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Abstract: Inspired by flight characteristics captured from live Monarch butterflies, an optimal
control problem is presented while accounting the effects of low-frequency flapping and abdomen
undulation. A flapping-wing aerial vehicle is modeled as an articulated rigid body, and its
dynamics are developed according to Lagrangian mechanics on an abstract Lie group. This
provides an elegant, global formulation of the dynamics for flapping-wing aerial vehicles, avoiding
complexities and singularities associated with local coordinates. This is utilized to identify an
optimal periodic motion that minimizes energy variations, and an optimal control is formulated
to stabilize the periodic motion. Furthermore, the outcome of this paper can be applied to
optimal control for any Lagrangian system on a Lie group with a configuration-dependent inertia.

Keywords: Lagrangian mechanics, geometric mechanics, Lie group, flapping-wing unmanned

aerial vehicle, optimization

1. INTRODUCTION

Millions of Monarch butterflies migrates from North Amer-
ica to the central Mexico during the fall, exhibiting the
longest flight range among the insects (Gibo [1981]). Their
dynamics are distinct from small insects, as the relatively
large wings are flapping at a lower frequency, with active
undulation of its abdomen. It has been suggested that
abdomen undulation may reduce power consumption from
the dynamic coupling of wing-body motion by Sridhar
et al. [2019]. It is further reported in Dyhr et al. [2013] that
moths actively modulate their body shape to control flight
in response to visual pitch stimuli, and it may contribute
to pitch stability. However, it is challenging to dynamically
model such effects to utilize in control system design.

Flapping wing aerial vehicles are essentially infinite dimen-
sional, nonlinear time-varying systems, where the equa-
tions of motion describing displacement and the defor-
mation of a flexible multi-body system are coupled with
the Navier-Stokes equations. Various control system design
techniques have been reviewed by Shyy et al. [2016]. Most
of these control systems are based on the common sim-
plified formulation where the nonlinear time-varying flap-
ping dynamics are transformed into linear time-invariant
systems by considering small perturbations averaged over
the period of flapping (see, for example, Xinyan Deng
et al. [2006]). As such, these approaches are not suitable to
analyze the low-frequency flapping dynamics of Monarch
butterflies.

Recently, a flapping wing aerial vehicle is modeled as an
articulated rigid body by Sridhar et al. [2020], where four
rigid bodies representing two wings, thorax, and abdomen
are interconnected via spherical joints, with the assump-
tion of quasi-aerodynamics. The resulting dynamics are
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considered as a Lagrangian system on a Lie group, and
an intrinsic form of equations of motion are constructed.
Compared with developing equations of motion of multi-
rigid body systems with local coordinates, such as Euler
angles, this provides an elegant, global formulation that
is free of singularities. As such, this is particularly useful
to design control systems inspired by Monarch. For exam-
ple, it has been utilized to study the effect of abdomen
undulation in energy efficiency by Tejaswi et al. [2020].

In this paper, we present an optimal control problem
to stabilize a periodic motion representing the hovering
flight. The flapping motion of both wings are parame-
terized by several variables characterizing the amplitude
and the shape of oscillations, which are optimized over
the numerical solutions of the aforementioned Lagrangian
system. Compared with various prior works in the control
of flapping wing aerial vehicles, the unique contribution
is that we consider the complete dynamics involving the
motion of wings, thorax, and abdomen coupled though
arbitrary three-dimensional rotations and translations. In
other words, the dynamics are not simplified by the com-
mon assumptions such as the longitudinal motion confined
to a two-dimensional space, or the wing flapping decou-
pled from the body and the abdomen. These features are
particularly useful to grasp the unique dynamic character-
istics of Monarch, and to take the advantage of those in
control system design. In short, we exploit the geometric
formulation of Lagrangian mechanics on a Lie group for
optimal control of a complex system inspired by Monarch.
More detailed mathematical developments of this paper
are available in Tejaswi and Lee [2021].

