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Abstract—The advancement of the Internet of Things (IoT) is
bringing unprecedented convenience into our daily life. However,
with the relentlessly increasing number of mobile devices con-
nected to the Internet, the wireless network environment is
becoming more crowded than ever before. Particularly, WiFi,
with its evolving role in IoT, is shouldering a tremendous amount
of traffic from IoT and other mobile devices. As a result, explod-
ing numbers of competing devices, encroachment by cellular
technology, and dramatic increases in content richness deliver a
more variable Quality of Experience (QoE) on WiFi than desired.
Moreover, such variance tends to occur both across time and
space making it an extremely difficult problem to debug. Existing
active approaches tend to be expensive or impractical while exist-
ing passive approaches tend to be too narrow. To conduct efficient
and nonobtrusive WiFi traffic characterization, in this article, we
propose a novel passive client-side approach that delivers efficient
and accurate characterization by taking advantage of the proper-
ties of frame aggregation (FA) and block acknowledgment (BA).
The devised approach requires only capturing and analyzing cer-
tain types of control packets thus making it feasible to deploy on
IoT devices that have limited computation power. We show in this
article that we can accurately derive important characterization
metrics, such as airtime, queuing information, and transmission
rates with only a minimal amount of observed BAs. We show
through extensive experiments the validity of our approach and
conduct validation studies in the dense environment of a campus
tailgate.

Index Terms—Crowdsensing and Crowdsourcing, medium
access control protocols, mobile and ubiquitous systems, wireless
network measurement.

I. INTRODUCTION

P
ROPELLED by the development of the Internet of Things

(IoT), the number of mobile devices dedicated to IoT

services is expected to be tripled from 2018 to 2023 accord-

ing to Cisco Annual Internet Report [1]. Notably, WiFi,

with its low cost and wide-spreading deployment, becomes

a major channel for IoT devices to communicate. Due to

the limited spectrum resource, the overwhelming traffic from

countless IoT devices and other end users makes the Quality
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of Experience (QoE) on WiFi variant and unpredictable. While

new standards seek to deliver a “better” WiFi, the increasing

density of devices, richness of content, and recent encroach-

ment on WiFi by cellular (LTE-U) make the performance

variance on WiFi being the new normal for the foreseeable

future.

For nearly all involved parties, such variance is incredibly

frustrating. Moreover, debugging is difficult as the variance

occurs across both time and space. Performance is usually

good enough, once in a while great, occasionally bad, and

sometimes positively terrible. The situation while tenable at

the moment requires action but unfortunately past work tends

to be ill-suited to solve the problem.

In the archetypal form of wireless characterization, the

mobile device becomes an active sensor to actively deter-

mine end-to-end performance at the network and transport

layers [2]–[4]. Prior works, such as Speedtest.net, iperf3, or

Mobiperf [5], embody this approach whereby the currently

connected WiFi path is actively probed to determine network

performance. While such an approach can provide longitudinal

data for a given WiFi link, the cost of such characterization is

often quite high both in terms of time and energy. Moreover,

such tests also have a negative impact on other users as the

probe traffic can be intrusive to existing traffic. Most impor-

tantly, active probing often misses the broader picture of the

WiFi environment, including the influence of other mobile

nodes, channel airtime, transmission speed, queuing effects,

and other subtle link properties.1

In contrast, other work has operated from the perspec-

tive of the access point (AP) to afford a much deeper view

of the wireless network [6]–[8]. By deploying well-equipped

APs with coordination through a back-end controller, a rich

set of WiFi characterization details can be gathered. Existing

network performance can be gleaned from connected clients

which in turn provides a wealth of performance data for the

deployed network. As would be expected, such services tend

to be expensive but often essential to any large-scale WiFi

deployment. Notably, a key weakness of the AP-centric focus

is that while an AP can ably sense, the entire collection of

APs represents a limited and stationary spatial distribution.

Thus, such systems tend to focus largely from the perspective

of the provided network (a reasonable presumption), poten-

tially missing broader trends in the overall wireless ecosystem

1In fairness to prior work, active end-to-end techniques were never intended
to capture link properties.
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and potentially missing client-side issues at the edge of the

network.

Finally, one last approach to characterization is to view the

mobile client itself as a capable wireless sensor [9]–[12]. In

contrast to the AP-side approach, the client-side method acts

exclusively as a “sniffer” on the WiFi network without AP-side

information (queue length, transmission rates, etc.). The client-

side approach provides increased flexibility with mobile nodes

crowdsourcing the state of the WiFi network. Unfortunately,

while interesting conceptually, the actual packet capture capa-

bilities of most mobile devices tend to fare quite poorly. Packet

capture is often inaccessible absent significant modifications

by the device owner and as will be discussed later, packet cap-

ture often suffers severe losses when monitoring data packets.

Critically, the mobile-centric approach does offer one highly

desirable property, namely, that of offering longitudinal data

across the entirety of the potential client connection area.

Thus, the question that we pose in this article is: How could

we radically improve the ability of a mobile client to observe

the network knowing the capture limitations of existing mobile

devices? In particular, are there certain packets that are more

easily observable but yet contain rich information to help char-

acterize the network? Most importantly, is there a way that we

can do this in an extremely energy-efficient manner, observing

for only a brief period of time but still capturing the essence

of a given channel? In this article, we seek to demonstrate that

we can accomplish these goals. We propose a new technique

that builds on the properties of frame aggregation (FA), specif-

ically the block acknowledgment (BA), and show how BA map

to a rich set of link characterization metrics, such as airtime,

transmission rate, and queuing information through extensive

experimental studies. Moreover and perhaps most excitingly,

beyond our prior work [13], we show that the stable observa-

tion time for BA can be sufficiently satisfied during a normal

WiFi scan period (20 ms). It means that we can essentially

utilize our method for “free” via de facto WiFi scan. The

implications of this work are considerable, expanding every

mobile device to not only observing the nearby APs but also

characterizing the WiFi channel(s). The contributions of this

article are as follows.

1) Sensing With Control Packets: We show how observing

control packets, especially BA, can be used to extract a

rich set of WiFi characteristics. We define two impor-

tant primitive metrics—aggregation intensity (AI) and

BA time gap and show how these two primitive metrics

can be used to compute airtime, transmission rate, and

queue length. We demonstrate the accuracy, efficiency,

and robustness of these mappings through extensive

empirical studies across a wide variety of scenarios.

2) Robustness Across Short-Time Windows: We show that

only an extremely limited window of control pack-

ets is necessary to extract a stable view of the WiFi

link for characterization (20 ms). We introduce several

key concepts and assumptions necessary to work within

such a small time window as well as present extensive

experiments to validate our results.

