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Abstract—The advancement of the Internet of Things (IoT) is
bringing unprecedented convenience into our daily life. However,
with the relentlessly increasing number of mobile devices con-
nected to the Internet, the wireless network environment is
becoming more crowded than ever before. Particularly, WiFi,
with its evolving role in IoT, is shouldering a tremendous amount
of traffic from IoT and other mobile devices. As a result, explod-
ing numbers of competing devices, encroachment by cellular
technology, and dramatic increases in content richness deliver a
more variable Quality of Experience (QoE) on WiFi than desired.
Moreover, such variance tends to occur both across time and
space making it an extremely difficult problem to debug. Existing
active approaches tend to be expensive or impractical while exist-
ing passive approaches tend to be too narrow. To conduct efficient
and nonobtrusive WiFi traffic characterization, in this article, we
propose a novel passive client-side approach that delivers efficient
and accurate characterization by taking advantage of the proper-
ties of frame aggregation (FA) and block acknowledgment (BA).
The devised approach requires only capturing and analyzing cer-
tain types of control packets thus making it feasible to deploy on
IoT devices that have limited computation power. We show in this
article that we can accurately derive important characterization
metrics, such as airtime, queuing information, and transmission
rates with only a minimal amount of observed BAs. We show
through extensive experiments the validity of our approach and
conduct validation studies in the dense environment of a campus
tailgate.

Index Terms—Crowdsensing and Crowdsourcing, medium
access control protocols, mobile and ubiquitous systems, wireless
network measurement.

I. INTRODUCTION

ROPELLED by the development of the Internet of Things

(IoT), the number of mobile devices dedicated to IoT
services is expected to be tripled from 2018 to 2023 accord-
ing to Cisco Annual Internet Report [1]. Notably, WiFi,
with its low cost and wide-spreading deployment, becomes
a major channel for IoT devices to communicate. Due to
the limited spectrum resource, the overwhelming traffic from
countless IoT devices and other end users makes the Quality
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of Experience (QoE) on WiFi variant and unpredictable. While
new standards seek to deliver a “better” WiFi, the increasing
density of devices, richness of content, and recent encroach-
ment on WiFi by cellular (LTE-U) make the performance
variance on WiFi being the new normal for the foreseeable
future.

For nearly all involved parties, such variance is incredibly
frustrating. Moreover, debugging is difficult as the variance
occurs across both time and space. Performance is usually
good enough, once in a while great, occasionally bad, and
sometimes positively terrible. The situation while tenable at
the moment requires action but unfortunately past work tends
to be ill-suited to solve the problem.

In the archetypal form of wireless characterization, the
mobile device becomes an active sensor to actively deter-
mine end-to-end performance at the network and transport
layers [2]-[4]. Prior works, such as Speedtest.net, iperf3, or
Mobiperf [5], embody this approach whereby the currently
connected WiFi path is actively probed to determine network
performance. While such an approach can provide longitudinal
data for a given WiFi link, the cost of such characterization is
often quite high both in terms of time and energy. Moreover,
such tests also have a negative impact on other users as the
probe traffic can be intrusive to existing traffic. Most impor-
tantly, active probing often misses the broader picture of the
WiFi environment, including the influence of other mobile
nodes, channel airtime, transmission speed, queuing effects,
and other subtle link properties.’

In contrast, other work has operated from the perspec-
tive of the access point (AP) to afford a much deeper view
of the wireless network [6]-[8]. By deploying well-equipped
APs with coordination through a back-end controller, a rich
set of WiFi characterization details can be gathered. Existing
network performance can be gleaned from connected clients
which in turn provides a wealth of performance data for the
deployed network. As would be expected, such services tend
to be expensive but often essential to any large-scale WiFi
deployment. Notably, a key weakness of the AP-centric focus
is that while an AP can ably sense, the entire collection of
APs represents a limited and stationary spatial distribution.
Thus, such systems tend to focus largely from the perspective
of the provided network (a reasonable presumption), poten-
tially missing broader trends in the overall wireless ecosystem

n fairness to prior work, active end-to-end techniques were never intended
to capture link properties.
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and potentially missing client-side issues at the edge of the
network.

Finally, one last approach to characterization is to view the
mobile client itself as a capable wireless sensor [9]-[12]. In
contrast to the AP-side approach, the client-side method acts
exclusively as a “sniffer” on the WiFi network without AP-side
information (queue length, transmission rates, etc.). The client-
side approach provides increased flexibility with mobile nodes
crowdsourcing the state of the WiFi network. Unfortunately,
while interesting conceptually, the actual packet capture capa-
bilities of most mobile devices tend to fare quite poorly. Packet
capture is often inaccessible absent significant modifications
by the device owner and as will be discussed later, packet cap-
ture often suffers severe losses when monitoring data packets.
Critically, the mobile-centric approach does offer one highly
desirable property, namely, that of offering longitudinal data
across the entirety of the potential client connection area.

Thus, the question that we pose in this article is: How could
we radically improve the ability of a mobile client to observe
the network knowing the capture limitations of existing mobile
devices? In particular, are there certain packets that are more
easily observable but yet contain rich information to help char-
acterize the network? Most importantly, is there a way that we
can do this in an extremely energy-efficient manner, observing
for only a brief period of time but still capturing the essence
of a given channel? In this article, we seek to demonstrate that
we can accomplish these goals. We propose a new technique
that builds on the properties of frame aggregation (FA), specif-
ically the block acknowledgment (BA), and show how BA map
to a rich set of link characterization metrics, such as airtime,
transmission rate, and queuing information through extensive
experimental studies. Moreover and perhaps most excitingly,
beyond our prior work [13], we show that the stable observa-
tion time for BA can be sufficiently satisfied during a normal
WiFi scan period (20 ms). It means that we can essentially
utilize our method for “free” via de facto WiFi scan. The
implications of this work are considerable, expanding every
mobile device to not only observing the nearby APs but also
characterizing the WiFi channel(s). The contributions of this
article are as follows.

1) Sensing With Control Packets: We show how observing
control packets, especially BA, can be used to extract a
rich set of WiFi characteristics. We define two impor-
tant primitive metrics—aggregation intensity (Al) and
BA time gap and show how these two primitive metrics
can be used to compute airtime, transmission rate, and
queue length. We demonstrate the accuracy, efficiency,
and robustness of these mappings through extensive
empirical studies across a wide variety of scenarios.

2) Robustness Across Short-Time Windows: We show that
only an extremely limited window of control pack-
ets is necessary to extract a stable view of the WiFi
link for characterization (20 ms). We introduce several
key concepts and assumptions necessary to work within
such a small time window as well as present extensive
experiments to validate our results.