2. LAGRANGIAN MECHANICS FORMULATED ON
A LIE GROUP

Consider an n-dimensional Lie group G. Let g be the
associated Lie algebra, or the tangent space at the identity,



i.e., g = T.G. Consider a left trivialization of the tangent
bundle of the group TG ~ G x g, (g9,9) — (9,L,-19) =
(9,&). More specifically, let L : G x G — G be the left
action defined such that Lyh = gh for g,h € G. Then the
left trivialization is a map (g,9) — (9,Ls-19) = (9,€),
where ¢ € g. Further, suppose g is equipped with an
inner product (,-), which induces an inner product on
T,G via left trivialization. For any v,w € T,G, (w,v)T,6 =
(Tglg-1v, Tyl -1w)4. Given the inner product, we identify
g ~ ¢g"and T,G ~ T/G ~ G X g* via the Riesz
representation. Throughout this paper, the pairing is also
denoted by the dot product . The adjoint operator is
denoted by Ady : g — g, and the ad operator is denoted
by ade : g — g. See, for example Marsden and Ratiu [1999]
for detailed preliminaries.

We develop Euler-Lagrange equations for an arbitrary Lie
group G, which are utilized later for the flapping wing
UAV.

Assumption 1. The Lagrangian L : G x g — R is given by
the difference between kinetic and potential energy as

L(9,€) = 503,(6).6) ~ U9) (1)

for a configuration-dependent inertia J : G x g — g* and
potential U : G — R. Here, the inertia is a symmetric,
positive-definite tensor dependent on the group.

Definition 2. The left-trivialized derivative of J,(&) with
respect to g is defined as Ky(§)(-) : G x g — g* given by

Ky (E)x = Tely(Dgdy(€)) - x- (2)
along the direction x € g. By selecting a basis of g, K4(§)
can be represented by a matrix since it is a linear operator.

The Euler-Lagrange equations for an arbitrary Lagrangian
on a Lie group has been reported, for exampled by Lee
et al. [2018]. Here we present a special case, when the
Lagrangian is given by the configuration-dependent kinetic
energy and the potential as in (1).

Theorem 3. The forced Euler-Lagrange equations corre-
sponding to the Lagrangian in (1) are given by

3(6) + K, (€)6 — a2y () — LK;(E)¢
+TIL, (DU () = 1, 3)
9= g¢, (4)

with f: [to, 5] — g* as the generalized force acting on the
system.

Proof. See Tejaswi and Lee [2021].

3. DYNAMICS OF FLAPPING WING UAV

In this section, we present a multibody model for an
FWUAV, and we derive the corresponding Euler-Lagrange
equations. The three-dimensional special orthogonal group
is denoted by SO(3) = {R € R¥3 | RTR = I,det(R) =
1}, and the corresponding Lie algebra is s0(3) = {A €
R3*3 | A = —AT}. The Hat map A : R® — 50(3) is defined
such that &y = 2 xy for any z,y € R3. And its inverse map
is the vee map, V : 50(3) — R3. Next, e; € R denotes the
i-th standard basis of R™ for an appropriate dimension n,
e.g., e1 = (1,0,...,0) € R™. Throughout this paper, units
are in kg, m, s, and rad, unless specified otherwise.
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(a) flapping angle,
¢Rr € [—m, )

(b) pitch angle,
Or € [-m,m)

(c) deviation angle,
YR € [-m, )

Fig. 1. Euler angles (Sridhar et al. [2020]) : positive values
are indicated from Fg (green) to Fg (red)

3.1 Multibody Model

Let the inertial frame which is compatible to the standard
north-east-down (NED) frame be F; = {iy,i,,1,}. We
model the FWUAV as an articulated structure which is
composed of multiple rigid bodies listed below:

e Body: This corresponds to the head and thorax com-
bined into a single rigid body. We define Fp =
{bz,by,b.} as the body-fixed frame located at the
center of mass of the body. This position is denoted
by z € R3 in F;, and the attitude of Fp is given
by R € SO(3). With Q € R? as the angular velocity
of the body resolved in Fp, the attitude evolves as
R = RQ.

