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Abstract: Our work targets automated analysis to quantify the growth dynamics of a population of
bacilliform bacteria. We propose an innovative approach to frame-sequence tracking of deformable-
cell motion by the automated minimization of a new, specific cost functional. This minimization is
implemented by dedicated Boltzmann machines (stochastic recurrent neural networks). Automated
detection of cell divisions is handled similarly by successive minimizations of two cost functions,
alternating the identification of children pairs and parent identification. We validate the proposed
automatic cell tracking algorithm using (i) recordings of simulated cell colonies that closely mimic
the growth dynamics of E. coli in microfluidic traps and (ii) real data. On a batch of 1100 simulated
image frames, cell registration accuracies per frame ranged from 94.5% to 100%, with a high average.
Our initial tests using experimental image sequences (i.e., real data) of E. coli colonies also yield
convincing results, with a registration accuracy ranging from 90% to 100%.

Keywords: stochastic neural networks; cell tracking; microscopy image analysis; detection-and-
association methods

MSC: 62H35; 62M45

1. Introduction

Technology advances have led to increasing magnitudes of data generation with
increasing levels of precision [1,2]. However, data generation presently far outpaces data
analysis and drives the requirement for analyzing such large-scale data sets with automated
tools [3–5]. The main goal of the present work is to develop computational methods for
an automated analysis of microscopy image sequences of colonies of E. coli growing in
a single layer. Such recordings can be obtained from colonies growing in microfluidic
devices, and they provide a detailed view of individual cell-growth dynamics as well as
population-level, inter-cellular mechanical and chemical interactions [6–8].

However, to understand both variability and lineage-based correlations in cellular
response to environmental factors and signals from other cells requires the tracking of large
numbers of individual cells across many generations. This can be challenging, as large
cell numbers tightly packed in microfluidic devices can compromise spatial resolution,
and toxicity effects can place limits on the temporal resolution of the recordings [9,10]. One
approach to better understand and control the behavior of these bacterial colonies is to
develop computational methods that capture the dynamics of gene networks within single
cells [6,11,12]. For these methods to have a practical impact, one ultimately has to fit the
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models to the data, which allows us to infer hidden parameters (i.e., characteristics of the
behavior of cells that cannot be measured directly). Image analysis and pattern recognition
techniques for biological imaging data [13–15], like the methods developed in the present
work, can be used to track lineages and thus automatically infer how gene expression varies
over time. These methods can serve as an indispensable tool to extract information to fit
and validate both coarse and detailed models of bacterial population, thus allowing us to
infer model parameters from recordings.

Here, we describe an algorithm that provides quantitative information about the pop-
ulation dynamics, including the life cycle and lineage of cells within a population from
recordings of cells growing in a mono-layer. A typical sequence of frames of cells growing
in a microfluidic trap is shown in Figure 1. We describe the design and validation of
algorithms for tracking individual cells in sequences of such images [11,16,17]. After seg-
mentation of individual image frames to identify each cell, tracking individual cells from
frame to frame is a combinatorial problem. To solve this problem we take into account
the unknown cell growth, cell motion, and cell divisions that occur between frames. Seg-
mentation and tracking are complicated by imaging noise and artifacts, overlap of bacteria,
similarity of important cell characteristics across the population (shape; length; and diame-
ter), tight packing of bacteria, and large interframe durations resulting in significant cell
motion, and up to a 30% increase in individual cell volume.

frame 1 frame 25 frame 50 frame 100 frame 150

Figure 1. Typical microscopy image sequence. We show five frames out of a total of 150 frames of an
image sequence showing the dynamics of E. coli in a microfluidic device [18] (real laboratory image
data). These cells are are about 1 µm in diameter and on average 3 µm in length, and they divide
about every 30 min. The original images exported from the microscope are 0.11 µm/pixel. We report
results for these real datasets in Section 4.

1.1. Related Work

The present work focuses on tracking E. coli in a time series of images. A comparison
of different cell-tracking algorithms can be found in [19,20]. Multi-object tracking in video
sequences and object recognition in time series of images is a challenging task that arises
in numerous applications in computer vision [21,22]. In (biomedical) image processing,
motion tracking is often referred to as “image registration” [19,23–26] or “optical flow” [27–30].
Typical solutions used in the defense industry, for instance, track small numbers of fast mov-
ing targets by image sequence analysis at pixel levels and use sophisticated reconstruction
of the optical flow, combined with real time segmentation, and quick combinatoric explo-
ration at each image frame. Initially, we did implement several well-known algorithms for
reconstruction of the optical flow, but the results we obtained were not satisfactory due to
long interframe times and high noise levels. Moreover, we are not interested in tracking
individual pixels but rather cells (i.e., rod-shaped, deformable shapes), while recognizing
events of cell division and recording cell lineage. Consequently, we decided to first segment
each image frame to isolate each cell, and then to match cells between successive frames.

As for the problem at hand, one approach proposed in prior work to simplify the
tracking task is to make the experimental setup more rigid by confining individual cell lin-
eages to small tubes; the associated microfluidic device is called a “mother machine” [31–36].
The microfluidic devices we consider here yield more complicated data as cells are allowed
to move and multiply freely in two dimensions (constrained to a mono-layer). We refer to
Figure 1 for a typical sequence of experimental images considered in the present work.
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Turning to methods that work on more complex biological cell imaging data, we can
distinguish different classes of tracking methods. “Model-based evolution methods” operate
on the image intensities directly. They rely on particle filters [37–39] or active contour
models [40–44]. These methods work well if the cells are not tightly packed. However, they
may lead to erroneous results if the cells are close together, the inter-cellular boundaries
are blurry, or the cells move significantly. Our work belongs to another class—the so
called “detection-and-association methods” [45–55], which first detect cells in each frame
and then solve the tracking problem/association task across successive frames. (We note
that the segmentation and tracking of cells does not necessarily need to be implemented
in two distinct steps. In many image sequence analyses, implementing these two steps
jointly can be beneficial [37,49,54,56–58]. However, for the clarity of exposition and easier
implementation of our new tracking technique, we present these steps separately.) Doing
so necessitates the segmentation of cells within individual frames. We refer to [59] for an
overview of cell segmentation approaches. Deep learning strategies have been widely used
for this task [5,50,54,58,60–65]. We consider a framework based on convolutional neural
networks (CNNs). Others have also used CNNs for cell segmentation [62,64,66–68]. We
omit a detailed discussion of our segmentation approach within the main body of this paper,
as we do not view it as our main contribution (see Section 1.2). However, the interested
reader is referred to Appendix D for some insights. To solve the tracking problem after the
cell detection, many of the methods cited above use hand-crafted association scores based
on the proximity of the cells and shape similarity measures [46,48,51,54]. We follow this
approach here. We note that we not only consider local association scores between cells but
also include measures for the integrity of a cell’s neighborhood (i.e., “context information”).

Our method is tailored for tracking cells in tightly packed colonies of rod-shaped
E. coli bacteria. This problem has been considered previously [5,45,49,52]. However, we
are not aware of any large-scale datasets that provide ground truth tracking data for these
types of recordings, but note that there are community efforts for providing a framework
for testing cell tracking algorithms [20,69] (see, e.g., [37,70]). (Cell tracking challenge: http:
//celltrackingchallenge.net (accessed on 15 December 2021).) Works that consider these
data are for example [37,54,57,58,62,67]. The cells in this dataset have significantly different
characteristics compared to those considered in the present work. As we describe below,
our approach is based on distinct characteristics of the bacteria cells and, consequently,
does not directly apply to these data. Therefore, we have developed our own validation
and calibration framework (see Section 2.1).

Standard graph matching algorithms (see, e.g., [71]) do not directly apply to our
problem. Indeed, a fundamental complication is that cells can divide between successive
images. Hence, each assignment from one frame to its successor is not a one-to-one
mapping but a one-to-many correspondence. More advanced graph matching strategies are
described in [72,73]. Graph-based matching strategies for cell-tracking that are somewhat
related to our approach are described in [70,74–77]. Like the methods mentioned above,
they consider various association scores for tracking. Individual cells are represented as
nodes, and neighbors are connected through edges. Our approach also introduces cost
terms for structural matching of local neighborhoods by specific scoring for single nodes,
pairs of nodes, and triplets of nodes, after a (modified) Delaunay triangulation. By using a
graph-like structure, cell divisions can be identified by detecting changes in the topology of
the graph [75,76]. We tested a similar strategy, but came to the conclusion that we cannot
reliably construct neighborhood networks between frames for which topology changes
only occur due to cell division; the main issue we observed is that the significant motion
of cells between frames can introduce additional topology changes in our neighborhood
structure. Consequently, we decided to relax these assumptions.

Refs. [71,78–80] implement multi-target tracking in videos by stochastic models based
on random finite set densities and variants thereof. The fit to the data are based on Gibbs
sampling to maximize the posterior likelihood. A key challenge of these approaches is the
estimation of an adequate finite number of Gibbs sampling iterations when one computes
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posterior distributions. Most Gibbs samplers are ergodic Markov chains on a finite but
huge state spaces, so that their natural exponential rate of convergence is not a practically
reassuring feature.

As mentioned above, some recent works jointly solve the tracking and segmentation
problem [37,49,54,56–58]. Contrary to observations we have made in our data, these
approaches rely (with the exception of [49]) on the fact that the tracking problem is inherent
to the segmentation problem (“tracking-by-detection methods” [54]; see also [5]). That is,
the key assumption made by many of these algorithms is that cells belonging to the same
lineage overlap across frames (see also [47]). In this case, cell-overlap can serve as a good
proxy for cell-tracking [54]. We note that in our data we cannot guarantee that the frame
rate is sufficiently high for this assumption to hold. Refs. [56,57,67] exploited machine
learning techniques for segmentation and motion tracking. One key challenge here is to
provide adequate training data for these methods to be successful. Here, we describe
simulation-based techniques that can be extended to produce training data, which we use
for parameter tuning [12,81].

The works that are most similar to ours are [45,49,52]. They perform a local search
to identify the best cell-tracking candidates across frames. One key difference across
these works are the matching criteria. Moreover, Refs. [45,49] employ a local greedy-
search, whereas we consider stochastic neural network dynamics for optimization. Ref. [52]
constructs score matrices within a score based neighborhood tracking method; an integer
programming method is used to generate frame-to-frame correspondences between cells
and the lineage map. Other approaches that consider linear programming to maximize an
association score function for cell tracking can be found in [47,54,82].

As we have mentioned in the abstract, we obtain a tracking accuracy that ranges from
90% to 100%, respectively. Overall, our method is competitive with existing approaches: For
example, Ref. [45] reports a tracking accuracy of up to 97% for data that are similar to ours,
while Ref. [74] reports a tracking accuracy (spatial, temporal, and cell division detection) at
the order of 95% (between about 93% and 98%, respectively). The second group also reports
results for their prior approach [75], with an accuracy at the order of 90% (ranging from
about 87% to 92%, respectively). Accuracies reported in [77] range from about 92% to 97%,
respectively. This work also includes a comparison to one of their earlier approaches [76]
with an accuracy of up to 85% and 89% if the datasets are pre-aligned. We note that the
data considered in [74–77] are quite different from ours. Refs. [37,54,57,58,70] consider the
data from the cell tracking challenge [20,69] to evaluate the performance of their methods.
As in the previously mentioned work, these data are again quite different from ours.
To evaluate the performance of the methodology, the so-called acyclic oriented graph matching
measure [83] is considered. We refer to the webpage of the cell tracking challenge for details
on the evaluation metrics (see http://celltrackingchallenge.net/evaluation-methodology,
accessed on 15 December 2021). Based on these, the reported tracking scores are between
0.873 and 0.902 [37], 0.901 and 1.00 [70], 0.950 and 0.987 [54], 0.788 and 0.982 [58] and
0.765 and 0.915 [57] depending on the considered data set, respectively.

1.2. Contributions

For image segmentation, we first apply two well-known, powerful variational segmen-
tation algorithms to generate a large training set of correctly delineated single cells. We can
then train a CNN dedicated to segmenting out each single cell. Using a CNN significantly
reduces the runtime of our computational framework for cell identification. The frame-
to-frame tracking of individual cells in tightly packed colonies is a significantly more
challenging task, and is hence the main topic discussed in the present work. We develop a
set of innovative automatic cell tracking algorithms based on the successive minimization
of three dedicated cost functionals. For each pair of successive image frames, minimizing
these cost functionals over all potential cell registration mappings poses significant compu-
tational and mathematical challenges. Standard gradient descent algorithms are inefficient
for these discrete and highly combinatorial minimization problems. Instead, we implement

http://celltrackingchallenge.net/evaluation-methodology
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the stochastic neural network dynamics of BMs, with architectures and energy functions
tailored to effectively solve our combinatorial tracking problem. Our major contributions
are: (i) The design of a multi-stage cell tracking algorithm that starts with a parent–children
pairing step, followed by removal of identified parent–children triplets, and concludes with
a cell-to-cell registration step. (ii) The design of dedicated BM architectures, with several
energy functions, respectively, minimized by true parent–children pairing and by true
cell-to-cell registration. Energy minimizations are then implemented by simulation of BM
stochastic dynamics. (iii) The development of automatic algorithms for the estimation
of unknown weight parameters of our BM energy functions, using convex-concave pro-
gramming tools [84–86]. (iv) The evaluation of our methodology on synthetic and real
image sequences of cell colonies. The massive effort involved in human expert annotation
of cell colony recordings limits the availability of “ground truth tracking” data for dense
bacterial colonies. Therefore, we first validated the accuracy of our cell tracking algorithms
on recordings of simulated cell colonies, generated by the dedicated cell colony simulation
software [12,81]. This provided us with ground truth frame-by-frame registration for cell
lineages, enabling us to validate our methodology.

1.3. Outline

In Section 2, we describe the synthetic image sequence (see Section 2.1) and experi-
mental data (see Section 2.2) of cell colonies considered as benchmarks for our cell tracking
algorithms. In Section 2.3, we describe key cell characteristics considered in our tracking
methodology to define metrics that enter our cost functionals. Our tracking approach is
developed in greater detail in Section 3. We define valid cell registration mappings between
successive image frames in Section 3.1. We outline how to automatically calibrate the
weights of our various penalty terms in Section 3.2. Our algorithms for pairing parent cells
with their children and for cell-to-cell registration are developed in Sections 3.3–3.9. We
present our main validation results on long image sequences (time series of images) in
Section 4 and conclude with Section 5.

2. Datasets

Below, we introduce the datasets used to evaluate the performance of the proposed
methodology. The synthetic data are described in Section 2.1. The experimental data (real
imaging data) are described in Section 2.2.

2.1. Synthetic Videos of Simulated Cell Colonies

To validate our cell tracking algorithms, we consider simulated image sequences of
dense cell populations. We refer to [12,81] for a detailed description of this mathematical
model and its implementation. (The code for generating the synthetic data has been
released at https://github.com/jwinkle/eQ, accessed on 15 December 2021) The simulated
cell colony dynamics are driven by an agent based model [12,81], which emulates live
colonies of growing, moving, and dividing rod-like E. coli cells in a 2D microfluidic trap
environment. Between two successive frames J, J+, cells are allowed to move until they
nearly bump into each other, and to grow at multiplicative rate denoted g.rate with an
average value of 1.05 per minute.

