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Abstract—Cellular networks provide an essential connectivity
foundation for a sizable number of mobile devices and appli-
cations, making it compelling to measure their performance
in regard to user experience. Although cellular infrastructure
provides low-level mechanisms for network-specific performance
measurements, there is still a distinct gap in discerning the
actual application-level or user-perceivable performance from
such methods. Put simply, there is little substitute for direct
sampling and testing to measure end-to-end performance. Un-
fortunately, most existing technologies often fall quite short.
Achievable Throughput tests use bulk TCP downloads to provide
an accurate but costly (time, bandwidth, energy) view of network
performance. Conversely, Available Bandwidth techniques offer
improved speed and low cost but are woefully inaccurate when
faced with the typical dynamics of cellular networks. In this
paper, we propose CUP, a novel approach for Cellular Ultra-
light Probe-based available bandwidth estimation that seeks to
operate at the cost point of Available Bandwidth techniques while
correcting accuracy issues by leveraging the intrinsic aggregation
properties of cellular scheduling, coupled with intelligent packet
timing trains and the application of Bayesian probabilistic
analysis. By keeping the costs low with reasonable accuracy, our
approach enables scaling both with respect to time (longitude)
and space (user device density). We construct a CUP prototype
to evaluate our approach under various demanding real-world
cellular environments (longitudinal, driving, multiple vendors) to
demonstrate the efficacy of our approach.

I. INTRODUCTION

Cellular connectivity has advanced tremendously over the

past decade. While early smartphones labored heavily under

the umbrella of early 3G connectivity, the LTE networks

today can easily offer speeds in excess of tens of megabits

per second and beyond enabling high-quality video streaming

and increasingly diverse and immersive applications. Network

designs for 5G aim to radically expand bandwidth and connec-

tivity options with special consideration for next-generation

applications and the significant implications posed by the

Internet of Things (IoT)[1].

However, while peak speeds have increased dramatically,

the converse is that network dynamics have also increased

as well. Users have the potential to experience ultra-fast

connectivity in one moment only to experience painfully slow

speeds in the next due in part to mobility, competing clients,

or ill-advised WiFi connectivity. From the perspective of both

the network operator and the end user, these dynamic expe-

riences are extremely frustrating. Moreover, such challenging

scenarios tend neither to be consistent nor persistent making

troubleshooting especially problematic. Although LTE offers

numerous mechanisms for understanding lower level wireless

dynamics, the gold standard is still to directly test network per-

formance at the application layer. Unfortunately, the majority

of existing techniques are ill-suited to enable testing at the

scale (user density) and timescales (longitudinally) required

for proper network instrumentation.

In one group, techniques that fall into the category of

Achievable Throughput (AT) tests are considered accurate but

expensive. AT tests attempt to download volumes of data over

a period of time giving a precise measurement of what the

mobile device (User Equipment - UE) would have experienced

at that point in time. Notable examples include SpeedTest.net

[2], iperf3 [3], and Mobiperf [4]. The perceived accuracy

of the tests stems from moving actual data and competing

with existing flows over a period of time. However, large

bulk downloads can crowd out other useful traffic making it

difficult to conduct overlapping tests in the same area [5].

Most importantly, bulk downloads are extremely expensive

from the perspective of the UE, taking up to tens of seconds

to complete and consuming significant amounts of energy,

making it difficult to run tests longitudinally.

In contrast, Available Bandwidth (AB) techniques are cheap

and potentially quick but are considered less accurate. Avail-

able Bandwidth techniques leverage precisely constructed

packet sequences and observe the resulting packet dispersion

amongst said sequences. Thus, rather than continuously ex-

erting pressure over time as with AT tests, AB tests selec-

tively nudge against the bottleneck link capacity through a

series of fixed and/or adaptive probing sequences. Canonical

examples from the literature include PathChirp [6], IGI [7],

and others [8, 9]. Critically, AB techniques are exceptionally

vulnerable to the effects of aggregation present in cellular,

which can nullify the expected dispersion effects. Although

some work has been able to overcome aggregation effects in

WiFi networks [10, 11], the multiple levels of control and

increased complexity of UE dynamics (mobility, roaming)

make AB characterization incredibly challenging. However, it

is precisely because of those increased dynamics that makes a

better instrumentation tool at scale tremendously compelling.

Thus, the focus of this paper is to try to address this
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Table I: Packet Train Format Parameters

System
Gc The cut-off packet gap for switching the probe rate increase from linear to logarithmic.
N The packet frequency to insert one relief gap.
Gr The width of a relief gap.

Custom
L The total number of packets in a probe train.
Rmax The maximum probe rate for searching the AB.

congestion that results from exceeding the actual AB. While

the congestion caused by transient channel fading is often

resolved fairly quickly, congestion effects due to exceeding

the AB should persist as long as the bandwidth is saturated.

In order to mitigate the impact of short-term congestion, we

intentionally insert fixed large gaps (pauses) into our probe

packet train at fixed packet intervals that we call relief gaps.

These relief gaps alleviate short-term congestion and prevent

early transient issues from distorting later higher rates in the

probe train.