e Right wing: It is directly attached to the body. Also,
we do not distinguish forewings and hindwings in our
model. Let Fp = {rz,ry,r.} be the frame fixed to
the right wing at its root. It is located at a constant
ur € R3 from the origin of Fg. Next, we define
Fs = {sz,sy,s,} as the stroke frame obtained by
translating the origin of Fp to the center of wing
roots, and rotating it about b, by a fixed angle
B € [—m,m). The attitude of the right wing frame
with respect to Fg is denoted by 1-3-2 Euler angles
(¢r(t),Yr(t),0r(t)) (see Figure 1). So the attitude
of Fg relative to Fp, Qr € SO(3), can be expressed
as Qr = exp(Béz) exp(¢reé1) exp(—Yrés) exp(Oreéz),
and its time-derivative will be Qr = QgrQgr for
Qg € R3.

o Left Wing: The left wing frame Fr, = {1,,1,,1.} is de-
fined symmetrically to the right wing, and is located
at pur € R3 from the origin of Fp. So its attitude
is, Qr = exp(Béz) exp(—¢ré1)exp(Yrés)exp(fréa),
with the set of Euler-angles (¢r,(t),¢r(t),0r(t)), and
QL = QY for Qp € R3.

e Abdomen: Finally, the abdomen is connected to the
body via a spherical joint at which F4 = {a,,a,,a.}
is attached. It is located at p4 € R? from origin of
Fp, and its attitude relative to the body is denoted
by Q4 € SO(3) with Q4 = Q4Q4 for Q4 € R3.

8.2 Lagrangian Mechanics of FWUAV

The configuration of the presented model is described by
g=(z,R,Qr,Qr, Q) that belongs to the 15-dimensional
Lie group G = R3 x SO(3)*. The corresponding left
trivialized velocity is & = (&,Q,Qg,Qr,24) which is an
element of the Lie algebra, g = R? x s50(3)% ~ R3 x (R3)%.



Proposition 4. The Euler-Lagrange equations for the flap-
ping wing UAV are given according to (3) as

Jg(§) —ade - Jg(§) + Ly(§)E =fa + £y + £ (5)
Here, effects of the configuration dependent inertia is
represented by the matrix Ly(&) = Ky(§) — %KgT(g) €
R15%15 Meanwhile, f; = —T!L,D,U is the contribution
of potential energy and f, + f. is the non-conservative
external force. The complete derivation along with detailed
expressions is available in Tejaswi and Lee [2021].

4. OPTIMAL CONTROL

In this section, we present optimal controls of flapping
wing UAV inspired by Monarch. First, the equations are
reorganized such that the flapping motion can be described
by wing kinematics. Second, we formulate an optimization
to identify a periodic motion corresponding to hovering,
with an additional numerical analysis to illustrate the ef-
fects of abdomen undulation. Next, we present an optimal
control problem to stabilize the hovering flight.

4.1 Reduced Equations

We are interested in the global motion of the flapping
wing UAV in 3-D space which is influenced by the coupled
movement of wings and abdomen. So, in this section
we consider a simpler case of the dynamics wherein we
prescribe the motion of wings and abdomen. That is,
we obtain equations governing the evolution of (x, R) for
given functions Qr(t), Qr(t), Qa(t). This is reasonable as
the inertia of the wing and the abdomen are relatively
small, and the corresponding torques at the joint can be
reconstructed by dynamic inversion. This corresponds to
a specific choice to formulate the maneuver with wing
kinematics, and the effects of dynamic coupling are still
accounted completely by (5).

Definition 5. The configuration variables are decomposed
into the free part and the prescribed part as

g1 = (xaR)v 51 = [:ﬁ,Q], (6)
92 = (Qr,Qr,Qa), & =I[Qr, AL, N4l (7)
with g = (g1, 92) and § = (£1,&2).

Definition 6. (Configuration subspaces). Decompose all 15x

15 matrices into {(6 x 6), (6 x 9), (9 x 6), (9 x 9)} blocks.
For instance, J, can be decomposed into Jy; € R6*C,
Jo1 € R°%6 and so on. Similarly a vector f € R'® can
be divided into f; € R® and f, € RY.