3) Viability With WiFi Scanning: We study the feasibility

of using the limited window afforded by WiFi scanning

for characterization. We analyze extensive pools of WiFi

scanning data taken from 41k different devices to show

the potential time available for observations via real-

world data. We show that the minimum scan time sits

roughly at 20 ms (Apple iPhone) while nearly all 90%

of devices scan at least every 6.5 min.

4) Real-World Data Validation: We validate our approach

and its accuracy by conducting experiments on a real-

world data set captured during a tailgate involving

multiple 802.11ac APs. We conduct trace-driven experi-

ments and show that with only a handful of devices (10),

the designed characterization can achieve a high corre-

lation (0.8) with the observed ground truth for airtime

and throughput estimation.

The remainder of this article is organized as follows. We

start with the intuition and background of leveraging con-

trol packets for passive traffic characterization in Section II.

Followed by Section III, we detail the methods to derive var-

ious characterization metrics based on certain observations

extracted from control packets. In Section IV, we present

an empirical study to verify the idea of using the WiFi

scan for characterization. Then, we demonstrate the results

of performance evaluation on real-world empirical data sets in

Section V. The related work is discussed in Section VI. Finally,

we summarize and conclude this article in Section VII

II. BACKGROUND AND MOTIVATION

Before diving into the details of our system, we discuss

several key background concepts. First, in Section II-A, we

discuss the need for using control packets followed a basic

primer on FA and BA3. Next, in Section II-B, we describe

how WiFi scanning typically operates and why it provides the

potential for characterization.

A. Why Control Packets?

The goal of a client-side characterization model is to pro-

vide traffic characterization by capturing most if not all traffic

going on the channel(s). Unfortunately, the assumption of cap-

turing all traffic is often impossible in practice. Eavesdropping

on a WiFi channel tends to suffer from severe loss for sev-

eral reasons. First, the data packets with a high transmission

rate usually have a limited communication range to be cap-

tured. Second, the different bandwidth capacities of devices

impede capture as low capacity devices (e.g., low bandwidth

and low supported rate) cannot collect traffic transmitted with

high rates. In addition, with beamforming in advanced WiFi

(i.e., 802.11ac wave-2 [14]), a device is not able to hear traf-

fic from the directional antenna if it is not on the transmission

path. These difficulties hinder a client from capturing the full

picture of traffic on the channel.

Fortunately, control packets tend not to suffer from the same

issues with respect to (w.r.t.) capture. First, since control pack-

ets are designed to be acknowledged by all nearby devices,

they are set to be transmitted at the lowest rate with a nondi-

rectional manner. Second, the volume of the control packets

is much sparser than the data packets. From a capture stand-

point, this implies that the mobile device is unlikely to be
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Fig. 1. Illustration of data transmission under FA.

overwhelmed with control packets and could potentially ignore

data packets for energy efficiency. The key aspect for a mobile

device is that while data packets can lose in excess of 75% of

packets when attempting to log all packets (from our experi-

ments on 802.11n/2.4 GHz with signal −70 dBm or worse), it

is quite rare to lose control packets while attempting to capture

only control packets (success rate of 75% even with 802.11ac

on 5 GHz with −85-dBm power). By leveraging the FA, we

posit that the control packets observed on mobile devices can

help deliver efficient traffic characterization.

Frame Aggregation: The general principle of FA is to

assemble multiple data units to transmit as one aggregated

frame.2 The aggregation can be operated at two levels:

1) aggregate MAC protocol service unit (A-MSDU) and

2) aggregate MAC protocol data unit (A-MPDU). A-MSDU is

on the upper MAC layer which can be further aggregated again

into A-MPDU when pushing into the physical layer. Therefore,

the frame transmitted in the air is eventually expressed in the

form of A-MPDU. In this article, we will focus on lever-

aging A-MPDU. As shown in Fig. 1, in tandem with BA,

each A-MPDU only requires one BA to notify the receipts

of multiple MPDUs (i.e., packets)3. In order to support this

one-to-many acknowledgment, a BA uses a bitmap field to

explicitly indicate the failure or success of delivery of every

single MPDU.

As FA has become the default manner of sending data on

modern WiFi (802.11ac), data transmission will always invoke

an exchange of a BA. These acknowledgment potentially pro-

vide opportunities to infer the data transmissions occurred. In

particular, the information stored in the BA frame allows one

to know more about the data transmission beyond the num-

ber of packets. Particularly, we find that the information of

how many MPDUs in an A-MPDU, dubbed AI, can embody

a rich suite of information about the attributes of data traf-

fic, e.g., queue length and transmission rate. In addition, we

note that the time gap of BAs can also reveal other attributes

about data transmission, e.g., the transmission time of a

packet. In Section III, we discuss the technical details about

how we can manipulate the information to achieve accurate

characterization based on control packets.

B. WiFi Scan For Characterization

The core foundation of client-side characterization is the

“sniff” function that allows a client can capture the ongoing

2Noted that the term packet speaks to MAC and upper layers, while frame

refers to the PHY layer.
3Packet and MPDU are used interchangeably for the remainder of this

article.

traffic on a channel. This function is normally implemented

as a special mode called the monitor mode. However, since

monitor mode will suspend all communications, it is not desir-

able to frequently put a client into this mode for the purpose

of characterization. Fortunately, we find that the WiFi scan

operation innately embodies such a sniff function.

WiFi scan is the operation that a device uses to find nearby

APs to associate with. Technically, there are two kinds of scan

a device can perform: passive and active scans. When per-

forming the passive scan, the client radio listens on different

channels iteratively for periodic beacons sent from APs. With

an active scan, the client broadcasts a probe request on a chan-

nel and then waits for the responses (probe response or beacon)

from AP(s). This process is repeated on each channel. When

waiting on the possible response, the WiFi chip suspends all

ongoing communications just like the monitor mode. The dif-

ference is that it decodes all the captured packets (at least the

header) but only reports the desired ones (beacons and probe

responses) to the upper layer. The “monitor” behavior of the

WiFi scan provides an intriguing opportunity for the purpose

of characterization.

We propose that it would not be untoward to modify the

WiFi scan to collect all control packets captured during the

scanning process. In this article, we show that one could

use these packets to conduct entire channel traffic charac-

terization. The usage of the WiFi scan naturally provides

iteration across multiple channels with periodic invocations,

potentially giving a continuous view of the WiFi environment.

When coupled with crowdsourced information, the humble

WiFi now becomes an exciting new opportunity for network

characterization.

III. WIFI CHARACTERIZATION VIA CONTROL PACKETS

In order to characterize the WiFi channel, as part of the

contributions of this article, we design two primitive metrics:

1) the AI and 2) the Block Ack (BA) time gap. Based on the

two measurements, we can further derive various important

characterization metrics, e.g., channel airtime, physical layer

transmission rate, queue length, and so on.