The cells are modeled as 2D spherocylinders of constant 1 µm width. Each cell grew
exponentially in length with a doubling time of 20 min. To prevent division synchronization
across the population when a mother cell of length Ldiv divides, the two daughter cells
are assigned random birth lengths L0(b1) = L1 = δLdiv and L0(b2) =: L2 = (1− δ)Ldiv,
where δ > 0 is a random number sampled independently at each division from a uniform
distribution on [0.45, 0.55]. Consequently, a bacterial cell b of length Ldiv divides into two
cells b1 and b2, their lengths L1, L2 satisfy L1 + L2 = Ldiv and Li/Ldiv, i = 1, 2, is a random
number. The cells have a length of approximately 2 µm after division and 4 µm right
before division. We refer to [81] for additional details. The simulation keeps track of cell
lineage, cell size, and cell location (among other parameters). The main output of each

https://github.com/jwinkle/eQ
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such simulation considered here is a binary image sequence of the cell colony with a fixed
interframe duration. Each such synthetic image sequence is used as the sole input to our
cell tracking algorithm. The remaining meta-data generated by the simulations are only
used as ground truth to evaluate the performance of our tracking algorithms.

We consider several benchmark datasets of synthetic image sequences of simulated cell
colonies of different complexity. We refer to these benchmarks as BENCH1 (500 frames),
BENCH2 (300 frames), BENCH3 (300 frames), and BENCH6 (100 frames), with an inter-
frame duration of 1, 2, 3 and 6 min, respectively. Notice that there is no explicit noise
on the growth rate. However, due to the crowding of cells, the growth rate will vary
from cell-to-cell. The generated binary images are of size 600× 600 pixels. We summarize
these benchmarks in Table 1. The associated image sequences involve between 100 up to
500 frames, respectively. In Figure 2, we display an example of two simulated consecutive
frames separated by 1 min. To simplify our presentation and validation tests, we control
our simulations to make sure that cells will not exit the region of interest from one frame to
the next, and we exclude cells that are only partially visible in the current frames.

Table 1. Benchmark datasets. To test the tracking software, we consider simulated data. We have
generated data of varying complexity with different interframe durations. We note that we also
consider these data to train our algorithms for tracking cells. We report the label for each dataset,
the interframe duration, as well as the number of frames generated. We set the cell growth factor to
g.rate = 1.05 per min. We refer to the text for details about how these data have been generated.

Label Interframe Duration Number of Frames

BENCH1 1 min 500
BENCH2 2 min 300
BENCH3 3 min 300
BENCH6 6 min 100

N = 109 N+ = 124

image J at time t image J+ at time t +∆t

axis of cell A(b)

•

•

•

center of cell c(b)

endpoint of cell e(b)

endpoint of cell h(b)

Figure 2. Simulated data and cell characteristics considered in the proposed algorithm. (Left):
Two successive images generated by dynamic simulation for a colony of rod-shaped bacteria. The
left image J displays N = 109 cells at time t. At time t + ∆t with ∆t = 1 min, cells have moved and
grown, and some have divided. These cells are displayed in image J+, which contains N+ = 124 cells.
We highlight two cells that have undergone a division between the frames (red and green ellipses).
(Right): Geometry of a rod shaped bacterium. We consider different quantities of interest in the
proposed algorithm. These include the center c(b) of a cell, the two end points e(b) and h(b), and the
long axis A(b), respectively.

2.2. Laboratory Image Sequences (Real Biological Data)

We also verify the performance of our approach on real datasets of E. coli bacteria.
These bacteria are about 1 µm in diameter and on average 3 µm in length, and they divide
about every 30 min. The original images exported from the microscope are 0.11 µm/pixel.
The microscopy experimental data were obtained using JS006 [87] (BW25113 ∆araC ∆lacI)
E. coli strains containing a plasmid constitutively expressing yellow or cyan fluorescent
protein (sfyfp or sfcfp) for identification. The plasmid also contains an ampicillin resistance
gene and p15A origin. These cells were grown overnight in LB medium with 100 µg/mL
ampicillin for 18 h. These cultures were diluted in the morning into 1/1000 into 50 mL fresh
LB with 100 µg/mL ampicillin and grown for 3 h until they reached an OD600 of about
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0.3. The cells were then concentrated by centrifuging 30 mL of culture at 2000× g for 5 min
and then resuspending in 10 mL of fresh LB. The concentrated culture was loaded into a
hallway microfluidic device prewarmed and flushed with 0.1% (v/v) Tween-20 [88]. In the
microfluidic device, the cells were provided with continuous fresh LB with 100 µg/mL
ampicillin and 0.075% (v/v) Tween-20. The microfluidic device was placed onto an 60× oil
objective and imaged every 6 min at phase contrast, YFP, and CFP filter settings using an
inverted fluorescence microscope. We show a representative dataset in Figure 1.

2.3. Cell Characteristics

Next, we discuss characteristics of the E. coli bacteria important for our tracking algorithm.
Cell Geometry. In accordance with the dynamics of bacterial colonies in microfluidic

traps, the dynamic simulation software generates colonies of rod-shaped bacteria. Cell
shapes can be approximated by long and thin ellipsoids, which are geometrically well
identified by their center, their long axis, and the two endpoints of this long axis. The center
c(b) is the centroid of all pixels belonging to cell b. The long axis A(b) of cell b is computed
by principal component analysis (PCA). The endpoints e(b) and h(b) of cell b are the first
and last cell pixels closest to A(b); see Figure 2 (right) for a schematic illustration.

Cell Neighbors. For each image frame J, denote B = B(J) as the set of fully visible
cells in J, and by N = N(J) = card(B) the number of these cells. Let V be the set of all cell
centers c(b) with b ∈ B. Denote delV the Delaunay triangulation [89] of the finite planar set
V with N vertices. We say that two cells b1, b2 in B are neighbors if they verify the following
three conditions: (i) (b1, b2) are connected by the edge edg of one triangle in delV. (ii) The
edge edg does not intersect any other cell in B. (iii) Their centers verify ‖c(b1)− c(b2)‖ ≤ ρ,
where ρ > 0 is a user defined parameter.

For the synthetic images of size 600× 600 that we considered (see Section 2.1), we take
ρ = 80 pixels. We write b1∼b2 for short, whenever b1, b2 are neighbors (i.e, satisfy the three
conditions identified above).

Cell Motion. Let J, J+ denote two successive images (i.e., frames). Denote B = B(J),
B+ = B(J+) as the associated sets of cells. Superpose temporarily the images J and J+
so that they then have the same center pixel. Any cell b ∈ B, which does not divide in
the interframe J → J+, becomes a cell b+ in image J+. The “motion vector” of cell b from
frame J to J+ is then defined by v(b) = c(b+)− c(b). If the cell b does divide between
J and J+, denote bdiv as the last position reached by cell b at the time of cell division,
and define similarly the motion v(b) = c(bdiv)− c(b). In our experimental recordings of
real bacterial colonies with interframe duration 6 min, there is a fixed number w > 0 such
that ‖v(b)‖ ≤ w/2 for all cells b ∈ B(J) for all pairs J, J+. In particular, we observed that,
for real image sequences, w = 100 pixels is an adequate choice. Consequently, we select
w = 100 pixels for all simulated image sequences of BENCH6. For BENCH1, we select
w = 45 pixels, again based on a comparison with real experimental recordings. Overall,
the meta-parameter w is assumed to be a fixed number and to be known, since w/2 is an
observable upper bound for the cell motion norm for a particular image sequence of a
lab experiment.

Target Window. Recall that J, J+ are temporarily superposed. Let U(b) ⊂ J+ be a
square window of width w, with the same center as cell b. The target window W(b) is the set
of all cells in B+ having their centers in U(b). Since ‖v(b)‖ ≤ w/2, the cell b+ must belong
to the target window W(b) ⊂ B+.

3. Methodology
3.1. Registration Mappings

Next, we discuss our assumptions on a valid registration mapping that establishes
cell-to-cell correspondences between two frames. Let J, J+ denote two successive images,
with cell sets B and B+, respectively. As above, we let N = card(B), and N+ = card(B+).
Our goal is to track each cell from J to J+. For each cell b ∈ B, there exist three possible
evolutions between J and J+:
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Case 1: Cell b ∈ B did not divide in the interframe J → J+, and has become a cell f (b) ∈ B+;
that is, f (b) has grown and moved during the interframe time interval.

Case 2: Cell b ∈ B divided between J and J+, and generated two children cells b1, b2 ∈ B+;
we then denote f (b) = (b1, b2) ∈ B+ × B+.

Case 3: Cell b ∈ B disappeared in the interframe J → J+, so that f (b) is not defined.

To simplify our exposition, we ignore Case 3. We discuss Case 3 in greater detail in
the conclusions in Section 5. Consequently, a valid (true) registration mapping f will take
values in the set {B+} ∪ {B+ × B+}.

3.2. Calibration of Cost Function Weights

With the notation we introduced, fix any two finite sets A, A+. Let G := {g : A →
A+} be the set of all mappings g: A → A+. Fix m penalty functions penk(g) ≥ 0,
k = 1, . . . , m. Let g∗ ∈ G be the ground truth mapping we want to discover through
minimization in g of some given cost function COST(g) defined by the linear combination
of the penalty functions penk(g), the contributions of which are controlled by the cost
function weights λk > 0. In this section, we present a generic weight calibration algorithm,
extending a technique introduced and applied in [90,91] for Markov random fields based
image analysis.

The cost function must perform well (with the same weights) for hundreds of pairs of
(synthetic) images J, J+. We consider one such synthetic pair for which the ground truth
registration mapping f ∈ G is known, and use it to compute an adequate set of weights,
which will then be used on all other synthetic pairs J, J+. Notice that, for experimental
recordings of real cell colonies, no ground truth registration mappings f are available.
In this case, f should be replaced by a set of user constructed, correct partial mappings
defined on small subsets of A. The proposed weight calibration algorithm will also work in
those situations.

We now show how knowing one ground truth mapping f can be used to derive
the best feasible weights ensuring that f should be a plausible minimizer of the cost
functional COST(g) over g ∈ G. Let PEN(g) = [pen1(g), . . . , penm(g)] be the vector of
m penalties for any mapping g ∈ G. Let Λ = [λ1, . . . , λm] be the weight vectors. Then,
COST(g) = 〈Λ, PEN(g)〉. Replacing g by another mapping h 6= g induces the penalty
changes ∆ PENg,h = PEN(h)− PEN(g) and the cost change ∆ COST(g, h) = 〈Λ, ∆ PENg,h〉.
Now, fix any known ground truth mapping f ∈ G. We want f to be a minimizer of COST,
so we should have ∆ COST( f , f ′) ≥ 0 for all modifications f → f ′ ∈ G.

For each a ∈ A, select an arbitrary s(a) ∈ W(a) (where W(a) is the target window
for cell a; see Section 2.3), to define a new mapping f ′ = f ′a from A to A+ by f ′a(a) = s(a),
and f ′a(x) ≡ f (x) for all x 6= a. Since f is a minimizer of COST, this single point modifica-
tion f → f ′a must generate the following cost increase

〈Λ, ∆ PEN( f , f ′a)〉 = ∆ COST( f , f ′a) ≥ 0.

Denote Va ∈ Rm the vector Va = ∆ PEN( f , f ′a). Then, the positive vector Λ ∈ Rm,
Λ � 0, should verify the set of linear constraints 〈Λ, Va〉 ≥ 0 for all a ∈ A. There may be
too many such linear constraints. Consequently, we relax these constraints by introducing
a vector y = [y(a)] ∈ Rcard(A), y � 0, of slack variables y(a) ≥ 0 indexed by all the a ∈ A.
(In optimization, slack variables are introduced as additional unknowns to transform
inequality constraints to an equality constraint and a non-negativity constraint on the slack
variables.) We require the unknown positive vector Λ and the slack variables vector y to
verify the system of linear constraints:

〈Λ, Va〉+ y(a) = 0 for all a ∈ A

Λ � 0, y � 0

〈Λ, Z〉 ≤ 1000

(1)
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where Z = [1, . . . , 1] ∈ Rm. The normalizing constant 1000 can be arbitrarily changed
by rescaling. We seek high positive values for ∆ COST( f , f ′a) and small L1-norm for the
slack variable vector y. Thus, we will seek two vectors Λ ∈ Rm and y ∈ Rcard(A) solving
the following convex-concave minimization problem, where γ > 0 is a user selected (large)
meta parameter:

minimize
Λ,y

γ‖y‖L1 − ∑
a∈A

[〈Λ, Va〉]+ (2)

subject to (1), where we denote [x]+ := max(x, 0) for arbitrary x. To numerically solve
the constrained minimization problem (2), we use the libraries CVXPY and DCCP (disci-
plined convex-concave programming) [84–86]. DCCP is a package for convex-concave
programming designed to solve non-convex problems. (DCCP can be downloaded at
https://github.com/cvxgrp/dccp (last accessed on 20 January 2022)) It can handle ob-
jective functions and constraints with any known curvature as defined by the rules of
disciplined convex programming [92]. We give examples of numerically computed weight
vectors Λ below. The computing time was less than 30 s for the data that we have prepared.
For simplicity, we just considered one step changes in our computations, which make the
overlap penalty weak. To increase the accuracy of the model, it is possible to consider a
larger number of samples (i.e., multi-step changes). Note that the solutions Λ of (2) are of
course not unique, even after normalization by rescaling.

3.3. Cell Divisions and Parent–Children Short Lineages

Next, we discuss how we tackle the assignment problem when cells divide.

3.3.1. Cell Divisions

We now outline a cost function based methodology to detect cell divisions. The first
step will be to seek the most likely parent for each potential pair of children cells. Fix two
successive synthetic image frames J, J+ with short interframe time equal to 1 minute. Their
cell sets B, B+ have cardinality N and N+, respectively. For our synthetic image sequences,
all cells b ∈ B still exist in B+—either as whole cells or after dividing into two children
cells, and no new cell enters the field of view during the interframe J → J+. This forces
N+ ≥ N, and implies that the number DIV of cell divisions occurring in this interframe
verifies DIV = N+ − N. Each children pair (b1, b2) ∈ B+ × B+ is born from a single parent
b ∈ B. Thus, the set trueCH of all such true children pairs must then verify

card(trueCH) = DIV = N+ − N. (3)

For our video recordings of actual cell populations, during any interframe, we may
have nout cells exiting the field of view and nin cells entering it, so that | card(trueCH)−
DIV|may be of the order of nin + nout. To take this into account, we relax the constraint in
(3) as follows:

| card(trueCH)−DIV| ≤ REL, (4)

where REL is a fixed bound estimated from our experiments. For simplicity, we have
restricted our methodology to the situation where nin and nout are always 0. However, even
in that case, there was a computational advantage to using the slightly relaxed constraint
(4) with REL = 1.