3) Viability With WiFi Scanning: We study the feasibility
of using the limited window afforded by WiFi scanning
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for characterization. We analyze extensive pools of WiFi
scanning data taken from 41k different devices to show
the potential time available for observations via real-
world data. We show that the minimum scan time sits
roughly at 20 ms (Apple iPhone) while nearly all 90%
of devices scan at least every 6.5 min.

4) Real-World Data Validation: We validate our approach
and its accuracy by conducting experiments on a real-
world data set captured during a tailgate involving
multiple 802.11ac APs. We conduct trace-driven experi-
ments and show that with only a handful of devices (10),
the designed characterization can achieve a high corre-
lation (0.8) with the observed ground truth for airtime
and throughput estimation.

The remainder of this article is organized as follows. We
start with the intuition and background of leveraging con-
trol packets for passive traffic characterization in Section II.
Followed by Section III, we detail the methods to derive var-
ious characterization metrics based on certain observations
extracted from control packets. In Section IV, we present
an empirical study to verify the idea of using the WiFi
scan for characterization. Then, we demonstrate the results
of performance evaluation on real-world empirical data sets in
Section V. The related work is discussed in Section VI. Finally,
we summarize and conclude this article in Section VII

II. BACKGROUND AND MOTIVATION

Before diving into the details of our system, we discuss
several key background concepts. First, in Section II-A, we
discuss the need for using control packets followed a basic
primer on FA and BA3. Next, in Section II-B, we describe
how WiFi scanning typically operates and why it provides the
potential for characterization.

A. Why Control Packets?

The goal of a client-side characterization model is to pro-
vide traffic characterization by capturing most if not all traffic
going on the channel(s). Unfortunately, the assumption of cap-
turing all traffic is often impossible in practice. Eavesdropping
on a WiFi channel tends to suffer from severe loss for sev-
eral reasons. First, the data packets with a high transmission
rate usually have a limited communication range to be cap-
tured. Second, the different bandwidth capacities of devices
impede capture as low capacity devices (e.g., low bandwidth
and low supported rate) cannot collect traffic transmitted with
high rates. In addition, with beamforming in advanced WiFi
(i.e., 802.11ac wave-2 [14]), a device is not able to hear traf-
fic from the directional antenna if it is not on the transmission
path. These difficulties hinder a client from capturing the full
picture of traffic on the channel.

Fortunately, control packets tend not to suffer from the same
issues with respect to (w.r.t.) capture. First, since control pack-
ets are designed to be acknowledged by all nearby devices,
they are set to be transmitted at the lowest rate with a nondi-
rectional manner. Second, the volume of the control packets
is much sparser than the data packets. From a capture stand-
point, this implies that the mobile device is unlikely to be
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Fig. 1. Tllustration of data transmission under FA.

overwhelmed with control packets and could potentially ignore
data packets for energy efficiency. The key aspect for a mobile
device is that while data packets can lose in excess of 75% of
packets when attempting to log all packets (from our experi-
ments on 802.11n/2.4 GHz with signal —70 dBm or worse), it
is quite rare to lose control packets while attempting to capture
only control packets (success rate of 75% even with 802.11ac
on 5 GHz with —85-dBm power). By leveraging the FA, we
posit that the control packets observed on mobile devices can
help deliver efficient traffic characterization.

Frame Aggregation: The general principle of FA is to
assemble multiple data units to transmit as one aggregated
frame.> The aggregation can be operated at two levels:
1) aggregate MAC protocol service unit (A-MSDU) and
2) aggregate MAC protocol data unit (A-MPDU). A-MSDU is
on the upper MAC layer which can be further aggregated again
into A-MPDU when pushing into the physical layer. Therefore,
the frame transmitted in the air is eventually expressed in the
form of A-MPDU. In this article, we will focus on lever-
aging A-MPDU. As shown in Fig. 1, in tandem with BA,
each A-MPDU only requires one BA to notify the receipts
of multiple MPDUs (i.e., packets)>. In order to support this
one-to-many acknowledgment, a BA uses a bitmap field to
explicitly indicate the failure or success of delivery of every
single MPDU.

As FA has become the default manner of sending data on
modern WiFi (802.11ac), data transmission will always invoke
an exchange of a BA. These acknowledgment potentially pro-
vide opportunities to infer the data transmissions occurred. In
particular, the information stored in the BA frame allows one
to know more about the data transmission beyond the num-
ber of packets. Particularly, we find that the information of
how many MPDUs in an A-MPDU, dubbed Al, can embody
a rich suite of information about the attributes of data traf-
fic, e.g., queue length and transmission rate. In addition, we
note that the time gap of BAs can also reveal other attributes
about data transmission, e.g., the transmission time of a
packet. In Section III, we discuss the technical details about
how we can manipulate the information to achieve accurate
characterization based on control packets.

B. WiFi Scan For Characterization

The core foundation of client-side characterization is the
“sniff” function that allows a client can capture the ongoing

2Noted that the term packet speaks to MAC and upper layers, while frame
refers to the PHY layer.

3Packet and MPDU are used interchangeably for the remainder of this
article.
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traffic on a channel. This function is normally implemented
as a special mode called the monitor mode. However, since
monitor mode will suspend all communications, it is not desir-
able to frequently put a client into this mode for the purpose
of characterization. Fortunately, we find that the WiFi scan
operation innately embodies such a sniff function.

WiFi scan is the operation that a device uses to find nearby
APs to associate with. Technically, there are two kinds of scan
a device can perform: passive and active scans. When per-
forming the passive scan, the client radio listens on different
channels iteratively for periodic beacons sent from APs. With
an active scan, the client broadcasts a probe request on a chan-
nel and then waits for the responses (probe response or beacon)
from AP(s). This process is repeated on each channel. When
waiting on the possible response, the WiFi chip suspends all
ongoing communications just like the monitor mode. The dif-
ference is that it decodes all the captured packets (at least the
header) but only reports the desired ones (beacons and probe
responses) to the upper layer. The “monitor” behavior of the
WiFi scan provides an intriguing opportunity for the purpose
of characterization.

We propose that it would not be untoward to modify the
WiFi scan to collect all control packets captured during the
scanning process. In this article, we show that one could
use these packets to conduct entire channel traffic charac-
terization. The usage of the WiFi scan naturally provides
iteration across multiple channels with periodic invocations,
potentially giving a continuous view of the WiFi environment.
When coupled with crowdsourced information, the humble
WiFi now becomes an exciting new opportunity for network
characterization.