Proposition 7. The derivative of & for given (92,52,5'2)
can be evaluated as

& = (I — CI2) 7" [(adf, J11 — Cadg, Jo1)6
— (L11 — CLa1)& — (J12 — CI)&
+ (adg, J12 — Cadg, J22)8a — (Liz — CLg2)&2

+fa1 + fgl - C(fa2 + ng)} ’ (8)
where,
_| 0 0 0 6x9
€= —Qr —Qr —Qal| € R

Proof. The Euler-Lagrange equations (5) for the full
configuration can be decomposed into two parts as

T+ I —adg, - (Jnéy + Jn&)+

L11&1 + Liobo = 1o, + 1, + 17, (9)

J2161 + J226o — adg, - (2161 + J226o)+
L21§1 + L22€2 = fag + f92 + sz‘ (10)
Here the external control torques (g, 71, 74) are unknown
since we are directly specifying the wing and abdomen
configuration. However, the above two equations are cou-
pled by these torques through the relation, f,, = Cf,

(see Tejaswi and Lee [2021]). To remove these terms, we
calculate (9) - C'x (10) to obtain

(J11 — CI21)61 — (adf, J11 — Cadf,I21)&1 + (L1 — CLap)&
= —(J12 — CJ22)£2 + (ad21']12 — CadZ2J22)§2
— (Li2 — CLgg)éo + £, +£5, — C(fa, +15,)
which is rearranged into the equation in (8).

The control toques (7r, 71, T4) necessary to specify motion
of the wings and abdomen can then be obtained from (10)
by substituting the integrated (g1, &1). m]

4.2 Wing and Abdomen Kinematics

Since we are prescribing the second set of configuration in
(7), it would be simpler to parameterize the trajectories
of these variables. Consider the model utilized in Tejaswi
et al. [2020] for the motion of the wing relative to the body.
Let f € R be the flapping frequency in Hz and T = % be

the corresponding time period in seconds.

e The flapping angle is parameterized as
B(t) = 20— sin~ (9 cos(2nft)) + do, (1)
sin” ¢
where ¢,, € R is the amplitude, ¢¢ € R is the offset,
and 0 < ¢ < 1 determines waveform shape.
e The pitch angle is given by,
Om
9(75) - tanh 96’
where 6,, € R is the amplitude of pitching, 6y € R is
the offset, 8¢ € (0,00) determines the waveform, and
0, € (—m, ) describes the phase offset.
e Finally, the deviation angle is given by

Y(t) = thm cos2mn ft + ¥a) + 2o, (13)
where v, € R is the amplitude, ¥y € R is the offset,
and the parameter ¢, € (—m,m) is the phase offset.

tanh(0¢ sin(2m ft + 6,)) + 0o, (12)

Using these Euler angles, the attitude, angular velocity
and acceleration of the wings can be constructed.

Next, the attitude of the abdomen relative to the body
can be considered as Qa(t) = exp(fa(t)és). This is
motivated by the flight characteristics of a live Monarch
butterfly which exhibits a nontrivial pitching motion of
the abdomen (see Sridhar et al. [2020]). Here, the relative
pitch angle is taken to be 04(t) = 64, cos (2nft +04,) +
04,, for fixed parameters 04, ,04,,604, € R.

4.8 Periodic Motion

The above dynamic model yields the position and the at-
titude trajectory of the body for given kinematics of wings
and abdomen. We first need to construct the kinematics
of wings and abdomen for a particular maneuver. This
is challenging due to the complexities of the dynamics
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and the relatively large number of free parameters in the
wing kinematics. Here we focus on the case of hovering
flight, where the position and the attitude returns to the
initial value after each flapping period. This result can be
easily extended to other maneuvers such as forward flight
or climbing.

This is addressed by a constrained optimization to mini-
mize a performance index while ensuring that the motion
is periodic. The parameters being optimized over charac-
terize FWUAV wing kinematics and abdomen undulation
along with the initial conditions. More specifically, this is
formulated as follows.

e The objective function is

T T
J:wl/ \E(t)|dt+w2/ B ()|t
0 0

where wy, w; € R, and E(t) = 3m l|&(2) || —mgeT =(t)
is the sum of the kinetic energy and the gravitational
potential energy. This is to minimize the variation of
the energy while penalizing abrupt changes.
e The optimization parameters are given by
- flapping frequency: f and stroke plane angle: g
- wing kinematics: (¢, Ok, 00), (Om,0c,00,04),
('L/)mv wOa 1pa)
- abdomen undulation : (04, ,04,,04,)
- initial translational velocity: #(0) € R?
- initial attitude, angular velocity along 2nd axis:
05(0) s.t. R(0) = exp(0p(0)éa), 22(0) = (Q, ea)
e We ensure periodic motion by imposing the con-
straints: (0) = z(T), #(0) = #(T). Furthermore,
there are additional constraints to avoid physically
infeasible flapping, |¢m| + |¢o] < 7/2, along with
prescribed hard bounds on other parameters. It is