3.3.2. Most Likely Parent Cell for a Given Children Pair

For successive images J, J+ with 1 min interframe, define the set PCH of plausible
children pairs by

PCH = {(b1, b2) ∈ B+ × B+ with centers c1, c2 verifying ‖c1 − c2‖ < τ}, (5)

where the threshold τ > 0 is user selected and fixed for the whole benchmark set BENCH1
of synthetic image sequences.

https://github.com/cvxgrp/dccp
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To evaluate if a pair of cells (b1, b2) ∈ PCH can qualify as a pair of children generated
by division of a parent cell b ∈ B, we now quantify the “geometric distortion” between b and
(b1, b2). Cell division of b into b1, b2 ∈ B+ occurs with small motions of b1, b2. During the
short interframe duration, the initial centers c1, c2 of b1, b2 in image J move by at most
w/2 pixels each (see Section 2.3), and their initial distance to the center c of b is roughly at
most ‖A(b)‖/4, where A(b) is the long axis of cell b. Hence, the centers c, c1, c2 of b, b1, b2
should verify the constraint

max{‖c1 − c‖, ‖c2 − c‖} ≤ w + ‖A‖/4. (6)

Define the set SHLIN of potential short lineages as the set all triplets (b, b1, b2) with
b ∈ B, (b1, b2) ∈ PCH, verifying the preceding constraint (6). For each potential lineage
(b, b1, b2) ∈ SHLIN, define three terms penalizing the geometric distortions between a
parent b ∈ B and a pair of children (b1, b2) ∈ PCH by the following formulas, where we
denote c, c1, c2, the centers of cells b, b1, b2 and A, A1, A2 their long axes, respectively:
(i) center distortion cen(b, b1, b2) = ‖c − (c1 + c2)/2‖, (ii) size distortion siz(b, b1, b2) =
|‖A‖ − (‖A1‖+ ‖A2‖)|, and (iii) angle distortion

ang(b, b1, b2) = angle(A, A1) + angle(A, A2) + angle(A, c2 − c1).

Here, angle denotes “angles between non-oriented straight lines,” with a range from 0 to
π/2. Introduce three positive weights λcen, λsiz, λang (to be estimated), and for every short
lineage (b, b1, b2) ∈ SHLIN define its distortion cost by

dist(b, b1, b2) = λcen cen(b, b1, b2) + λsiz siz(b, b1, b2) + λang ang(b, b1, b2). (7)

For each plausible pair of children (b1, b2) ∈ PCH, we will compute the most likely
parent cell b∗ = parent(b1, b2) as the cell b∗ ∈ B minimizing dist(b, b1, b2) in (7) over all
b ∈ B, as summarized by the formula

b∗ = parent(b1, b2) = argmin
{b∈B|(b,b1,b2)∈SHLIN}

dist(b, b1, b2). (8)

To force this minimization to yield a reliable estimate of b∗ = parent(b1, b2) for most
true pairs of children (b1, b2), we calibrate the weights λj, j ∈ {cen, siz, ang} by the al-
gorithm outlined in Section 3.2, using as “ground truth set” a fairly small set of visually
identified true short lineages (parent, children). For fixed (b1, b2), the set of potential parent
cells b ∈ B has very small size due to the constraint (6). Hence, brute force minimization
of the functional dist(b, b1, b2) in (7) over all b ∈ B such that (b, b1, b2) ∈ SHLIN, is a fast
computation for each (b1, b2) in PCH. The distortion minimizing b = b∗ yields the most
likely parent cell parent(b1, b2) = b∗. The brute force minimization in b of dist(b, b1, b2) is
still a greedy minimization in the sense that other soft constraints introduced further on are
not taken into consideration during this preliminary fast computation of b∗.

3.3.3. Penalties to Enforce Adequate Parent–Children Links

Any true pair of children cells pch = (b1, b2) should belong to PCH, but must also
verify lineage and geometric constraints which we now enforce via several penalties. Note
that the new penalties introduced here are fully distinct from the three penalties specified
above to define dist(b, b1, b2).

“Lineage” Penalty. Valid children pairs (b1, b2) ∈ PCH should be correctly matchable
with their most likely parent cell b∗ = parent(b1, b2) (see (8)). Thus, we define the “lineage”
penalty lin(b1, b2) = dist(b∗, b1, b2) by

lin(b1, b2) = argmin
{b∈b|(b,b1,b2)∈shlin}

dist(b, b1, b2) = dist(parent(b1, b2), b1, b2).
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Notice that the computation of lin(b1, b2) is quite fast.
“Gap” Penalty. Denote tips(b) as the set of two endpoints of any cell b. For any pair

pch = (b1, b2) ∈ PCH, define endpoints x1 ∈ tips(b1), x2 ∈ tips(b2) and the gap penalty
gap(b1, b2) by

gap(b1, b2) = ‖x1 − x2‖ = min{‖x− y‖ for (x, y)∈TIPS} (9)

with TIPS = tips(b1)× tips(b2).
“Dev” Penalty. For rod-shaped bacteria, a true pair (b1, b2) ∈ PCH of just born

children must have a small gap(b1, b2) = ‖x1 − x2‖ and roughly aligned cells b1 and b2.
For (b1, b2) ∈ PCH, we quantify the deviation from alignment dev(b1, b2) as follows. Let x1,
x2 be the closest endpoints of b1, b2 (see (9)). Let str12 be the straight line linking the centers
c1, c2 of b1, b2. Let d1, d2 be the distances from x1, x2 to the line str12. Then, set

dev(b1, b2) =
d1 + d2

‖c2 − c1‖
.

“Ratio” Penalty. True children pairs must have nearly equal lengths. Thus, for
(b1, b2) ∈ PCH with lengths L1, L2, we define the length ratio penalty by

ratio(b1, b2) = |(L1/L2) + (L2/L1)− 2|.

“Rank” Penalty. Let Lmin be the minimum cell length over all cells in B+. In B+,
children pairs (b1, b2) just born during interframe J → J+ must have lengths L1, L2 close to
Lmin. Thus, for (b1, b2) ∈ PCH, we define the rank penalty by

rank(b1, b2) = |(L1/Lmin)− 1|+ |(L2/Lmin)− 1|.

Given two successive images J, J+, we seek the set X = trueCH of true children pairs
in B+ × B+, which is an unknown subset of PCH. In Section 3.5 below, we replace X by its
indicator function z and we build a cost function E(z) which should be nearly minimized
when z is close to the indicator of trueCH. A key term of E(z) will be a weighted linear
combination of the penalty functions {lin, gap, dev, ratio, rank}. Since these penalties are
different from those introduced in Section 3.3.2, we estimate their weights in the cost
function E(z) by the algorithm outlined in Section 3.2. The minimization of E(z) will be
implemented by simulations of a BM with energy function E(z). We present these stochastic
neural networks in the next section.

3.4. Generic Boltzmann Machines (BMs)

Minimization of our main cost functionals is a heavily combinatorial task, since
the unknown variable is a mapping between two finite sets of sizes ranging from 80 to
120. To handle these minimizations, we use BMs originally introduced by Hinton et al.
(see [93,94]). Indeed, these recurrent stochastic neural networks can efficiently emulate
some forms of simulated annealing.

Each BM implemented here is a network BM = {U1, . . . , UN} of N stochastic neurons Uj.
In the BM context, the time t = 0, 1, 2, . . . is discretized and represents the number of steps in
a Markov chain, where the successive updates Z(t)→ Z(t+ 1) of the BM configuration Z(t)
are analogous to the steps of a Gibbs sampler. The configuration Z(t) = {Z1(t), . . . , ZN(t)}
of the whole network BM at time t is defined by the random states Zj(t) of all neuron Uj.
Each Zj(t) belongs to a fixed finite set W(j). Hence, Z(t) belongs to the configurations set
CONF = W(1)× · · · ×W(N).

Neuron interactivity is specified by a finite set CLQ of cliques. Each clique K is a subset
of S = {1, . . . , N}. During configuration updates Z(t) → Z(t + 1), neurons may interact
only if they are in the same clique. Here, all cliques K are of small sizes 1, or 2, or 3.
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For each clique K, one specifies an energy function JK(z) defined for all z ∈ CONF,
with JK(z) depending only on the zj such that j ∈ K. The full energy E(z) of configuration
z is then defined by

E(z) = ∑K∈CLQ JK(z).

The BM stochastic dynamics Z(t)→ Z(t + 1) is driven by the energy function E(z),
and by a fixed decreasing sequence of virtual temperatures Temp(t) > 0, tending slowly to
0 as t → ∞. Here, we use standard temperature schemes of the form Temp(t) ≡ cηt with
fixed c > 0 and slow decay rate 0.99 < η < 1.

We have implemented the classical “asynchronous” BM dynamics. At each time t,
only one random neuron Uj may modify its state, after reading the states of all neurons
belonging to cliques containing Uj. A much faster alternative, implementable on GPUs,
is the “synchronous” BM dynamics, where at each time t roughly 50% of all neurons may
simultaneously modify their states (see [95–97]). The detailed BM dynamics are presented
in the appendix (see Appendix A).

When the virtual temperatures Temp(t) decrease slowly enough to 0, the energy
E(Z(t)) converges in probability to a local minimum of the BM energy E(z) over all
configurations z ∈ CONF.

3.5. Optimized Set of Parent–Children Triplets

Next, we formulate the search for bona fide parent–children triplets as an optimiza-
tion problem. For brevity, this outline is restricted to situations where (3) holds, as is
the case for our synthetic image data. Simple modifications extend this approach to the
relaxed constraint (4), which we used for lab videos of live cell populations. Fix suc-
cessive images J, J+ with a positive number of cell divisions DIV = N+ − N. Denote
PCH = {pch1, pch2, . . . , pchm} the set of m plausible children pairs (b1, b2) in B+. The penal-
ties lin, gap, dev, ratio, and rank defined above for all pairs (b1, b2) ∈ PCH determine five
numerical vectors LIN, GAP, DEV, RAT, RANK in Rm with coordinates LINj = lin(pchj),
GAPj = gap(pchj), DEV j = dev(pchj), RATj = ratio(pchj), RANKj = rank(pchj).

We now define a binary BM constituted by m binary stochastic neurons Uj, j = 1 . . . m.
At time t = 0, 1, 2, . . ., each Uj has a random binary valued state Zj(t) = 1 or 0. The random
configuration Z(t) = [Z1(t), . . . , Zm(t)] of this BM belongs to the configuration space
CONF = {0, 1}m of all binary vectors z = [z1, . . . , zm]. Let SUB be the set of all subsets of
PCH. Each configuration z ∈ CONF is the indicator function of a subset sub(z) of PCH.
We view each sub(z) ∈ SUB as a possible estimate for the unknown set trueCH ⊂ B+ × B+

of true children pairs (b1, b2). For each potential estimate sub(z) of trueCH, the “lack of
quality” of the estimate sub(z) will be penalized by the energy function E(z) ≥ 0 of our
binary BM. We now specify the energy E(z) for all z ∈ CONF by combining the penalty
terms introduced above. Note that the penalty terms introduced in Section 3.3.2 are quite
different from those introduced in Section 3.3.3. No cell in B+ can be assigned to more than
one parent in b. To enforce this constraint, define the symmetric m×m binary matrix [Qj,k]
by (i) Qj,k = 1 if j 6= k and the two pairs pchj, pchk have one cell in common, (ii) Qj,k = 0 if
j 6= k and the two pairs pchj, pchk have no cell in common, (iii) Qj,j = 0 for all j.

The quadratic penalty z 7→ 〈z, Qz〉 is non-negative for z ∈ CONF, and must be zero
if sub(z) = trueCH. Introduce six positive weight parameters to be selected further on λj,
j ∈ {lin, gap, dev, rat, rank, Q}. Define the vector V ∈ Rm as a weighted linear combination
of the penalty vectors LIN, GAP, DEV, RAT, RANK

V = λlinLIN + λgapGAP + λdevDEV + λratRAT + λrankRANK.

For any configuration z ∈ CONF, the BM energy E(z) is defined by the quadratic function

E(z) = 〈V, z〉+ λQ〈z, Qz〉. (10)
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We already know that the unknown set trueCH of true children pairs must have
cardinal DIV = N+ − N. Thus, we seek a configuration z∗ ∈ CONF minimizing the energy
E(z) under the rigid constraint card{sub(z)} = DIV. Let ONE ∈ Rm be the vector with
all its coordinates equal to 1. The constraint on z can be reformulated as 〈ONE, z〉 =
DIV. We want the unknown trueCH to be close to the solution z∗ of the constrained
minimization problem

z∗ = argmin
z∈CONF

E(z) subject to 〈ONE, z〉 = DIV.

To force this minimization to yield a reliable estimate of trueCH, we calibrate the
six weights

λj, j ∈ {lin, gap, dev, rat, rank, Q}
by the algorithm in Section 3.2. Denote CONF1 the set of all z ∈ CONF such that
〈ONE, z〉 = DIV. To minimize E(z) under the constraint z ∈ CONF1, fix a slowly de-
creasing temperature scheme Temp(t) as in Section 3.4. We need to force the BM stochastic
configurations Z(t) to remain in CONF1. Then, for large time step t, the Z(t) will converge
in probability to a configuration z∗ ∈ CONF1 approximately minimizing E(z) under the
constraint z ∈ CONF1.

Start with any Z(0) ∈ CONF1. Assume that, for 0 ≤ s ≤ t, one has already dy-
namically generated BM configurations Z(s) ∈ CONF1. Then, randomly select two sites
j, k such that Zj(t) = 1 and Zk(t) = 0. Compute a virtual configuration Y by setting
Yj = 0, Yk = 1, and Yi ≡ Zi for all sites i different from j and k. Compute the en-
ergy change ∆E = E(Y)− E(Z(t)), and the probability p(t) = exp(−D/Temp(t)), where
D = max{0, ∆E}. Then, randomly select Z(t + 1) = Y or Z(t + 1) = Z(t) with respective
probabilities p(t) and (1− p(t)). Clearly, this forces Z(t + 1) ∈ CONF1.

3.6. Performance of Automatic Children Pairing on Synthetic Videos

In the following subsections, we provide experimental results for pairing children and
parent cells.

3.6.1. Children Pairing: Fast BM Simulations

For m = card(PCH) ≤ 1000, one can reduce the computational cost for BM dynamics
simulations by pre-computing and storing the m×m symmetric binary matrix Q, as well
as the m-dimensional vectors LIN, GAP, DEV, RAT, RANK and their linear combination V.
A priori reduction of m significantly reduces the computing times, and can be implemented
by trimming away the pairs pchj ∈ PCH for which the penalties LINj, GAPj, DEV j, RATj,
and RANKj are all larger than predetermined empirical thresholds. We performed a study
on 100 successive (synthetic) images. We show scatter plots for the most informative penalty
terms in Figure 3. These plots allow us to determine adequate thresholds for the penalty
terms. We observed that, for the synthetic and real data, we considered the trimming of
DEV, GAP, and RANK reduced the percentage of invalid children pairs by 95%, therefore
drastically reducing the combinatorial complexity of the problem.