A. Primitive Measurements

1) PM1 (Aggregation Intensity): FA allows multiple data

units to be assembled into one aggregated frame (A-MPDU)

and sent together. The degree of aggregation can be useful

and we describe it using a metric called AI that counts the

number of MPDUs (i.e., packets) within one aggregated frame.

As an example in Fig. 1, the three A-MPDUs have AI of 3,

4, and 2, respectively. The value of AI is decided by several

factors. When forming an A-MPDU, the scheduler looks into

the queue and batches all the packets tagged with the same

traffic identification (TID) into a frame where the TID usually

indicates the packets destined to the same address. Thus, the

more packets with the same TID are held in the queue, the

larger AI should potentially be. Furthermore, the maximum AI

allowed in one A-MPDU is capped by 1) a maximum size and

2) a maximum transmission time Tmax. Since the size limit is

large (65 535 B) and rarely reached, the AI is usually limited

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on June 22,2022 at 19:40:45 UTC from IEEE Xplore.  Restrictions apply. 



SONG et al.: SNIFFING ONLY CONTROL PACKETS: LIGHTWEIGHT CLIENT-SIDE WiFi TRAFFIC CHARACTERIZATION SOLUTION 6539

Fig. 2. Format of Block ACK frame.

Fig. 3. Data transmission under FA. The sequence number (SSN) and bitmap
are indicated. A 64 bitmap is used in this case.

by the transmission time. For a certain packet size P, we have

Tmax ≤ ([AI · P]/R) where R is the transmission rate. Thus,

the maximum AI can be expressed as

AImax =
R · Tmax

P
. (1)

We see that the AI is a function of multiple traffic factors,

including queue length, transmission rate, and other factors.

As we will present later, the distribution of AI can be used to

effectively reveal traffic conditions.

Extracting AI From BA: Computing AI relies on two impor-

tant fields in the BA frame: the starting sequence control (SSC)

and the bitmap as shown in Fig. 2. Each bit on the bitmap

represents the receiving status (success/failure) of an MPDU.

The SSC includes a subfield called starting sequence number

(SSN) which indicates the sequence number of the MPDU

denoted by the first bit in the bitmap. Given a pair of consec-

utive BAs (sent from A to B), we can compute the AI and

the loss4 of the corresponding A-MPDU (sent from B to A).

For example, in Fig. 3, we replot the case of Fig. 1 to label

the field information. For the first A-MPDU and its BA, since

the last bit denotes the 1118 MPDU, the first bit should cor-

respond to 1055 (1118—63) which is exactly the SSN of the

BA. Combining the first and second BA, by subtracting their

SSN, the AI of the A-MPDU between them can be computed

as 4 (1059 - 1055).

Experimental Evaluation: We set up a lab experiment

to evaluate the performance of the proposed method. The

general setting is as follows: we connected a server (HP

ProBook) to a mobile client (HP ProBook equipped with

EdiMax AC WiFi adapter) via a WiFi AP (TP-Link Archer

c7 v.2). The AP is 802.11ac capable and configured to run

OpenWrt which allows to adjust various settings, e.g., band-

width (20/40/80 MHz), transmission rate, operating channel,

and so on. We generated traffic on WiFi by sending TCP flows

(via rsync) from the server to the client. By using a third lap-

top (Lenovo P50 with Intel AC adapter) as the passive monitor

node, we eavesdropped on traffic in the WiFi channel. In order

to get the AI ground truth, we set the AP to run at a lower

speed (802.11n 2.4 GHz with 20-MHz bandwidth) to allow us

4The loss information can provide additional measurements about network
traffic but we will focus on AI in this article and leave loss information for
future exploration.

Fig. 4. (a) AI estimation error. (b) Maximum AI and loss rate across different
transmission rates.

to capture most of the data packets. The ground truth for AI

can be obtained from the A-MPDU reference number in the

radiotap header. Overall, we collected over 25 000 A-MPDUs

and their BAs. In Fig. 4(a), we plot the cumulative distribution

function (CDF) and the frequency of the absolute AI estima-

tion error (|ground truth—estimated|). It shows the designed

method can achieve 81% of a perfect estimation of AI. For

97% of the estimations, the absolute error can be controlled

within 5.

By using the information extracted from BA, we continue

to validate the relationship in (1). We repeated the experi-

ment above under different transmission rates with various

bandwidth settings (20, 40, and 80 MHz) on both 2.4 GHz

(802.11n) and 5 GHz (802.11ac). As the result shown in

Fig. 4(b), the observation matches (1) very well that for all

settings, the maximum AI linearly increases with the trans-

mission rate until reaches the maximum 64. This maximum is

decided by the compressed BA used in this case. Moreover,

we also plot the loss rate (number of losses in a time unit)

of 80-MHz bandwidth on 802.11ac. Given the static setting

of the AP and the client, the channel quality (e.g., signal-to-

noise ratio) is fixed. When the SNR is inadequate to support

the transmission rate, packet loss starts to occur. In our case,

we see that when the transmission rate exceeds 400 Mb/s, the

loss rate starts to increase. Overall, the experimental results

show that the designed method can help accurately capture

the AI and loss across different network settings.

2) PM2 (BA Time Gap): While the AI provides the data

packet depth, further understanding of the other properties

of the packets (e.g., their cost on channel airtime) requires

another primitive measurement (PM)—BA time gap. We define

the BA time gap as the time gap between a BA and its

previously transmitted control packet on a channel. Notably,

any control packet can suffice with us particularly noting that

all control packets tend to be unencrypted. Normally, this

previous control packet is another BA as shown in Fig. 1. It

can also be other control packets. For example, with RTS/CTS

enabled, BA usually follows a CTS. Once the control pack-

ets are captured, the BA gap can be simply computed by

subtracting the packet timestamps recorded by the network

adapter.

Since BA is designed to follow closely the A-MPDU trans-

mission, we argue that this time gap should be proportional to

the airtime consumed by the data transmission. For a certain

transmission rate, the more data assembled in an A-MPDU,
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Fig. 5. (a) GBA and (b) GMPDU versus AI given certain transmission rate
(i.e., 144.4 Mb/s).

the larger the BA gap should be. The relationship can be

expressed as

GBA ∝
AI · P

R
(2)

where R is the transmission rate and P denotes the packet size.

AI ·P calculates the total size of the A-MPDU. To further cal-

culate the average time consumed by each MPDU, we define

a new metric—MPDU gap GMPDU such that

GMPDU �
GBA

AI
∝

P

R
. (3)

Once AI is estimated with the method mentioned above,

GMPDU can be computed. From (2) and (3), we see that

the time gap information has the potential to reveal valuable

attributes about data traffic, e.g., airtime and transmission rate.