ITII. WIF1 CHARACTERIZATION VIA CONTROL PACKETS

In order to characterize the WiFi channel, as part of the
contributions of this article, we design two primitive metrics:
1) the Al and 2) the Block Ack (BA) time gap. Based on the
two measurements, we can further derive various important
characterization metrics, e.g., channel airtime, physical layer
transmission rate, queue length, and so on.

A. Primitive Measurements

1) PM1 (Aggregation Intensity): FA allows multiple data
units to be assembled into one aggregated frame (A-MPDU)
and sent together. The degree of aggregation can be useful
and we describe it using a metric called Al that counts the
number of MPDUs (i.e., packets) within one aggregated frame.
As an example in Fig. 1, the three A-MPDUs have Al of 3,
4, and 2, respectively. The value of Al is decided by several
factors. When forming an A-MPDU, the scheduler looks into
the queue and batches all the packets tagged with the same
traffic identification (TID) into a frame where the TID usually
indicates the packets destined to the same address. Thus, the
more packets with the same TID are held in the queue, the
larger Al should potentially be. Furthermore, the maximum Al
allowed in one A-MPDU is capped by 1) a maximum size and
2) a maximum transmission time Tp,x. Since the size limit is
large (65535 B) and rarely reached, the Al is usually limited
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by the transmission time. For a certain packet size P, we have
Tmax < ([AIl- P]/R) where R is the transmission rate. Thus,
the maximum AI can be expressed as

Alpay = ——22% (1)

We see that the Al is a function of multiple traffic factors,
including queue length, transmission rate, and other factors.
As we will present later, the distribution of Al can be used to
effectively reveal traffic conditions.

Extracting AI From BA: Computing Al relies on two impor-
tant fields in the BA frame: the starting sequence control (SSC)
and the bitmap as shown in Fig. 2. Each bit on the bitmap
represents the receiving status (success/failure) of an MPDU.
The SSC includes a subfield called starting sequence number
(SSN) which indicates the sequence number of the MPDU
denoted by the first bit in the bitmap. Given a pair of consec-
utive BAs (sent from A to B), we can compute the Al and
the loss* of the corresponding A-MPDU (sent from B to A).
For example, in Fig. 3, we replot the case of Fig. 1 to label
the field information. For the first A-MPDU and its BA, since
the last bit denotes the 1118 MPDU, the first bit should cor-
respond to 1055 (1118—63) which is exactly the SSN of the
BA. Combining the first and second BA, by subtracting their
SSN, the AI of the A-MPDU between them can be computed
as 4 (1059 - 1055).

Experimental Evaluation: We set up a lab experiment
to evaluate the performance of the proposed method. The
general setting is as follows: we connected a server (HP
ProBook) to a mobile client (HP ProBook equipped with
EdiMax AC WiFi adapter) via a WiFi AP (TP-Link Archer
c7 v.2). The AP is 802.11ac capable and configured to run
OpenWrt which allows to adjust various settings, e.g., band-
width (20/40/80 MHz), transmission rate, operating channel,
and so on. We generated traffic on WiFi by sending TCP flows
(via rsync) from the server to the client. By using a third lap-
top (Lenovo P50 with Intel AC adapter) as the passive monitor
node, we eavesdropped on traffic in the WiFi channel. In order
to get the Al ground truth, we set the AP to run at a lower
speed (802.11n 2.4 GHz with 20-MHz bandwidth) to allow us

4The loss information can provide additional measurements about network
traffic but we will focus on Al in this article and leave loss information for
future exploration.
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Fig. 4. (a) Al estimation error. (b) Maximum Al and loss rate across different
transmission rates.

to capture most of the data packets. The ground truth for Al
can be obtained from the A-MPDU reference number in the
radiotap header. Overall, we collected over 25000 A-MPDUs
and their BAs. In Fig. 4(a), we plot the cumulative distribution
function (CDF) and the frequency of the absolute Al estima-
tion error (Jground truth—estimated|). It shows the designed
method can achieve 81% of a perfect estimation of Al. For
97% of the estimations, the absolute error can be controlled
within 5.

By using the information extracted from BA, we continue
to validate the relationship in (1). We repeated the experi-
ment above under different transmission rates with various
bandwidth settings (20, 40, and 80 MHz) on both 2.4 GHz
(802.11n) and 5 GHz (802.11ac). As the result shown in
Fig. 4(b), the observation matches (1) very well that for all
settings, the maximum Al linearly increases with the trans-
mission rate until reaches the maximum 64. This maximum is
decided by the compressed BA used in this case. Moreover,
we also plot the loss rate (number of losses in a time unit)
of 80-MHz bandwidth on 802.11ac. Given the static setting
of the AP and the client, the channel quality (e.g., signal-to-
noise ratio) is fixed. When the SNR is inadequate to support
the transmission rate, packet loss starts to occur. In our case,
we see that when the transmission rate exceeds 400 Mb/s, the
loss rate starts to increase. Overall, the experimental results
show that the designed method can help accurately capture
the Al and loss across different network settings.

2) PM2 (BA Time Gap): While the Al provides the data
packet depth, further understanding of the other properties
of the packets (e.g., their cost on channel airtime) requires
another primitive measurement (PM)—BA time gap. We define
the BA time gap as the time gap between a BA and its
previously transmitted control packet on a channel. Notably,
any control packet can suffice with us particularly noting that
all control packets tend to be unencrypted. Normally, this
previous control packet is another BA as shown in Fig. 1. It
can also be other control packets. For example, with RTS/CTS
enabled, BA usually follows a CTS. Once the control pack-
ets are captured, the BA gap can be simply computed by
subtracting the packet timestamps recorded by the network
adapter.

Since BA is designed to follow closely the A-MPDU trans-
mission, we argue that this time gap should be proportional to
the airtime consumed by the data transmission. For a certain
transmission rate, the more data assembled in an A-MPDU,
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(ie., 144.4 Mb/s).

the larger the BA gap should be. The relationship can be
expressed as

G Al-P 2)

a —
BA R
where R is the transmission rate and P denotes the packet size.
Al P calculates the total size of the A-MPDU. To further cal-
culate the average time consumed by each MPDU, we define
a new metric—MPDU gap Gpmppy such that
Gpa P

Gmppu £ TN 3)

Once Al is estimated with the method mentioned above,
Gmppu can be computed. From (2) and (3), we see that
the time gap information has the potential to reveal valuable
attributes about data traffic, e.g., airtime and transmission rate.
In order to validate the relationships in the equations, we con-
duct lab experiments to demonstrate the empirical observation
of Gga as well as Gyppu.