D
E
V

GAP

D
E
V

RANK

G
A
P

RANK

• children • non-children

Figure 3. Scatter plots for tandems of the penalty terms DEV, GAP, and RANK. We mark in orange
the true children pairs and in blue invalid children pairs. These plots allow us to identify appropriate
empirical thresholds to trim the (considered synthetic) data in order to reduce the computational
complexity of the parent–children pairing.
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The quadratic energy function E(z) is the sum of clique energies JK(z) involving only
cliques of cardinality 1 and 2. For any clique K = {j} of cardinality 1, with 1 ≤ j ≤ m, one
has JK(z) = Vjzj. For any clique K = {j, k} of cardinality 2, with 1 ≤ j < k ≤ m, one has
JK(z) = 2Qj,kzjzk. A key computational step when generating Z(t + 1) is to evaluate the
energy change ∆E when one flips the binary values Zj(t) = 1 and Zk(t) = 0 by the new
value (1− zi) for a fixed single site i. This step is quite fast since it uses only the numbers
Vj, Vk, and 〈q(j), Z(t)〉, 〈q(k), Z(t)〉, where q(i) is the ith row of the matrix Q.

3.6.2. Children Pairing: Implementation on Synthetic Videos

We have implemented our children pairing algorithms on synthetic image sequences
having 100 to 500 image frames with 1 min interframe (benchmark set BENCH1; see
Section 2.1). The cell motion bound w/2 per interframe was defined by w = 20 pixels.
The parameter τ that defines the sets PCH of plausible children pairs (see (5)) was set at
τ = 45 pixels.

The known true cell registrations indicated that, in our typical BENCH1 image se-
quence, the successive sets PCH had average cardinalities of 120, while the number of
true children pairs per PCH roughly ranged from 2 to 6 with a median of 4. The size
of the reduced configuration space CONF1 per image frame thus ranged from 104 to
1206/6! = 4.2× 109 with a median of 9× 106.

Our weights estimation technique introduced in Section 3.2 yields the weights

[λcen, λsiz, λang] = [0.255, 0.05, 0.05]

and
[λgap, λdev, λrat, λrank] = [0.01, 1, 0.0001, 0.05]

for the penalties introduced in Section 4. To reduce the computing time for hundreds
of BM energy minimizations on the BENCH1 image sequences, we excluded obviously
invalid children pairs in each PCH set, by simultaneously thresholding of the penalty terms.
The BM temperature scheme was Temp(t) = 1000 (0.995)t, with the number of epochs
capped at 5000. The average CPU time for BM energy minimization dedicated to optimized
children pairing was about 30 seconds per frame. (We provide hardware specifications in
Appendix B).

3.6.3. Parent–Children Matching: Accuracy on Synthetic Videos

For each successive image pair J, J+, with cells B, B+ of cardinality N < N+, our
parent–children matching algorithm computes a set SHL of short lineages (b, b1, b2), where
the cell b ∈ B is expected to be the parent of cells b1, b2 ∈ B+. Recall that DIV = N+ − N
provides the number of cell divisions during the interframe J → J+. The number VAL of
correctly reconstructed short lineages (b, b1, b2) ∈ SHL is obtained by direct comparison to
the known ground truth registration J → J+. For each frame J, we define the pcp-accuracy
of our parent–children pairing algorithm as the ratio VAL/DIV.

We have tested our parent–children matching algorithm on three long synthetic image
sequences BENCH1 (500 frames), BENCH2 (300 frames), and BENCH3 (300 frames), with re-
spective interframes of 1, 2, and 3 min. For each frame Jk, we computed the pcp-accuracy
between Jk and Jk+1.

We report the accuracies of our parent–children pairing algorithms in Table 2. For
BENCH1, all 500 pcp-accuracies reached 100%. For BENCH2, pcp-accuracies reach 100%
for 298 frames out of 300, and for the remaining two frames, accuracies were still high at
93% and 96%. For BENCH3, where interframe duration was longest (3 min), the 300 pcp-
accuracies decreased slightly but still averaged 99%, and never fell below 90%.
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Table 2. Accuracies of parent–children pairing algorithm. We applied our parent–children pairing
algorithm to three long synthetic image sequences BENCH1 (500 frames), BENCH2 (300 frames),
and BENCH3 (300 frames), with interframe intervals of 1, 2, 3 min, respectively. The table summarizes
the resulting pcp-accuracies. Note that pcp-accuracies are practically always at 100%. For BENCH2,
pcp-accuracies are 100% for 298 frames out of 300, and for the remaining two frames, accuracies were
still high at 93% and 96%. For BENCH3, the average pcp-accuracy for the 3 min interframe is 99%.

Sequence Pcp-Accuracy Frames

BENCH1 acc = 100% 500 out of 500
BENCH2 acc = 100% 298 out of 300
BENCH2 99% ≥ acc ≥ 93% 2 out of 300
BENCH3 acc = 100% 271 out of 300
BENCH3 99% ≥ acc ≥ 95% 17 out of 300
BENCH3 94% ≥ acc ≥ 90% 12 out of 300

3.7. Reduction to Registrations with No Cell Division

Fix successive frames J, J+ and their cell sets B, B+. We seek the unknown registration
mapping f : B→ {B+ ∪ (B+ × B+)}, where f (b) ∈ B+ iff cell b did not divide during the
interframe J → J+ and f (b) = (b1, b2) ∈ B+ × B+ iff cell b divided into (b1, b2) during
the interframe.

If card(B) = N < N+ = card(B+), we know that the number of cell divisions during
the interframe J → J+ should be DIV = DIV(B, B+) = N+ − N > 0. We then apply the
parent–children matching algorithm outlined above to compute a set SHL = SHL(B, B+)
of short lineages (b, b1, b2) with b ∈ B, b1, b2 ∈ B+ and card(SHL) = DIV. For each
(b, b1, b2) ∈ SHL, the cell b is computed by b = parent(b1, b2) as the parent cell of the
two children cells b1, b2 ∈ B+.

For each (b, b1, b2) ∈ SHL, eliminate from B the parent cell, b, and eliminate from B+

the two children cells b1, b2. We are left with two residual sets, resB ⊂ B and resB+ ⊂ B+,
having the same cardinality, N −DIV = N+ − 2DIV. Assuming that our set SHC of short
lineages is correctly determined, the cells b ∈ redB should not divide in the interframe
J → J+, and hence have a single (still unknown) registration f (b) ∈ redB+. Thus, the still
unknown part of the registration f is a bijection from redB to redB+.

Let divB = B− redB and divB+ = B+ − redB+. For each b ∈ divB, the cell b divides
into the unique pair of cells, (b1, b2) ∈ divB+ × divB+, such that (b, b1, b2) ∈ SHL. Hence,
we can set f (b) = (b1, b2) for all b ∈ divB. Thus, the remaining problem to solve is to
compute the bijective registration f : redB → redB+. We have reduced the registration
discovery to a new problem, where no cell divisions occur in the interframe duration. In what
follows, we present our algorithm to solve this registration problem.

3.8. Automatic Cell Registration after Reduction to Cases with No Cell Division

As indicated above, we can explicitly reduce the generic cell tracking problem to a
problem where there is no cell division. We consider images J, J+ with associated cell sets B,
B+ such that N = card(B) = card(B+). Hence, there are no cell divisions in the interframe
J → J+ and the map f of this reduced problem is (in principle) a bijection f : B→ B+ with
card(B) = card(B+). In Figure 4, we show two typical successive images we use for testing
with no cell division generated by the simulation software [12,81] (see Section 2.1).
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image J image J+ difference |J − J+|difference |J − J+| motion vector field

Figure 4. Simulated cell dynamics. From left to right, two successive simulated images J and J+
with an interframe time of six minutes and no cell division, their image difference |J − J+|, and the
associated motion vectors. For the image J and J+ we color four pairs of cells in B × B+, which
should be matched by the true cell registration mapping. Notice that the motion for an interframe
time of six minutes is significant. We can observe that, even without considering cell division, we can
no longer assume that corresponding cells in frame J and J+ overlap.

3.8.1. The Set MAP of Many-to-One Cell Registrations

We have reduced the registration search to a situation where, during the interframe
J → J+, no cell has divided, no cell has disappeared, and no cell has suddenly emerged
in B+ without originating from B. The unknown registration f : B → B+ should then in
principle be injective and onto. However, for computational efficiency, we will temporarily
relax the bijectivity constraint on f . We will seek f in the set MAP of all many-to-one
mappings f : B → B+ such that for each b ∈ B, the cell f (b) is in the target window
W(b) ⊂ B+ (see Section 2.3).

3.8.2. Registration Cost Functional

To design a cost functional cost( f ), which should be roughly minimized when f ∈ MAP
is very close to the true registration from B to B+, we linearly combine penalties match( f ),
over( f ), stab( f ), flip( f ) weighted by unknown positive weights λmatch, λover, λstab, λflip,
to write, for all registrations f ∈ MAP,

cost( f ) = λmatch match( f ) + λover over( f ) + λstab stab( f ) + λflip flip( f ). (11)

We specify the individual terms that appear in (11) below. Ideally, the minimizer of
cost( f ) over all f ∈ MAP is close to the unknown true registration mapping f : B → B+.
To enforce a good approximation of this situation, we first estimate efficient positive weights
by applying our calibration algorithm (see Section 3.2). The actual minimization of cost( f )
over all f ∈ MAP is then implemented by a BM described in Section 3.9.

Cell Matching Likelihood: match( f ). Here, we extend a pseudo likelihood approach
used to estimate parameters in Markov random fields modeling by Gibbs distributions
(see [98]). Recall that g.rate is the known average cell growth rate. For any cells b ∈ B,
b+ ∈ B+, the geometric quality of the matching b 7→ b+ relies on three main characteristics:
(i) motion c(b+)− c(b) of the cell center c(b), (ii) angle between the long axes A(b) and
A(b+), (iii) cell length ratio ‖A(b+)‖/‖A(b)‖. Thus, for all b ∈ B and b+ in the target
window W(b), define (i) Kinetic energy: kin(b, b+) = ‖c(b) − c(b+)‖2. (ii) Distortion
of cell length: dis(b, b+) = | log(‖A(b+)‖/‖A(b)‖) − log g.rate|2. (iii) Rotation angle:
0 ≤ rot(b, b+) ≤ π/2 is the geometric angle between the straight lines carrying A(b)
and A(b+).

Fix b ∈ B, and let b′ run through the whole target window W(b). The finite set of values
thus reached by the kinetic penalties kin(b, b′) has two smallest values kin1(b), kin2(b).
Define list.kin =

⋃
b∈B{kin1(b), kin2(b)}, which is a list of 2N “low” kinetic penalty values.

Repeat this procedure for the penalties dis(b, b′) and rot(b, b′) to similarly define a list.dis
of 2N “low” distortion penalty values, and a list.rot of 2N “low” rotation penalty values.

The three sets list.kin, list.dis, list.rot can be viewed as three random samples of size
2N, respectively, generated by three unknown probability distributions Pkin, Pdis, Prot. We
approximate these three probabilities by their empirical cumulative distribution functions
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CDFkin, CDFdis, CDFrot, which can be readily computed. We now use the right tails of
these three CDFs to compute separate probabilistic evaluations of how likely the match-
ing of cell b ∈ B with cell b+ ∈ W(b) is. For any fixed mapping f ∈ MAP, and any
b ∈ B, set b+ = f (b). Compute the three penalties vkin = kin(b, b+), vdis = dis(b, b+),
vrot = rot(b, b+), and define three associated “likelihoods” for the matching b→ b+ = f (b):

LIKkin(b, b+) = 1−CDFkin(vkin),

LIKdis(b, b+) = 1−CDFdis(vdis),

LIKrot(b, b+) = 1−CDFrot(vrot).

High values of the penalties vkin, vdis, vrot thus will yield three small likelihoods for
the matching b→ b+ = f (b). With this, we can define a “joint likelihood” 0 ≤ LIK(b, b+) ≤ 1
evaluating how likely is the matching b→ b+ = f (b):

LIK(b, b+) = ∏
j∈{kin,dis,rot}

LIKj(b, b+). (12)

Note that higher values of LIK(b, b+) correspond to a better geometric quality for
the matching of b with b+ = f (b). To avoid vanishingly small likelihoods, whenever
LIK(b, b+) < 10−6, we replace it by 10−6. Then, for any mapping f ∈ MAP, we define its
likelihood lik( f ) by the finite product

lik( f ) = ∏
b∈B

LIK(b, f (b)).

The product of these N likelihoods is typically very small, since N = card(B) can be
large. Thus, we evaluate the geometric matching quality match( f ) of the mapping f via
the averaged log-likelihood of f , namely,

match( f ) = − 1
N

log lik( f ) = − 1
N ∑

b∈B
log LIK(b, f (b)).

Good registrations f ∈ MAP should yield small values for the criterion match( f ).
Overlap: over( f ). We expect bona fide cell registrations f ∈ MAP to be bijections.

Consequently, we want to penalize mappings f which are many-to-one. We say that two
distinct cells (b, b′) ∈ B× B do overlap for the mapping f ∈ MAP if f (b) = f (b′). The total
number of overlapping pairs (b, b′) for f defines the overlap penalty:

over( f ) =
1

card(B) ∑
b∈B

∑
b′∈B

1 f (b)= f (b′).

Neighbor Stability: stab( f ). Let B = {b1, . . . , bN}. Denote Gi as the set of all neigh-
bors for cell bi in B (i.e., bj ∼ bi ⇐⇒ bj ∈ Gi; see Section 2.3). For bona fide registrations
f ∈ MAP, and for most pairs of neighbors bi ∼ bj in B, we expect f (bi) and f (bj) to remain
neighbors in B+. Consequently, we penalize the lack of “neighbors stability” for f by

stab( f ) = ∑
i

∑
j 6=i

1
N|Gi||Gj|

1bi∼bj
1 f (bi) 6∼ f (bj)

.

Neighbor Flip: flip( f ). Fix any mapping f ∈ MAP, any cell b ∈ B and any two
neighbors b′, b′′ of b in B. Let z = f (b), z′ = f (b′), z′′ = f (b′′). Let c, c′, c′′ and d, d′, d′′

be the centers of cells b, b′, b′′ and z, z′, z′′. Let α be the oriented angle between c′ − c and
c′′ − c, and let α f be the angle between d′ − d and d′′ − d, respectively. We say that the
mapping f has flipped cells b′, b′′ around b, and we set FLIP( f , b, b′, b′′) = 1 if z′, z′′ are
both neighbors of z, and the two angles α, α f have opposite signs. In all other cases, we set
FLIP( f , b, b′, b′′) = 0.
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For any registration f ∈ MAP, define the flip penalty for f by

flip( f )= ∑
b∈B

∑
b′∈B

∑
b′′∈B

1
N|G(b)|2 FLIP( f , b, b′, b′′),

where G(b) is the neighborhood of cell b in B. In Figure 5, we illustrate an example of an
unwanted cell flip.

f

J J+

•
•

•
•

•

•

c(b1)

c(b2)

c(b3)

c(f (b3))

c(f (b2))

c(f (b1))

Figure 5. Illustration of an undesirable flip for the mapping f . The cells b1 and b3 are neighbors of b2,
and mapped by f on neighbors z1 = f (b1), z3 = f (b3) of z2 = f (b2), as should be expected for bona
fide cell registrations. However, for this mapping f , we have z3 above z2 above z1, whereas, for the
original cells, we had b1 above b2 above b3. Our cost function penalizes flips of this nature.