Although there is a valid concern that adding relief gaps

can potentially slow down the overall probing sequence, this

is alleviated by TBS Fluctuation, which captures the variation

of TBS, not the average of TBS. As long as the probe traffic

creates enough queuing pressure on eNodeB before inserting a

gap, the TBS Fluctuation will not fundamentally change while

the mean of TBS may drop by adding the gaps. The setting

of relief gap can be defined by N and Gr. Namely, we insert

a gap of Gr for every N packets.

Packet Train Parameters: Overall, a packet train can be

described with the following parameters: Gc, L, Rmax, N
and Gr. We divide the parameters into two groups: system and

custom parameters, as shown in Table I. The system parameters

are set to yield optimal system-wide performance regardless

of bandwidth conditions, including Gc, N and Gr. The custom

parameters are adjustable based on the needs, and include

L (i.e., data cost) and Rmax. In the next subsection, when

describing implementation, we also discuss the settings of the

system parameters that work the best. The custom parameters

settings will be described in the later section of experimental

evaluation (Section V).

C. A Client-Free Probing System

To implement such a probe train design, it would normally

be expected to require dedicated applications at both the

server (sender) and client (receiver) to coordinate the packet

sequences. This kind of implementation can significantly

impede the ability to deploy a solution. To that end, we

leverage an HTTP-based packet transmission system derived

from the shared source code for [34] to achieve a simplified

client implementation with sufficient measurement samples.

Furthermore, we leverage a TCP Timestamp-based solution

that in turn allows us to infer TBS statistics of the client which

we describe shortly.

System Overview: The CUP system poses as a regular web

server that handles regular HTTP transactions (HTTP GET)

to enable simple traversal of the network. However, the server

implements a customized TCP-like stack based on libpcap

which enables network and transport layer control. The result

is traffic that appears to be TCP-like but allows for the short

bursts of data in the packet probes to be sent in any desired

sequence and timing.

The workflow for CUP begins by the client initiating a test

by sending an HTTP GET request to the server (i.e., visiting

a URL) following a normal TCP 3-way handshake. The client

can also send the probe train parameters in the HTTP GET

request or tie the parameters to a particular URL (object).

Upon receiving the request, the server incorporates the timing

sequence in the returned HTTP response. With full control

over the network and transport layers, the data packets are

sent in the form of the desired probe train.

Notably, TCP ACKs, as provided by the client, are used to

infer packet reception statistics at the client side. Critically,

we increase the number of available ACK samples by utiliz-

ing reordering from TCP Sting [38] and expanded upon in

RIPPS [34]. The simple but clever idea from TCP Sting was

to swap the first and the last packet in a certain window (e.g.,

every 5 packets). The reordering will disable delayed ACKs by

the client (typically a 2:1 data to ACK ratio), thus causing the

client to send a single ACK for every received probe packet

(1:1 ratio).

Inferring TBS using TCP Timestamps: With increased ac-

knowledgements traversing the generally uncongested cellular

uplink, we utilize the TSval carried in the TCP timestamp

option to infer packet arrival timing at the client. As the times-

tamp option is enabled by default for almost all mobile phones

(Android and iOS devices), timestamp-based measurement

works have become quite popular [39, 40]. The modern mobile

devices can provide at least a 3.3 ms/tick resolution5 which

reveals the packet arrival timing information at a reasonable

granularity. As TBS describes the overall data size delivered

in a TTI (1 ms), the packets in a TB usually appear to arrive

at the same time (recall the rectangles indicated in Fig 3).

Intuitively, we can infer the TBS using the total size of the

packets whose returned TCP ACKs have the same TSval. Since

the time span of a TSval is not necessarily equal to a TTI, the

calculated result needs to be further divided by the timestamp

resolution (e.g., 3.3 ms/tick for Android phones) to compute

the average transmitted data size per TTI.

To estimate the timestamp resolution of a client, we exploit

the first pair of packets in the probe train to measure the value.

5Android (after Android 6.0.0) and iOS devices have 3.3 ms/tick and 1
ms/tick resolution, respectively.
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By assigning a constant large time gap6 (i.e., 40 ms) between

the first sent two packets, the receiving gap is largely equal to

the sending gap due to the low data rate. Thus the resolution

can be computed from the difference of the TSval values of

the first two TCP ACKs.

We conducted real-world experiments to evaluate the TBS

inference accuracy from the timestamps. Overall, the inferred

value tends to overestimate especially when the actual TBS

is high as the coarse resolution of the timestamp can amplify

the impact of aggregation. To overcome this issue, we apply

a moving minimum filter (of window size 2) over the inferred

series. The filtered result significantly improves the inference

accuracy which helps control the estimation error within 2 Kb

for all tested TBS values (ranging from 1 Kb to 30 Kb).