Experimental Validation: Using the prior experiment set-
tings, we fixed the transmission rate on 144.4 Mb/s and
repeated the TCP traffic on both 802.11ac 5 GHz and 802.11n
2.4 GHz. Fig. 5(a) and (b) plots the Gga and Gymppy as a func-
tion of AI. The markers indicate the raw data, and the lines
are the average for each Al value. As shown in Fig. 5(a), Gpa
linearly increases with Al for all cases except for AI = 1. With
the same transmission rate, the observation from 2.4 GHz is
identical to on 5 GHz. The curves on Fig. 5(b) reveal a similar
observation: the Gyppuy is extremely high when Al = 1, then
it quickly drops and gradually converges to a constant. Overall,
except for when Al = 1, the empirical observation matches
our conjecture in (2) and (3). The abnormal case on Al = 1
is mainly due to that the BA time gap can also be influenced
by other factors, e.g., back off, collision, and so on. When
the data size is small under Al = 1, the BA gap is seriously
disturbed by the other factors. That is why the gap of regular
ACK (which is designed to respond one data packet) cannot
be used to indicate data transmission time. When Al increases
with more data transmitted, the data transmission becomes the
dominant factor to decide the BA gap. The influence of the
other factors is gradually mitigated. That is why the curves of
Gwmppu slightly drop while converging to a consistent value.

According to (3), Gmppu should be inversely proportional
to the transmission rate given a certain packet size. We con-
tinue the validation by varying the transmission rates with
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fixed packet size (i.e., MTU). In Fig. 6, we plot the empirical
CDF of Gymppy under four different transmission rates, includ-
ing 33, 144, 433, and 866 Mb/s. Because of the inconsistent
behavior under Al = 1 as discussed above, for the remainder
of this article, Gyppy will be calculated by filtering out the
gaps whose Al = 1. The result in Fig. 6 matches the expec-
tation of (3) that the higher transmission rate is the smaller
Gwmppu is observed. In addition, for certain transmission rates,
Gwmppu shows a highly concentrated distribution with marginal
deviation. This robustness provides the potential to infer the
transmission rate from Gymppu. In the next section, we will
elaborate how to exploit the PMs to deliver comprehensive
traffic characterization regarding to various metrics.

B. Deriving the Characterization Metrics

Control packets can give high-level information about the
WiFi environment, such as the number of APs, the number
of clients, and so on. Beyond these metrics, we would argue
that our proposed method can provide a more insightful set of
characterization metrics, including throughput, loss, airtime,
transmission rate, and queue length. In this section, we will
elaborate how to derive each of these metrics from the PMs.

Given the control packets collected during a certain time
window w, we can estimate the characterization metrics for
this particular window. For throughput and loss, based on the
previous discussion on Al, they are relatively straightforward
to compute. Throughput can be approximated in the form of
the packet rate by summing up the Al in the time window
([3_“ All/w). Similarly, the loss rate can be calculated from
the BA bitmap. For the other more complicated metrics (i.e.,
airtime, transmission rate, and queue information), they require
further processes to make an accurate estimation. Next, we will
iterate on the methods to estimate these metrics along with
the experimental evaluation. Particularly, we study the robust-
ness of the different metrics regarding the setting of window
size .

Note that the characterization can be perceived on differ-
ent scales. With traffic captured on different channels, we
can report characterization results on each channel. With the
multiple APs operating on the same channel, we can fur-
ther break down the traffic impact onto different APs. For
example, the airtime can be estimated separately on each AP.
Furthermore, for the traffic between a pair of nodes, we can
further divide them into different links, i.e., uplink and down-
link, based on the traffic direction. In our case, the transmission
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rate and queue length characterization will mainly focus on the
link level.

1) Airtime: Airtime (also known as channel utilization)
describes how much time is occupied by the traffic on a chan-
nel. As one of the most important metrics to understand the
load on WiFi channel, it is widely used for QoE/QoS-based
services [15]. This metric can be polled from certain types of
AP with special hardware support. However, it is immensely
difficult to estimate from the client side due to the severe loss
when passively capturing the data packets as mentioned earlier.
Fortunately, exploiting the PMs can help estimate the airtime
without a data packet.

Since control/management traffic is designed to be ultra
lightweight, data transmission usually accounts for the primary
airtime cost. Thus, our method explicitly focuses on the con-
sumption resulted from data transmission. According to the
above discussion, we know that the BA time gap Gpa is a
good approximate of the transmission time of the A-MPDU
data frames. Intuitively, given the BAs captured in a time win-
dow w, summing up the Gpa and dividing by w will give the
percent of time consumed by the data traffic. However, with
the exception case of Al = 1 as discussed, we further filter
out the Gga whose Al is 1. Therefore, airtime can be finally
estimated as

@ ~AI>1
Z GBA
w

Airtime = 4
where Gﬁ}f] specifically refers to the BA gap where Al > 1.

Experimental Evaluation and Improvement: Using the same
experimental setting before, we generated different sizes of the
TCP flow to cause different airtime cost on the WiFi channel.
We varied the flow size from 20 kB to 160 MB. For each flow
size, we kept repeating the flow in a back-to-back manner that
once it completes we restart immediately. Each flow size ran
for 10+ s. The ground-truth airtime can be polled from the AP
kernel via the iw tool. With the control packets captured from
the monitor node, we sliced them into continuous windows
with a window size of w. Then, we calculate the airtime for
each window according to (4).

In Fig. 7, we plot the estimated airtime under different flow
sizes with regarding to two window sizes (w = 100 ms and
o = 20 ms). In addition, we also plot the resulted calculated
without filtering out Al > 1. Note that each point in the figure
is the average over all windows. As shown, without the filter,
the airtime is significantly overestimated, especially when the
flow size is small. After applying the filter, the result closely
matches the ground truth. The result implies that ruling out the
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cases of Al = 1 will not harm airtime estimation. Because the
occurrences of Al = 1 are rare, and it only takes up a high
percentage when traffic is light. Filtering out Al = 1 helps
effectively relieve the overestimation caused by the random
gaps when Al = 1.

Window Compensation: Comparing the results from differ-
ent w, we notice the small window (w = 20 ms) suffers from
underestimation, especially when the flow is heavy. The rea-
son is that our method requires two consecutive BAs to infer
a data frame in the middle. Therefore, we are not able to
infer the A-MPDU associated with the very first received BA.
In that case, we always lose one A-MPDU frame when esti-
mating airtime. For example, in the case of Fig. 1, with the
three BAs collected, we can only infer the second and third
A-MPDU but not the first one. When the window size is small
and the traffic load is heavy, this one A-MPDU loss becomes
significant. In order to compensate for this loss, we assume
the lost A-MPDU is exactly the same as its adjacent A-MPDU
inferred from the first pair of observed BAs. So the airtime
estimation will double count the first BA gap.