3.9. BM Minimization of Registration Cost Function

In what follows, we define the optimization problem for the registration of cells
from one frame to another (i.e., cell tracking), as well as associated methodology and
parameter estimates.

3.9.1. BM Minimization of Cost( f ) over f ∈ MAP

Let B, B+ be two successive sets of cells. As outlined above, we have reduced the
problem to one in which we can assume that N = card(B) = card(B+), so that there
is no cell division during the interframe. Write B = {b1, . . . , bN}. For short, denote
W(j) ⊂ B+ instead of W(bj) the target window of cell bj. We seek to minimize cost( f )
over all registrations f ∈ MAP. Let BM be a BM with sites S = {1, . . . , N} and stochastic
neurons {U1, . . . , UN}. At time t, the random state Zj(t) of Uj will be some cell zj belonging
to the target window W(j) and the random configuration Z(t) = {Z1(t), . . . , ZN(t)} of the
whole BM belongs to the configurations set CONF = W(1)× . . .×W(N).

To any configuration z = {z1, . . . , zN} ∈ CONF, we associate a unique cell registration
f ∈ MAP defined by f (bj) = zj for all j, denoted by f = map(z). This determines a
bijection z 7→ f = map(z) from CONF onto MAP. The inverse of map : CONF → MAP
will be called range : MAP→ CONF, and is defined by z = range( f ), when zj = f (bj) for
all j.

3.9.2. BM Energy Function E(z)

We now define the energy function E(z) ≥ 0 of our BM for all z ∈ CONF. Denote
E∗ = minimizez∈CONF E(z). Since f 7→ z = range( f ) is a bijection from MAP to CONF, we
must have

E∗ = minimize
z∈CONF

E(z) = minimize
f∈MAP

E(range( f )).

Our goal is to minimize cost( f ), and we know that BM simulations should roughly
minimize E(z) over all z ∈ CONF. Thus, we define the BM energy function E(z) by forcing

cost( f ) = E(range( f )) (13)

for any registration mapping f ∈ MAP, which—due to the preceding subsection—is
equivalent to

E(z) = cost(map(z)) (14)
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for all configurations z ∈ CONF. The next subsection will explicitly express the energy E(z)
in terms of cliques of neurons. Due to (13) and (14), we have

E∗ = minimize
f∈MAP

cost( f ) = minimize
z∈CONF

E(z).

For large time t, the BM stochastic configuration Z(t) tends with high probability
to concentrate on configurations z ∈ CONF, which roughly minimize E(z). The random
registration Ft = map(Z(t)) will belong to MAP and verify Z(t) = range(Ft), so that
E(Z(t)) = E(range(Ft)) = cost(Ft). Consequently, for large t—with high probability—the
random mapping Ft = map(Z(t)) will have a value of the cost functional cost(Ft) close to
minimize f∈MAP cost( f ).

3.9.3. Cliques of Interactive Neurons

The BM energy function E(z) just defined turns out to involve only three sets of
small cliques: (i) CL1 is the set of all singletons K = {i}, with i = 1 . . . N. (ii) CL2 is the
set of all pairs K = {i, j} such that cells bi and bj are neighbors in B. (iii) CL3 is the set
of all triplets K = {i, j, k} such that cells bj and bk are both neighbors of bi in B. Denote
CLQ = CL1 ∪ CL2 ∪ CL3 as the set of all cliques for our BM.

Cliques in CL1. For each clique K = {i} in CL1, and each z ∈ CONF, define its energy
Jmatch,K(z) = Jmatch,K(zi) by

Jmatch,K(z) = −
1
N

log LIK(bi, zi) for all z ∈ ZW,

where LIK is given by (12). Set Jmatch,K ≡ 0 for K in CL2 ∪ CL3. For all z ∈ CONF, define
the energy Ematch(z) by

Ematch(z) = ∑
K∈CLQ

Jmatch,K(z) = ∑
K∈CL1

Jmatch,K(z),

which implies that the registration f = map(z) verifies match( f ) = Ematch(z).
Cliques in CL2. For all z ∈ CONF, all cliques K = {i, j} in CL2, define the clique

energies Jover,K(z) = Jover,K(zi, zj) and Jstab,K(z) = Jstab,K(zi, zj) by Jover,K(z) = 1zi=zj /N
and

Jstab,K(z) =
1

N|Gi||Gj|
1bj∼bi

1zj 6∼zi ,

where |Gi| and |Gj| are the numbers of neighbors in B for cells zi and zj, respectively. Set
Jover,K = Jstab,K ≡ 0 for K in CL1 ∪ CL3. Define the two energy functions

Eover(z) = ∑
K∈CLQ

Jover,K(z) = ∑
K∈CL2

Jover,K(z),

Estab(z) = ∑
K∈CLQ

Jstab,K(z) = ∑
K∈CL2

Jstab,K(z),

which implies that f = map(z) verifies over( f ) = Eover(z) and stab( f ) = Estab(z).
Cliques in CL3. For each clique K = {i, j, k} in CL3, define the clique energy Jflip,K by

Jflip,K(z) = Ji,j,k
flip (z) =

1
N|Gi|2

FLIP( f i,j,k, bi, bj, bk),

where f i,j,k is any registration mapping bi, bj, bk onto zi, zj, zk. The indicator FLIP was
defined in Section 3.8.2. Set Jflip,K ≡ 0 for K in CL1 ∪ CL2. Define the energy

Eflip(z) = ∑
K∈CLQ

Jflip,K(z) = ∑
K∈CL3

Jflip,K(z),
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which implies that f = F(z) verifies flip( f ) = Eflip(z).
Finally, define the clique energy JK for all K ∈ CLQ by the linear combination

JK = λmatch Jmatch,K + λover Jover,K + λstab Jstab,K + λflip Jflip,K.

Summing this relation over all K ∈ CLQ yields

∑
K∈CLQ

JK = λmatchEmatch + λoverEover + λstabEstab + λflipEflip. (15)

Define then the final BM energy function z 7→ E(z) by

E(z) = ∑
K∈CLQ

JK(z) for all z in CONF. (16)

For any z ∈ CONF, the associated registration f = map(z) verifies match( f ) =
Ematch(z), over( f ) = Eover(z), stab( f ) = Estab(z), flip( f ) = Eflip(z). By weighted linear
combination of these equalities, and, due to (15), we obtain for all configurations z ∈ CONF,
E(z) = cost( f ) when f = map(z) or, equivalently, when z = range( f ).

3.9.4. Test Set of 100 Synthetic Image Pairs

As shown above, the minimization of cost( f ) over all registrations f ∈ MAP is
equivalent to seeking BM configurations z ∈ CONF with minimal energy E(z). We have
implemented this minimization of E(z) by the long-term asynchronous dynamics of the BM
just defined. This algorithm was designed for the registration of image pairs exhibiting no
cell division, and was, therefore, implemented after the automatic reduction of the generic
registration problem, as indicated earlier. We have tested this specialized registration
algorithm on a set of 100 pairs of successive images of simulated cell colonies exhibiting no
cell divisions. These 100 image pairs were extracted from the benchmark set BENCH6 of
synthetic image sequence described in Section 2.1. The 100 pairs of cell sets B, B+ had sizes
N = card(B) = card(B+) ranging from 80 to 100 cells. For each test pair B, B+, each target
window W(j) typically contained 30 to 40 cells. The set CONF of configurations had huge
cardinality ranging from 10130 to 10160. However, the average number of neighbors of a
cell was around 4 to 5.

3.9.5. Implementation of BM Minimization for Cost( f )

The numbers clq1, clq2, clq3 of cliques in CL1, CL2, CL3 have the following rough
ranges 80 ≤ clq1 ≤ 100, 160 ≤ clq2 ≤ 250, and 450 ≤ clq3 ≤ 600. For k = 1, 2, 3,
denote val(k) the numbers of non-zero values for JK(z) when z runs through CONF and
K runs through all cliques of cardinality k. One easily checks the rough upper bounds
val(1) < 4000; val(2) < 200,000; val(3) < 300,000. Hence, to automatically register B
to B+, one could pre-compute and store all the possible values of JK(z) for all cliques
K ∈ CL1 ∪ CL2 ∪ CL3 and all the configurations z ∈ CONF. This accelerates the key
computing steps of the asynchronous BM dynamics, namely, for the evaluation of energy
change ∆E = E(z′) − E(z), when configurations z and z′ differ at only one site j ∈ S.
Indeed, the single site modification zj → z′j affects only the energy values JK(z) for the
very small number r(j) of cliques K, which contain the site j. In our benchmark sets of
synthetic images, one had r(j) < 24 for all j ∈ S. Hence, the computation of ∆E was fast
since it requires retrieving at most 24 pairs of pre-computed JK(z), JK(z′), and evaluating
the 24 differences JK(z′) − JK(z). Another practical acceleration step is to replace the
ubiquitous computations of probabilities p(t) = exp(−D/Temp(t)) by simply testing the
value −D/Temp(t) against 100 precomputed logarithmic thresholds.

In our implementation of ABM dynamics, we used virtual temperature schemes such
as Temp(t) = 50 · ρt with 0.995 ≤ ρ ≤ 0.999. The BM simulation was stopped when the
stochastic energy E(Z(t)) had remained roughly stable during the last N steps. Since all
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target windows W(j) had cardinality smaller 40, the initial configuration Z(0) = x was
computed via

xj = argmax
y∈W(j)

LIK(bj, y) for j = 1, . . . , N,

where the likelihoods LIK were defined by (12).

3.9.6. Weight Calibration

For the pair of successive synthetic images J, J+ displayed in Figure 4, we have
N = card(B) = card(B+) = 513 cells. The ground truth registration f is known by con-
struction; we used it to apply the weight calibration described in Section 3.2. We set the
meta-parameter γ to 1010 and obtained the vector of weights

Λ∗ = [λ∗match, λ∗over, λ∗stab, λ∗flip] = [110, 300, 300, 290]. (17)

These weights are kept fixed for all the 100 pairs of images taken from the set BENCH6.
The determined weights are used in the cost function cost( f ) defined above. This correctly
parametrized the BM energy function E(z). We then simulated the BM stochastic dynamics
to minimize the BM energy E(Z(t)).

3.9.7. BM Simulations

We launched 100 simulations of the asynchronous BM dynamics, one for each pair of
successive images in our test set of 100 images taken from BENCH6. For each such pair,
the ground truth mapping f : B→ B+ was known by construction and the stochastic mini-
mization of the BM energy generated an estimated cells registration f ′ : B→ B+. For each
pair B, B+ in the considered set of 100 images, the accuracy of this automatically computed
registration f ′ was evaluated by the percentage of cells b ∈ B such that f ′(b) = f (b). When
card(B) = N, our BM has N stochastic neurons, and the asynchronous BM dynamics
proceeds by successive epochs. Each epoch is a sequence of N single site updates of the
BM configuration. For each one of our 100 simulations of BM asynchronous dynamics,
the number of epochs ranged from 250 to 450.

The average computing time was about eight minutes per epoch, which entailed a
computing time ranging from 30 to 50 min for each one of our 100 automatic registrations
f ′ : B→ B+ reported here. (We specify the hardware used to carry out these computations
in Appendix B). Each image contains about 100 to 150 cells. Consequently, the runtime
for the algorithm is approximately 20 s per cell for our prototype implementation. We
note that this is only a rough estimate. The runtime depends on several factors, such
as the number of cells in an image; the number of mother and daughter cells (i.e., how
many cells divide); the size of the neighborhood of each individual cell (window size); the
weights used in the cost function (which affects the number of epochs), etc. We note that
the temperature scheme had not been optimized yet, so that these computing times are
upper bounds. Earlier SBM studies [99–102] indicate that the same energy minimizations
on GPUs could provide a computational speedup by a factor ranging between 30 and 50.
We report registration accuracies in Table 3. For each pair of images in the considered set
of 100 images, the accuracy of automatic registration was larger than 94.5%. The overall
average registration accuracy was quite high at 99%.
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Table 3. Registration accuracy for synthetic image sequence BENCH100. We consider 100 pairs of
consecutive synthetic images taken from the benchmark dataset BENCH6. Automatic registration
was implemented by BM minimization of the cost function cost( f ), which was parametrized by the
vector of optimized weights Λ∗ in (17). The average registration accuracy was 99%.

Registration Accuracy Number of Frames

acc = 100% 55 frames out of 100
99% ≥ acc > 97% 40 frames out of 100

96% ≥ acc > 94.5% 5 frames out of 100

4. Results

In this section, we report results for the registration for cell dynamics involving growth,
motion, and cell divisions.

4.1. Tests of Cell Registration Algorithms on Synthetic Data

We now consider more generic long synthetic image sequences of simulated cell
colonies, with a small interframe duration of one minute. We still impose the mild constraint
that no cell is lost between two successive images. The main difference with the earlier
benchmark of 100 images from BENCH6 is that cells are allowed to freely divide during
interframes, as well as to grow and to move. For the full implementation on 100 pairs of
successive images, we first execute the parent–children pairing, and remove the identified
parent–children triplets; we can then apply our cell registration algorithmic on the reduced
sets cells. Our image sequence contained 760 true parent–children triplets, which we
automatically identified with an accuracy of 100%. As outlined earlier, we removed all
these identified cell triplets and then applied our tracking algorithm. This left us with a total
of 12,631 cells (spread over 100 frames). Full automatic registration was then implemented
with an accuracy higher than 99.5%.

4.2. Tests of Cell Registration Algorithms on Laboratory Image Sequences

To test our cell tracking algorithm on pairs of consecutive images extracted from
recorded image sequences of bacterial colonies (real data), we had to automatically delineate
all individual cells in each image. Representative frames of these data are shown in Figure 1.
We describe these data in more detail in Section 2.2. We will only briefly outline the
overall segmentation approach to not distract from our main contribution—the cell tracking
algorithm. We use the watershed algorithm [103] (also used, e.g., in [76]) to segment each
frame into individual image segments containing one single cell each. Consequently, these
regions represent over segmentations of the individual cells; we only know that each region
will contain a bacteria cell b. To segment individual cells, an additional step is necessary.
We then apply ad hoc nonlinear filters to remove minor segmentation artifacts. In a second
step, we then identified the contour of each single cell b by applying the Mumford–Shah
algorithm [104] within the image segment containing a cell b. Since this procedure is quite
time-consuming for large images, we have implemented it to produce a training set of
delineated individual cells to train a CNN for image segmentation. After automatic training,
this CNN substantially reduces the runtime of the cell segmentation/delineation procedure.
We show the resulting segmentations in Figure 6. We provide additional information
regarding our approach for the segmentation of individual bacteria cells in the appendix
(see Appendix D).
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COL1

t0 t1

COL2

t0 t1 t2 t3

Figure 6. Segmentation results for experimental recordings of live cell colonies. We show two short
image sequences extracts COL1 (left) and COL2 (right). The interframe duration is six minutes.
The image sequence extract COL1 has only two successive image frames. The image sequence extract
COL2 has four successive image frames. We are going to automatically compute four cell registrations,
one for each pair of successive images in COL1 and COL2.