In order to validate the relationships in the equations, we con-

duct lab experiments to demonstrate the empirical observation

of GBA as well as GMPDU.

Experimental Validation: Using the prior experiment set-

tings, we fixed the transmission rate on 144.4 Mb/s and

repeated the TCP traffic on both 802.11ac 5 GHz and 802.11n

2.4 GHz. Fig. 5(a) and (b) plots the GBA and GMPDU as a func-

tion of AI. The markers indicate the raw data, and the lines

are the average for each AI value. As shown in Fig. 5(a), GBA

linearly increases with AI for all cases except for AI = 1. With

the same transmission rate, the observation from 2.4 GHz is

identical to on 5 GHz. The curves on Fig. 5(b) reveal a similar

observation: the GMPDU is extremely high when AI = 1, then

it quickly drops and gradually converges to a constant. Overall,

except for when AI = 1, the empirical observation matches

our conjecture in (2) and (3). The abnormal case on AI = 1

is mainly due to that the BA time gap can also be influenced

by other factors, e.g., back off, collision, and so on. When

the data size is small under AI = 1, the BA gap is seriously

disturbed by the other factors. That is why the gap of regular

ACK (which is designed to respond one data packet) cannot

be used to indicate data transmission time. When AI increases

with more data transmitted, the data transmission becomes the

dominant factor to decide the BA gap. The influence of the

other factors is gradually mitigated. That is why the curves of

GMPDU slightly drop while converging to a consistent value.

According to (3), GMPDU should be inversely proportional

to the transmission rate given a certain packet size. We con-

tinue the validation by varying the transmission rates with

Fig. 6. CDF of MPDU gap (when AI > 1) w.r.t. transmission rate.

fixed packet size (i.e., MTU). In Fig. 6, we plot the empirical

CDF of GMPDU under four different transmission rates, includ-

ing 33, 144, 433, and 866 Mb/s. Because of the inconsistent

behavior under AI = 1 as discussed above, for the remainder

of this article, GMDPU will be calculated by filtering out the

gaps whose AI = 1. The result in Fig. 6 matches the expec-

tation of (3) that the higher transmission rate is the smaller

GMPDU is observed. In addition, for certain transmission rates,

GMPDU shows a highly concentrated distribution with marginal

deviation. This robustness provides the potential to infer the

transmission rate from GMPDU. In the next section, we will

elaborate how to exploit the PMs to deliver comprehensive

traffic characterization regarding to various metrics.

B. Deriving the Characterization Metrics

Control packets can give high-level information about the

WiFi environment, such as the number of APs, the number

of clients, and so on. Beyond these metrics, we would argue

that our proposed method can provide a more insightful set of

characterization metrics, including throughput, loss, airtime,

transmission rate, and queue length. In this section, we will

elaborate how to derive each of these metrics from the PMs.

Given the control packets collected during a certain time

window ω, we can estimate the characterization metrics for

this particular window. For throughput and loss, based on the

previous discussion on AI, they are relatively straightforward

to compute. Throughput can be approximated in the form of

the packet rate by summing up the AI in the time window

([
∑ω

AI]/ω). Similarly, the loss rate can be calculated from

the BA bitmap. For the other more complicated metrics (i.e.,

airtime, transmission rate, and queue information), they require

further processes to make an accurate estimation. Next, we will

iterate on the methods to estimate these metrics along with

the experimental evaluation. Particularly, we study the robust-

ness of the different metrics regarding the setting of window

size ω.

Note that the characterization can be perceived on differ-

ent scales. With traffic captured on different channels, we

can report characterization results on each channel. With the

multiple APs operating on the same channel, we can fur-

ther break down the traffic impact onto different APs. For

example, the airtime can be estimated separately on each AP.

Furthermore, for the traffic between a pair of nodes, we can

further divide them into different links, i.e., uplink and down-

link, based on the traffic direction. In our case, the transmission
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Fig. 7. Estimated airtime versus flow size w.r.t. window size ω.

rate and queue length characterization will mainly focus on the

link level.

1) Airtime: Airtime (also known as channel utilization)

describes how much time is occupied by the traffic on a chan-

nel. As one of the most important metrics to understand the

load on WiFi channel, it is widely used for QoE/QoS-based

services [15]. This metric can be polled from certain types of

AP with special hardware support. However, it is immensely

difficult to estimate from the client side due to the severe loss

when passively capturing the data packets as mentioned earlier.

Fortunately, exploiting the PMs can help estimate the airtime

without a data packet.

Since control/management traffic is designed to be ultra

lightweight, data transmission usually accounts for the primary

airtime cost. Thus, our method explicitly focuses on the con-

sumption resulted from data transmission. According to the

above discussion, we know that the BA time gap GBA is a

good approximate of the transmission time of the A-MPDU

data frames. Intuitively, given the BAs captured in a time win-

dow ω, summing up the GBA and dividing by ω will give the

percent of time consumed by the data traffic. However, with

the exception case of AI = 1 as discussed, we further filter

out the GBA whose AI is 1. Therefore, airtime can be finally

estimated as

Airtime =

∑ω
GAI>1

BA

ω
(4)

where GAI>1
BA specifically refers to the BA gap where AI > 1.

Experimental Evaluation and Improvement: Using the same

experimental setting before, we generated different sizes of the

TCP flow to cause different airtime cost on the WiFi channel.

We varied the flow size from 20 kB to 160 MB. For each flow

size, we kept repeating the flow in a back-to-back manner that

once it completes we restart immediately. Each flow size ran

for 10+ s. The ground-truth airtime can be polled from the AP

kernel via the iw tool. With the control packets captured from

the monitor node, we sliced them into continuous windows

with a window size of ω. Then, we calculate the airtime for

each window according to (4).

In Fig. 7, we plot the estimated airtime under different flow

sizes with regarding to two window sizes (ω = 100 ms and

ω = 20 ms). In addition, we also plot the resulted calculated

without filtering out AI > 1. Note that each point in the figure

is the average over all windows. As shown, without the filter,

the airtime is significantly overestimated, especially when the

flow size is small. After applying the filter, the result closely

matches the ground truth. The result implies that ruling out the

Fig. 8. Estimation accuracy versus window size ω w.r.t. flow size.

cases of AI = 1 will not harm airtime estimation. Because the

occurrences of AI = 1 are rare, and it only takes up a high

percentage when traffic is light. Filtering out AI = 1 helps

effectively relieve the overestimation caused by the random

gaps when AI = 1.

Window Compensation: Comparing the results from differ-

ent ω, we notice the small window (ω = 20 ms) suffers from

underestimation, especially when the flow is heavy. The rea-

son is that our method requires two consecutive BAs to infer

a data frame in the middle. Therefore, we are not able to

infer the A-MPDU associated with the very first received BA.

