum a posteriori estimation:

T= argmax//p(BTF, T7p07p1)dp0dp1 (5)

Estimating 7 via Gibbs Sampling: To solve this problem,
we adopt Gibbs sampling to estimate the latent parameters.
One of the merits of using a sampling method is that it
reveals the complete posterior distributions of all the latent
parameters: pg,p; and 7. These distributions can help further
assess the quality of estimation (as will be discussed soon).
In Section V, we will further experimentally evaluate the
performance of the inference approach.

Interpreting Estimation Results: Once the sampling
process converges, we can look into the estimated parameters
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to tease out AB. Ideally, the probe rate at the change point 7
indicates AB. However, we need to further assess the quality
and confidence of such estimation by checking py and p;. We
define a congestion threshold py to assess if the BT'F' segment
(i.e., the first or the second) experienced network congestion.
We will explore setting pg in Section V. Based on the values
of py, p1, and py, we have the following cases:

(1) po < pe < pi1: This is the desired case where AB is
indicated by 7.

(i) po > pe: This means that the change point is selected
in a position where even the first segment involves
congestion. So we discard the result as it portends
overestimation.

(iii)) po < pe and p1 < pg: This means the entire probe
packet train does not incur network congestion. It
indicates that AB is above the pre-defined upper bound
7?'m,aa?-

Incorporating Loss: To integrate another important perfor-
mance impact factor — loss, we include the probe packet loss
into estimation. Intuitively, given the estimate returned from
the change point algorithm, we proportionally discount the
result to the actual probe traffic delivery rate. Therefore, the

final AR estimation can be expressed as change_point_result
received
sent

V. PERFORMANCE EVALUATION

In this section, we conduct extensive real-world experiments
to evaluate the performance of the proposed method under
various network conditions. Generally, the evaluation requires
the knowledge of the ground truth AB on the cellular channel
at the time of the test. However, it is impractical to obtain
this information, since it requires access to the internal state
of base stations. As a workaround, we leverage Achievable
Throughput (AT) as a reference and evaluate AB by analyzing
the relationship (e.g., difference, correlation) between AT and
AB.

We start by exploring a valid TCP variant for the reference
measurement, so we can verify the effectiveness of AB esti-
mation (Section V-A). Next, we investigate the performance
of CUP by examining the correlation between AT and AB
under a longitudinal test run (Section V-B). We continue with
a drive test across many radio cells and locations to study
performance under different mobility profiles. Finally, we
conclude with an evaluation of CUP across varying network
infrastructure equipment and examine the accuracy of CUP
from an operational perspective.

A. Measurement Efficacy

Since AT measurements can vary with different congestion
control algorithms (i.e., TCP variants), a proper variant is
needed to reveal bandwidth variations in LTE. In this case, we
tested three TCP variants as the potential AT reference choices,
including Vegas, Westwood and CUBIC. In order to validate
the effectiveness of different AT measurements as well as
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Figure 6: (a) AB (PHY Trace) vs. AT}
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our AB estimation method, we intentionally cause bandwidth
variation by putting the test phone inside and outside of a
metal box. The phone registered the Reference Signal Receive
Power (RSRP) of —97 dBm (53%) and —107 dBm (30%)
when inside an outside of the box, respectively. We run AT
tests by downloading a 5 MB’ file using TCP, followed
by an AB test using our CUP approach, periodically every
10 seconds. For each TCP variant, the experiment lasts 20
minutes, with the phone spends 10 minutes each outside and
inside the box. The AB probe train parameters were set to
L = 400, Rypae = 30 Mb/s and py = 0.2. We use Mobile
Insight to capture the PHY layer trace for each AB test.
Results and Analysis: We first study the relationship
between measured AB versus different TCP throughputs. In
Fig 6, we compare the AB estimation to various TCP variants
measurement. In Fig 6a, TCP throughput is on the x-axis and
the estimated AB from the PHY trace on the y-axis. Each
point is the average of two measurements. We see that the
AT measured from Westwood and Vegas are consistently low.
This is because the two algorithms utilize delay observations
to adjust the sending rate (i.e., congestion window), which is
ill-suited under dynamic LTE network conditions. Therefore,
the resulting AT is constantly suppressed and barely reacts to
the channel variation when the phone was inside vs. outside