After each cell has been identified (i.e., segmented out) in each pair J, J+ of successive
images, we transform J, J+ into binary images, where cells appear in white on a black
background. For each resulting pair B, B+ of successive sets of cells, we apply the parent–
children pairing algorithm outlined in Section 3.3 to identify all the short lineages. For the
two successive images in COL1, the discovered short lineages are shown in Figure 7 (left
pair of images). Here, color designates the cell triplet algorithmically identified: parent cell
in image J and its two children in image J+. We then remove each identified “parent” from
B and its two children from B+. This yields the reduced cell sets redB and redB+. We can
then apply our tracking algorithm (see Section 3.7) dedicated to situations where cells do
not divide during the interframe.

parent-children pairing

J ,B J+,B+

cell registration

redJ , redB redJ+, redB+

Figure 7. Cell tracking results for the pair COL1 of successive images J, J+ shown in Figure 6. The in-
terframe duration is six minutes. (Left): Results for parent–children pairing on COL1. Automatically
detected parent–children triplets are displayed in the same color. (Right): Computed registration.
The removal of the automatically detected parent–children triplets (see left column) generates the
reduced cell sets redB and redB+. Automatic registration of redB and redB+ is again displayed via
identical color for the registered cell pairs (b, b+). Mismatches are mostly due to previous errors in
parent–children pairing (see Figure 8 for a more detailed assessment).

For image sequences of live cell colonies, we had to re-calibrate most of our weight
parameters. The weight parameters used for these image sequences are summarized in
Table 4.

The BM temperature scheme was Temp(t) = 2000 (0.995)t, with the number of epochs
capped at 5000. We illustrate our COL1 automatic registration results in Figure 7 (right pair
of images). Here, if cell b ∈ redB has been automatically registered onto cell b+ ∈ redB+, b,
b+ share the same color. The cells colored in white in redB+ are cells which the registration
algorithm did not succeed in matching to some cell in redB. These errors can essentially
be attributed to errors in the parent–children pairing step. By visual inspection, we have
determined that there are 14 true parent–children triplets in the successive images of
COL1. Our parent–children pairing algorithm did correctly identify 11 of these 14 triplets.
To check further the performance of our registration algorithm on live images, we also
report automatic registration results for “manually prepared” true versions of redB and redB+,
obtained by removing “manually” the true parent–children triplets determined by visual
inspection. For the short image sequence COL2, results are displayed in Figure 8.
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our algorithm cell registration for manually
cleaned dataparent-children pairing

t 0
to

t 1

cell registration (reduced data)

t 1
to

t 2
t 2
to

t 3

J ,B J+,B+ redJ , redB redJ+, redB+ redJ∗, redB∗ redJ∗+, redB
∗
+

Figure 8. Cell tracking results for the short image sequence COL2 in Figure 6. The interframe duration
for COL2 is six minutes. COL2 involves four successive images J(ti), i = 0, 1, 2, 3. In our figure, each
one of the three rows displays the automatic cell registration results between images J(ti) and J(ti+1)

for i = 0, 1, 2. We report the accuracies of parent–children pairing and of the registration in Table 5.
(Left column): Results for parent–children pairing. Each parent–children triplet is identified by the
same color for each parent cell and its two children. (Middle column): Display of the automatically
computed registration after removing the parent–children triplets already identified in order to
generate two reduced sets redB and redB+ of cells. Again, the same color is used for each pair of
automatically registered cells. The white cells in redB+ are cells which could not be registered to some
cell in redB. (Right column): To differentiate between errors induced during automatic identification
of and errors generated by automatic registration between redB and redB+, we manually removed all
“true” parent–children triplets and then applied our registration algorithm to this “cleaned” (reduced)
cell sets redB∗ and redB∗+.

Table 4. Cost function weights for parent–children pairing in the COL1 images displayed in Figure 6.

Weights λcen λsiz λang λgap λdev λrat λrank λover

Value 3 7 100 0.8 4 0.01 0.01 600

The display setup is the same: The left column shows the results of automatic parent–
children pairing. The middle column illustrates the computed registration after automatic
removal of the computer identified parent–children triplets. The third column displays
the computed registration after “manually” removing the true parent–children triplets
determined by visual inspection. Note that the overall matching accuracy can be improved
if we reduce errors in the parent–children pairing. We report quantitative accuracies in
Table 5. For parent–children pairing, accuracy ranges between 70% and 78%. For pure
registration after correct parent–children pairing, accuracy ranges between 90% and 100%.

Table 5. Cell tracking accuracy for the short image sequence COL2 in Figure 6 with an interframe
of six minutes. We report the ratio of correctly predicted cell matches over the total number of true
cell matches and the associated percentages. The accuracy results quantify four distinct percentages
of correct detections (i) for parent cells in image J, (ii) for children cells in image J+, (iii) for parent–
children triplets, and (iv) for registered pairs of cells (b, b+) ∈ redB× redB+.

Task Accuracy

{t0, t1} {t1, t2} {t2, t3}
correctly detected parents 15/19 79% 20/21 95% 7/10 70%
correctly detected children 35/38 92% 32/42 76% 14/20 70%
correct parent–children triplets 15/19 78% 16/21 76% 7/10 70%
correctly registered cell pairs 36/36 100% 44/49 90% 76/80 95%
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5. Conclusions and Future Work

We have developed a methodology for automatic cell tracking in recordings of dense
bacterial colonies growing in a mono-layer. We have also validated our approach using
synthetic data from agent based simulations, as well as experimental recordings of E. coli
colonies growing in microfluidic traps. Our next goal is to streamline our implementation
for systematic cell registration on experimentally acquired recordings of such cell colonies,
to enable automated quantitative analysis and modeling of cell population dynamics
and lineages.

There are a number of challenges for our cell tracking algorithm: Inherent imaging
artifacts such as noise or intensity drifts, cell overlaps, similarity of cell shape characteristics
across the population, tight packing of cells, somewhat large interframe times, cell growth
combined with cell motion, and cell divisions represent just a few of these challenges.
Overall, the cell tracking problem has combinatorial complexity, and for large frames is
beyond the concrete patience of human experts. We tackle these challenges by developing
a two-stage algorithm that first identifies parent–children triplets and subsequently com-
putes cell registration from one frame to the next, after reducing the two original cell sets
by automatic removal of the identified parent–children triplets. Our algorithms specify
innovative cost functions dedicated to these registration challenges. These cost functions
have combinatorial complexity. To discover good registrations, we minimize these cost
functions numerically by intensive stochastic simulations of specifically structured BMs.
We have validated the potential of our approach by reporting promising results obtained
on long synthetic image sequences of simulated cell colonies (which naturally provide a
ground truth for cell registration from one frame to the next). We have also successfully
tested our algorithms on experimental recordings of live bacterial colonies.

The choice of adequate cost functions to drive each major cost optimization step in
our multi-step cell tracking algorithms is essential for obtaining good tracking. Selecting
the proper formulation had a strong impact on actual tracking accuracy. Our cost functions
are fundamentally nonlinear, which entails additional complications. We introduced a set
of meta-parameters for each cost function, and proposed an original learning algorithm to
automatically identify good ranges for these meta-parameters.

Our BMs are focused on stochastic minimization of dedicated cost functions. An in-
teresting feature of BMs we will explore in future work is the simplicity of their natural
massive parallelization for fast stochastic minimization [90]. This allows us to mitigate the
slow convergence typically observed for Gibbs samplers on discrete state spaces with high
cardinality. Parallelized BMs implement a form of massively parallel simulated anneal-
ing. Sequential simulated annealing has been explored by physicists [105–108] seeking to
minimize spin–glasses energies. For these clique-based energies, reaching global minima
requires unfeasible CPU times, and much faster parallel simulated annealing yields only
good local minima, via a sophisticated but still greedy stochastic search. Parallel stochastic-
ity favors ending in rather stable local minima, which in turn enforces low sensitivity to
small changes in energy parameters. Robustness to small changes in the coefficients of our
cost functions is a desirable feature, since our algorithmic calibration of cost coefficients
focuses on computing good ranges for these meta-parameters. We do not aim to seek
global minima, generally a very elusive search because computing speed and scalability are
important features in our problem. Recall the established results of Huber [109] showing
that optimal estimators of the mean for a Gaussian distribution lose efficiency very quickly
when the Gaussian data are slightly perturbed.

In future work, we will further improve the stability and accuracy of our cell regis-
tration algorithms by exploring natural modifications of our cost functions. In the present
work, we have not yet explicitly considered the case of cells vanishing between successive
frames. This is a critical issue that can occur due to cells exiting or entering the field of
view as well as due to errors in cell segmentation. The problem is somewhat controlled
and/or mitigated in our experimental setup, where we expect cells to enter or vanish close
to a precisely positioned trap edge and/or near frame boundaries. Since we intend to
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track lineages, each frame-to-frame error of this type may be problematic, and it will be
instrumental for our future work to address these issues.

Linking parents to children involves an optimization distinct from the final optimiza-
tion of frame-to-frame registrations. This did reduce computing time without reducing the
quality for our benchmark results. However, in future work, one could attempt to iterate
this sequence of two optimizations in order to reach a better minimum.

We note that our algorithm does work for experimental setups in which the frame rate
of the video recordings is not fixed. This will require an adaptive parameter selection that
depends on the frame rate. This can be implemented based on a trivial rescaling procedure.
However, note that, for larger interframe times, more errors will impact tracking results.
Indeed, large interframe durations intensify fluctuations in key parameters of cell dynamics,
and increase the range of cell displacement, imposing searches in larger cell neighborhoods
for cell pairing, as well as increased combinatorial complexity.

We have considered synthetic data to evaluate the performance of our method. One
clear practical issue is that some of the parameters of our tracking algorithms may change
when applied to laboratory image sequences acquired from colonies of different cells,
with various image acquisition setups. One can design a computational framework to
automatically fit the parameters of the simulation model to the imaging data acquired on
specific live cell colonies, using specific camera hardware and setup. In future work, we
will attempt to implement this type of fitting for our simulation model, before launching
intensive model simulations to calibrate the parameters of our new tracking algorithms.
We have not yet removed physical scales in the implementation of our tracking algorithm.
Implementing such a non-dimensionalization will allow us to reduce the sensitivity of our
methodology with respect to new datasets.

Identification of full lineages is an interesting concrete goal for cell tracking. Evaluat-
ing the accuracy of lineage identification on real cell colonies is quite challenging since it
requires inheritable biological tagging of cells. This is probably feasible for populations
mixing two or three cell types, but not for individualized tagging in populations of moder-
ate size. However even partial tagging of sub-populations would provide some control on
lineage identification accuracies.
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Appendix A. Stochastic Dynamics of BMs

Notations and terminology refer to Section 3.4. Consider a BM network of N stochastic
neurons Uj, with finite configuration set CONF = W(1) × . . . ×W(N). At time t, let
Zj(t) ∈ W(j) be the random state of neuron Uj, and the BM configuration Z(t) ∈ CONF
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is then Z(t) = {Z1(t), . . . , ZN(t)}. Fix as in Section 3.4 a sequence Temp(t) of virtual
temperatures slowly decreasing to 0 for large t.

There are two main options to implement the Markov chain dynamics Z(t)→ Z(t+ 1)
(see [95]).

Appendix A.1. Asynchronous BM Dynamics

Generate a long random sequence of sites m(t) ∈ S = {1, . . . , N}, for instance by
concatenating successive random permutations of the set S. At time t, the only neuron
that may modify its current state is Um(t). For brevity, write M = m(t). The neuron
UM will compute its new random state ZM(t + 1) ∈ W(M) by the following updating
procedure: (i) For each y in W(M), define a new configuration Y ∈ CONF by YM(t) = y,
and Yj(t) = Zj(t) for all j 6= M. Let ∆(y) = E(Y) − E(Z(t)) be the corresponding BM
energy change. (ii) In the finite set W(M), select any z such that ∆(z) = miny∈W(M) ∆(y),
and set D = max{0, ∆(z)}. (iii) Compute the probability p = exp(−D/Temp(t)). (iv) The
new random state ZM(t + 1) of neuron UM will be equal to z with probability p and equal
to the current state ZM(t) with probability 1− p. (v) For all j 6= M, the new state Zj(t + 1)
of neuron Uj remains equal to its current state Uj(t).

Appendix A.2. Synchronous BM Dynamics

Fix a synchrony parameter 0 < α < 1, usually around 50%. At each time t, all neurons
Uj synchronously, but independently compute their own random binary tag tagj(t), equal to
1 with probability α, and to 0 with probability (1− α). Let SYN(t) be the set of all neurons.
All the neurons Uj such that tagj(t) = 1 then synchronously and independently compute
their new random states Zj(t + 1) ∈W(j) by applying the updating procedure given above.
In addition, for all j such that tagj(t) = 0, the new state Zj(t + 1) of Uj remains equal to
Zj(t).

Appendix A.3. Comparing Asynchronous and Synchronous BM Dynamics

As t becomes large, and for temperatures Temp(t) slowly decreasing to 0, both BM
dynamics generate with high probability configurations Z(t) which provide deep local
minima E(Z(t)) of the BM energy function. The asynchronous dynamics can be fairly slow.
However, the synchronous dynamics are much faster since they emulate efficient forms of
parallelel simulated annealing (see [90,110]) and are directly implementable on GPUs.

Appendix B. Computer Hardware

The computations were carried out on a dedicated server at the Department of Mathe-
matics of the University of Houston. The hardware specifications are 64 Intel(R) Xeon(R)
Gold 6142 CPU cores at 2.60 GHz with 128 GB of memory.