In that case, we always lose one A-MPDU frame when esti-

mating airtime. For example, in the case of Fig. 1, with the

three BAs collected, we can only infer the second and third

A-MPDU but not the first one. When the window size is small

and the traffic load is heavy, this one A-MPDU loss becomes

significant. In order to compensate for this loss, we assume

the lost A-MPDU is exactly the same as its adjacent A-MPDU

inferred from the first pair of observed BAs. So the airtime

estimation will double count the first BA gap.

After applying the compensation, we replot the estimation

accuracy (1 − |[(estimated − ground_truth)/(ground_truth)]|)

for different window size ω in Fig. 8. To reduce figure clutter,

we selectively plot the cases of flow size 400 kB and 160 MB.

In addition, we also plot the contrast case without the window

compensation for 160-MB flow. Overall, we can see that the

result is unacceptably poor when the window size is too small

(i.e., ω < 20 ms). The reason is that the control packets dis-

tribution in such a small scale is too random to be statistically

meaningful. Many windows (10%–30%) in this case fail to

capture even one packet. When the window size increases,

this randomness is gradually smoothed out, and the results

eventually converge. With the compensation enabled, we can

achieve at least 90% estimation accuracy when ω ≥ 20 ms.

2) Transmission Rate: The transmission rate is the data rate

used to send a frame in the physical layer. It is useful to

understand and diagnose the performance on WiFi (e.g., load

balance [16]). But this information normally is not readily

available at the AP side as well as the client side. Fortunately,

with the properties of the MPDU gap (in Fig. 6), we can use

it to make a reasonable inference to the transmission rate.

However, although the MPDU gap is primarily decided by the

transmission rate, it can also be influenced by other factors,

including flow size, protocol/band (802.11n on 2.4 GHz ver-

sus 802.11ac on 5 GHz), interference, and so on. In order to

make GMPDU a reliable transmission rate indicator, it must be

resistant to the influence of the other factors.
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Fig. 9. CDF of GMPDU w.r.t. flow size.

Through our empirical study from experiments, we find that

flow size cause the most significant impact on the MPDU gap

distribution in addition to the transmission rate. The influence

of other factors is marginal. To demonstrate this impact, we use

the trace from previous experiments to study the distribution of

the MPDU gap under different flow sizes. In Fig. 9, we plot the

CDF of GMPDU under 802.11ac 5 GHz with fixed transmission

rate (130 Mb/s). The flow size of heavy, medium, and light

refer to 160-MB flow, 8 MB, and 400 kB, respectively. For

each flow size, we collected over 2000 BAs to generate the

result. We see that when the flow size decreases, the MPDU

gap becomes larger. It is because with the less intensive traffic

from the light flow, the gaps can get much looser compared to

under heavy flows where frames are tightly pushed together.

θ -Percentile GMPDU: A closer look into Fig. 9 reveals that

even though the overall distribution varies across different

flow sizes, the variation is only significant on the high values

(e.g., above 90-percentile). While the gaps do not vary a lot

at the low percentiles (e.g., below 10-percentile). Therefore,

we define the θ -percentile MPDU gap measured for a link

within a time window as the effective MPDU gap to infer

the transmission rate. Note that by doing this, we assume the

transmission rate on this link during the window time is consis-

tent. By properly setting θ , we can alleviate the impact resulted

from flow variation. The optimal setting of θ will be explored

through extensive experiments later. Once the effective GMPDU

is calculated, we can estimate the transmission rate by

Rate =
P

Gθ
MPDU

(5)

where P is the packet size and Gθ
MPDU is the θ -percentile

MPDU gap observed in a window.

Inferring the Packet Size: Unfortunately, without accessing

data packets, we cannot determine the packet size. We posit

that with several assumptions, one can give a fair approxima-

tion for packet size. First, given the pervasive nature of TCP

traffic, we consider only two types of packet sizes: 1) MTU

for data packets and 2) a fixed small size for TCP Ack pack-

ets. Thus, the task of inferring packet size can be reduced to

select one size from the two. Second, for the traffic between

a pair of nodes, we assume one direction (i.e., link) is consis-

tently being data stream and the other is Ack stream5 during

the time window. To decide which link is the data stream, we

argue that the data stream always has higher AI than the Ack

stream. Because Ack packets are small and sparse in time,

5If only one direction traffic is detected, we assume it is the data stream.

Fig. 10. CDF of AI on data or Ack stream w.r.t. flow size.

Fig. 11. Impact of window size ω on the two components of estimating

transmission rate. (a) Inferring packet size. (b) Measuring Gθ
MPDU.

they normally cannot cause a high degree of aggregation. To

validate this assumption, we collected the experiment trace6

to plot the AI distribution from data or Ack stream under dif-

ferent flow sizes. In Fig. 10, we see that for a certain flow, the

AI of the data link is always greater than of the Ack link. This

difference becomes more evident when the flow size increases.

Therefore, by selecting the link with a higher average AI, we

can determine the data link and assign it with the MTU packet

size. Because of the light and sparse traffic on the Ack link

which makes gaps fluctuate, we normally choose to the data

link to estimate the transmission rate. Eventually, the rate can

be computed from (5).

Experimental Evaluation: With the same experiment setting

as used earlier, we varied the transmission rate to evaluate the

performance under different settings. We focus on 802.11ac

on 5 GHz, since it is more challenging to estimate the rate

with the wider range of values (up to 877 Mb/s) compared to

802.11n 2.4 GHz. We start with investigating the impact of

window size ω. The performance of transmission rate estima-

tion is decided by two components: 1) inferring packet size

and 2) measuring Gθ
MPDU. Fig. 11 plots the impact of ω on

the two aspects under different rates and flow sizes. We ten-

tatively chose θ = 10 for Gθ
MPDU in this case. To compute

the accuracy of inferring packet size, if the proposed method

makes the right choice to identify data and Ack stream in a

window, we call it a correct inference. Then, the accuracy is

the percentage of correct inference over all cases. As we can

see in Fig. 11(a), regardless of transmission rate and flow size,

the accuracy can reach above 90% once ω ≥ 20 ms. The sim-

ilar pattern is observed in Fig. 11(b) that the measured gaps

start to be consistent from ω = 20 ms. Combining the result

6The traces are selected from 802.11ac 5 GHz under fixed transmission
rate 325 Mb/s.
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Fig. 12. Transmission rate estimation accuracy from (a) different θ and
(b) different flows.

from the previous experiment in Fig. 8, it implies that the win-

dow size needs to be at least 20 ms to yield a reliable result.

Moreover, from Fig. 11(b), we see that the low rate (32 Mb/s)

clearly has larger GMPDU than the higher rate (325 Mb/s) as

expected. However, a comparison across different flows shows

that light flow presents slightly larger values than the medium

and heavy flows. This is due to the inappropriate setting of θ .