(14)

also assumed that the motion of wings is symmetric
to each other in this simple maneuver.

e The physical properties of the FWUAYV including the
wing morphological parameters like J;, u; are taken
to be similar to those of an actual Monarch. Their
specific values are given in Sridhar et al. [2020].

e The aerodynamic properties including lift and drag
coefficients are adopted from experimental data
in Dickinson et al. [1999], Sane and Dickinson [2001].
Tejaswi et al. [2020] presents these expressions along
with their relations to the actual aerodynamic forces
and torques. Furthermore, aerodynamic forces due to
the body and abdomen are ignored.

This problem is solved via global optimization techniques
such as multistart in MATLAB. The corresponding
optimized parameters are summarized in Table 1, and
the resulting maneuver is illustrated in Figure 2. Note
that since this maneuver is in the x-z plane, the relative
attitude and angular velocity of the body are non-zero
only along the y axis as shown in Figure 2.(c). Compared
with Tejaswi et al. [2020] where the periodic orbit is
constructed for the translational dynamics, this provides
the periodic motion for the coupled translational and
rotational motion in the higher-dimensional space.

Table 1. Optimized parameters

Parameters With abdomen | Without abdomen
undulation undulation
I 11.7575 11.3975
B —0.0087 0.2014
bSm 0.7271 0.6655
dK 0.9493 0.0138
b0 —0.1977 —0.0434
Om 0.6981 0.6980
0c 2.8289 2.9968
0o 0.4843 0.3503
0o 0.2905 0.3971
Ym 0.0004 0.0003
PN 2 2
o —0.0223 —0.0400
Pgq 2.7130 3.1109
Oa,, 0.2618 e
04, 0.2950 0.7667
Oa, 2.7743
#1(0) —0.2332 —0.2437
2(0) 0.0000 0.0000
3(0) —0.0764 —0.0859
05(0) 0.7314 0.5666
Q2(0) —2.2583 —0.1709
Optimized J | 0.0787 0.0890

(f’natural = 10.2247Hz, YN = 2)

4.4 Effects of Abdomen

Now we study the influence of abdomen undulation on
the periodic maneuver and the performance index. As a
comparison, we identify another periodic orbit assuming
that the abdomen is at a fixed relative attitude with
respect to the body. The second column of Table 1 lists the
optimized parameters wherein 64, is the constant relative
pitch of abdomen.

We observe that the objective function is decreased by
about 12% when there is abdomen undulation when com-
pared to no abdomen undulation. Since J in (14) is com-
posed of energy and its derivative, they are also reduced
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in the case of abdomen undulation as seen in Figure 3.(a).
This is not surprising as there are additional degrees of
freedom that are utilized to minimize the objective func-
tion further.

Finally, the dynamical equations are utilized to obtain
the control torques (7g,7r,74) as shown in the proof
of Proposition 7. For this numerical experiment, their
magnitudes are illustrated at Figure 3.(c). Also, the power
due to these external torques can be calculated as Pr =
75 (QrQR) and Py = 74(Qa04) in the body frame.
Figure 3.(b) compares these values for the cases with and
without abdomen undulation. Note that since the wings
move symmetrically, ||7g|| = ||7z| and Pr = Pr.

4.5 Optimal Control

Now we formulate an optimal control problem such that
an arbitrary trajectory asymptotically converges to the
optimized periodic orbit for the hovering flight that we
have obtained in the previous section. More specifically, let
x(t) = (91(2),&1(1)) = (x(t), R(t), &(t), Q(t)) represent the
state of the FWUAV for the translational and rotational
dynamics of the body. We have already obtained a periodic
reference trajectory x4(t) = (xq(t), Ra(t), za(t), Qq(t)).
The objective is to adjust the control parameters such that
X(t) — Xd<t).