After applying the compensation, we replot the estimation
accuracy (1 — |[(estimated — ground_truth)/(ground_truth)]|)
for different window size w in Fig. 8. To reduce figure clutter,
we selectively plot the cases of flow size 400 kB and 160 MB.
In addition, we also plot the contrast case without the window
compensation for 160-MB flow. Overall, we can see that the
result is unacceptably poor when the window size is too small
(i.e., @ < 20 ms). The reason is that the control packets dis-
tribution in such a small scale is too random to be statistically
meaningful. Many windows (10%—30%) in this case fail to
capture even one packet. When the window size increases,
this randomness is gradually smoothed out, and the results
eventually converge. With the compensation enabled, we can
achieve at least 90% estimation accuracy when » > 20 ms.

2) Transmission Rate: The transmission rate is the data rate
used to send a frame in the physical layer. It is useful to
understand and diagnose the performance on WiFi (e.g., load
balance [16]). But this information normally is not readily
available at the AP side as well as the client side. Fortunately,
with the properties of the MPDU gap (in Fig. 6), we can use
it to make a reasonable inference to the transmission rate.
However, although the MPDU gap is primarily decided by the
transmission rate, it can also be influenced by other factors,
including flow size, protocol/band (802.11n on 2.4 GHz ver-
sus 802.11ac on 5 GHz), interference, and so on. In order to
make Gyvppu a reliable transmission rate indicator, it must be
resistant to the influence of the other factors.
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Through our empirical study from experiments, we find that
Sflow size cause the most significant impact on the MPDU gap
distribution in addition to the transmission rate. The influence
of other factors is marginal. To demonstrate this impact, we use
the trace from previous experiments to study the distribution of
the MPDU gap under different flow sizes. In Fig. 9, we plot the
CDF of Gumppu under 802.11ac 5 GHz with fixed transmission
rate (130 Mb/s). The flow size of heavy, medium, and light
refer to 160-MB flow, 8 MB, and 400 kB, respectively. For
each flow size, we collected over 2000 BAs to generate the
result. We see that when the flow size decreases, the MPDU
gap becomes larger. It is because with the less intensive traffic
from the light flow, the gaps can get much looser compared to
under heavy flows where frames are tightly pushed together.

0-Percentile Gyppy: A closer look into Fig. 9 reveals that
even though the overall distribution varies across different
flow sizes, the variation is only significant on the high values
(e.g., above 90-percentile). While the gaps do not vary a lot
at the low percentiles (e.g., below 10-percentile). Therefore,
we define the 6-percentile MPDU gap measured for a link
within a time window as the effective MPDU gap to infer
the transmission rate. Note that by doing this, we assume the
transmission rate on this link during the window time is consis-
tent. By properly setting 6, we can alleviate the impact resulted
from flow variation. The optimal setting of 6 will be explored
through extensive experiments later. Once the effective Gpppu
is calculated, we can estimate the transmission rate by

Rate P 5
GIQ\/IPDU
where P is the packet size and G&PDU is the 6-percentile
MPDU gap observed in a window.

Inferring the Packet Size: Unfortunately, without accessing
data packets, we cannot determine the packet size. We posit
that with several assumptions, one can give a fair approxima-
tion for packet size. First, given the pervasive nature of TCP
traffic, we consider only two types of packet sizes: 1) MTU
for data packets and 2) a fixed small size for TCP Ack pack-
ets. Thus, the task of inferring packet size can be reduced to
select one size from the two. Second, for the traffic between
a pair of nodes, we assume one direction (i.e., link) is consis-
tently being data stream and the other is Ack stream® during
the time window. To decide which link is the data stream, we
argue that the data stream always has higher Al than the Ack
stream. Because Ack packets are small and sparse in time,

S1F only one direction traffic is detected, we assume it is the data stream.
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they normally cannot cause a high degree of aggregation. To
validate this assumption, we collected the experiment trace®
to plot the Al distribution from data or Ack stream under dif-
ferent flow sizes. In Fig. 10, we see that for a certain flow, the
Al of the data link is always greater than of the Ack link. This
difference becomes more evident when the flow size increases.
Therefore, by selecting the link with a higher average Al, we
can determine the data link and assign it with the MTU packet
size. Because of the light and sparse traffic on the Ack link
which makes gaps fluctuate, we normally choose to the data
link to estimate the transmission rate. Eventually, the rate can
be computed from (5).

Experimental Evaluation: With the same experiment setting
as used earlier, we varied the transmission rate to evaluate the
performance under different settings. We focus on 802.11ac
on 5 GHz, since it is more challenging to estimate the rate
with the wider range of values (up to 877 Mb/s) compared to
802.11n 2.4 GHz. We start with investigating the impact of
window size w. The performance of transmission rate estima-
tion is decided by two components: 1) inferring packet size
and 2) measuring G&PDU. Fig. 11 plots the impact of @ on
the two aspects under different rates and flow sizes. We ten-
tatively chose & = 10 for G{;ppy in this case. To compute
the accuracy of inferring packet size, if the proposed method
makes the right choice to identify data and Ack stream in a
window, we call it a correct inference. Then, the accuracy is
the percentage of correct inference over all cases. As we can
see in Fig. 11(a), regardless of transmission rate and flow size,
the accuracy can reach above 90% once w > 20 ms. The sim-
ilar pattern is observed in Fig. 11(b) that the measured gaps
start to be consistent from @ = 20 ms. Combining the result

6The traces are selected from 802.11ac 5 GHz under fixed transmission
rate 325 Mb/s.
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Fig. 12. Transmission rate estimation accuracy from (a) different 6 and

(b) different flows.

from the previous experiment in Fig. 8, it implies that the win-
dow size needs to be at least 20 ms to yield a reliable result.
Moreover, from Fig. 11(b), we see that the low rate (32 Mb/s)
clearly has larger Gpppy than the higher rate (325 Mb/s) as
expected. However, a comparison across different flows shows
that light flow presents slightly larger values than the medium
and heavy flows. This is due to the inappropriate setting of 6.
In the following, we continue the experiments to search the
optimal setting of 6.

0 Setting: From the observation from previous experiments
in Fig. 9 and 11(b), we see that the light flow is the most
troubled case to obtain effective 6-percentile Gpppy. So we
chose the light flow with @ = 20 ms as the target to search
0. Fig. 12(a) shows the transmission rate estimation accu-
racy (1 —|[(estimated — ground_truth) /(ground_truth)]|) from
three w settings. We see the estimation accuracy drops with
the transmission rate increasing. It is because when the MPDU
gap is small under the high transmission rate, it is more vul-
nerable to be bothered by random noises (e.g., back off and
time skew). From the three settings of 6, we see that 6§ = 5
yields the best performance. The large values of 6 = 20, 50
suffer from the overestimated gap under the light-flow traffic
(recall Fig. 9).