In the following, we continue the experiments to search the

optimal setting of θ .

θ Setting: From the observation from previous experiments

in Fig. 9 and 11(b), we see that the light flow is the most

troubled case to obtain effective θ -percentile GMPDU. So we

chose the light flow with ω = 20 ms as the target to search

θ . Fig. 12(a) shows the transmission rate estimation accu-

racy (1−|[(estimated − ground_truth)/(ground_truth)]|) from

three ω settings. We see the estimation accuracy drops with

the transmission rate increasing. It is because when the MPDU

gap is small under the high transmission rate, it is more vul-

nerable to be bothered by random noises (e.g., back off and

time skew). From the three settings of θ , we see that θ = 5

yields the best performance. The large values of θ = 20, 50

suffer from the overestimated gap under the light-flow traffic

(recall Fig. 9).

With the θ = 5, we evaluated the performance of transmis-

sion rate estimation across different flow sizes. As shown in

Fig. 12(b), when flow size increases, the estimation accuracy

goes up benefited from the robust gap measured from heavy

traffic. Overall, we can achieve the estimation accuracy above

50% under 802.11ac/5 GHz. In the low transmission rate range

(< 300 Mb/s), the accuracy can be improved to at least 75%.

Given that this measurement runs at a per-packet basis, this

result is reasonably good to offer insightful characterization

to the traffic profile in a WiFi environment. In the following

part, when discussing the next metric, we will show how we

can further assess the confidence of a rate estimation result by

using the queue metric.

3) Queuing Indicator: Queuing can affect network

performance in various ways [17], [18]. Understanding queu-

ing information can help one diagnose or improve network

conditions. This information requires to access the kernel level

on the device. It is difficult to access from the client side, espe-

cially with a passive approach. Fortunately, the PM AI innately

embodies property to infer queue length. Recall the process of

forming an aggregated frame, the number of MPDUs will be

assembled in an A-MPDU—AI—is decided by the number of

Fig. 13. (a) Queuing Indicator performance compared with (b) beacon
delay [20].

MPDUs with the same TID (i.e., same destination address)

in the queue. It implies AI is strongly correlated with the

queue length. To approximate the queue length, we devise a

metric—queue indicator (QI) such that

QI �
AI

AImax
. (6)

Since different transmission rates allow different AImax (1), the

same AI may indicate different queuing degree under different

transmission rates. Therefore, we define QI as a normalized

AI. The value is between 0 and 1 which describes how much

the aggregation potential is being utilized. It can translate how

intensive is the backlog queuing effect. For the traffic in a time

window, QI can be computed for each link. The AI then can

be represented as the mean AI on a link, and maximum AI

can be calculated from the transmission rate according to (1).

By plugging in (5) into (1), we can compute AImax as

AImax =
Tmax

Gθ
MPDU

(7)

where Tmax is the maximum transmission time allowed. It is

set by WiFi adapter manufacture (e.g., 4 ms in ath9k[19]).

Experimental Validation: Since our devised metric is an

indicator of the queue length, the output will be a correlated

reference rather than the length of the hardware queue. In order

to evaluate the performance, we varied the TCP flow sizes to

cause different queue lengths. Similar to the setting in Fig. 7,

six flow sizes were used in this experiment ranging from 20 kB

to 160 MB. The ground-truth queue length can be polled from

the Linux kernel. As the performance of QI largely depends

on the robustness of Gθ
MPDU, the impact of window size θ

is similar to the previous case. Thus, we skip the ω impact

study, and set ω = 20 ms as the minimal feasible value. In

Fig. 13, we plot the performance of QI contrasted with a prior

work [20]. Reference [20] uses the similar passive approach

to infer queue length. But it exploits the delay of the beacon

frame from AP as the indicator. The designed QI [Fig. 13(a)]

monotonically increases with the queue length regardless of

the transmission rate. However, the beacon delay [Fig. 13(b)]

is only responsive on low transmission rate (72.2 Mb/s). When

the transmission rate is high (144.4 Mb/s), beacon delay is not

sufficiently sensitive to capture the subtle changes on the queue

length.

Facilitating Transmission Rate Estimation: In addition, QI

can also serve as a confidence metric for facilitating transmis-

sion rate estimation. When the serious queuing effect occurs,
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TABLE I
CHARACTERIZATION METRICS SUMMARY

Fig. 14. Queuing indicator versus frequency of relative estimation accuracy
of transmission rate.

the frames are transmitted in a more compact way. Thus,

the time gap can be more robust under high QI. Therefore,

we can use QI to assess the confidence about the estimated

transmission rate. To demonstrate this property, we replot the

accuracy of transmission rate estimation as the function of QI

from previous experiments. In Fig. 14, we see that QI can

intrinsically reveal the estimation accuracy for transmission

rate estimation. When QI is greater than 0.5, the accuracy can

hold at least 75%. The feature can help us effectively filter

out the erroneous rate estimations.

4) Characterization Metrics Summary: We summarize the

derivation formulas for calculating different metrics based on

the PMs AI and GBA in Table I. The table also provides expla-

nations to the measurement variables used in each equation.

The detailed derivation and evaluation for each metric can be

found in the corresponding section labeled in the table.

IV. WIFI SCAN FOR CHARACTERIZATION

Thus far, we have demonstrated that how one can character-

ize WiFi channel traffic by merely using the control packets.

More importantly, the experimental result shows that we can

archive reliable characterization toward various metrics even

under a short time window (e.g., 20 ms). As one of the con-

tributions of this article, we propose that the characterization

design can be implemented on the existing WiFi scan func-

tion by taking advantage of its periodic behavior of listening

on WiFi channels. By using the control packets captured dur-

ing the scan, we are able to accomplish characterization on

WiFi channels over time without triggering an extra process.

However, the performance of adapting WiFi scan to char-

acterize is further decided by 1) how frequently the scan is

performed and 2) how long it listens on a channel every time.

If the scan is rarely performed, the results over time can be

sparse and can suffer from staleness. In addition, if the dura-

tion that a scan keeps listening on a channel is not sufficiently

long, the characterization result might be inaccurate as dis-

cussed before when ω is too small. In order to validate whether

the de facto scan operation is adequate to be adapted for the

characterization purpose, we conduct real-world analysis to

study the scan behavior.

A. Feasibility Study—Dense Data Set

We define the time interval between consecutive scans as

the scan interval. During each scan, the time duration that the

radio keeps listening on a channel is called dwell time [21].

The scan interval depends on various factors, such as WiFi

connected or not, phone screen on/off, WiFi setting page

on/off, and so on. For the dwell time, it is set by the manu-

facture so that different WiFi chips have different settings. In

order to understand the scan behavior in the wild, we conduct

the analysis on scan interval and dwell time from a real-world

data set which involves high user diversity.