7While popular speed tests” tend to use much larger downloads, we opt for
a more representative size of the actual user traffic, such as 8-10 mega-pixel
photos or segments of HD adaptive video streams.
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of the box. Fortunately, CUBIC shows evident variation in
throughput. In Fig 7, we clearly see that CUBIC throughput
starts to drop after the phone was put into the box. In
addition, the overall CUBIC throughput is greater than our
AB estimation, which matches our expectation according to the
definitions of AT versus AB. Combining both Fig 6a and Fig 7,
we select CUBIC throughput as the bandwidth reference. In
further experiments, the AT result refers to the throughput
measured using CUBIC.

On the other hand, in Fig 6b, we also compare the AB from
PHY trace (y-axis) versus AB from TCP Timestamps (x-axis).
The result shows clustered dots around the dashed line (which
indicates the ideal case). It means that the TCP timestamp
inference approach can yield very close estimate of what PHY
trace provides, hence alleviating the need for the PHY trace
collection, which usually requires extra effort to obtain such
low-level information.

B. Longitudinal Evaluation

To evaluate how well CUP captures bandwidth variation
over the long term, we conduct longitudinal overnight ex-
periment in a macro cell with 15 MHz carrier on the 1900
MHz band. During this experiment, we periodically run the
AT test followed by two AB tests. Thus the throughput test
serves as a reference for the following two AB tests. To
explore the optimal probe train parameters, we conducted
guided empirical experiments to evaluate the performance of
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Figure 10: Absolute estimation error.

difference parameter settings, i.e., Ryqz, £, and pg (for infer-
ence algorithm). Due to the space constraints, the experiment
results for searching the optimal parameters are not included.
As a result, the best set up under the given LTE environment
is that R,pa = 30 Mb/s, L = 400, and pg = 0.2. The
experiment lasted for 12 hours starting from 9:00 PM to 9:00
AM. In total, we perform 702 tests with 88% of them being
valid.

In Fig 8, we plot the time series of results. The dots
represent individual measurements and the lines are smoothed
measurements over the 20-minute moving average window.
We start the analysis by noting the noisiness of the individual
AT measurements, which is a reflection of the typical cellular
dynamics on this metric. We see that the curves of the
smoothed AT and AB show a good match in the overall
tendency. To further characterize the degree of the match, we
calculate their Pearson correlation coefficient over smoothed
result in a 5-hour window in Fig 9. Notably, the inclusion
of probe loss dramatically improves the estimation result
correlation with a median coefficient of 0.7 across per-window
values. Critically, without loss, the median coefficient is only
0.03. This means that probe loss is one of the key factors to
reconcile AB and AT measurements. Further work is likely
needed to improve performance though as we will see in the
next test and later in the paper, we believe that the results from
an operational standpoint are more than sufficient, particularly
given the extremely low cost of CUP.

Another aspect to consider in the estimation performance is
the absolute estimation error between AT and AB. As shown
in Fig 10(a), about 80% of AB estimates are smaller than
the corresponding AT result, which matches our expectation
of an AT test typically being more aggressive than an AB
test. Overall, about 75% of AB tests stay within +2 Mb/s
of AT tests (the shaded area). To show how the difference
is distributed across different bandwidth conditions, Fig 10(b)
plots the estimation difference (AT- AB) vs. AT. As the figure
shows, most of the overestimation from AB tests occurs when
AT is very low (e.g., 2 Mb/s). This overestimation is mostly
due to the different sensitivities of the two tests reacting to the
loss. As TCP (especially CUBIC) is highly sensitive to loss,
any loss can acutely dampen the AT test result. In addition, the
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AT test takes longer time to finish, making it more likely to
encounter, potentially multiple, loss events, exacerbating the
impact of loss upon AT test. In contrast, our AB estimation
merely takes linear discount of the loss rate. However, when
the AT test result is outside the low region, AB estimates
gradually fall under the AT test as the impact of loss gets
diluted.