Appendix C. Parameters for Simulation Software

Our tracking module is a collection of python functions and has been released to
the public at https://github.com/scopagroup/BacTrak (accessed on 15 December 2021).
We refer to [12,81] for a detailed description of this mathematical model and its im-
plementation. The code for generating the synthetic data has been released at https:
//github.com/jwinkle/eQ (accessed on 15 December 2021). We note that detailed instal-
lation instructions for the software can be found on this page. The parameters for this
agent-based simulation software are as follows: Cells were modeled as 2D spherocylinders
of constant, 1 µm width. The computational framework takes into account mechanical con-
straints that can impact cell growth and influence other aspects of cell behavior. The growth
rate of the cells is exponential and is controlled by the doubling time. The time until
cells double is set to 20 min (default setting; resulting in a growth rate of g.rate = 1.05).
The cells have a length of approximately 2 µm after division and 4 µm right before division
(minimum division length of 4µm; subject to some random perturbation). In our data set

https://github.com/scopagroup/BacTrak
https://github.com/jwinkle/eQ
https://github.com/jwinkle/eQ
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of simulated videos, there is no “trap wall” (as opposed to the simulations carried out
in [12,81]). The “trap” encompassing all cells on a given frame has a size of 30 µm× 30 µm
subdivided into 400× 400 pixels of size 0.075µm× 0.075µm. The size of the resulting
binary image used in our tracking algorithm is 600× 600 pixels. (We add a boundary
of 100 pixels on each side). Bacteria are moving, growing and dividing within the trap.
However, at this stage of our study, we consider only video segments where no cell dis-
appears and where cells do not enter the trap from outside so that the trap is a confined
environment. Cells move only due to soft shocks’ interactions with other neighboring cells.
The time interval between any two successive image frames ranges from one minute to six
minutes (see Table 1). All other simulation parameters remain unchanged; i.e., we use the
default parameters specified in the simulation software.

Appendix D. Cell Segmentation

In the next couple of sections, we outline the framework we have developed to segment
individual cells from real world laboratory imaging data. In a first step, we consider
traditional segmentation algorithms—a watershed algorithm [103,111,112] in combination
with a variational contour based model—to generate a sufficiently large dataset to train
a neuronal network. The actual segmentations on real data can subsequently be carried
out efficiently using segmentation predictions generated by the trained neuronal network.
Note that the proposed segmentation algorithm is only included for completeness. We do
not view this as a major contribution of the present work.

Appendix D.1. Watershed Algorithm

We consider a watershed algorithm based on immersion that compares high intensity
values to local intensity minima for cell segmentation [103,111,112].

We consider Matlab’s implementation of the watershed algorithm in the present work.
This version of the watershed algorithm is unseeded and yields n regions R = {R1, R2, . . . , Rn}.
To identify these regions, we perform a statistical analysis of each image histogram to
compute adaptive rough thresholds for interiors and exterior of cells. This leads to wa-
tershed results which identify each cell by a segment slightly larger than the cell itself.
The very small percentage of oversegmented cells is automatically detected by cell length
and width computations through PCA analysis of each cell shape viewed as a cloud of
planar points. Since our segments are slightly too wide, we reduce each segment to the
exact outer cell contour by applying a Mumford–Shah algorithm to each segment computed
by the watershed algorithm. In an ideal case, after applying the watershed algorithm, each
individual bacteria cell bi, i = 1, . . . , n, will be located in a single region Ri ⊂ R2. However,
we observed several segmentation errors after applying the watershed algorithm to the
considered data. A common error is that a line segment that defines the boundary of a
region crosses through a cell. That is, two regions contain parts of one bacterium cell.
In what follows, we devise strategies to correct these errors. For this processing step, we
have normalized the intensities of the data to [0, 1].

Appendix D.2. Segmentation Errors: Correction Steps

We define the boundary segment Bi,j as a non-empty intersection of two region’s
boundaries, i.e., Bi,j = ∂Si ∩ ∂Sj. Moreover, we denote the area of a region Ri as area(Ri).
We know that the interior of a bacteria cell bi has a lower intensity than the exterior region
of a cell. More precisely, the interior of a cell tends to have intensity values of zero, whereas
the exterior of a cell (i.e., the background) tends to have an intensity that is close or equal
to one. For this reason, we define a function for the intensity of the boundary. To remove
outliers, we consider the average intensity value of the pixels located along a boundary
segment. We denote this mean intensity value along a boundary Bi,j by mint(Bi,j) and the
average intensity of a region Ri by mint(Ri). One difficulty is that we cannot assume that
the intensity of the pixels on the interior of each cell corresponds to the same value (i.e.,
there exist intensity and contrast drifts depending on location). We hypothesize that, if
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mint(Bi,j) of a boundary segment is close to the average intensity of the regions on both
sides of the boundary segment Bi,j, this boundary segment does not separate two bacteria
cells; it is erroneous. Conversely, if the difference between the mean intensity along a
boundary segment and the mean intensity of the interior regions it separates is high, we
consider that the boundary segment represents a good segmentation (i.e., represents a
segment that does separate two cells). To quantify this notion, we define the height of a
boundary segment as Hi,j = mint(Bi,j)− (mint(Ri) + mint(Rj))/2.

In Table A1, we report some statistics associated with the quantities of interest in-
troduced above. There are several key observations we can draw from this table which
confirm our qualitative (i.e., visual) assessment of the segmentation results. Most notably,
we can observe that there seem to exist outliers in terms of cell size. Moreover, we can
observe that, in some cases, we obtain a height of the boundary segment that is negative,
and by that nonsensical. These observations allow us to develop some heuristic rules to
remove erroneous segmentations.

Table A1. Statistics of some quantities of interest related to the intensity of boundary segments and
regions. These quantities allow us to define heuristics to identify erroneous segmentations computed
by the watershed algorithm. We state the characteristic and report the minimum, maximum 5%
quantile, mean, and standard deviation for the reported quantities of interest.

Characteristic 5% Quantile Min Max Mean

Watershed area 56.00 43.00 984.00 211.00 ± 138.00
Mean intensity of area 0.34 0.00 0.57 0.41 ± 0.06
Mean intensity of boundary segment 0.46 0.30 0.99 0.74 ± 0.14
Height of boundary segment 0.05 −0.09 0.62 0.33 ± 0.14

We introduce the following post-processing steps: (i) We connect small regions to their
neighbors (i.e., regions that are too small in area to realistically contain any cells). We select
the threshold for the area to be 65. This threshold is selected in accordance with the scale of
the image and the expected size of bacteria cells observed in the image data. We merge each
small region with one of its neighboring regions by removing the segment that separates the
two. To select an appropriate region for merging, we choose the region that gave the lowest
height Hi,j from all available candidate regions that share the same boundary segment.
(ii) We remove all boundary segments Bij with a height Hij that is below the 5% quantile
of all heights. (iii) We remove all incomplete regions from our segmentation. We define a
region as incomplete, if the region or the associated boundary segments touch an edge of
the image. This step is necessary since we cannot guarantee that the regions close to the
boundary contain an entire cell or only parts of a cell. Consequently, we decided to remove
them to prevent any issues with our post-analysis.

Appendix D.3. Cell Boundary Detection

The next step is to identify the boundaries of individual cells contained within a
subregion defined by the watershed algorithm. To identify the boundaries of the cells (and
by that segment the individual cells), we use the Mumford–Shah algorithm [104]. Notice
that we can execute the Mumford–Shah algorithm for each region Ri separately making
this an embarrassingly parallelizable problem. Denote the cell in each Ri region by bi. We
divide each of these regions into three different zones. The first zone is the interior of
the cell bi denoted by in(bi). The second zone is exterior of the cell (i.e., the background)
contained in the region and denoted by out(bi). The third zone is the boundary of the cell
bi, denoted by ∂bi. The Mumford–Shah algorithm represents a variational approach that
allows us to segment cartoon like images. Mathematically speaking, we model information
contained in each region Ri as piecewise-smooth functions. In our model, the associated
regions we seek to identify are given by the zones defined above—the interior and the
exterior of the cell bi. Let uint(bi) denote the mean intensity for the interior of the cell bi and
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uext(bi) denote the mean intensity for the exterior of the cell bi. With this definition, we
obtain the cost functional

costMS(int(bi), ext(bi)) = ∑
x∈ext(bi)

(u(x)− uext(bi))
2) + ∑

x∈int(bi)

(u(x)− uint(bi))
2 + ν bl(bi),

where the first two terms measure the discrepancy between the piecewise smooth function
uext and uint and the image intensities u and the third term is a penalty that measures
the length of the boundary of a particular cell bi with parameter ν > 0. Notice that our
formulation slightly deviates from the traditional definition of the Mumford–Shah cost
functional; we drop the penalty for the smoothness of the function u. The minimizer of the
cost function costMS defined above provides the sought after segmentation: the boundary,
interior, and exterior of a cell. We have implemented the minimization of the cost function
formula for each cell separately.

Appendix D.4. Convolutional Neural Networks (CNNs)

Next, we introduce our actual method for cell segmentation that can be efficiently
applied to a large dataset (as opposed to the prototype method described above to generate
the underlying training data). The biggest issue with the methodology outlined above is
that our prototype implementation is computationally costly. While we envision that an
improved implementation as well as the use of parallel computing can significantly reduce
the time to solution, we decided not to further pursue a reduction in runtime but extend
our methodology by taking advantage of existing machine learning algorithms. Replacing
the approach outlined above by CNNs allowed us to reduce the runtime by factor of 60 to
less than 3 min, without any significant loss in accuracy.

Training and Testing Data. In the absence of any ground truth data set for the
classification of rod-shape bacteria cells from movies of cell populations, we consider the
output of the Mumford–Shah algorithm introduced above as ground truth classification
for training and testing our machine learning methodology. Above, we introduced three
different zones: The interior in(bi), the exterior ext(bi), and the boundary ∂bi of a cell bi.
We reduce these three regions to two zones—the interior and exterior of a cell bi. We assign
pixels that belong to int(bi) the label 0 and pixels that belong to ext(bi) and ∂bi the label
of 1. For an image of size 200× 200, we obtain 40,000 binary labels. We limit the training
of the CNN to a subregion of size 200× 200 in the center of each preprocessed image to
avoid issues associated with mislabeled training data of cells located at the boundary of
our data. We consider X as the set of features and Y as the set of labels. We want to assign
to each pixel a label of either 0 or 1. For pixel p, we define Xp to be a 7× 7 square window
with center p located in the original image. The corresponding label Yp is denoted by C(p),
which corresponds to the class of the pixel p in the binarized image.

CNN Algorithm. The considered CNN algorithm consists of two parts, (i) the convo-
lutional auto-encoder and (ii) a fully connected multilayer perceptron (MLP). The input
for the auto-encoder is a window of 7× 7 pixels. In the first layer of the encoder, we have
a 5× 5× 4 convolution layer Conv1 with 3× 3 kernel. We feed Conv1 to a max-pooling
layer MPool2 with one stride and pooling window 2× 2. The output of MPool2 is the
input of a 3× 3× 8 convolution layer Conv3. For decoding, we have almost the same
structure in reverse order: We feed Conv3 to a 5× 5× 4 deconvolution with 3× 3 kernel.
Subsequently, we feed the output of this layer to a 7× 7× 1 deconvolution with 3× 3 kernel.
The decoder’s output is a window of 7× 7 pixels. We compare this output with the input
window (since it is an auto-encoder, features and labels are the same) by using the mean
square error as a cost function. We train the auto-encoder for all training sets using a
mini-batch gradient descent. When the training is finished, we freeze the weights for Conv1
and Conv3.

After training the auto-encoder and freezing the weights, we feed X as the input to
Conv1 and obtain the output of Conv3 denoted by X̂. In the next step, we train an MLP
with features X̂ and labels Y. We flatten X̂, which is a 3× 3× 8 matrix to a vector of size
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72× 1, called FCL4. FCL4 is fully connected to the hidden layer HID5 with 10 nodes. We
use ReLu as a nonlinear function for HID5. We connect HID5 to the output layer OUT6,
which possess two nodes for the two classes 0 and 1. We use a softmax function to find two
probabilistic outputs p0 and p1 = 1− p0 for related classes. We use maximum-entropy as a
cost function. We train the MLP for training set of (X̂, Y) with mini-batch gradient descent.

We have trained the model with two images of size 200× 200 pixels; the training set is
80,000 7× 7 images. We train the model for 100 epochs. The accuracy of the model for the
image is 93%. The confusion matrix is shown in Table A2. Based on this confusion matrix,
we can observe that the proposed methodology can predict the pixels located in the interior
of a cell quite well. However, we can also observe that there is a slightly lower accuracy for
the pixels outside the cells. This can be probably explained by the fact that the data sets are
tightly packed with cells so that we have available more observations of foreground pixels
(interior of cells) than pixels that belong to the background.

Table A2. Confusion matrix for the CNN.

0 1
0 0.97 0.03
1 0.11 0.89
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Microbial Consortia in Microfluidic Devices. ACS Synth. Biol. 2019, 8, 2051–2058. [CrossRef] [PubMed]

19. Hand, A.J.; Sun, T.; Barber, D.C.; Hose, D.R.; MacNeil, S. Automated tracking of migrating cells in phase-contrast video
microscopy sequences using image registration. J. Microsc. 2009, 234, 62–79. [CrossRef] [PubMed]

20. Ulman, V.; Maška, M.; Magnusson, K.E.G.; Ronneberger, O.; Haubold, C.; Harder, N.; Matula, P.; Matula, P.; Svoboda, D.;
Radojevic, M.; et al. An objective comparison of cell-tracking algorithms. Nat. Methods 2017, 14, 1141–1152. [CrossRef] [PubMed]

21. Marvasti-Zadeh, S.M.; Cheng, L.; Ghanei-Yakhdan, H.; Kasaei, S. Deep learning for visual tracking: A comprehensive survey.
IEEE Trans. Intell. Transp. Syst. 2021, 1–26. [CrossRef]

22. Yilmaz, A.; Javed, O.; Shah, M. Object tracking: A survey. ACM Comput. Surv. (CSUR) 2006, 38, 13-es. [CrossRef]
23. Lucas, B.D.; Kanade, T. An iterative image registration technique with an application to stereo vision. In Proceedings of the

International Conference on Artificial Intelligence, Vancouver, BC, Canada, 24–28 August 1981; pp. 674–679.
24. Mang, A.; Biros, G. An inexact Newton–Krylov algorithm for constrained diffeomorphic image registration. SIAM J. Imaging Sci.

2015, 8, 1030–1069. [CrossRef] [PubMed]
25. Mang, A.; Ruthotto, L. A Lagrangian Gauss–Newton–Krylov solver for mass- and intensity-preserving diffeomorphic image

registration. SIAM J. Sci. Comput. 2017, 39, B860–B885. [CrossRef] [PubMed]
26. Mang, A.; Gholami, A.; Davatzikos, C.; Biros, G. CLAIRE: A distributed-memory solver for constrained large deformation

diffeomorphic image registration. SIAM J. Sci. Comput. 2019, 41, C548–C584. [PubMed]
27. Borzi, A.; Ito, K.; Kunisch, K. An optimal control approach to optical flow computation. Int. J. Numer. Methods Fluids 2002,

40, 231–240. [CrossRef]
28. Horn, B.K.P.; Shunck, B.G. Determining optical flow. Artif. Intell. 1981, 17, 185–203. [CrossRef]
29. Delpiano, J.; Jara, J.; Scheer, J.; Ramírez, O.A.; Ruiz-del Solar, J.; Härtel, S. Performance of optical flow techniques for motion

analysis of fluorescent point signals in confocal microscopy. Mach. Vis. Appl. 2012, 23, 675–689.
30. Madrigal, F.; Hayet, J.B.; Rivera, M. Motion priors for multiple target visual tracking. Mach. Vis. Appl. 2015, 26, 141–160.