Data Set Summary: We studied WiFi scanning by drawing

from control packets captured in prior work [22]. In order

to gain user diversity as well as density, we collected the

data on a university football game day in two network sce-

narios. The first scenario was a tailgating party before the

game started, and the second was inside the stadium during

the game. Overall, we collected over 272 000 probe requests

(139 817 from the stadium and 132 274 from the tent) on

one channel (chan no. 1). Notably, over 41 000 WiFi devices

(22 434 from the stadium and 19 116 from the tent) contributed

to this study.

Scan Interval: For energy efficiency, we know the scan can-

not be triggered more than once per second. Therefore, the

scan interval can be measured with the time difference between

consecutive probe requests that were sent from the same device

and set apart more than 1 s. The empirical CDF is plotted in

Fig. 15(a). The observation shows that, about half of the scans

have an interval of less than 20 s and the 75th and 90th per-

centiles are 134.90 and 390.73 s. The frequent scan behavior

in the data set is due to the fact that 1) many devices often had

their screens on (e.g., people watched the game news on their

phones) and 2) many of them did not have WiFi connected,

especially in the stadium where no WiFi is available.

Dwell Time: In order to measure the dwell time, we exploit

the channel leakage from the overlapped channels on the

2.4-GHz band. The intuition is that the packet transmitted on a

channel (e.g., channel 2) can be heard on the adjacent channel

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on June 22,2022 at 19:40:45 UTC from IEEE Xplore.  Restrictions apply. 



SONG et al.: SNIFFING ONLY CONTROL PACKETS: LIGHTWEIGHT CLIENT-SIDE WiFi TRAFFIC CHARACTERIZATION SOLUTION 6545

Fig. 15. Empirical CDF of (a) scan interval and (b) dwell time observed in
the real-world data set.

(e.g., channel 1). For a probe request packet, the parameter

current channel indicates its target channel. By measuring the

time gap between two consecutive probe requests (with con-

secutive sequence number) from the same device but target on

different channels, we can calculate the dwell time. We plot

the empirical CDF of the observed dwell time in Fig. 15(b).

The result reveals a clustered distribution that about half of the

scans have dwell time of 20 ms and another 40% have 40 ms.

By resolving the MAC addresses, we find that Apple and

Lenovo devices usually use the 20 ms setting, and Samsung

and HTC prefer 40 ms.

Implication: Through the empirical study, we see that for

each device, the scan operation is performed at least every

few minutes (e.g., 6.5 min for 90% devices). In each scan,

the device listens on a channel for at least 20 ms and about

half of the devices listen for 40 ms. Recall the experimental

results in Section III, the characterization result is robust once

the window time ω ≥ 20 ms. It implies that if the charac-

terization function is implemented on the existing WiFi scan

operation, we can innately obtain the traffic condition on dif-

ferent channels every few minutes. In the next section, we will

evaluate the performance of this proposed mechanism under a

real-world scenario.

V. PERFORMANCE EVALUATION

Trace-Driven WiFi Scan Emulation: Modifying the scan

function to implement the characterization on commodity

devices is impractical, since the functionality of the scan is

programmed on the firmware. In this article, we take the

emulation approach to evaluate the proposed system in a large-

scale setting. With the real-world data captured through the

monitor mode, we can conduct trace-driven evaluation upon

the data. In the captured data set, we assume that all the

devices can perform such a modified scan function. When a

probe request was sighted when a client was scanning, we

assume the client was also performing the traffic characteriza-

tion on the WiFi channel. So the control packets collected in

the following ω time window after the probe request will be

used to calculate the characterization result. We set ω = 20 ms

to satisfy the realistic setting for dwell time. In addition,

we assume there is a crowdsource server which can gather

results from the devices. So we can combine the results from

multiple clients to have a more complete view of the WiFi

TABLE II
DATA STATISTICS SUMMARY

channel. With more clients contributing, the more accurate

and complete result we can get for the WiFi channel.

Setting: Following that, we set up a controlled WiFi network

to capture the trace for emulation. Similar to the tailgating sce-

nario before, the network was deployed on campus to provide

Internet access for a football tailgating party. The event was

hosted in an outdoor tent where several hundred people gath-

ered for several hours before the football game started. We

used Aruba 7010 wireless controller to manage the multiple

APs. The APs provide connection on dual bands with one

channel on each band: channel 1 for 2.4 GHz and 149 for

5 GHz. By using the controller, we could obtain the ground-

truth information through the simple network manage protocol

(SNMP). We periodically (i.e., every 45 s in this case) polled

the controller with SNMP walk command to record network

condition, e.g., airtime, throughput, and so on. To capture the

raw data for characterization, we set up the monitor devices to

listen on the two channels which APs were operating on. The

monitor devices were placed near the APs to attempt capture

all traffic on APs and avoid the hidden terminal issue. The

captured traffic was saved into pcap files as the source for

trace-driven emulation.

Data Summary: The data captured is summarized in

Table II. Over the 4-h data collecting, we gathered total 8.6-GB

pcap files for only control traffic. There were over 51 000

unique devices7 sighted during the study. But many devices

only showed up for a short time. Among them, 480 clients (350

on 5 GHz and 130 on 2.4 GHz) were persistently sighted over

an hour. There were 784 active clients which launched data

transmission with BA exchanges. We find that over 99% of

the BA exchange involved our deployed APs. It means almost

all data traffic occurred on our deployed network. Therefore,

the SNMP data should provide complete ground truth about

the WiFi environment.

Evaluation With Ground Truth: Among the characterization

metrics derived from our method, SNMP data only provide

ground truth for two metrics: 1) throughput and 2) airtime.

Therefore, we focus evaluation on the two commonly used

metrics. Since SNMP data are sampled every 45 s, to cre-

ate point-to-point matching data, the mean of the results from

our method during the 45th s is used to match with SNMP

data. First, by assuming all devices report their characteriza-

tion results to the crowdsource server, we exploit all scans to

plot the time series in Fig. 16. Since the usage of the 2.4-GHz

band is sparse in this case, only 5-GHz band data are used for

this evaluation. In Fig. 16(a), we see that the estimated airtime

7A device is identified with a unique MAC address.
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Fig. 16. Time series of (a) airtime estimated compared with ground truth
and (b) number of packets captured during dwell time for each scan.

Fig. 17. Correlation between the estimated value and ground truth w.r.t.
number of devices used for generating result. All the results are from 5-GHz
band. (a) Airtime. (b) Normed throughput.

closely follows the ground truth over time. As the throughput

shows the similar pattern, we do not plot it to save space.