With the 6 = 5, we evaluated the performance of transmis-
sion rate estimation across different flow sizes. As shown in
Fig. 12(b), when flow size increases, the estimation accuracy
goes up benefited from the robust gap measured from heavy
traffic. Overall, we can achieve the estimation accuracy above
50% under 802.11ac/5 GHz. In the low transmission rate range
(< 300 Mb/s), the accuracy can be improved to at least 75%.
Given that this measurement runs at a per-packet basis, this
result is reasonably good to offer insightful characterization
to the traffic profile in a WiFi environment. In the following
part, when discussing the next metric, we will show how we
can further assess the confidence of a rate estimation result by
using the queue metric.

3) Queuing Indicator: Queuing can affect network
performance in various ways [17], [18]. Understanding queu-
ing information can help one diagnose or improve network
conditions. This information requires to access the kernel level
on the device. It is difficult to access from the client side, espe-
cially with a passive approach. Fortunately, the PM Al innately
embodies property to infer queue length. Recall the process of
forming an aggregated frame, the number of MPDUs will be
assembled in an A-MPDU—AI—is decided by the number of
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MPDUs with the same TID (i.e., same destination address)
in the queue. It implies Al is strongly correlated with the
queue length. To approximate the queue length, we devise a
metric—queue indicator (QI) such that

Al
Alpax

Since different transmission rates allow different Al .« (1), the
same Al may indicate different queuing degree under different
transmission rates. Therefore, we define QI as a normalized
Al The value is between 0 and 1 which describes how much
the aggregation potential is being utilized. It can translate how
intensive is the backlog queuing effect. For the traffic in a time
window, QI can be computed for each link. The Al then can
be represented as the mean Al on a link, and maximum Al
can be calculated from the transmission rate according to (1).
By plugging in (5) into (1), we can compute Alyax as

Q= (6)

Tmax

AImax = (7)
G?VIPDU
where Tpax 1S the maximum transmission time allowed. It is
set by WiFi adapter manufacture (e.g., 4 ms in ath9k[19]).

Experimental Validation: Since our devised metric is an
indicator of the queue length, the output will be a correlated
reference rather than the length of the hardware queue. In order
to evaluate the performance, we varied the TCP flow sizes to
cause different queue lengths. Similar to the setting in Fig. 7,
six flow sizes were used in this experiment ranging from 20 kB
to 160 MB. The ground-truth queue length can be polled from
the Linux kernel. As the performance of QI largely depends
on the robustness of Gﬁ,lPDU, the impact of window size 6
is similar to the previous case. Thus, we skip the » impact
study, and set @ = 20 ms as the minimal feasible value. In
Fig. 13, we plot the performance of QI contrasted with a prior
work [20]. Reference [20] uses the similar passive approach
to infer queue length. But it exploits the delay of the beacon
frame from AP as the indicator. The designed QI [Fig. 13(a)]
monotonically increases with the queue length regardless of
the transmission rate. However, the beacon delay [Fig. 13(b)]
is only responsive on low transmission rate (72.2 Mb/s). When
the transmission rate is high (144.4 Mb/s), beacon delay is not
sufficiently sensitive to capture the subtle changes on the queue
length.

Facilitating Transmission Rate Estimation: In addition, QI
can also serve as a confidence metric for facilitating transmis-
sion rate estimation. When the serious queuing effect occurs,
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TABLE I
CHARACTERIZATION METRICS SUMMARY

Metric Derivation Formula Note
Airti w ~AI>] . . .
(Secti(l)rl?rl?le B1) LYGpx Gg{:l specifically refers to the BA gap where Al > 1; w is the measure window;
- w
T(rgg(s;?(l)iml(ﬁl_g;)te % P is the inferred packet size based on the traffic flow direction; G?\/I PD refers to
the 6 percentile value among the measured per-MPDU gaps Gy ppu = fIA;

ing Indi .G? .. . S o

Q(gztcl:]trilfn ?gi%a;))r AlGyppy Timax is is the maximum transmission time allowed, which is a constant defined by
max the WiFi adapter;
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Fig. 14. Queuing indicator versus frequency of relative estimation accuracy
of transmission rate.

the frames are transmitted in a more compact way. Thus,
the time gap can be more robust under high QI. Therefore,
we can use QI to assess the confidence about the estimated
transmission rate. To demonstrate this property, we replot the
accuracy of transmission rate estimation as the function of QI
from previous experiments. In Fig. 14, we see that QI can
intrinsically reveal the estimation accuracy for transmission
rate estimation. When QI is greater than 0.5, the accuracy can
hold at least 75%. The feature can help us effectively filter
out the erroneous rate estimations.

4) Characterization Metrics Summary: We summarize the
derivation formulas for calculating different metrics based on
the PMs Al and Gga in Table I. The table also provides expla-
nations to the measurement variables used in each equation.
The detailed derivation and evaluation for each metric can be
found in the corresponding section labeled in the table.

IV. WIF1 SCAN FOR CHARACTERIZATION

Thus far, we have demonstrated that how one can character-
ize WiFi channel traffic by merely using the control packets.
More importantly, the experimental result shows that we can
archive reliable characterization toward various metrics even
under a short time window (e.g., 20 ms). As one of the con-
tributions of this article, we propose that the characterization
design can be implemented on the existing WiFi scan func-
tion by taking advantage of its periodic behavior of listening
on WiFi channels. By using the control packets captured dur-
ing the scan, we are able to accomplish characterization on
WiFi channels over time without triggering an extra process.

However, the performance of adapting WiFi scan to char-
acterize is further decided by 1) how frequently the scan is
performed and 2) how long it listens on a channel every time.
If the scan is rarely performed, the results over time can be

sparse and can suffer from staleness. In addition, if the dura-
tion that a scan keeps listening on a channel is not sufficiently
long, the characterization result might be inaccurate as dis-
cussed before when w is too small. In order to validate whether
the de facto scan operation is adequate to be adapted for the
characterization purpose, we conduct real-world analysis to
study the scan behavior.

A. Feasibility Study—Dense Data Set

We define the time interval between consecutive scans as
the scan interval. During each scan, the time duration that the
radio keeps listening on a channel is called dwell time [21].
The scan interval depends on various factors, such as WiFi
connected or not, phone screen on/off, WiFi setting page
on/off, and so on. For the dwell time, it is set by the manu-
facture so that different WiFi chips have different settings. In
order to understand the scan behavior in the wild, we conduct
the analysis on scan interval and dwell time from a real-world
data set which involves high user diversity.