[CrossRef]
31. Banerjee, D.S.; Stephenson, G.; Das, S.G. Segmentation and analysis of mother machine data: SAM. bioRxiv 2020. [CrossRef]
32. Jug, F.; Pietzsch, T.; Kainmüller, D.; Funke, J.; Kaiser, M.; van Nimwegen, E.; Rother, C.; Myers, G. Optimal Joint Segmentation

and Tracking of Escherichia Coli in the Mother Machine. In Bayesian and Graphical Models for Biomedical Imaging; Springer: Cham,
Switzerland, 2014; Volume LNCS 8677, pp. 25–36.

33. Lugagne, J.B.; Lin, H.; Dunlop, M.J. DeLTA: Automated cell segmentation, tracking, and lineage reconstruction using deep
learning. PLoS Comput. Biol. 2020, 16, e1007673. [CrossRef] [PubMed]

34. Ollion, J.; Elez, M.; Robert, L. High-throughput detection and tracking of cells and intracellular spots in mother machine
experiments. Nat. Protoc. 2019, 14, 3144–3161. [CrossRef]

35. Sauls, J.T.; Schroeder, J.W.; Brown, S.D.; Le Treut, G.; Si, F.; Li, D.; Wang, J.D.; Jun, S. Mother machine image analysis with MM3.
bioRxiv 2019, 810036. [CrossRef]

36. Smith, A.; Metz, J.; Pagliara, S. MMHelper: An automated framework for the analysis of microscopy images acquired with the
mother machine. Sci. Rep. 2019, 9, 10123.

37. Arbelle, A.; Reyes, J.; Chen, J.Y.; Lahav, G.; Raviv, T.R. A probabilistic approach to joint cell tracking and segmentation in
high-throughput microscopy videos. Med. Image Anal. 2018, 47, 140–152.

38. Okuma, K.; Taleghani, A.; De Freitas, N.; Little, J.J.; Lowe, D.G. A boosted particle filter: Multitarget detection and track-
ing. In Proceedings of the European Conference on Computer Vision, Prague, Czech Republic, 11–14 May 2004; Springer:
Berlin/Heidelberg, Germany, 2004; pp. 28–39.

39. Smal, I.; Niessen, W.; Meijering, E. Bayesian tracking for fluorescence microscopic imaging. In Proceedings of the 3rd IEEE
International Symposium on Biomedical Imaging: Nano to Macro, Arlington, WA, USA, 6–9 April 2006; pp. 550–553.

40. Kervrann, C.; Trubuil, A. Optimal level curves and global minimizers of cost functionals in image segmentation. J. Math. Imaging
Vis. 2002, 17, 153–174. [CrossRef]

41. Li, K.; Miller, E.D.; Chen, M.; Kanade, T.; Weiss, L.E.; Campbell, P.G. Cell population tracking and lineage construction with
spatiotemporal context. Med. Image Anal. 2008, 12, 546–566. [CrossRef] [PubMed]

42. Wang, X.; He, W.; Metaxas, D.; Mathew, R.; White, E. Cell segmentation and tracking using texture-adaptive snakes. In
Proceedings of the IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Arlington, VA, USA, 12–
15 ApriL 2007; pp. 101–104.

43. Yang, F.; Mackey, M.A.; Ianzini, F.; Gallardo, G.; Sonka, M. Cell segmentation, tracking, and mitosis detection using temporal
context. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention,
Palm Springs, CA, USA, 26–29 October 2005; pp. 302–309.

44. Sethuraman, V.; French, A.; Wells, D.; Kenobi, K.; Pridmore, T. Tissue-level segmentation and tracking of cells in growing plant
roots. Mach. Vis. Appl. 2012, 23, 639–658. [CrossRef]

45. Balomenos, A.D.; Tsakanikas, P.; Manolakos, E.S. Tracking single-cells in overcrowded bacterial colonies. In Proceedings of the
Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milano, Italy, 25–29 August
2015; IEEE: Piscataway, NJ, USA, 2015; pp. 6473–6476.

http://dx.doi.org/10.1021/acssynbio.9b00146
http://www.ncbi.nlm.nih.gov/pubmed/31361464
http://dx.doi.org/10.1111/j.1365-2818.2009.03144.x
http://www.ncbi.nlm.nih.gov/pubmed/19335457
http://dx.doi.org/10.1038/nmeth.4473
http://www.ncbi.nlm.nih.gov/pubmed/29083403
http://dx.doi.org/10.1109/TITS.2020.3046478
http://dx.doi.org/10.1145/1177352.1177355
http://dx.doi.org/10.1137/140984002
http://www.ncbi.nlm.nih.gov/pubmed/27617052
http://dx.doi.org/10.1137/17M1114132
http://www.ncbi.nlm.nih.gov/pubmed/29097881
http://www.ncbi.nlm.nih.gov/pubmed/34650324
http://dx.doi.org/10.1002/fld.273
http://dx.doi.org/10.1016/0004-3702(81)90024-2
http://dx.doi.org/10.1007/s00138-015-0662-5
http://dx.doi.org/10.1101/2020.10.01.322685
http://dx.doi.org/10.1371/journal.pcbi.1007673
http://www.ncbi.nlm.nih.gov/pubmed/32282792
http://dx.doi.org/10.1038/s41596-019-0216-9
http://dx.doi.org/10.1101/810036
http://dx.doi.org/10.1023/A:1020685520659
http://dx.doi.org/10.1016/j.media.2008.06.001
http://www.ncbi.nlm.nih.gov/pubmed/18656418
http://dx.doi.org/10.1007/s00138-011-0329-9


Math. Comput. Appl. 2022, 27, 22 33 of 35

46. Bise, R.; Yin, Z.; Kanade, T. Reliable cell tracking by global data association. In Proceedings of the IEEE International Symposium
on Biomedical Imaging: From Nano to Macro, Chicago, IL, USA, 30 March–2 April 2011; pp. 1004–1010.

47. Bise, R.; Li, K.; Eom, S.; Kanade, T. Reliably tracking partially overlapping neural stem cells in DIC microscopy image sequences.
In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention Workshop,
London, UK, 20–24 September 2009; pp. 67–77.

48. Kanade, T.; Yin, Z.; Bise, R.; Huh, S.; Eom, S.; Sandbothe, M.F.; Chen, M. Cell image analysis: Algorithms, system and applications.
In Proceedings of the 2011 IEEE Workshop on Applications of Computer Vision (WACV), Kona, HI, USA, 5–7 January 2011; IEEE:
Piscataway, NJ, USA, 2011; pp. 374–381.

49. Primet, M.; Demarez, A.; Taddei, F.; Lindner, A.; Moisan, L. Tracking of cells in a sequence of images using a low-dimensional
image representation. In Proceedings of the IEEE International Symposium on Biomedical Imaging, Paris, France, 14–17 May
2008; pp. 995–998.

50. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of
the Medical Image Computing and Computer Assisted Intervention, Munich, Germany, 5–9 October 2015; Volume LNCS 9351,
pp. 234–241.

51. Su, H.; Yin, Z.; Huh, S.; Kanade, T. Cell segmentation in phase contrast microscopy images via semi-supervised classification over
optics-related features. Med. Image Anal. 2013, 17, 746–765. [CrossRef]

52. Wang, Q.; Niemi, J.; Tan, C.M.; You, L.; West, M. Image segmentation and dynamic lineage analysis in single-cell fluorescence
microscopy. Cytom. Part A J. Int. Soc. Adv. Cytom. 2010, 77, 101–110. [CrossRef] [PubMed]

53. Jiuqing, W.; Xu, C.; Xianhang, Z. Cell tracking via structured prediction and learning. Mach. Vis. Appl. 2017, 28, 859–874.
[CrossRef]

54. Zhou, Z.; Wang, F.; Xi, W.; Chen, H.; Gao, P.; He, C. Joint multi-frame detection and segmentation for multi-cell tracking. In
Proceedings of the International Conference on Image and Graphics, Beijing, China, 23–25 August 2019; Volume LNCS 11902,
pp. 435–446.

55. Sixta, T.; Cao, J.; Seebach, J.; Schnittler, H.; Flach, B. Coupling cell detection and tracking by temporal feedback. Mach. Vis. Appl.
2020, 31, 1–18.

56. Hayashida, J.; Nishimura, K.; Bise, R. MPM: Joint representation of motion and position map for cell tracking. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 3823–3832.

57. Payer, C.; Stern, D.; Neff, T.; Bishof, H.; Urschler, M. Instance segmentation and tracking with cosine embeddings and recurrent
hourglass networks. In Proceedings of the Medical Image Computing and Computer Assisted Intervention, Granada, Spain,
16–20 September 2018; Volume LNCS 11071, pp. 3–11.

58. Payer, C.; Štern, D.; Feiner, M.; Bischof, H.; Urschler, M. Segmenting and tracking cell instances with cosine embeddings and
recurrent hourglass networks. Med. Image Anal. 2019, 57, 106–119. [PubMed]

59. Vicar, T.; Balvan, J.; Jaros, J.; Jug, F.; Kolar, R.; Masarik, M.; Gumulec, J. Cell segmentation methods for label-free contrast
microscopy: Review and comprehensive comparison. BMC Bioinform. 2019, 20, 1–25.

60. Al-Kofahi, Y.; Zaltsman, A.; Graves, R.; Marshall, W.; Rusu, M. A deep learning-based algorithm for 2D cell segmentation in
microscopy images. BMC Bioinform. 2018, 19, 1–11.

61. Falk, T.; Mai, D.; Bensch, R.; Çiçek, Ö.; Abdulkadir, A.; Marrakchi, Y.; Böhm, A.; Deubner, J.; Jäckel, Z.; Seiwald, K.; et al. U-Net:
Deep learning for cell counting, detection, and morphometry. Nat. Methods 2019, 16, 67–70. [CrossRef]

62. Lux, F.; Matula, P. DIC image segmentation of dense cell populations by combining deep learning and watershed. In Proceedings
of the 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), Venice, Italy, 8–11 April 2019; pp. 236–239.

63. Moen, E.; Bannon, D.; Kudo, T.; Graf, W.; Covert, M.; Van Valen, D. Deep learning for cellular image analysis. Nat. Methods 2019,
16, 1233–1246. [PubMed]

64. Rempfler, M.; Stierle, V.; Ditzel, K.; Kumar, S.; Paulitschke, P.; Andres, B.; Menze, B.H. Tracing cell lineages in videos of lens-free
microscopy. Med. Image Anal. 2018, 48, 147–161.

65. Stringer, C.; Wang, T.; Michaelos, M.; Pachitariu, M. Cellpose: A generalist algorithm for cellular segmentation. Nat. Methods
2021, 18, 100–106. [CrossRef]

66. Akram, S.U.; Kannala, J.; Eklund, L.; Heikkilä, J. Joint cell segmentation and tracking using cell proposals. In Proceedings of the
IEEE 13th International Symposium on Biomedical Imaging (ISBI), Prague, Czech Republic, 13–16 April 2016; pp. 920–924.

67. Nishimura, K.; Hayashida, J.; Wang, C.; Bise, R. Weakly-Supervised Cell Tracking via Backward-and-Forward Propagation. In
Proceedings of the European Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 104–121.

68. Rempfler, M.; Kumar, S.; Stierle, V.; Paulitschke, P.; Andres, B.; Menze, B.H. Cell lineage tracing in lens-free microscopy videos. In
Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Quebec City,
QC, Canada, 11–13 September 2017; pp. 3–11.

69. Maska, M.; Ulman, V.; Svoboda, D.; Matula, P.; Matula, P.; Ederra, C.; Urbiola, A.; Espana, T.; Venkatesan, S.; Balak, D.M.W.; et al.
A benchmark for comparison of cell tracking algorithms. Bioinformatics 2014, 30, 1609–1617.

70. Löffler, K.; Scherr, T.; Mikut, R. A graph-based cell tracking algorithm with few manually tunable parameters and automated
segmentation error correction. bioRxiv 2021, 16, e0249257.

71. Vo, B.T.; Vo, B.N.; Cantoni, A. The cardinality balanced multi-target multi-Bernoulli filter and its implementations. IEEE Trans.
Signal Process. 2008, 57, 409–423.

http://dx.doi.org/10.1016/j.media.2013.04.004
http://dx.doi.org/10.1002/cyto.a.20812
http://www.ncbi.nlm.nih.gov/pubmed/19845017
http://dx.doi.org/10.1007/s00138-017-0872-0
http://www.ncbi.nlm.nih.gov/pubmed/31299493
http://dx.doi.org/10.1038/s41592-018-0261-2
http://www.ncbi.nlm.nih.gov/pubmed/31133758
http://dx.doi.org/10.1038/s41592-020-01018-x


Math. Comput. Appl. 2022, 27, 22 34 of 35

72. Pierskalla, W.P. The multidimensional assignment problem. Oper. Res. 1968, 16, 422–431. [CrossRef]
73. Gilbert, K.C.; Hofstra, R.B. Multidimensional assignment problems. Decis. Sci. 1988, 19, 306–321. [CrossRef]
74. Chakraborty, A.; Roy-Chowdhury, A.K. Context aware spatio-temporal cell tracking in densely packed multilayer tissues. Med.

Image Anal. 2015, 19, 149–163. [CrossRef] [PubMed]
75. Liu, M.; Yadav, R.K.; Roy-Chowdhury, A.; Reddy, G.V. Automated tracking of stem cell lineages of Arabidopsis shoot apex using

local graph matching. Plant J. 2010, 62, 135–147. [CrossRef]
76. Liu, M.; Chakraborty, A.; Singh, D.; Yadav, R.K.; Meenakshisundaram, G.; Reddy, G.V.; Roy-Chowdhury, A. Adaptive cell

segmentation and tracking for volumetric confocal microscopy images of a developing plant meristem. Mol. Plant 2011, 4, 922–931.
[CrossRef]

77. Liu, M.; Li, J.; Qian, W. A multi-seed dynamic local graph matching model for tracking of densely packed cells across unregistered
microscopy image sequences. Mach. Vis. Appl. 2018, 29, 1237–1247. [CrossRef]

78. Vo, B.N.; Vo, B.T. A multi-scan labeled random finite set model for multi-object state estimation. IEEE Trans. Signal Process. 2019,
67, 4948–4963. [CrossRef]

79. Punchihewa, Y.G.; Vo, B.T.; Vo, B.N.; Kim, D.Y. Multiple object tracking in unknown backgrounds with labeled random finite sets.
IEEE Trans. Signal Process. 2018, 66, 3040–3055. [CrossRef]

80. Kim, D.Y.; Vo, B.N.; Thian, A.; Choi, Y.S. A generalized labeled multi-Bernoulli tracker for time lapse cell migration. In
Proceedings of the 2017 International Conference on Control, Automation and Information Sciences, Jeju, Korea, 18–21 October
2017; pp. 20–25.
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