Furthermore, in order to understand the computation cost of

the characterization function, we plot the total number of con-

trol packets as well as the BAs captured in the dwell time

during a scan in Fig. 16(b).8 It shows that for each scan on

a channel, the characterization only needs to process 20–40

control packets with less than 20 BAs. When the channel is

busy, the number can reach to 140 total packets with 40 BAs.

It implies implementing the characterization onto the scan will

not cause significant computation load.

To further quantize the performance, we calculated the

Pearson correlation coefficient9 between the estimated value

and ground truth. A correlation value is calculated from a

90-min window. By moving this window across the entire

time session, we can obtain over 200 estimation points. In

addition, to explore the impact of crowdsourcing, we assume

that only part of the clients voluntarily report their data to

the crowdsource server. Therefore, only the scans from cer-

tain devices are exploited for characterization. By varying the

number of devices involved, we try to find out how much

clients are needed to deliver accurate characterization through

the crowdsource manner. We sort the sighted devices by their

present time. Thus, the x devices mean the top x sighted

devices. In Fig. 17, we plot the empirical CDF of the corre-

lation coefficient on both airtime [Fig. 17(a)] and throughput

8The figure is plotted after downsampled to reduce visual clutter.
9The value ranges from −1 to 1, where 1 implies perfect linear relationship

while −1 implies negative linear relationship.

[Fig. 17(b)]. As the results show, with all the available devices,

we can achieve the median coefficient of 0.817 for airtime and

0.837 for throughput. With less devices involved, the coeffi-

cient decreases. Notably, once the client number increases to

10, the median correlation coefficient can reach up to 0.8 for

both airtime and throughout. It implies that for a certain WiFi

environment, if more than ten devices contribute to their char-

acterization results, we can provide the accurate channel traffic

characterization through crowdsourcing. We argue that bene-

fited from the low cost and nonobtrusive nature of our passive

approach, it creates less barrier to convince users to contribute

into the crowdsourcing. In addition, the characterization result

is usually more useful under a user-dense scenario to either

glean insightful observation or help debug network problems.

Given the proposed method merely requires ten or more clients

to get a satisfactory result, it is fairly feasible to get that small

number of voluntary clients in a user-dense (ideally with the

client number greater than 50) scenarios.

Empirical Study on Other Metrics: Without the ground

truth, we cannot provide deterministic performance evalua-

tion for other characterization metrics, e.g., transmission rate.

Instead, we use the characterization results from all clients as

an empirical study to analyze the WiFi traffic. In Fig. 18, we

plot the empirical CDF of the several metrics computed from

our method. Particularly, we compare the different distribution

from 2.4 and 5 GHz bands. Starting from the AI in Fig. 18(a),

since we had much more traffic load on 5 GHz, the AI on

5 GHz is higher than on 2.4 GHz. Notably, there is about 20%

of AI equal to 1 on 2.4 GHz which could be due to the many

light-flow traffic. The QI in Fig. 18(b) reveals that with the

higher capacity, although there were more traffic on 5 GHz, it

caused less backlog pressure compared to on 2.4 GHz. Finally,

by filtering out the results with QI ≤ 0.1, we plot the estimated

transmission rate in Fig. 18(c). The result matches our expecta-

tion that with 802.11ac supported on 5 GHz, the transmission

rate on 5 GHz (with the median around 200 Mb/s) is greater

than 2.4 GHz (with the median of 100 Mb/s). Overall, we see

the rich set of characterization metrics from our method can

help reflect insightful attributes about the WiFi traffic.

VI. RELATED WORK

The work of WiFi traffic characterization has been

investigated from different network layers. At the physi-

cal layer, there are works [23]–[25] particularly target on

sensing the power on the WiFi spectrum. For example,

Airshark [23] exploits commodity WiFi device to detect non-

WiFi interference (e.g., microwave oven). Different from the

physical layer works, our work primarily focuses on the MAC

layer. The works on the MAC layer can then be gener-

ally classified into two groups: 1) the AP-side approach and

2) the client-side approach. The AP side works [6]–[8] usually

require deploying controlled networks which is expensive in

terms of financial cost as well as human effort. WiSe [8] set

up home WLAN for 30 homes over six months to analyze

their home wireless environments. More recently, [6] studied

the data collected from approximately 10 000 radio APs and

5.6 million clients from one-week periods to provide a deeper
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Fig. 18. Empirical observation on other characterization metrics. (a) AI. (b) QI. (c) Transmission rate when QI > 0.1.

understanding of real-world network behavior. For the works

focusing on measurements on the transport layer or above,

the emphasis is usually on data analysis (e.g., traffic classifica-

tion [26]) instead of the techniques of collecting measurements

which this article focuses on.

To avoid the cost of the AP-side approach, the client-side

method shows its advantage of being cost efficient and flex-

ible. Unlike existing works like [27] that collecting mobile

traffic only generated from the measuring client itself, the

client measurement in this article captures surrounding traf-

fic from other clients in the vicinity to the measuring client,

which is intrinsically a more challenging problem. The pas-

sive client monitor works in this domain have been extensively

exploited for different purposes. Reference [28] manipulates

smartphones to monitor WiFi traffic in order to infer human

activities. Another smartphone-based work [29] uses an indoor

WiFi monitor fused with mobile crowdsource to achieve better

localization. With large-scale studies, [30] explicitly seeks the

co-location between mobile users via Bluetooth information

combined with the WiFi scan. In addition, for security pur-

pose, [31] and [32] attempt to exploit WiFi monitor to detect

rogue AP and potential attack. For the general purpose of

traffic characterization, many prior works [9]–[12] focus on

merging traffic or inferring unobserved traffic. They assume

that most of the data traffic can be sensed passively which may

not be accurate with more modern, faster WiFi approaches.

VII. CONCLUSION

Given the increasingly crowded WiFi environment due to

the growth of IoT devices and other mobile devices, it is

important for end users to understand the surrounding WiFi

channel condition for making potential adaptive choices. In

this article, we presented an intriguing new approach for WiFi

traffic characterization. We showed that it is possible to infer

a variety of useful characterization metrics solely through the

observation of BA and other control packets. Moreover, we

showed that such results tend to be reasonably stable even

at very short time frames allowing for the potential to con-

duct such observations during normal WiFi scanning. We

believe the implications for the work are considered from

both the end-user standpoint, troubleshooting standpoint, and

analysis/potential of cellular onto WiFi bands standpoint. We

believe the topic is ripe for future work and plan to explore

more extensive data sets, including dense urban centers, newly

deployed WiFi at the stadium, and various public venues.

We will also further look into novel applications of applying

this method to facilitate better network service. For example,

one of the promising usages is to leverage the ongoing pas-

sive measurements to improve DASH video streaming bitrate

adaptation under congested WiFi environments.
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