Data Set Summary: We studied WiFi scanning by drawing
from control packets captured in prior work [22]. In order
to gain user diversity as well as density, we collected the
data on a university football game day in two network sce-
narios. The first scenario was a tailgating party before the
game started, and the second was inside the stadium during
the game. Overall, we collected over 272000 probe requests
(139817 from the stadium and 132274 from the tent) on
one channel (chan no. 1). Notably, over 41 000 WiFi devices
(22434 from the stadium and 19 116 from the tent) contributed
to this study.

Scan Interval: For energy efficiency, we know the scan can-
not be triggered more than once per second. Therefore, the
scan interval can be measured with the time difference between
consecutive probe requests that were sent from the same device
and set apart more than 1 s. The empirical CDF is plotted in
Fig. 15(a). The observation shows that, about half of the scans
have an interval of less than 20 s and the 75th and 90th per-
centiles are 134.90 and 390.73 s. The frequent scan behavior
in the data set is due to the fact that 1) many devices often had
their screens on (e.g., people watched the game news on their
phones) and 2) many of them did not have WiFi connected,
especially in the stadium where no WiFi is available.

Dwell Time: In order to measure the dwell time, we exploit
the channel leakage from the overlapped channels on the
2.4-GHz band. The intuition is that the packet transmitted on a
channel (e.g., channel 2) can be heard on the adjacent channel
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Fig. 15. Empirical CDF of (a) scan interval and (b) dwell time observed in
the real-world data set.

(e.g., channel 1). For a probe request packet, the parameter
current channel indicates its target channel. By measuring the
time gap between two consecutive probe requests (with con-
secutive sequence number) from the same device but target on
different channels, we can calculate the dwell time. We plot
the empirical CDF of the observed dwell time in Fig. 15(b).
The result reveals a clustered distribution that about half of the
scans have dwell time of 20 ms and another 40% have 40 ms.
By resolving the MAC addresses, we find that Apple and
Lenovo devices usually use the 20 ms setting, and Samsung
and HTC prefer 40 ms.

Implication: Through the empirical study, we see that for
each device, the scan operation is performed at least every
few minutes (e.g., 6.5 min for 90% devices). In each scan,
the device listens on a channel for at least 20 ms and about
half of the devices listen for 40 ms. Recall the experimental
results in Section III, the characterization result is robust once
the window time w > 20 ms. It implies that if the charac-
terization function is implemented on the existing WiFi scan
operation, we can innately obtain the traffic condition on dif-
ferent channels every few minutes. In the next section, we will
evaluate the performance of this proposed mechanism under a
real-world scenario.

V. PERFORMANCE EVALUATION

Trace-Driven WiFi Scan Emulation: Modifying the scan
function to implement the characterization on commodity
devices is impractical, since the functionality of the scan is
programmed on the firmware. In this article, we take the
emulation approach to evaluate the proposed system in a large-
scale setting. With the real-world data captured through the
monitor mode, we can conduct trace-driven evaluation upon
the data. In the captured data set, we assume that all the
devices can perform such a modified scan function. When a
probe request was sighted when a client was scanning, we
assume the client was also performing the traffic characteriza-
tion on the WiFi channel. So the control packets collected in
the following w time window after the probe request will be
used to calculate the characterization result. We set @ = 20 ms
to satisfy the realistic setting for dwell time. In addition,
we assume there is a crowdsource server which can gather
results from the devices. So we can combine the results from
multiple clients to have a more complete view of the WiFi
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TABLE II
DATA STATISTICS SUMMARY

Campus
2.4GHz 5GHz
Time Duration 4+ hrs
Data File Size 1.2GB 7.4GB
# of Sighted Clients 19,116 33,134
# of Active Clients 500 284
# of Block ACK 181,164 2,636,317

channel. With more clients contributing, the more accurate
and complete result we can get for the WiFi channel.

Setting: Following that, we set up a controlled WiFi network
to capture the trace for emulation. Similar to the tailgating sce-
nario before, the network was deployed on campus to provide
Internet access for a football tailgating party. The event was
hosted in an outdoor tent where several hundred people gath-
ered for several hours before the football game started. We
used Aruba 7010 wireless controller to manage the multiple
APs. The APs provide connection on dual bands with one
channel on each band: channel 1 for 2.4 GHz and 149 for
5 GHz. By using the controller, we could obtain the ground-
truth information through the simple network manage protocol
(SNMP). We periodically (i.e., every 45 s in this case) polled
the controller with SNMP walk command to record network
condition, e.g., airtime, throughput, and so on. To capture the
raw data for characterization, we set up the monitor devices to
listen on the two channels which APs were operating on. The
monitor devices were placed near the APs to attempt capture
all traffic on APs and avoid the hidden terminal issue. The
captured traffic was saved into pcap files as the source for
trace-driven emulation.

Data Summary: The data captured is summarized in
Table II. Over the 4-h data collecting, we gathered total 8.6-GB
pcap files for only control traffic. There were over 51 000
unique devices’ sighted during the study. But many devices
only showed up for a short time. Among them, 480 clients (350
on 5 GHz and 130 on 2.4 GHz) were persistently sighted over
an hour. There were 784 active clients which launched data
transmission with BA exchanges. We find that over 99% of
the BA exchange involved our deployed APs. It means almost
all data traffic occurred on our deployed network. Therefore,
the SNMP data should provide complete ground truth about
the WiFi environment.

Evaluation With Ground Truth: Among the characterization
metrics derived from our method, SNMP data only provide
ground truth for two metrics: 1) throughput and 2) airtime.
Therefore, we focus evaluation on the two commonly used
metrics. Since SNMP data are sampled every 45 s, to cre-
ate point-to-point matching data, the mean of the results from
our method during the 45th s is used to match with SNMP
data. First, by assuming all devices report their characteriza-
tion results to the crowdsource server, we exploit all scans to
plot the time series in Fig. 16. Since the usage of the 2.4-GHz
band is sparse in this case, only 5-GHz band data are used for
this evaluation. In Fig. 16(a), we see that the estimated airtime

7A device is identified with a unique MAC address.
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Fig. 17.  Correlation between the estimated value and ground truth w.r.t.

number of devices used for generating result. All the results are from 5-GHz
band. (a) Airtime. (b) Normed throughput.

closely follows the ground truth over time. As the throughput
shows the similar pattern, we do not plot it to save space.
Furthermore, in order to understand the computation cost of
the characterization function, we plot the total number of con-
trol packets as well as the BAs captured in the dwell time
during a scan in Fig. 16(b).® It shows that for each scan on
a channel, the characterization only needs to process 2040
control packets with less than 20 BAs. When the channel is
busy, the number can reach to 140 total packets with 40 BAs.
It implies implementing the characterization onto the scan will
not cause significant computation load.