Test Cost Analysis: We examine the test cost using two
metrics, the data volume and test duration, based on the above
experiments. For data cost, AT and AB tests in our experiments
have static costs each: an AT test costs 5 MB and an AB
test costs 540 KB (£ = 400). When using popular AT test
tools (e.g., iperf3), the traffic cost can be much higher and
proportional to the target bandwidth.

In terms of duration, the test time can vary with bandwidth
conditions, especially for AT test. In Fig 11(a), we plot the
distribution of time cost of both types of tests. We can see
that CUP’s AB estimation generally takes less than 1 second
to finish (with the median of 800 ms). However, the AT test
costs at least several seconds and goes into the tens of seconds
to finish. As shown in Fig 11(b), the duration of AT tests
grows with the target bandwidth decreasing. In contrast, the
duration of the proposed AB test is consistent over different
bandwidth conditions. Benefiting from being lightweight and
non-intrusive, the AB test is a great choice for longitudinal
network monitoring.

C. Drive Test Evaluation

To evaluate CUP under dynamic conditions, we conducted
a drive test through the downtown and suburban areas of
the town in the US Midwest. Similar to the longitudinal
experiment, the phone was set to run the AB and AT tests
periodically in a back-to-back manner. The GPS trace along
with cell information provided from Mobile Insight were
recorded. The test covered over 21 km of distance, including
9 stops (each lasted for 20 minutes) to capture measurements
while stationary. Overall, the experiment lasted for 5 hours and
generated 1,360 test runs across 38 radio cells. Fig 12 plots
the drive route and illustrates cell information, including cell
ID, labeled by color, and Reference Signal Received Quality
(RSRQ), indicated by the circle radius. The radio cells belong
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Figure 12: Drive test route map. Colors denote different cells
and the radius represents RSRQ.
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to 12 eNodeBs, with 8 eNodeBs hosting 26 conventional
macro cells, and 4 eNodeBs hosting 12 cells using outdoor
DAS. We observed 4 frequency bands across macro cells, and
3 frequency bands across DAS cells.

Cell-based Analysis: By categorizing the test results by
the cell ID, we plot the measured AT and AB in Fig 13. We
use cells with the large number of stationary test samples (10
macro and 2 DAS cells), with similar number of two carriers
in use, and only cell 11 using a third carrier. In addition,
we also plot the average RSRQ observed per cell, and order
the cells by RSRQ values. Overall, we see that the estimated
AB is close to AT and mostly below AT. However, when the
channel quality is significantly poor (RSRQ < -14 dB), the
AB is noticeably higher than AT under Cell 0 and Cell 1.
The reason is that since AT test takes a long time to finish,
the poor signal quality can consistently dampen throughput.
As the AB test is lightweight, the eNodeB may satisfy the
short-term high bandwidth demand even under poor channel
conditions [5]. This can lead to occasional over-estimations
from the AB test. Continuously performing multiple AB tests
is a practical solution to resolve this discrepancy due to the
lower cost of AB as shown earlier. Due to space constraints,
the impact of speed (stationary, low speed, high speed) is not
included.
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VI. CONCLUSION

In conclusion, we presented a novel mechanism, CUP,
which offers the benefits of AB estimation techniques with
reasonable accuracy for cellular network measurement. We
designed an intelligent packet train that leverages TBS fluc-
tuation as an indicator of congestion, thereby offering a
lightweight, accurate mechanism for AB estimation. CUP
enables more efficient longitudinal characterization by being
extremely light-weight, while requiring no changes to the
client. We demonstrate several real-world scenarios and be-
lieve that CUP could prove to be a useful tool for network
operators and users to assess ongoing performance. Future
work includes exploring UE scaling within a given cell,
consistency of monitoring at the edge of a cell, and uplink
measurement.
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