We have various parameters in the definition of the wing
kinematics in (11)—(13). Instead of numerically optimizing
all of those parameters by brute-force, we identity a
smaller set of parameters by investigating the effects of
those on aerodynamic forces. So we choose Na = 6 specific
control parameters:

A= [A¢mé 3 Aeosa A(bmk B A¢OS 3 Aeok 5 A¢0k]-
They are composed of two types:

(15)

e Symmetric parameters: for instance, A¢y,, = (Adm, r+
Ay, 1,)/2 which is the average change of amplitude
of the flapping angle of both wings

o Anti-symmetric parameters: e.g., Adpy,, = (Apm,r —
Ay, 1,)/2 which is the difference of flapping ampli-
tude changes leading to a lateral force

Here, Appmr = ¢m.r(t) — ém.r,d, i-€., the change of
flapping amplitude of the right wing from the desired tra-
jectory. Other variables are defined similarly. The effects
of these control parameters on the resultant force and
moment are summarized as follows. The proposed control

Table 2. Change in average forces/moments
studied near the ideal hover trajectory

A¢m3 A605 A(ﬁmk A¢OS AGOk Awok
Afa, x 107 —23 —31 0 —37 0 0
Afay x 104 0 0 87 0 =77 0
Afay x 104 —78 42 0 41 0 0
AM,, x 105 0 0 79 0 0 0
AMg, x 105 -7 4 0 6 0 0
AMq, x 105 0 0 —111 0 35 —14

parameters improve the efficiency of optimization, and the
corresponding optimized trajectories are more suitable to
be generalized into other maneuvers.

To represent the variation of these control parameters over
time, the flapping period [0, 7] divided into Ny = 10 steps
at which the values of the control parameters are specified.
Considering that the desired trajectory is periodic, we
impose an additional constraint A(0) = A(T") = 0. The
value of A(t) between discrete steps are obtained by a
piecewise linear interpolation.

The objective function is the weighted sum of the discrep-
ancy between the desired trajectory and the controlled
trajectory given by

Np
J= 3 Wi 37 Wa (3 (8) = xa, ()%, (16)
i=1 j

where ¢; = i x T/N;s. The inner sum represents errors
in the states x at time ¢; weighed by a factor Wy,. The
outer sum combines the state errors over each prediction
horizon IV, weighed by another factor W;. The weighting
factor for the state, Wy is designed to ensure that each
component is scaled by its own physical characteristics.
And the weighting factor for time, W; gradually increases
over 4 so that the terminal state error has more weight.

We follow the formulation of model predictive control,
where the prediction horizon corresponds to two flapping
period, i.e., N, = 2N, = 20. The optimization is repeated
at every period to find the optimal control parameters over
the prediction horizon, resulting in 120 optimal control
parameters for two periods. Among those, the control
parameters corresponding to the first period is actually
implemented, and at the end of the period, optimization
is repeated.

The initial states are taken to be

—0.0003 0.7365 0.0163 0.6763
2(0) = | 0.0004 |, R(0) = [-0.0130 0.9999 —0.0100,
—0.0004 —0.6764 —0.0014 0.7366
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—0.2412 —0.0437
#(0) = | 0.0100 |, Q(0) = [—2.2907] .
—0.0787 —0.0487

This optimization problem is numerically solved using
fmincon in MATLAB. The resulting optimal trajectory
errors and the snapshots are illustrated in Figure 4 and
5, with comparisons to another case without any control.
It is shown that uncontrolled trajectories quickly diverge
from the periodic orbit, whereas the controlled trajectories
asymptotically converge to the hovering flight.

5. CONCLUSIONS

This paper presents an intrinsic formulation of a La-
grangian system on a Lie group, where the Lagrangian
is composed of a configuration-dependent kinetic energy
and a potential energy. This is utilized for the dynamics
of a flapping-wing UAV inspired by Monarch butterfly.
Two optimization problems are formulated to identify a
periodic motion for hovering and also to stabilize it in the
framework of model predictive controls. Future work in-
cludes constructing data-driven feedback control schemes
by integrating a set of optimal trajectories computed by
the proposed approach for varying initial conditions.
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