To further quantize the performance, we calculated the
Pearson correlation coefficient’ between the estimated value
and ground truth. A correlation value is calculated from a
90-min window. By moving this window across the entire
time session, we can obtain over 200 estimation points. In
addition, to explore the impact of crowdsourcing, we assume
that only part of the clients voluntarily report their data to
the crowdsource server. Therefore, only the scans from cer-
tain devices are exploited for characterization. By varying the
number of devices involved, we try to find out how much
clients are needed to deliver accurate characterization through
the crowdsource manner. We sort the sighted devices by their
present time. Thus, the x devices mean the top x sighted
devices. In Fig. 17, we plot the empirical CDF of the corre-
lation coefficient on both airtime [Fig. 17(a)] and throughput

8The figure is plotted after downsampled to reduce visual clutter.

9The value ranges from —1 to 1, where 1 implies perfect linear relationship
while —1 implies negative linear relationship.
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[Fig. 17(b)]. As the results show, with all the available devices,
we can achieve the median coefficient of 0.817 for airtime and
0.837 for throughput. With less devices involved, the coeffi-
cient decreases. Notably, once the client number increases to
10, the median correlation coefficient can reach up to 0.8 for
both airtime and throughout. It implies that for a certain WiFi
environment, if more than ten devices contribute to their char-
acterization results, we can provide the accurate channel traffic
characterization through crowdsourcing. We argue that bene-
fited from the low cost and nonobtrusive nature of our passive
approach, it creates less barrier to convince users to contribute
into the crowdsourcing. In addition, the characterization result
is usually more useful under a user-dense scenario to either
glean insightful observation or help debug network problems.
Given the proposed method merely requires ten or more clients
to get a satisfactory result, it is fairly feasible to get that small
number of voluntary clients in a user-dense (ideally with the
client number greater than 50) scenarios.

Empirical Study on Other Metrics: Without the ground
truth, we cannot provide deterministic performance evalua-
tion for other characterization metrics, e.g., transmission rate.
Instead, we use the characterization results from all clients as
an empirical study to analyze the WiFi traffic. In Fig. 18, we
plot the empirical CDF of the several metrics computed from
our method. Particularly, we compare the different distribution
from 2.4 and 5 GHz bands. Starting from the Al in Fig. 18(a),
since we had much more traffic load on 5 GHz, the Al on
5 GHz is higher than on 2.4 GHz. Notably, there is about 20%
of Al equal to 1 on 2.4 GHz which could be due to the many
light-flow traffic. The QI in Fig. 18(b) reveals that with the
higher capacity, although there were more traffic on 5 GHz, it
caused less backlog pressure compared to on 2.4 GHz. Finally,
by filtering out the results with QI < 0.1, we plot the estimated
transmission rate in Fig. 18(c). The result matches our expecta-
tion that with 802.11ac supported on 5 GHz, the transmission
rate on 5 GHz (with the median around 200 Mb/s) is greater
than 2.4 GHz (with the median of 100 Mb/s). Overall, we see
the rich set of characterization metrics from our method can
help reflect insightful attributes about the WiFi traffic.

VI. RELATED WORK

The work of WiFi traffic characterization has been
investigated from different network layers. At the physi-
cal layer, there are works [23]-[25] particularly target on
sensing the power on the WiFi spectrum. For example,
Airshark [23] exploits commodity WiFi device to detect non-
WiFi interference (e.g., microwave oven). Different from the
physical layer works, our work primarily focuses on the MAC
layer. The works on the MAC layer can then be gener-
ally classified into two groups: 1) the AP-side approach and
2) the client-side approach. The AP side works [6]—[8] usually
require deploying controlled networks which is expensive in
terms of financial cost as well as human effort. WiSe [8] set
up home WLAN for 30 homes over six months to analyze
their home wireless environments. More recently, [6] studied
the data collected from approximately 10000 radio APs and
5.6 million clients from one-week periods to provide a deeper
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understanding of real-world network behavior. For the works
focusing on measurements on the transport layer or above,
the emphasis is usually on data analysis (e.g., traffic classifica-
tion [26]) instead of the techniques of collecting measurements
which this article focuses on.

To avoid the cost of the AP-side approach, the client-side
method shows its advantage of being cost efficient and flex-
ible. Unlike existing works like [27] that collecting mobile
traffic only generated from the measuring client itself, the
client measurement in this article captures surrounding traf-
fic from other clients in the vicinity to the measuring client,
which is intrinsically a more challenging problem. The pas-
sive client monitor works in this domain have been extensively
exploited for different purposes. Reference [28] manipulates
smartphones to monitor WiFi traffic in order to infer human
activities. Another smartphone-based work [29] uses an indoor
WiFi monitor fused with mobile crowdsource to achieve better
localization. With large-scale studies, [30] explicitly seeks the
co-location between mobile users via Bluetooth information
combined with the WiFi scan. In addition, for security pur-
pose, [31] and [32] attempt to exploit WiFi monitor to detect
rogue AP and potential attack. For the general purpose of
traffic characterization, many prior works [9]-[12] focus on
merging traffic or inferring unobserved traffic. They assume
that most of the data traffic can be sensed passively which may
not be accurate with more modern, faster WiFi approaches.

VII. CONCLUSION

Given the increasingly crowded WiFi environment due to
the growth of IoT devices and other mobile devices, it is
important for end users to understand the surrounding WiFi
channel condition for making potential adaptive choices. In
this article, we presented an intriguing new approach for WiFi
traffic characterization. We showed that it is possible to infer
a variety of useful characterization metrics solely through the
observation of BA and other control packets. Moreover, we
showed that such results tend to be reasonably stable even
at very short time frames allowing for the potential to con-
duct such observations during normal WiFi scanning. We
believe the implications for the work are considered from
both the end-user standpoint, troubleshooting standpoint, and
analysis/potential of cellular onto WiFi bands standpoint. We
believe the topic is ripe for future work and plan to explore

Empirical observation on other characterization metrics. (a) AL (b) QI. (c) Transmission rate when QI > 0.1.

more extensive data sets, including dense urban centers, newly
deployed WiFi at the stadium, and various public venues.
We will also further look into novel applications of applying
this method to facilitate better network service. For example,
one of the promising usages is to leverage the ongoing pas-
sive measurements to improve DASH video streaming bitrate

adaptation under congested WiFi environments.
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