Probe Packet Train System-Defined Parameter Setting:

We set Gc to 3.33 ms as the maximum timestamp resolution

for most smartphones. The setting guarantees that we can

obtain at least one unique TSVal value for every time probe

rate increases by δ. For the relief gap setting, we set the

gap width Gr to 20 ms (which yields merely 500 Kb/s data

rate). Under modern LTE networks with typical downlink

rates greater than 10 Mb/s [37], this interval is sufficient

to empty the UE’s buffer at the eNodeB. For N , we have

to ensure that the amount of probe traffic is sufficient to

generate at least one TBS inference value. Thus, the size

of the probe traffic before each relief gap should be at least

max(TBS)×max(Timestamp Resolution). If we assume that

the packet size is equal to the MTU, we set N = 20 (≈
max(TBS)×max(Timestamp Resolution)/MTU ).

IV. A BAYESIAN CHANGE POINT-BASED ESTIMATION

ALGORITHM

In this section, we introduce the estimation algorithm to

calculate the AB. Recalling the intuition behind the probe train

design, as the sending rate increases along the train, we lever-

age TBS observations to capture the network state changing

from uncongested to congested when we observe the increase

in TBS fluctuation. The AB can then be estimated as the probe

sending rate corresponding to that change point. However,

due to the high variation in LTE channel characteristics and

signal conditions, the TBS observations can be so noisy that a

naı̈ve threshold-based approach is inadequate to pick the right

change point. To cope with the diversity and noise involved in

the observations, we design a probabilistic Bayesian change-

point detection algorithm (Wu et al. [41]).

Pre-processing: As discussed earlier, TBS fluctuations can

indicate whether or not packets experienced network conges-

tion. Therefore, given a sequence of TBS fluctuations TF ,

we can mark each TF as uncongested (0) or congested (1)

by comparing it with a threshold value THθ. We define this

binary expression as BTF . If the i-th TBS fluctuation TFi

is less than the threshold (TFi < TFθ) we set BTFi = 0.

6The large gap forces the TSval to increase by more than one.

Otherwise, BTFi = 1, indicating that congestion is observed.

In order to set the proper TFθ, we inspect the empirical dis-

tributions of TF under uncongested vs. congested conditions.

We find that TF is usually below 3 Kb when uncongested

and above 3 Kb when congestion is experienced. Thus, we

set the cutoff THθ as 3 Kb.
Model Design: With the self-induced congestion design

of probes trains, it is expected to see that the probe traffic

would experience little congestion at the beginning of the

train at the low sending rate. After a point where the sending

rate exceeds AB, the probe traffic would have to compete

against existing traffic thus leading to congestion. Given the

congestion indicators BTF , we can search for the change

point τ where TF starts to change from uncongested to

congested. Technically, we divide the sequence of {BTFi}
(i ∈ [1, N ]) into two segments: the first segment includes

primarily zeros and the second segment contains mostly ones.

To formulate this problem, we assume BTF follows the

Bernoulli distribution with parameter p. Particularly, p takes

different values in the two segments: p0 in the first segment,

and p1 in the second segment. The change point is then located

at τ (1 ≤ τ ≤ N ). Overall, the BTF can be expressed as:

BTF ∼ Bernoulli(p), where p =

{

p0 : 0 ≤ i ≤ τ
p1 : τ < i ≤ N

(3)

By adopting the Bayesian approach, the distribution of p0
and p1 can be generated by the conjugated prior distribution

Beta with a0, b0 and a1, b1 as hyper-parameters.

p0 ∼ Beta(a0, b0), p1 ∼ Beta(a1, b1) (4)

By assigning the proper hyper-parameters, we can apply the

prior knowledge of p0 < p1 to imply that the first segment

usually has the smaller mean than the second segment because

it contains more zeros. For example, we can set a0 = 9, b0 = 1
and a1 = 1, b1 = 9 to convey the presumption that only 1 (b0)

out of 10 (a0 + b0) TBs can experience size fluctuation with

no network congestion, while 9 (b1) out of 10 (a1 + b1) TBs

will do so under network congestion.

The goal of the model is to find a proper τ to maximize the

joint probability, which is maximum a posteriori estimation:

τ̂ = argmax
τ

∫∫

p(BTF, τ, p0, p1)dp0dp1 (5)

Estimating τ̂ via Gibbs Sampling: To solve this problem,

we adopt Gibbs sampling to estimate the latent parameters.

One of the merits of using a sampling method is that it

reveals the complete posterior distributions of all the latent

parameters: p0, p1 and τ̂ . These distributions can help further

assess the quality of estimation (as will be discussed soon).

In Section V, we will further experimentally evaluate the

performance of the inference approach.

Interpreting Estimation Results: Once the sampling

process converges, we can look into the estimated parameters
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VI. CONCLUSION

In conclusion, we presented a novel mechanism, CUP,

which offers the benefits of AB estimation techniques with

reasonable accuracy for cellular network measurement. We

designed an intelligent packet train that leverages TBS fluc-

tuation as an indicator of congestion, thereby offering a

lightweight, accurate mechanism for AB estimation. CUP

enables more efficient longitudinal characterization by being

extremely light-weight, while requiring no changes to the

client. We demonstrate several real-world scenarios and be-

lieve that CUP could prove to be a useful tool for network

operators and users to assess ongoing performance. Future

work includes exploring UE scaling within a given cell,

consistency of monitoring at the edge of a cell, and uplink

measurement.
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